
Efficient and Provably-Secure Certificateless Short
Signature Scheme from Bilinear Pairings

Hongzhen Du1,2 and Qiaoyan Wen1

1 School of Science, Beijing University of Posts and Telecommunications,
Beijing 100876, China

2 Mathematics Department, Baoji University of Arts and Sciences, Baoji 721007, China
duhongzhen@gmail.com

Abstract. In this paper, we present a certificateless signature (CLS) scheme
that is proved to be secure in the random oracle model under the hardness
assumptions of k-CAA and Inv-CDHP. Our scheme upholds all desirable
properties of previous CLS schemes, and requires general cryptographic hash
functions instead of the MapToPoint hash function which is inefficient and
probabilistic. Furthermore, our scheme requires less computation cost and
significantly more efficient than all known CLS schemes, and the size of
signatures generated by our scheme is approximate 160 bits, which is the
shortest certificateless signatures so far. So it can be used widely, especially in
low-bandwidth communication environments.

Keywords: certificateless signature, k-CAA, bilinear pairings

1 Introduction

In a traditional public key cryptosystem (PKC), anyone who wants to send messages
to others must obtain their authorized certificates that contain the public key.
However, this requirement brings lots of certificate management problems in practice.
In order to avoid the problems and the cost of distributing the public keys, Shamir [1]
firstly introduced the concept of identity based public key cryptosystem in 1984,
which allows a user to use his identity information such as name, Email address, IP
address or telephone number et al as his own public key . It means that there is no
need for a user to keep a public key directory or obtain other users’ certificates before
communication. However, in an ID-based public key cryptosystem, there inherently
exists a drawback called private key escrow problem. Since this cryptosystem
involves a Key Generation Center (KGC), which is responsible for generating user’s
private key based on his identity, that is, the private key of a user is known to the
KGC. As a result, the KGC can literally decrypt any ciphertext and forge any user’s
signature on any message. To avoid the inherent key escrow problem in ID-based
public key cryptosystem, Al-Riyami and Paterson [2] introduced a new approach
called certificateless public key cryptography (CLPKC) in 2003. The CLPKC is
intermediate between traditional PKC and ID-based cryptosystem. In a certificateless
cryptosystem, a user’s private key is not generated by the Key Generation Center
(KGC) alone. Instead, it consists of partial private key generated by the KGC and
some secret value chosen by the user. So, the KGC is unable to obtain the user’s
private-key. In such a way that the key escrow problem of ID-based cryptosystem can
be solved. In addition, certificateless public key cryptosystems are not purely
ID-based, and there exists an additional public key for each user. Fortunately, this
public key does not need to be certified by any trusted authority since only a user with
the valid ID can obtain the partial private key from the KGC, which ensures that the
public key can be verified without a certificate.

Following the pioneering work due to Al-Riyami and Paterson in [2], several
certificateless signature (CLS) schemes [3, 4, 5, 6, 7] have been proposed. Yum and
Lee [3] come up with generic construction of CLS schemes, and their construction
leads to good security reduction, but it results in inefficient schemes. Li, Chen and
Sun [4] propose another CLS scheme based on bilinear pairings. However, their

scheme is costly, since the verification algorithm requires four expensive pairing
computations. Literature [5] also needs four pairing computations in verification
algorithm and [6] three pairing computations. Yap, Heng and Goi [7] present an
efficient CLS scheme, which the signing algorithm does not require pairing
computation and the verification algorithm only needs two bilinear pairing
computations. So, it is more efficient than the existing CLS schemes. Unfortunately,
Park [8] claims that their scheme [7] is insecure against a key replacement attack.

 In the CLS schemes [2, 3, 4, 5, 6, 7], a special hash function called MapToPoint
function which is used to map an identity information into a point on elliptic curve is
required. However, the hash function is inefficient and probabilistic although there
has been much discussion on the construction of such hash algorithm [9, 10], and
there is no deterministic polynomial time algorithm for it so far. Therefore, using
general cryptographic hash function instead of the MapToPoint function can improve
the efficiency of CLS schemes.

At present, many short signatures schemes in public key cryptosystem have been
proposed since Boneh, Lynn and Shacham [10] construct a short signature called BLS
signature, which is just half the size of the signature in DSA (320-bit) with
comparable security. Because of the small size of short signatures, they are needed in
environments with stringent bandwidth constraints, such as bar-coded digital
signatures on postage stamps. Nevertheless, certificateless signatures generated by [2,
3, 4, 5, 6, 7] have approximately 320-bit size if using an elliptic curve on 973F . To our
best knowledge, no short CLS schemes have been found so far.

In this paper, we come up with a short CLS scheme that is proved to be secure in
the random oracle model under the hardness assumption of k-CAA [11] and Inv-CDH
problem. Unlike schemes in [2, 3, 4, 5, 6, 7], our scheme use general cryptographic
hash functions, and does not require MapToPoint functions. Furthermore, our scheme
requires less computation cost than that of the existing CLS schemes, so it is
significantly more efficient than all known CLS schemes. Furthermore, the size of
signatures generated by our scheme is reduced to at least half–size compared to all
proposed CLS schemes, and is only 154 bits if using an elliptic curve on 973F , which
is the shortest CLS scheme so far.

The remaining sections are organized as follows: In the next section we give a brief
introduction to bilinear pairings and some mathematical theory related to the
following schemes. Section 3 provides the framework of CLS schemes. We propose
an efficient short CLS scheme, give its efficiency analysis and provide its security
proof in the random oracle model in Section 4. Conclusion is drawn in the last
section.

2 Preliminaries

In this section, we briefly introduce some mathematical theory related to the
following schemes.

2.1 Bilinear Pairings

Let 1G be a cyclic additive group of prime order q , and 2G be a cyclic
multiplicative group of the same order q . A bilinear pairing is a
map 1 1 2:e G G G× → which satisfies the following properties:
1. Bilinearity

 abQPebQaPe),(),(= ，where *
1 ,,, qZbaGQP ∈∈

2. Non-degeneracy
 There exists 1,P Q G∈ such that (,) 1e P Q ≠

3. Computability
There is a computable algorithm to get (,)e P Q for all 1,P Q G∈ .

As is shown in [12], the modified Tate pairing on a supersingular elliptic curve is
such a bilinear pairing.

2.2 k-CAA and Inv-CDHP

Definition1. (k-CAA [11]). For an integer k, and *
qZs∈ , 1GP∈ . Given

{ *
21 ,,,,, qk ZeeesPP ∈L , and P

es
P

es
P

es k+++
1,,1,1

21

L }, to compute P
es +

1
,

where ,,{ 21 eee∉ }, keL . We say that the k-CAA is (t,ε)-hard if for all t-time
adversaries A, we have

ε<
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∉∈∈∈

+
=

+++=−

},,,{,,,,,

1)1,1,1,,(
Pr

21
*

211
*

21

kqkq

kCAAk

eeeeZeeeGPZs

P
es

P
es

P
es

P
es

sPPA
Adv

A

LL

L

Until now, k-CAA problem is still hard, which means there is no polynomial time
algorithm to solve it with non-negligible probability.
Definition2. (Inv-CDHP) Inverse Computational Diffie-Hellman Problem: For an

unknown value *
qZa∈ , given aPP, , to compute P

a
1

 .

Inv-CDHP is polynomial time equivalent to CDHP, that is, Inv-CDHP is a hard
problem.

3 Framework of Certificateless Signatures

3.1 Definition of CLS

A CLS scheme consists of seven algorithms: Setup, Partial-Private-Key-Extract,
Set-Secret-Value, Set-Private-Key, Set-Public-Key, CL-Sign and CL-Verify.
Setup: Taking security parameter k as input and returns the system parameters,
params and master-key.
Partial-Private-Key-Extract: It takes params, master-key and a user’s identity ID as
inputs. It returns a partial private key IDd .
Set-Secret-Value: Taking as inputs params and a user’s identity ID, this algorithm
generates a secret value r.
Set-Private-Key: This algorithm takes params, a user’s partial private key IDd and

his secret value r, and outputs the full private key IDsk .
Set-Public-Key: Taking as inputs params and a user’s secret value r, and generates a
public key IDpk for that user.
CL-Sign: It takes as inputs params, a message m, a user’s identity ID, and the user’s
private key IDsk , and outputs a signature S.

CL-Verify: It takes as inputs params, a public key IDpk , a message m, a user’s
identity ID, and a signature S, and returns 1 means that the signature is accepted.
Otherwise, 0 means rejected.

3.2 Security Model for CLS

In CLS , as defined in [2, 5], there are two types of adversaries with different
capabilities, we assume Type 1 Adversary, 1A acts as a dishonest user while Type 2

Adversary, 2A acts as malicious key generator centre (KGC):

CLS Type 1 Adversary: Adversary 1A does not have access to master-key, but 1A may
replace users’ public keys.
CLS Type 2 Adversary: Adversary 2A have access to master-key, but cannot replace
any user’s public key.
Definition3. Let 1A and 2A be a Type 1 Adversary and a Type 2 Adversary,

respectively. We consider two games Game 1 and Game 2 where 1A and 2A interact
with their Challenger in these two games, respectively. We say that a CLS scheme is
existentially unforgeable against adaptive chosen message attacks, if the success
probability of both 1A and 2A is negligible.

Game 1: This is the game where 1A interacts with its Challenger C:
Setup: The Challenger C takes a security parameter k and runs Setup to generate
master Key and params, then sends params to 1A . 1A acts as the following oracle
queries:
Hash Queries: 1A can request the hash values for any input.

Extract Partial Private Key: 1A is able to ask for the partial private key IDd for

any ID except the challenged identity ID. C computes IDd corresponding to ID and

returns IDd to 1A .
Extract Private Key: For any ID except the challenged identity ID, C firstly
computes the partial private key IDd and then secret value as well as private key IDsk

corresponding to the identity ID and returns it to 1A .

Request Public Key: 1A can request the public key for any identity ID. Upon
receiving a public key query for any identity ID, C computes the corresponding public
key IDpk and sends it to 1A .

Replace Public Key: For any identity ID, 1A can pick a new secret value r′ and

compute the new public IDkp ′ corresponding to the value r′ , and then replace IDpk

with IDkp ′ .
Signing Queries: When a signing query for an identity ID on some message m is
coming, C uses the private key IDsk corresponding to the identity ID to compute the

signature S and sends it to 1A . If the public key IDpk has been replaced by 1A , then C

cannot find IDsk and thus the signing oracle’s answer may be incorrect. In such case,

we assume that 1A may additionally submit the secret value r′ corresponding to the

replaced public key IDpk to the signing oracle.

Finally, 1A outputs a signature *S on message *m corresponding to a public

key *ID
pk for an identity *ID which is the challenged identity ID. 1A wins the game

if CL-Verify(params, *** ,,, * SPkmID
ID

)=1 and the following conditions hold:

- Extract private key on identity *ID has never been queried.
- *ID can not be an identity for which both the public key has been replaced and the
partial private key has been extracted.

- Signing query on message *m for identity *ID with respect to *ID
pk has never been

queried.

Game 2: This is a game in which 2A interacts with its Challenger C.
Setup: The challenger runs Setup to generate master key and params. C gives both
params and master key to 2A . 2A can compute partial private key IDd associated
with any identity ID since it holds the master key.
Extract Private Key: For any identity ID except the challenged ID, C firstly
computes the partial private key IDd and then secret value as well as private key IDsk

corresponding to the identity ID and returns it to 2A .

Request Public Key: 2A can request the public key for any identity ID. Upon
receiving a public key query for any ID, C computes the corresponding public
key IDpk and sends it to 2A .
Signing Queries: On receiving such a query, the Challenger C uses the private
key IDsk corresponding to the ID to compute the signature S and sends it to 2A .

Finally, 2A outputs a signature *S on message *m corresponding to the challenged

identity *ID and a public key *ID
pk . 2A wins the game if the following conditions

hold:
- CL-Verify (params, *** ,,, * SPkmID ID)=1.

- CL-Sign (**,mID) with respect to *ID
pk has been never queried.

- Extract Private Key on *ID has never been queried.

4 An Efficient CLS Scheme

4.1 The Basic Signature Scheme

The proposed CLS scheme consists of the following seven algorithms.
Setup: Given a security parameter k, the PKG chooses two groups 1G and 2G of same

prime order kq 2> and a modified Weil pairing map e : 211 GGG →× . P is a
generator of groups 1G . Let),(PPeg = , then PKG selects two distinct cryptographic

hash functions **
1 }1,0{: qZH → , *

1
*

2 }1,0{: qZGH →× , and picks a random

number *
qZs∈ as its master key and computes its public key 1GsPPpub ∈= .

Afterwards, PKG publishes the system parameter list params

= },,,,,,,,,{ 2121 HHPgPqeGGk pub , but keeps s secret.

Partial-Private-Key-Extract: Given an identity *)1,0(∈ID , PKG

computes)(1 IDHQID = , P
Qs

d
ID

ID +
=

1
, and sends IDd to a user with identity ID as

his partial private by a secure channel. The user with identity ID can check its
correctness by checking whether gPQPde IDpubID =+),(. For convenience, here

we define PQPT IDpub += .

Set-Secret-Value: The user with identity ID picks randomly *
qZr∈ sets r as his

secret value.
Set-Private-Key: Given params, the user’s partial private key IDd and his secret

value r, and output a pair (IDd , r) as the user’s private key. That is, the user’s private

key),(rdsk IDID = is just the pair consisting of the partial private key and the secret
value.

Set-Public-Key: Taking as inputs params and the user’s secret value r, and generates
the user’s public-key as rTPQprpk IDpubID =+=)(.

CL-Sign. In order to generate a signature of an identity ID on a message *)1,0(∈m ,
the user with the identity ID works as follows:
1. sets),(2 IDpkmHh =

2. computes P
Qshr

d
hr

S
ID

ID))((
11
++

=
+

= 1G∈ .

The signature of an identity ID on message m is 1GS ∈ .

CL-Verify. Given params, message m, IDpk and a signature S for an identity ID, the
verifier acts as follows:
1. computes),(2 IDpkmHh =
2. accepts the signature S and return 1 if and only if the following equation holds.

⇔=1),,,(SpkIDmVer ID ghTpkSe ID =+),(
The correctness of the verification algorithm is proved as follows:

),(),(hTrTSehTpkSe ID +=+))()((,(PQPhPQPrSe IDpubIDpub +++=

= (e P
Qshr ID))((

1
++

,))((PQPhr IDpub ++)

(e= P
Qshr ID))((

1
++

,)))((PQshr ID++

gPPe ==),(

4.2 Security Analysis

In this section, we give the security proof for our scheme in the random oracle model.
Theorem 1. Our short CLS scheme is secure against existential forgery under
adaptively chosen message attacks in the random oracle model with the assumptions
that k-CAA and inv-CDH in 1G is intractable.

This theorem follows from the following Lemmas 1 and 2.

Lemma 1. Let 1A be a type 1 Adversary in game 1 that),(εt -breaks the proposed

CLS scheme. Assume that, 1A makes
iHq queries to random oracles iH (i = 1, 2)

and Eq queries to the partial private-key extraction oracle and Eq′ queries to the

private-key extraction oracle, and pkq queries to the public-key request oracle,

and sq queries to signing oracle. Then, there exists a),(t′′ε -algorithm C that is able

to solve the K-CAA problem in group 1G with probability

)
2
1(k−≥′ εε 1)

1
(

1

1 ++′+−
sEE qqq

H

H

q
q

, and time invssmspk tqtqqtt +++<′)2(,

where notation smt and invt respectively denotes the running time of computing a
scalar multiplication in 1G and the required time for an inversion computation in 1G .
Proof. Suppose that C is given a challenge:

Given P , *
211 ,,,, qq ZQQQGsPR

E
∈∈= L , and L,1,1

21

P
Qs

P
Qs ++

,

,1 P
Qs

Eq+
C’s task is to output a pair(*Q , P

Qs *
1
+

)for ,,{ 21
* QQQ ∉ },

EqQL

after interacting with 1A . Now C and 1A play the role of the challenger and the

adversary respectively. C will interact with 1A as follows:

Setup: C runs algorithm Setup, sets),(PPeg = and sPPpub = , where s is the

system master key, which is unknown to C. C picks an identity IID at random as the

challenged ID in this game, and gives },,,,{ 21 HHPgP pub to 1A as the public

parameters. For simplicity, we assume that for any iID , 1A queries 1H before iID is

used as an input of any query to 2H , Partial Private Key Extraction and Private Key
Extraction and Signing.

1H -Queries: C maintains a hash list listH1 of tuple),(ii QID as explained below. The

list is initially empty. When 1A makes a hash oracle query on iID , if the query iID has

already appeared on the listH1 , then the previously defined value is returned.
Otherwise, C acts as follows:
If Ii IDID = , C returns a random value ,,{ 21

* QQQ ∉ },
EqQL to 1A .Otherwise,

C randomly picks a value iQ ∈{
EqQQQ ,,, 21 L } and returns it to 1A . In both cases,

C inserts),(ii QID in listH1 .

Partial Private Key Extraction Queries: C maintains a list listE of

tuple),,(iIDii dQID is initially empty. For any given identity iID , C recovers the

corresponding tuple ii QID ,() from the list listH1 , if Ii IDID ≠ , then

sets P
Qs

d
i

IDi +
=

1
and returns it to 1A and adds),,(

iIDii dQID to the listE .

Otherwise, C aborts and outputs “failure” (denote the event by 1E).

Public Key Extraction Queries: C maintains a list listpk of tuple

(),,,(iIDii rpkQID
i

which is initially empty. When 1A queries on input iID , C

checks whether listpk contains a tuple for this input. If it does, the previously defined

value is returned. Otherwise, C recovers the corresponding tuple ii QID ,() from the

list listH1 and picks a random value *
qi Zr ∈ , computes)(PQprpk ipubiiID += and

returns iIDpk . Then, adds),,,(iIDii rpkQID
i

to the listpk .

Private Key Extraction Queries: For query on input iID , If Ii IDID = , C stops and

out “failure” (denote the event by 2E).Otherwise, C performs as follows:

- If the listE and the listpk contain the corresponding tuple),,(
iIDii dQID and the

tuple),,,(iIDii rpkQID
i

respectively, C sets),(iIDID rdsk
ii

= and sends it

to 1A .
- Otherwise, C makes a partial private key extraction query and a public key

extraction query on iID , then simulates as the above process and

sends),(iIDID rdsk
ii

= to 1A .

Public Key Replacement),(
iIDi kpID ′ : When 1A queries on input),(

iIDi kpID ′ , C

checks whether the tuple),,,(iIDii rpkQID
i

 is contained in the listpk . If it does,

sets
ii IDID kppk ′= and adds),,,('

iIDii rpkQID
i

to the listpk .Here we assume that

C can obtain a replacing secret value '
ir corresponding to the replacing public key

iIDkp ′ from 1A . Otherwise, C executes public key extraction to

generate),,,(iIDii rpkQID
i

, then sets
ii IDID kppk ′= and adds

),,,('
iIDii rpkQID

i
to the listpk .

2H -Queries: C maintains a hash list listH 2 of tuple),,,,(jIDiij hpkQIDm
i

. When

1A makes 2H queries for identity iID on the message jm , C chooses a random

number *
qj Zh ∈ , sets),(2 iIDjj pkmHh = and sends jh to 1A . And then

adds),,,,(jIDiij hpkQIDm
i

to the listH 2 .

Signing Queries: When a signing query),(ji mID is coming, C acts as follows:

- If Ii IDID = , C stops and out “failure” (denote the event by 3E).

- Otherwise, C recovers the tuple),,(
iIDii dQID from the listE and the

tuple),,,(iIDii rpkQID
i

from the listpk and the tuple),,,,(jIDiij hpkQIDm
i

from listH 2 , computes P
Qshrhr

d
S

ijiji

ID
j

i

))((
1

++
=

+
= , and jS is a signature

for the identity iID on the message jm . C returns jS to 1A as the response of the
singing oracle.
Finally, 1A stops and outputs a signature *S on the message *m for the

identity *ID which satisfies the equation 1),,,(***
* =SpkIDmVer

iID
.

If IIDID ≠* , C outputs “failure” and aborts (denote the event by 4E). Otherwise, C

recovers the tuple),,,(***
* iID

rpkQID
i

from listpk and the tuple

),,,,(****
* hpkQIDm

iID
 from listH 2 .

Then, we have),())(,(***
* PPePQPhpkSe pubID

=++ , that is,

)))((,()))((,(******** PQshrSePQPhrSe pub ++=++

),))(((**** PSQshre ++=),(PPe=

Hence C can successfully compute ***
*)(1 ShrP

Qs
+=

+
and output a

pair *(Q , P
Qs *

1
+

) for ,,{ 21
* QQQ ∉ },

EqQL as a solution to 1A ’s challenge. So,

C breaks k-CAA problem in 1G .
Now analyze the advantage of C in this game.
Note that the responses to 1A ’s 1H and 2H queries are indistinguishable from the

real life. Since each response is uniformly random and independently distributed
in *

qZ . The responses of queries 1H and 2H provided for 1A are all valid. The
responses of partial private key extraction queries, private key extraction queries and
signing queries are valid if the event 1E , 2E and 3E never happens. Furthermore,

if 1A forges a valid signature and event 4E does not happen, then C can solve the

k-CAA problem. So if none of events 1E , 2E , 3E and 4E happens, C can solve the
k-CAA problem successfully. Now, Let’s bound the probability for these events.
From the description above, we

have 1
4321)

1
()Pr(

1

1 ++′+−
=¬∧¬∧¬∧¬ sEE qqq

H

H

q
q

EEEE . Nevertheless, the

probability that the simulation is not perfect remains to be assessed. The only event
where it can happen is that 1A forges a valid signature without making 2H queries. It is
easy to see that the probability to generate a valid signature without asking 2H hash

oracles is at most k2
1

.

Taking the above analysis on these events, we know that challenger C’s

advantage)
2
1(k−≥′ εε 1)

1
(

1

1 ++′+−
sEE qqq

H

H

q
q

. From the above description of C, we

can conclude that the running time of C is bound by invssmspk tqtqqtt +++<′)2(.

Lemma 2. Assume that 2A is a Type 2 Adversary that (ε,t)-breaks our CLS scheme
after making

iHq queries to random oracles iH (i = 1, 2) and Eq queries to the

private-key extraction oracle , and pkq queries to the public-key request oracle, and

sq queries to signing oracle. Then, the Inv-CDHP can be solved with probability

)
2
1(k−≥′ εε 1)

1
(

1

1 ++−
sE qq

H

H

q
q

and within time invssmspk tqtqqtt +++<′)2(,

where notation smt and invt respectively denotes the running time of computing a
scalar multiplication in 1G and the required time for an inversion computation in 1G .
Proof. Suppose C is given a challenge of a random instance of the Inv-CDH problem:

Given **
1, qZhGP ∈∈ and ,)(* Phr + where r is unknown to C. C’s goal is to

output 1*
1 GP

hr
∈

+
by interacting with adversary 2A .

Now C and 2A play the role of the challenger and the adversary respectively. C will

interact with 2A as follows:

Setup: C runs algorithm Setup, randomly picks a value *
qZs∈ as the system master

key, sets),(PPeg = , rPX = and sPPpub = , and picks an identity IID at random

as the challenged ID in this game, and gives params },,,,{ 21 HHPgP pub and the

system master key s to 2A .

1H -Queries: C maintains a hash list listH1 of tuple),(ii QID as explained below. The

list is initially empty. When 2A makes a hash oracle query on iID , if the

query iID has already appeared on the listH1 , then the previously defined value is

returned. Otherwise, C randomly picks a value iQ ∈ *
qZ and returns it to 2A . Then,

adds),(ii QID to listH1 .

Public Key Extraction Queries: C maintains a list listpk of tuple

(),,,(iIDii rpkQID
i

which is initially empty. When 2A queries on input iID , C

checks whether listpk contains a tuple for this input. If it does, the previously defined

value is returned. Otherwise, C works as follows:If Ii IDID = , C finds the

tuple ii QID ,() in listH1 and sets XQsXpk iIDi
+= and sends

iIDpk to 2A , and

inserts),,(
iIDii pkQID into listpk .Otherwise, C recovers the tuple ii QID ,()

from listH1 and picks a random value *
qi Zr ∈ , computes)(PQPrpk ipubiiID += and

returns iIDpk . Then, adds),,,(iIDii rpkQID
i

to the listpk .

Private Key Extraction Queries: For query on input iID . If Ii IDID = , C stops and

out “failure” Otherwise, C recovers the tuple),,,(iIDii rpkQID
i

from the list listpk ,

and sends),(iIDID rdsk
ii

= to 2A .

2H -Queries: C maintains a hash list listH 2 of tuple),,,,(jIDiij hpkQIDm
i

. When

2A makes 2H queries for identity iID on the message jm , C chooses a random

number *
qj Zh ∈ , sets),(2 iIDjj pkmHh = and sends jh to 2A . And then

adds),,,,(jIDiij hpkQIDm
i

to the listH 2 .

Signing Queries: When a signing query),(ji mID is coming, C does the following:

- If Ii IDID = , C stops and out “failure”.

- Otherwise, C recovers the corresponding tuple),,,(iIDii rpkQID
i

from

the listpk and the corresponding tuple),,,,(jIDiij hpkQIDm
i

from the listH 2 ,

computes
ji

ID
j hr

d
S i

+
= = P

Qshr iji))((
1

++
, then jS is a signature for the

identity iID on the message jm . C returns jS to 2A as the response of the singing
oracle.

Finally, 2A outputs a signature *S on the message *m with respect to the public

key *
iID

pk for the identity *ID , which satisfies 1),,,(***
* =SpkIDmVer

iID
.

- If IIDID ≠* , C outputs “failure” and aborts.

- Otherwise, C recovers the corresponding tuple),,(*
**

iID
pkQID from listpk and

the corresponding tuple),,,,(****
* hpkQIDm

iID
 from listH 2 . Then, we

have),())(,(***
* PPePQPhpkSe pubID =++ and XQsXpk

iID
*

* += .

That is,)))((,()))((,(****** PQshrSePQPhrSe pub ++=++

),))(((*** PSQshre ++=),(PPe= .

Hence C can successfully compute **
*)(1 SQsP

hr
+=

+
and output P

hr *
1
+

as

a solution to 2A ’s challenge. So, C breaks Inv-CDH problem in 1G . The analysis of
C’s advantage and running time is similar to that of the Lemma 1. This completes our
proof.

4.3 Efficiency

In practice, the size of the element in group 1G can be reduced by a factor of 2 using
compression techniques. So, like BLS signature scheme [10], our signature scheme is
a short CLS scheme. If we choose a group and the bilinear map from elliptic curves
[10], which results in a group of 160 bits size, signatures generated by our scheme is
approximate160 bits length which is half–size compared to all proposed CLS
schemes.
 Our CLS scheme only requires one scalar multiplication operation in CL-Sign
algorithm and one scalar multiplication computation and one pairing operation in
CL-Verify algorithm. Obviously, it is faster than all other proposed CLS schemes.
Concretely, denote by s a scalar multiplication in 1G and by p computation of one
pairing, other operations are omitted in the following analysis since their computation

cost is trivial, such as the cost of an inverse operation over *
qZ takes only 0.03ms. The

comparison of our CLS scheme’s computation cost and that of other proposed
schemes is as follows: (We do not consider the pre-computation here)

Scheme AP[2] LCS[4] YHG[7] GS[6] Our CLS

Sign 3s+1p 2s 2s 2s 1s
Verify 1e+4p 2s+4p 2p+2s 1s+3p 1s+1p
Public Key Size(bits) 320 320 160 160 160
Signature Size(bits) 320 320 320 320 160

(Table 1)

As is shown in the table 1, one can see that our scheme is the most efficient scheme
in terms of the number of pairing operations required and the size of public key and
signatures generated by our scheme.

5 Conclusion

In this paper, we come up with a short CLS scheme that is proved to be secure in the
random oracle model under the hardness assumption of k-CAA and Inv-CDHP. Our
scheme, besides upholding all desirable properties of previous CLS schemes, it is
significantly more efficient than all existing CLS schemes. Furthermore, the size of
signatures generated by our scheme is the smallest in all proposed CLS schemes. So,
it can be used in low-bandwidth, low-power situations such as mobile security
applications where the need to transmit and check certificates has been identified as a
significant limitation.

References

[1] A. Shamir, “Identity-based cryptosystems and signature schemes,” in Proc.
Crypto’84, Santa Barbara, CA, pp. 47–53, Aug. 1984.
[2] S. Al-Riyami and K.G. Paterson. Certificateless Public Key Cryptography. In Proceedings
of ASIACRYPT 2003, LNCS 2894, pp. 452-473, Springer-Verlag, 2003.
[3]D.H. Yum, P.J. Lee. Generic construction of certificateless signature. In ACISP’04, LNCS
3108, Springer. 2004, pp. 200-211.
[4]. X. Li, K. Chen and L. Sun. Certificateless Signature and Proxy Signature Schemes from
Bilinear Pairings. Lithuanian Mathematical Journal, Vol 45, pp. 76-83, Springer-Verlag, 2005.
[5] Z. F.Zhang, D. S. Wong, J.Xu, et al. Certificateless Public-Key Signature: Security Model
and Efficient Construction. J. Zhou, M. Yung, and F. Bao (Eds.): ACNS 2006, LNCS 3989, pp.
293–308, 2006. Springer-Verlag Berlin Heidelberg 2006.
[6]M.C. Gorantla, A. Saxena. An efficient certificateless signature scheme. Y. Hao et
al. (Eds.): CIS 2005, Part II, LNAI 3802, pp. 110–116, 2005.Springer-Verlag Berlin
Heidelberg 2005.
[7]W.-S, Yap, S.-H.Heng and B.-M. Goi. An efficient certificateless signature scheme.
Proc. Of EUC Workshops 2006, LNCS. Vol. 4097, pp. 322-331, 2006.
[8]J. H. Park. An attack on the certificateless signature scheme from EUC Workshops
2006. eprint, 2007.
[9]P.S.L.M. Barreto and H.Y. Kim, Fast hashing onto elliptic curves over fields of
characteristic 3, Cryptology ePrint Archive, Report 2001/098, available at
http://eprint.iacr.org/2001/098/.
[10] D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairing, In C. Boyd,
editor, Advances in Cryptology-Asiacrypt 2001, LNCS 2248, pp.514-532, Springer-Verlag,
2001.
[11] S. Mitsunari, R. Sakai and M. Kasahara, A new traitor tracing, IEICE Trans. Vol.E85-A,
No.2, pp.481-484, 2002.
[12]I. Blake, G. Seroussi and N. Smart. Advances in elliptic curve cryptography. London
Mathematical Society Lecture Note Series. Cambridge University Press, 2005.

