A Cryptographic Model for Branching Time Security Properti es — the Case
of Contract Signing Protocols

Véronique Cortier, Ralf Kiisters, and Bogdan Warinschi

L INRIA, Loria, ver oni que. cortier@oria.fr
2 ETH Zurich,r al f . kuest ers@ nf . et hz. ch
3 University of Bristol,bogdan@s. bri s. ac. uk

Abstract. Some cryptographic tasks, such as contract signing and oéleted tasks, need to ensure complex,
branching time security properties. When defining such gntigs one needs to deal with subtle problems regarding
the scheduling of non-deterministic decisions, the dejivaf messages sent on resilient (non-adversarially con-
trolled) channels, fair executions (executions where mtyphoth honest and dishonest, is unreasonably precluded
to perform its actions), and defining strategies of adversagainst all possible non-deterministic choices ofi@art
and arbitrary delivery of messages via resilient chanrigtese problems are typically not addressed in crypto-
graphic models and these models therefore do not sufficertoafize branching time properties, such as those
required of contract signing protocols.

In this paper, we develop a cryptographic model that deatls afl of the above problems. One central feature of
our model is a general definition of fair scheduling which anly formalizes fair scheduling of resilient channels
but also fair scheduling of actions of honest and dishonestipals. Based on this model and the notion of fair
scheduling, we provide a definition of a prominent branchinge property of contract signing protocols, namely
balance, and give the firstyptographicproof that the Asokan-Shoup-Waidner two-party contragnisig protocol

is balanced.

1 Introduction

Cryptographic tasks, such as contract signing [1, 14, 8] @hdr related tasks, need to ensure complex,
branching time properties, i.e., properties of the ovestilicture of the set of all possible executions of a
protocol, as opposed to just properties of single executires. Examples of such properties are balance
[11] and abuse-freeness [14]. Defining such propertiesiregjio cope with several challenges that are
typically not addressed in cryptographic models. The mhallenges include: modeling non-deterministic
behavior of honest parties, resilient (non-adversariaiytrolled) channels, fair executions in which no party,
honest ordishonestcan unreasonably be precluded to perform its actions, matbgies of adversaries to
achieve certain goals against all possible behaviors diertschannels and honest parties; the existence or
absence of such strategies is a branching time property oftagol, not a property of a single execution
trace. Providing a computational model that deals withuthschallenges and applying it to branching time
properties of contract signing protocols is the main puepafsthis paper.

We illustrate the above points via the balance propertyti@o-{party) optimistic contract signing proto-
cols as first defined by Chadha et al. [11] in a symbolic (Ddlae-based) model. These protocols can be
used by two parties4 and B, to obtain each other’s signature on a previously agreettaxnal text with the
help of a trusted third party (TTP), which, however, is onbntacted in case of a problem. If and when the
TTP is contacted depends ann-deterministic decisiors the parties. For examplel may decide to send
an abort request to the TTP in case she doesn’t want to wailbaggr for a message fro8, or suspects
that B is dishonest. Contract signing protocols typically asstina A and B communicate with the TTP
overresilient (non-adversarially controlled) channelsithout such channels an adversary could block all
messages from/to the TTP. Now, balance for an honest gaaityd a dishonest party, as defined by Chadha
et al., requires that in a protocol run it is not possible tctea state wherB has both i) astrategyto obtain



a signed contract from (no matter howA, the TTP, and the resilient channels behave) and ii) a (plgssi
different) strategyto preventA from obtaining a signed contract frof (no matter howA, the TTP, and
the resilient channels behave). Since, when following dnibese strategies, the adversary, if,,has to
achieve his goal—obtaining a signed contract or preverdirfigpm obtaining a signed contract—against the
behavior of other entities that he cannot control or forgsea-deterministic choices of and delivery of
messages on resilient channels), in a computational mbidehécessary to determine the behavior of these
entities by aschedulemwhich isindependenbf the adversary, and in fact, may work against the adversary
Moreover, for the balance property to make sense, the stdreshould not stop the run of a system if one
of the entities in the systemA( the TT' P, the resilient channels, the adversary) “can still take ctioa’.

In other words, the scheduling should faér for all entities (both honest and dishonest). For examph, i
some pointA could still contact the TTP, then the scheduler should rap gte run of the system at this
point but should eventually schedule contacting the TTP might enablé to get the contract. Stopping
the system before schedulingywould be unfair and unrealistic since no one stagpfom contacting the
TTP in a real protocol run. Note that a scheduler is just argingy entity that is only needed taodel
how things are potentially scheduled in a real protocol @mnversely, ifB (the adversary) wants to send a
message to the TTP, the scheduler should not stop the rue si/ftem but eventually schedube sending

a message to the TTP might enaliteo obtain a signed contract which he otherwise might not be tab
get. Again, stopping the system before schedulihgrould be unfair and unrealistic since no one stéps
from contacting the TTP in a real protocol run. Note thats an arbitrary adversary (machine), and hence,
a general notion of fair scheduling is needed to capture enetB can still take an action” (e.g., send a
message).

Clearly, standard cryptographic models, in which only odeeasary is considered controlling the com-
plete communication network, and honest principals camrake non-deterministic choices are insufficient
for dealing with the class of protocols and properties atergid here. Some cryptographic models take some
(not all) of the above aspects into account, but with a difiefocus and in a way not suitable for the classes
of protocols and properties we consider (see the relateld)wor

CONTRIBUTION OF THIS PAPER In this paper, we propose a computational model that deigttstiae chal-
lenges mentioned above and allows to specify complex, biagdime properties.

More precisely, our model is based on a general computatioodel for systems of interactive Turing
machines (ITMs); while related to models in [4, 9, 13, 16]r eyposition follows more closely the one in
[23]. Based on the general computational model, we definearigespecific model where we use ITMs
to capture the behavior of the honest principals, the adwgrghe network and resilient channels, and the
scheduler. The purpose of the scheduler is to resolve n@mrdimistic behavior of honest principals, to
schedule the resilient channels, and to trigger the adyer&a explained above, modeling the scheduler as
an entity independent of the adversary is important. Thelsdvy and the scheduler are each equipped with
what we call aview oraclewhich can be invoked by these entities to obtaineavon the history of the run of
the protocol so far, and hence, to adapt their actions arwyd typically, the adversary and the scheduler
have different view oracles, and hence, different viewstanHistory. The view of the adversary typically
includes all messages on the network channels and only gesssa those resilient channels which are not
required to be read-protected. Conversely, the scheduggttimave complete information about the resilient
channels. The exact definition of the views (view oraclepedels on the security properties considered and
can be adapted depending on the strength of the securitargeardesired. The ITMs that we use cannot
be exhausted and can respond to an unbounded number oftee@seir example needed when modeling
the TTP in contract signing protocols. Also, this, for exdeensures that the scheduler cannot exhaust the

2



adversary or honest parties, which otherwise would leachtealistic runs (recall that the scheduler is only
an imaginary entity that is used to model reality).

As mentioned, fair scheduling is an important ingredienthie definition of many security properties,
and it is non-trivial to define in computational, resourcesbded settings. We provide a general definition of
when a scheduler is fair for a system of ITMs. We emphasizsoilnadefinition is independent of the specific
structure of the system or the specific ITMs used in the systdnis is important as we need to capture fair
scheduling also for arbitrary dishonest parties, i.e.eaglry machines. Intuitively, we call a scheduler fair
for a system if it does not stop the run of the system at a poirdreat least one of the other machines in
the system, e.g., honest parties, the adversary, resif@ntnels, “can still take an action”, e.g., an honest
principal could (non-deterministically) decide to stamtabort protocol, a resilient channel could deliver a
message, or the adversary is ready to send a message to ahgrom@pal. We formalize that a machine “can
still take an action” in a general way as follows: We say thataehine can take an action if the machine can
be activated by the scheduler with some input so that at th@&the activation the machine has changed its
local configuration, and hence, performed some action. (M that according to our definition of ITMs, if
an ITM outputs a message, then it changes its local configarailhe above definition in particular applies
to adversary machines and also to honest parties and nésifiannels. For example, if at some paiin a
contract signing protocol could either wait for a messagmfB or contact the TTP to run the abort protocol
and the scheduler schedulégo run the abort protocol with TTP, thehchanges its local configuration, e.g.,
goes from state,,.;; t0 statey,,... Similarly, if a resilient channel is scheduled by the sehedto deliver a
message, then the resilient channel sends the messagesardktbtes it from its buffer, and hence, changes
its local configuration. While there does not exist a fairestiiler for every system, we identify sufficient,
reasonable conditions for a system to have a fair schedilerway fair scheduling is defined here appears
to be new and is of interest independent of its applicatiobrémching time properties (see also the related
work).

Based on our computational model and the notion of fair saleesl, we provide definitions for fairness
and balance of (contract signing) protocols. One shouldcoafuse the concept of fair scheduling with
the notion of fairness of protocols. The concept of fair sithiag is needed in the definition of fairness
(and balance) of protocols. The definition of balance reguio quantify (universally and existentially) over
two different schedulers. The first scheduler may be unfair may collude with the adversary in order to
reach a certain point in the protocol run. The second onedias fair, but tries to prevent the adversary
from achieving his goal. As a proof of concept, we apply odirdions to the ASW two-party optimistic
contract-signing protocol [1] and show it to be fair and bakd when implemented with primitives that
satisfy standard security assumptions. Our proof of balarfi¢his protocol is the first computational proof
of this (now rigorously defined) property for a contract $ignprotocol. Also, while Asokan et al. [1] argue
informally about the fairness of their protocol, our prodff@rness is the first one for this protocol w.r.t. a
rigorous definition of fairness.

RELATED WORK. Rigorous models and security definitions for branchingetipnoperties of contract sign-
ing protocols have already been proposed in [11, 21, 20]. ddew these definitions are w.r.t. a symbolic
(Dolev-Yao based) model and do not consider the more indob@mputational case. Within Dolev-Yao
based models, different contract-signing protocols haenkanalyzed using finite-state model checkers or
certain logics [24, 21, 5] (see also [12]), and decision pdoces for automatic analysis have been proposed
[18,19].

Backes et al. [7] (see also [6]) proposed a definition of falresluling in a computational model. Their
notion and setting differs from ours in several aspectstFand most importantly, while their notion of fair
scheduling is only w.r.t. the scheduling of buffers (fairssage delivery), we need, as explained, a more

3



general notion which captures fair scheduling also for Bbpgancipals and the adversary. We therefore base
our notion on the general concept of change of local conftgqurawnhich is essential in the present work, but
has not been considered by Backes et al. The notion by Batkéssin fact unsuitable for the properties of
contract signing protocols, fairness and balance, we densince it does not capture that honest principals
and the adversary finish their execution. Second, they dmidwcheduling in a simulation-based setting
which we do not do. Third, the notion of fair scheduling of Bes et al. is parameterized by a polynomial
which determines after what time a buffer has to be trigge@ad definition does not need such parameters.
Other works that use some kind of fairness in specific settang [3] and [15]. None of the mentioned works,
[7, 6,3, 15], studies branching time properties or propsrtf contract signing protocols.

Asokan, Shoup, and Waidner [2] propose a fair contract sgypirotocol and present a computational
model to study fairness of this protocol. However, the maahel the notion of fair scheduling that they use
is tailored to their specific setting and does not apply todinang time properties, which they do not study.
In their setting, fair scheduling is only w.rlhonestparties and is guaranteed by imposing restrictions on
the adversary; they do not have a separate scheduler. Tihgiiicient for branching time properties, such
as balance: First, as explained, for branching time prigsefair scheduling has to be guaranteed also for
dishonest parties, i.e., the adversary, which is why wegsea general notion of fair scheduling that applies
to arbitrary ITMs. Second, a scheduler independent of tiveradry is needed in order to model situations
in which the scheduler plays against the adversary.

Canetti et al. [10] study a computational model based onagiitistic 1/0 automata (PIOASs) in which
non-deterministic behavior of principals can be modeleolwelver, they focus on simulation-based security
and do not study fairness issues or branching time propertie

STRUCTURE OF THE PAPER We start with an informal description of the ASW protocoligthserves as
our running example throughout the paper. Next, in Sectjome3present the general computational model,
which forms the basis of our security-specific model, intrcetl in Section 4. We then define fair schedulers
in Section 5. The model and the notion of fair schedulerslag tised in Section 6 for defining fairness of
(contract signing). We also show here that the ASW protae@hir. The more complex notion of balance,
and the proof that the ASW protocol is balanced are in SedtioiWe conclude in Section 8. More details
and proofs can be found in the appendix.

2 A Running Example: The ASW Protocol

In this section, we provide an informal description of theVik®rotocol [1]. This protocol is our running
example which we use throughout the paper to provide iotuifor the models and the notions that we
introduce. A more formal description in terms of the modeittive propose in this paper can be found in
Appendix B.

CRYPTOGRAPHIC PRIMITIVES The ASW protocol uses concatenation, signatures and dkéneshing. We
denote the concatenation of bit strings, ..., m, by (m4,...,m,), and sometimes by1,...,m,. We
assume that every; can uniquely be recovered from the concatenation. Verificand signing keys of
principal P are denoted byp andsp, respectively. The signature ot generated usingp is denoted by
sig,, (m). We require for the associated signature verification élgarsigver(-, -, -) thatsigver(m, s,vp) =
true if s is a signature omn generated usingp, and thatsigver(m, s,vp) = false otherwise. We write
sig[m, vp] for (m,sig, . (m)), and writeh(m) for the hash of message.

PrROTOCOL DESCRIPTION The ASW protocol enables two principafs(the originator) and3 (the respon-
der) to obtain each other’s signature on a previously ageeattactual textext (a fixed bit string) with the

4



Exchange protocol:
A iglma. va] B ma = (va,vB,vr, text, h(Na))
glma,vA - mp = <Sig[mA7vALh(NB)>
abort? siglmp,vg] aa = sig[(aborted, siglma, val), va]
ar = sig[(aborted, a 4), vr]
Ny - resolve? r = (siglma,val,siglmg,vs))
resolve? Np rr = sig[r, vr]
-
Abort protocol:
A aA T If resolved thenna = rp
L else aborted=true
ma ma = ar
- -
Resolve protocol:
A B r T If aborted thermr = ar
- else resolved=true
mr mr =717
-

Fig. 1. The ASW Protocol. We indicate where during the executiorheffExchange protocol parties can choose to run the Abort of
the Resolve subprotocols.

help of a trusted third party (TTP), which however is only invoked in case of problems. In otherds,
the ASW protocol is an optimistic two-party contract-siggiprotocol.

There are two kinds of valid contracts: the standard coptralich is of the form(sig[m,val, Na,
siglmp, vg], Ng), and the replacement contract, which is of the faigi(sig[ma,va],sig[mp,vg]), vr],
wherem 4 = (va,vp,vp, text,h(N4)), mp = (siglma,val, h(Np)), andN4 and N are nonces.

The ASW protocol consists of three subprotocols: the exgbaabort, and resolve protocol. These sub-
protocols are explained next (see also Figure 1).

Exchange protocolThe basic idea of thexchange protocois that A first indicates her interest to sign
the contract. To this end, she sendsidhe messageig[m 4, v4] as defined above, wherg, is a nonce
generated byl. By sending this messag4d, “commits” to signing the contract. Then, similarli, indicates
his interest to sign the contract by generating a navigeand sending the messagdg|m s, v] to A. Finally,
first A and thenB reveal N4 and N g, respectively.

Abort protocol.lf, after A has sent her first message,does not respond4d may contact!” to abort, i.e.,

A runs the abort protocol witll". Note thatA may wait as long as she wants before contacfihgIn
our formal model, this is modeled as a non-deterministimnaadf A and we use schedulers to resolve this
non-determinism.) In the abort protocoal, first sends the message = sig[(aborted, sig[m 4, val),v4].

If T has not received a resolve request before (see below),Ttteands back tod the abort tokenar =
sig[(aborted, a 1), vr]. Otherwise (ifT" received a resolve request, which in particular involvesrttessages
siglma,va] andsig[mp,vp] from above), it sends theeplacement contracty = sig[r,vr] to A with

r = (sig|ma,val,siglmp, vgl).



Resolve protocollf, after A has sent the nonc& 4, B does not respondd may contactl’ to resolve, i.e.,
A runs the resolve protocol with. Again, A may wait for as long as she wants before contaciingn the
resolve protocolA sends the messageto 7. If T has not sent out an abort token before, tfiéreturns
the replacement contraef, and otherwisd’ returns the abort tokem;. Analogously, if, afterB has sent
the nonceNp, A does not respond? may contact!” to resolve, i.e.B runs the resolve protocol with’
similarly to the case forl. Note that contacting@’ is again a non-deterministic action Bf

We note that the communication wiih (for both A and B) is carried out over resilient channels. More
specifically, these channels are authenticated, so thesadyecan read their content but he is not entitled to
modify, delete, or delay messages sent over these channels.

In our formal model, dair scheduler guarantees, for example, that messages oemestiannels will
eventually be delivered and that if (honedt)n the exchange protocol is in state “abort?” and (dishgnBst
does not respond, thefawill start the abort protocol with the TTP.

3 The General Computational Model

Our general computational model talks about systems ofaatiee Turing machines (ITMs) and is related

to the models in [4, 9, 13, 16]. However, our exposition fatomore closely that of [23] since the model in

[23] contains most features needed in the present work.I&inw [23], our general computational model

uses inexhaustible interactive Turing machines; thebatti “inexhaustible” will become clear later. While

in [23] systems with an unbounded number of ITMs have beediedyin the present work, we only need

to deal with systems consisting of a fixed and finite numberTdfild, and therefore, we do not need to
define how new ITMs are generated and how dynamically gezetid@iVis are addressed. Conversely, in the
present work we consider ITMs which may have access to peotaicles. This is a convenient feature of
our setting. We note that while the works mentioned abovecaneerned with simulation-based security,
simulation-based security is not considered here; we ooilgolv the definition of systems of ITMs.

SYNTAX OF ITMs. An (inexhaustible) interactive Turing machine (ITM, for st)ol is a probabilistic
Turing machine with the following tapes: a read-only tapendnch the security parameter is written (the
security parameter tapea read-only tape on which random coins are stored rghelom tapg zero or
moreinput andoutput tapesandwork tapes The input and output tapes have names and, in additiont inpu
tapes have an attribute with valuessuming or enriching (see below for an explanation). We require that
different tapes of\/ have different names. The names of input and output tapesniiee how ITMs are
connected in a system of ITMs: If an ITM sends a message on fuiotape named, then only an ITM
with an input tape named can receive this message. We require that each ITM comesawitdssociated
polynomialg which is used to bound the time taken by the computationg/ ofn ITM M may use oracles,
calledthe oracles associated with the ITM the oracles0q, ..., O, are associated with/ we sometimes
write M (O, ...,0,) instead ofM to emphasize this fact.

An ITM may have a (consuming) input tape nanseskt which serves a particular purpose: It will be
used to trigger an ITM if no other ITM was triggered. An ITM iggered by another ITM if the latter sends
a message to the former. An ITM with an input tape nastect is calledmaster ITM

ComMPUTATION OF ITMs. To specify the computation of an ITM, létdenote the length of the security
parameter plus the accumulated length of all inputs writtieenrichinginput tapes ofM so far (i.e., the
sum of the lengths of inputs written on enriching input taipethe current and all previous activations).
Each time when\/ is activated, it is the case that the security parametisr written on the security
parameter tape, and one message,/8ays written on one of the input tapes, saythe other input tapes
and the output tapes are empty—or otherwise will be emptefdre M/ starts to run). We require that the

6



computation in every activation g/ satisfies the following conditions: (i) Similar to other nsdsl [23, 4,
9,13, 16], at the end of the activatiof/ has writtenat most oneanessage on one of its output tapes (i.e.,
only one message can be sent to another ITM at a time), (inuheber of transitions taken in the activation
is bounded by;(n) whereq is the polynomial associated withl andn is the security parameter plus the
length of the content of the input and work tapes at the béggnof the activation, (iii) the sum of the lengths
of all outputs written on output tapes so far by (in all activations) is bounded by(1), (iv) at the end of
the current activation, the length of the content of the wages is bounded hy(/), and (v) if (non-empty)
output was written on one of the output tapes, the local cardigon of the machine before the activation
is different from the local configuration of the machine aftee activation, where bcal configurationof

an ITM consists of the current state of the ITM, the contert la@ad positions of all work tapes as well as
the head position of the security parameter tape and thenatabe. This last condition guarantees that if a
machine wants to “take an action” by sending a message (santtbduction), then this is indicated by the
change of the local configuration. This is obviously not d restriction but a useful and natural requirement
in the context of fair scheduling. When activatédd,may query oracles associated to it. To query one oracle,
M writes a message on a designated work tape. The answer afattie will then immediately be returned
(on some designated work tape). The evaluation of the querieot part of the computation @f/, and in
particular, the steps taken by oracles are not addéd soruntime. OnceM finishes its current activation,
the input tapes are emptied. Hence, at the end of an activatimost one of the output tapes is non-empty
and the other output tape as well as the input tapes are empty.

We emphasize that an ITM/ as defined above can not be exhausted (therefore the inexteustible
interactive Turing machine): Whenevaf is activated it is able to “scan” its complete current confagion,
including the incoming message. As can be seen from the afooditions, by writing messages enriching
input tapes of\/ the resources ai/, in terms of number and length of messagésnay output and the size
of the local configurationV/ may have, increases. Conversely, messages writtao@sumingnput tapes
of M do not increasé/’s resources.

SYSTEMS OF ITMS. A systemS of ITMs is a parallel compositiol/, || --- || M,, of ITMs M;, i =
1,...,n, such that the set of names of input tapes\fifis disjoint from the set of names of input tapes
of M; for ¢ # j. In particular,S can only have at most one master ITM, i.e., at most one IT¥ may have
start as input tape. Also, the output tape of an ITMSns connected to at most one input tape of (another)
ITM. The set of tapes of a systefis defined to be the set of all tapes of ITMs occurringSinWe call a
tape ofS internal if it occurs both as an input tape of an ITM éand an output tape of (another) ITM in
S. Otherwise, a tape is callezkternal An external tape is calleeixternal input tapef it occurs as an input
tape of some ITM irS. Otherwise, it is calle@xternal output tape

GivenS = M || --- || M,, we write S(1",ry,...,r,) for the system obtained frof by writing a
security parametey on the security parameter tapes and random cgirs{0, 1}* on the random tapes of
thEMZ'.

RUNS OF SYSTEMS. In a run ofS(17,r4,...,r,) at every time only one ITM is active and all other ITMs
wait for new input. The active machine may write at most onesage on one of its output tapes, say
This message is then delivered to an ITM with an input tapeatamif any (recall that there exists at most
one such machine). The previously active machine goes intaitsstate and the receiver of the message is
activated, resulting, after some internal computatiotg anew output which is sent to another ITM, and so
on. The first ITM to be activated in a run is the master ITM. Itsgeas external input (on tapgart). The
master ITM is also activated if an ITM does not produce oufpot hence, does not trigger another machine)
or the output is written on an output tape for which there i$Tid with a matching input tape. A run stops

if the master ITM, after being activated, does not produdgwtuMore formally, a run o(17, 7, ..., 1,)

7



is defined to be a sequence of global configuratipmsiere aglobal configuratiory is a tuple(qi, .. ., ¢n)
of the configurationg; of the single machines/;, for everyi = 1,...,n.

In general a run of a system does not necessarily terminateeample, if inS = M || Ms the ITMs
M, and M, are connected via enriching input tapes, then they can se&sdage back and forth between
each other forever.

We say that a systefi is apolynomial-time systeiifthere exists a probabilistic Turing machine which
given a security parameter simulates runsand runs in polynomial-time with overwhelming probability
(in the security parameter). For polynomial-time systemesdenote bys(n) the random variable that returns
runs of S with security parametey where the coins for the ITMs i§ are chosen uniformly at random. It
suffices to choose a polynomial number of coins since theégmodf runs exceeding the polynomial bound
is negligible and can be ignored. For a global configuragione writeS(n) ~ ¢ to say that the final global
configuration in a run returned b§(n) is ¢. If ¢’ is a global configuration fo&(n), we write S;/(n) to
denote the distribution of runs obtained when the initiadf@quration of the ITMs inS are defined according
to ¢’ (with possibly random coins added on random tapes if neetledpseg’ is drawn from a familyD =
{D,,}, of distributions, we writeSp (n) for the random variable that returns a run according to theviing
experimenty’ <~ D, outputS, (n). We defineS, () ~» ¢ andSp (1) ~ ¢ analogously t&5(n) ~» ¢. Here,
and in the rest of the paper we only consider families of ithistions D that are polynomially samplable,
i.e., that are the output of a probabilistic polynomialiffuring machine.

Given a systens, we call an ITME anenvironmentor S if i) all input tapes of€ are consuming and
i) £ is I/O-compatible withS, i.e.,£ only writes to external input tapes Sfand€ only reads from external
output tapes of: formally, the set of input tapes ¢f is disjoint from the set of external input tapes and
internal tapes o, and the set of output tapes 8fis disjoint from the set of external output and internal
tapes ofS. Adopting terminology from [17], we calf reactively polynomialf S || £ is a polynomial-time
system for every environmegtof S where& does not have an associated oracle.

4 The Security-specific Model

Based on the general computational model introduced albavdefine below the security-specific model. In
this model, we consider specific systems of ITMs, calledquoitsystems. These systems consist of protocol
machines, which determine the actions of honest pringipasdversary machine, a scheduler, and buffers
for network and resilient channels. The adversary does & homplete control over the communication.
Specifically, while we let the adversary control the netwdr& does not control resilient channels, i.e., the
adversary can not modify, delete, or delay messages sehisoohannel. (We often allow the adversary to
read messages sent on resilient channels, though.) Theseugbthe scheduler is to schedule messages sent
over resilient channels, i.e., the scheduler decides whemahich messages written on the resilient channel
are delivered. Also, the scheduler resolves non-detestigréhoices made by honest principals, e.g., whether
to wait for a message of another party or to abort the protdaathermore, the scheduler determines when
the adversary is activated. In particular, the adversanyoisnecessarily scheduled as soon as an honest
principal outputs a message. Instead some message senesitient channel or an honest principal that
needs to make a non-deterministic decision might be schddinst (by the scheduler). However, if the
adversary sends a message to an honest principal thisgaiicactivated right away. Allowing the scheduler
to first schedule other entities (honest principals orieggilchannels) would significantly weaken the power
of the adversary.

ProTOCOLS A protocol I7 is defined by a tupléH, D, {H;};c) whereH and D are finite disjoint sets
of names ofhonestand dishonest principalsrespectively, andH;};c is a family of ITMs, called pro-

8



tocol machines (see below), which specify honest prinsipgishonest principals will be simulated by the
adversary.

We defineP = H U D to be the set of all principals. We note tliét may specify the actions of principal
1 in one session of a specific protocol, e.g., it specifies ossi@e of the initiator of the ASW protocol, or
multiple sessions afin possibly different roles.

ProTOCOL SYSTEMS A system induced byl consists of the protocol machinesi@f an adversary machine
A, a scheduler maching, and buffer machines for the network and resilient channdtsre precisely, a
(protocol) systend for I7 is of the form

S = (IlierHi) || (lierjerNet) || (|lier,;jerRCY) || A || S

whereH;, i € H, is a protocol machine aff modeling an honest principalet’, i € H, j € P is a network
buffer (machine) on whichsends messages over the network intendeg, feC, i € H, j € P is aresilient
channel buffer (machine) on whiglsends messages intended fpA is the adversary (machine), aSdhe
scheduler (machine). We call the system induced b¥/, A, and S and denote it byS(I1,A,S). We refer
to the systens with A andSremoved byS(/7). Analogously, we refer to the systefhwith Sremoved by
S(I1,A).

We now explain informally how the machines®&fII, A, S) work and how they are connected via tapes
(see Appendix A for details).

A network buffer machineNetj- works as follows: It internally stores a sequence of messaghich is
initially empty. Whenever it receives a message fitdp{on some designated tape), it appends this message
at the end of the internal sequence and acknowledges reddim message by sendiagk on back toH;.
The acknowledgment gives control backHg@ thereby allowingH; to send further messages (to possibly
other buffers). In other words; can broadcast messages. We do not have tapes between theaadve
machine and the network buffer as the adversary can reacktiverk buffer via its view oracle (see below).

A resilient channel buffer machiriéCi- works as follows: It internally stores a sequences of maessag
which initially is empty. WheneveRC§- receives a message frafy, it appends it at the end of the internal
sequence and acknowledges receipt of the message by semrdtitgck toH;. (Again, the purpose of the
acknowledgment is to enablé; to broadcast messages.) The resilient channel buffer edstéd by the
scheduler who can send a numiieto RC§ to instructRCé- to deliver thekth message of the sequence of
messages stored mc;i (if any). Again, the adversary does not have direct accemj'b If RC§ is not
required to be read-protected, then the view oracle of thveradry can be defined in such a way that it
provides the adversary with the messages storaﬂp

A protocol machineH; may send messages to the network buﬂ‘dae@- and the resilient channel buffers
RC§- for everyj € P as explained above. H; does not produce output, the schedi8dwvhich is declared
to be the master ITM) is activated. A protocol machigcan be activated in three different ways: a) It
receives a message from the networknerin! supposedly frony for some;j € P (these messages will
always come from the adversary who controls the networki);fieceives a message from a resilient channel
rcin] from j for j € P (if j € H, then the message received was in fact sent agd if j € D, then the
message comes from some dishonest principal, and henaa\taesary); c) It receives a message (on some
designated tape) from the scheduler, where we assumélthatly accepts a fixed, finite set of messages
on this channel and ignores all messages that do not beldhgstset. The messages from the scheduler are
meant to resolve non-deterministic choices madeihyif, for example, in the ASW protocol, at some point
of the protocol rurH; has the choice to wait for a message (sent over the netwank) thhe communication
partner or start the abort protocol with the TTP, then theedaler could send the messagigrt to H; in
order to instrucH; to start the abort protocol.



We allow all input tapes of network, resilient channel, anot@col machines to be enriching. We there-
fore explicitly require that the syste&81(I7) is reactively polynomial. (For a given protochl this is typically
not hard to check, see, e.g., Section 6.2 and 7.2.) Notefththinput tapes of protocol machines were con-
suming (the buffers could have enriching input tapes), tleactive polynomiality would follow. However,
if protocol machines may have enriching tapes, then, fomgte, TTPs (as those in the ASW protocol) can
conveniently be modeled in such a way that they process d@naayonumber of requests, without any fixed
polynomial bound.

The adversary maching is associated with an oracle, called thiew oracle Recall that if this oracle
is O, we often writeA(O) to say thatA is an ITM with associated oracl®. This oracle can be invoked
by A to obtain aviewon the history of the run of the overall system so far. The edatfinition of the view
oracle depends on what should be allowed to see. Typically, the view contains nbtifidlormation about
the history but the content of all network buffers (so far)l éime content of (some) resilient channel buffers.
The view of the resilient channels depends on the type of tla@mel. For example, for an authenticated
but not read-protected channel the view oracle returns dhgptete content of the channel. In addition to
invoking the view oracleA can send messages to honest principals either via netwadsitient channel
connections. A message sent by the adversary on one of thaseets is delivered directly. In particular,
the protocol machine connected to this channel will be atgéd immediately. More precisely, since network
connections are not authenticatédcan send a message pretending tg beectly to honest principalsl;,
i € H, via the tapenetin’ for everyj € P. Resilient channels are meant to be authenticated anddhere
the adversary can only send a message pretending fodeectly to an honest principdfl;, i« € H (via
the tapercinfl) if j/ € D. A possible alternative to allowing the adversary to sendsages directly to
the honest principals is to add resilient (scheduler cdlettp and/or network channel buffers between the
adversary and honest principals. We note, however, th&iisncase the adversary would be less powerful,
and therefore the resulting model would yield weaker sgcguarantees. The adversary machinean be
activated by the scheduler (and no other machine). For thiggse, the scheduler sengshedule on some
designated tape tA&. We require thaiA ignores all other messages on this tape. All input tapeS ofay
be enriching. However, we only allow those adversary mashfor which the syster§ (7, A) is reactively
polynomial, which, for example, includes all adversary maes whose input tapes are consuming. (Recall
thatS(17) is also required to be reactively polynomial.)

The scheduless is also associated withdew oraclewhich providesS with a view on the history of
the run of the overall system so far. Typically this view vioé different from the view of the adversary and
depending on the security property may contain full infdiiora about the history, no information at all,
or something in between. As explained above, the purposi®to resolve non-deterministic choices of
honest principalsH;), to schedule messages on resilient channels, and to de¢gwhen the adversady is
triggered. More preciselys can send messagesH, i € H, in order to resolve non-deterministic choices,
e.g., in the ASW protocdb could senchbort or resolve to H; in order to instrucH; to start the abort or
resolve protocol. As explained above, the scheduler cansaisd messages to the resilient channel buffers
RCé» to determine which message is scheduled next. The mesdagduted is then immediately sent to the
intended recipienj. Finally, S can send the messagehedule to A in order to triggerA. Note that there
is no direct connection betweéhand the network buffers since these buffers are under theotai the
adversary. However, the view oracle ®imight (or might not, depending on the security property dred t
desired strength of the security guarantee) pro@dath the messages stored in network buffers.

10



5 Fair Schedulers

Intuitively, we define a scheduler to be fair if it does notgstbe run of a system when at least one of the
(other) machines in the system can still take an action, @xionest principal could start an abort protocol,
a resilient channel could deliver a message, or the adyersaeady to output a message to an honest
principal. As already explained in the introduction, faiheduling is important in the definition of many
security properties, such as fairness and balance foramirgigning protocols.

The problem of defining fair schedulers is to make preciset\thmeans that a machine “can still take
an action”. Notice that we need a general definition that wdok arbitrary machines (honest principal ma-
chines, resilient channel machines, and adversary magiog only for specific machines, such as specific
buffers as in [7, 6]; these works were only concerned withria@ssage delivery, which, however, does not
suffice for fairness and balance of contract signing prdsoco

Roughly speaking, we say that a machine “can still take ailordctf the machine can be activated
by the scheduler with some input so that at the end of the aidiv the machine has changed its local
configuration, i.e., scheduling the machine causes it toenskne progress or to perform some action.
(Recall from Section 3 that if an ITM sends out a message, thehanges its local configuration.) For
example, if an adversary machine wants to send a messagehtmast principal, then when it is triggered
by the scheduler it would send the message and change itsctodgguration. Hence, a fair scheduler has
to eventually trigger the adversary as the adversary “dliadte an action” in the above sense. Similarly, a
fair scheduler has to eventually trigger a protocol macttia¢ does not receive a message from the network
but has the option of contacting the TTP, as contacting thie dduses the protocol machine to change its
local configuration.

We note that a scheduler does not necessarily know when aimeadhcluding the adversary, “can
still take an action” in the sense just explained. Hence,igihinschedule such a machine even though this
machine does not want to take an action. However, a machmalweays read the message received from the
scheduler (possibly even query the view oracle in case didiversary) and, in case it does not want to take
an action, it can return to its old local configuration. Ndtatthere we use that ITMs cannot be exhausted.
In case of exhaustible ITMs unrealistic runs would occur.

The above discussion motivates the following definitionadf §chedulers. Roughly speaking, the defi-
nition below says that if the run of a system stops, then elventhe system the old scheduler is replaced
by a new one (even one with full information on the historylod tun), the new scheduler cannot continue
the run of the system (at least not with non-negligible philiig) such that one of the ITMs in the system
changes its local configuration. In other words, a fair salexdmay only stop the run of a system if no ITM
in the system (other than the scheduler itself) can or wantake a further action, i.e., no other scheduler
can cause an ITM to change its local configuration. We stagedtfinition for general systems rather than
only for protocol systems (Section 4). In this definition, uge what we call a full-information oracle. Called
at some point in a run of a systemfudl-information oraclereturns the whole history of the run so far for
all machines involved including the random coins used sdyathe ITMs. We state the definition for the
case that the initial global configuration comes from a famil= { D, },, of distributions. This is useful for
modeling, for example, an initialization phase.

Definition 1. Let @ be a reactively polynomial system which does not contain stengcheduler. An ITM
Sis afair scheduleffor @ and a familyD = {D, },, of distributions on (initial) global configurations if it is
an environment fo€) and if for every environmer® for Q which has access to a full-information oracle the
probability that the following experiment returiss negligible in the security parameter

Exp(n,S,S):

11



RunQ with S, i.e.:Sp(n) ~ ¢ with S = Q|| S

Continue the run witl8' instead ofS, i.e.: S}, () ~ ¢ with " = Q|| S and¢” is obtained fromy’ by
replacing the configuration d by the initial configuration o and writing the history of the run so far on
one of the work tapes & .

If there exists an ITMV/ in @ such that the local configuration aff in ¢’ is different from the corresponding
local configuration ing”’, then outputl, and otherwise, output.

Alternatively to using a full-information oracle, the défion could be parameterized with an oracle tBat
is allowed to use.

Applied to protocol systems (Section 4), a fair scheduley ordy stop if i) the resilient channel buffers
are empty, since otherwise a scheduler could schedule agessa non-empty buffer, which would cause
the buffer to deliver the message and delete it, and henedyufiier would change its local configuration,
ii) triggering a protocol machine with any message (amomegfitiite set of possible once, e.ghort) does
not change the local configuration of this machine, sincersifse a scheduler could send such a message
causing the protocol machine to change its local configumae.g., go from state,,.;: 10 qupore), @and iii)
triggering the adversary machine with the messagedule does not change the local configuration of this
machine (which means that the adversary does not want t@tslep anymore), since otherwise a scheduler
could sendschedule to the adversary and the adversary would change its locgcmation.

Since ITMs cannot be exhausted they might change their tmrdlguration whenever they are invoked.
Hence, a fair scheduler would never be allowed to stop. Tasbserve:

Observation 1 There exist systems for which no fair scheduler exists.

SYSTEMS WITH FAIR SCHEDULERS We now identify some reasonable restrictions on protoantsadver-
saries as to ensure the existence of a fair scheduler. Wagiut a restriction on the adversary. As formalized
in the following definition, we require that the number of figaration changes of the adversary in a run
of a system (and hence, the number of actions, such as sem@isgpges, the adversary can perform) can
polynomially be bounded independently of the schedulesicamed. This restriction follows the intuition
that the adversary is the entity which “pushes” the run of #tesy, and hence, it is mainly the adversary
who determines the runtime of the system. Conversely, thedsder is not meant to “push” the run of the
system. It is only an imaginary entity which is used to detaathow non-deterministic choices are resolved
in real protocol runs and who goes next if anybody wants te takaction. In particular, note that the role of
the scheduler is different from the role of an environmertiinulation-based settings: Such an environment
tries to distinguish real from ideal systems, and theref@pashes” the run of a system following its own
interests. In the following definition, the number of chasmigélocal configurations of the adversary in a run
q1 - - - qgn Of @ system is defined as follows:qf‘ denotes the local configuration &fin the global config-

urationg¢;, then this number igt{i € {0,...,n — 1} | qf‘ + qﬁl}; in Definition 3 we use an analogous
definition for protocol machines.

Definition 2. Given a protocol/l, oraclesO,q, and O,., and a family of distributionsD = {D,}, on
(initial) global configurations, we say that an adversary ahime A(Oyq,) for 11, Oy, Osen, @and D is
fairness-enablingf there exists a polynomial such that for all scheduler§(QO;,.,) for II the probability
that in a run ofSp(n), withS = S(I1, A(Ouay), S(Oser) ), the number of changes of local configurations of
A(O,qy) is bounded by(n) is overwhelming (im), where the probability is over the random coins used by
D,, and the machines i8§.

Analogously to the above definition, we could put a restitton protocol machines. However, this would
be too restrictive since the number of configuration charajes protocol machine might depend on the

12



number of interactions with the adversary, and hence, dkpen the adversary. For example, if a TTP is
modeled in such a way that it reacts to all requests (whicldoaoame from the adversary), then the number
of configuration changes of the TTP depends on the adverBais/motivates the following definition.

Definition 3. Given a protocolll, oraclesO,q, and O,., and a family of distributions) = {D,}, on
(initial) global configurations, we say thdf is fairness-enablingf for all fairness-enabling adversary ma-
chinesA(Oyqy) for I1, O a4y, Osen, and D there exists a polynomial such that for all schedulerS(Os.,)
for I1 the probability that in a run o8p(n), withS = S(I1, A(Ouay ), S(Oser)), the number of changes of
local configurations of every protocol machine®fs bounded by(n) is overwhelming (im), where the
probability is over the random coins used by, and the machines i§.

The following theorem, proved in Appendix C, states thatdweery fairness-enabling protocol and every
fairness-enabling adversary, there exists a fair schedelen without access to a view oracle). Hence, for
systems built from fairness-enabling protocols and adwess, fair scheduling is possible. In the rest of the
paper, we concentrate on such systems, which seem to cafittealistic cases. In order to state and prove
the theorem, we first need to be more precise about the viesleovhadversaries.

A view oracle is called aadversary view oracld it is a deterministic polynomial-time algorithm which
when invoked in a run of a protocol system gets as input theryief the run so far, except for the history of
the scheduler, i.e., the history of the configurations (idicig the random coins used so far) of all machines in
the system, except for the history of the configurations efsttheduler. We require that if the configurations
of the ITMs, other than the scheduler, in a run of the prot@ystem have not changed from one point in
the run to the next step in the run, then the adversary viesl®raturns the same view as before. Note that
even if the adversary view oracle obtains as input the fglidny of the system (excluding the scheduler) it
typically will only return a restricted view on that histoty the adversary.

Theorem 2. For every fairness-enabling protocdl, view oracleO;.,,, adversary view oracl®,,, polyno-
mially samplable family of distribution® = { D, },, on (initial) global configurations, and fairness-enabling
adversariesA = A(O,qy), there exists a schedul& (even one without access to a view oracle) that is fair
for S(11,A) and D.

6 Fair Protocols and Results for the ASW Protocol

In this section, we define the notion of fairness of protoewld, as a proof of concept, apply it to the ASW
protocol. In the definition of fairness, we use the previpustroduced concept of fair schedulers. We note
that fairness is not a branching time property. Howeves, @ §ood warming-up for the more complex notion
of balance studied in the next section.

6.1 Definition of Fairness

The definition of fairness of a protocdl is w.r.t. a deterministic polynomial-time algoritheheckfair
which given a global configuration of a run of a system foreturns1 (for fair) or 0 (for unfair). We do
not put any restriction omheckfair at this point. This function will be defined depending on thetgcol
and the party under consideration. In the ASW protocol, figstancecheckfair may return0 in a global
configuration if dishonesB has a signed contract from honesbut A does not have a signed contract from
B (see Section 6.2). Parameterizing the definition of fagr®scheckfair seems unavoidable since, for
example, what a signed contract is and what it means for g fmhave a signed contract are details that
may differ from one protocol to another (see, e.g., [1] ant])[1

13



The following definition says thal/ is fair (relative to a particulacheckfair algorithm) if for every
(fairness-enabling) adversary and evéair scheduler the probability that a run ends in an unfair global
configuration is negligible. (One should not confuse falresiuling with fair global configurations, the latter
is determined byheckfair.) While in the following definition, we use the notions of faéss-enabling
protocol, fairness-enabling adversaries, and fair sdeeduhich were defined w.r.t. a family of distributions
D = {D,}, on (initial) global configurations, we now omi? and simply assume that (standard) initial
configurations, with empty work tapes, are used as startimgpof runs.

Definition 4. Let II be a fairness-enabling protocot),.;, be a view oracle for a schedulef),, be an
adversary view oracle, ancheckfair be a deterministic polynomial-time algorithm as above.Hé is
calledfair w.r.t. Os.p, Ouqv, andcheckfair if for every fairness-enabling adversary machhe- A(Oyqy)
for IT and every schedule® = S(O,,},) fair for S(II, A), we have that the probability that in the following
experiment0 is returned is negligible in the security parametgewhere the probability is taken over the
random coins of the protocol machinesioéf the adversanA, and the schedul€es.

Exp(n, II,A, S, checkfair):

S(n) ~ qgwhereS = S(I1,A,S).
Returncheckfair(q).

Note that the above definition would not make sense if ouonadif fair scheduling would only talk about
fair message delivery (as, e.g., in [7, 6]) as in this casé &daeduler could stop the run of the system even
though, for example, an honest principal could still contae TTP or the adversary still wants to send a
message to some honest principal. Hence, fair messagermyatin its own would be insufficient for defining
fairness of, e.g., contract signing protocols.

6.2 The ASW Protocol is Fair

We prove that the ASW protocol is fair for i) the case that andsb initiator A runs an instance of the
protocol with a dishonest respondBr(modeled as the adversary) and an honest TTéh the contractual
texttext, and ii) the case that an honest respondeuns an instance of the protocol with a dishonest initiator
A (modeled as the adversary) and an honest TTdP text.

More formally, letI745W"A denote the protocol with honest partids 7, and W, and dishonest party
B where A acts as an initiatof]’ as a TTP, and?” as a “watch dog”. Formal specifications dfand7’ in
terms of ITMs can be found in Appendix B.1 and B.1, respebtijalso see the remarks and notation at the
beginning of Appendix B.1). We note thalt writes Contract on some of her work tapes if according to
the specification of the protocol she has a valid contraen(kird or replacement) witB andT" on text.
The watch dod/V is used to check whether the adversary (dishoBgstas a valid contract. More precisely,
W waits for a message: on some network channel and writeésntract on some of its work tapes h
is a standard or replacement contract fg3,7",text as described in Section B ignores messages if they
do not have the correct format. The protoddf>V=B is defined similarly, except that now is dishonest
and B is honest. The formal specification of the responBeas ITM can be found in Appendix B.1. It is
not hard to check thal7ASW=A (S(ITASWA)) and ITASWB (S(ITASWA)) are fairness-enabling (reactively
polynomial).

The algorithmcheckfair that checks whether a global configuration is fair for an lsbparty is defined
as follows: given a global configuratian checkfair(q) = 1 if and only if Contract is not written on the
work tape ofi¥ or Contract is written on the honest protocol machideand B for [7ASW™A and [TASW~8B,
respectively, i.e.checkfair returnsl if the adversary (dishonest party) does not have a signettacbn
from the honest party or the honest party has a signed coifitoac the dishonest party.

14



We define the view oraclé)ﬁdsz}"’ for the adversary to be an adversary view oracle (Sectiontéghw
returns the history of all network and resilient channelfénsf in the system (but no other machines). In
particular, resilient channel buffers are not requiredeodad protected. To get strong security guarantees, we
consider a very weak view oracf®5\ for the scheduler which provides the scheduler with no imfation
whatsoever about the current status of the protocol ruspiiientially makes the job of the adversary easier.
(Note that according to Theorem 2, in this situation fairestifling is still possible.)

We are now ready to state the theorem on fairness of the ASWamlo The theorem holds for instances
of the protocol implemented with primitives that satisfsrsiard cryptographic assumptions (see Appendix F
and G for precise definitions).

Theorem 3. If the signature scheme is existentially unforgeable umti@sen message attacks and the hash
function is preimage-resistant, théf*>V-A and 17458 are fair w.r.t. checkfair and view oracle® 3"V
and OASW,

sch

The proof, presented in Appendix D, is by reduction to theuggcof the underlying cryptographic prim-
itives. It cannot be carried out using existing results datireg symbolic and cryptographic methods since
these results do not (and in some cases provably cannotintakeccount preimage-resistant hash functions.
Our proof uses in an essential way that schedulers are filmow fair scheduling the proof would not go
through and in fact the notion of fairness would not make sesirsce as soon as the dishonest party has a
valid contract, the scheduler could stop the run of the paitdVe note that the ASW protocol could be
proved to be unfair in our setting, if honest parties aremistic in the sense that they only contact the TTP
if the dishonest party tells them to do so (see [12] for moremiimistic parties in Dolev-Yao based models).
While in I7ASW-A and I7ASWB the honest initiator and responder, respectively, are tedde such
a way that they only run one instance of the protocol, we canllwstrated in Appendix B.2, also model
principals that run an unbounded number of copies of theopabt The proof of the theorem should extend
to this case if for different instances of the protocol umicgession identifiers are used (see remarks in
Section B.2), but this is not the main focus of this paper.

7 Balanced Protocols and Results for the ASW Protocol

In this section, we define the notion of balance and show tle®sokan-Shoup-Waidner protocol is bal-
anced. As in the definition of fairness, the definition usegitteviously introduced concept of fair scheduling.

7.1 Definition of Balance

The notion of balance for (two-party) contract-signingtpomls was first introduced by Chadha et al. [11] in
the symbolic (Dolev-Yao) setting. In a nutshell, their deiom says that a protocol is balanced for an honest
signer, sayA, if no “unbalanced” state can be reached in a run of the cagigning protocol where a run
involves A, the Dolev-Yao intruder playing the role of the dishoneghsr B, the TTP, the network and
resilient channels. A state imbalancedfor A) if in this stateB has both i) a strategy to obtain a signature
on the contract frond and ii) a (possibly different) strategy to prevehtfrom obtaining a signature on the
contract fromB. In other words B can unilaterally determine the outcome of the protocolcwipiuts him in

an advantageous position, for example, when making a déalanother party. In the first phaserefiching

an (unbalanced) state the non-deterministic choices mad®ibest principals and the way messages on
resilient channels are scheduled might hBlfo reach the (unbalanced) state. However, in the secon@ phas
B needs to have the mentioned strategies to achieve the tus>-gobtaining a valid contract and preventing

15



A from obtaining a valid contract—, and these strategies hawgork no matter what non-deterministic
choices the honest principals make and no matter how messagesilient channels are scheduled.

Now, we introduce a computational analogue of the notion W& sketched above. We measure the
success probability of an adversary that tries to underthimbalancedness of the protocol via an experiment
which works in two phases (see below for a formal definitidmhe first phase, the protocol runs along with
the adversanA and a schedule which may resolve non-deterministic choices of honestqgipals and
schedule messages on resilient channels and the adversawyay that help#\.. At the end of this phase, a
state (global configuration), say is reached. Now, one of the two goals (having the contrapreventing
the other party from getting one) is picked (by some functi@allenge) and the adversary is asked to
reach the chosen goal, starting frgnbut now running with a different scheduler which will try tesolve
non-deterministic choices of honest principals and scleedksilient channels and the adversary in a way
that is disadvantageous far. Intuitively, for balanced protocols, from any stgtéhat is reached, at least for
one of the two goals the probability that the adversary cantrehis goal should be low.

In the following definition, we require that the scheduleedisn the second phase of the experiment
is fair in order to ensure that protocol runs are in fact catga both by honest parties and the adversary.
This is crucial for two reasons: On the one hand, the advwersaght otherwise be prevented from taking
further actions, but these actions may be necessary fodiresary to achieve the required goal. Hence, the
scheduling would be unfair for the adversary. And in factyduld be unrealistic since in real protocol runs
no one stops the adversary from taking further actions. @wther hand, honest principals might otherwise
be prevented from taking counter-measures to the misbahafiihe adversary. Hence, the scheduling would
be unfair (and again unrealistic) for the honest partiedeNlmat achieving fair scheduling for both honest
parties and the adversary is guaranteed by our definitioains€heduling (Section 5). However, a notion
only based on fair message delivery [7, 6] would, as in caseiwiess (Section 6.1), be insufficient.

In order to ensure that, in the second phase, fair schedidipgssible, we split the adversary in two
parts,A andA’—one for the first phase and one for the second phase of theiregme—and require that’
is fairness-enabling. The scheduler used in the first plgasetirequired to be fair (in particular it can stop
at arbitrary points), and adversafyis not assumed to be fairness-enabling.

The definition of balance is parameterized by two determinolynomial-time algorithmsgoal, and
goal,, thegoal functionswhich given a global configuration retutr(goal reached) ob (failed to reach the
goal). Similarly to the functiortheckfair (Section 6.1), the precise definition of these functionsedes
on the protocol under consideration and cannot be avoiddgdeirgeneral definition (see Section 7.2 for
an example of these functions). We call a deterministic ipatyial-time algorithm which given a global
configuration returng (requiring the adversary to achiegeal,) or 2 (requiring the adversary to achieve
goal,) achallenge function

Definition 5. Let I7 be a protocol andgoal, and goal, be deterministic polynomial-time algorithms as
above. LeO,.;, and O’ , be view oracles, and,q, and O’ , be adversary view oracles. Thefi,is called

adv

balancedw.rt. goal,, goaly, Oudy, Ol yys Osch, and O, if for all adversary machined = A(O,4,) and
A =A(O,,) for I, and all (not necessarily fair) scheduleBs= S(O,.,) for I1, there exists a challenge

adv

function challenge such that ifA” is fairness-enabling foi7, O’ ., O,4,, and a familyD = {Dy}, of

sch?

distributions on (initial) global configurations definedlbe, then there exists a schedulsr = S (O’ ;)

sch

fair for S(II, A’) and D such that the probability that the following experimenures 1 is negligible in the
security parameten.

Exp(n, I1,A,A', S, S, goal,, goal,, challenge):

S(n) ~ gwhereS = S(I1,A,S).
i = challenge(q).

16



S/ (n) ~ ¢" whereS’ = S(II, A', S'), the initial configuration oA’ is obtained by writing and the current
configuration ofA on the work tape of’, andq’ is obtained fromy by replacing the configuration & by
the initial configuration ofS' and the configuration oA by the initial configuration of\’.

Returngoal,(q”).

The distributionD,, is defined to be the distribution ¢f in the above experiment. (Note that= {D,} is
polynomially samplable.)

We emphasize that the above experiment can be simulatedyingooial time. This is a crucial fact when
trying to show that a protocol is balanced via a proof by réidac Note that while one could provide
challenge andS with more information, giving them less information only kea the balance property
stronger. We also point out that in typical applicationshaf above definition the protocdl will be fairness-
enabling w.rt0. ,, O. ., andD, and hence, fair scheduling is possible in the second pHabe experi-
ment.

7.2 The ASW Protocol is Balanced

We prove that the ASW protocol is balanced for i) the casedhdtonest initiatord runs an instance of the
protocol with a dishonest respondBr(modeled as the adversary) and an honest TTdh the contractual
texttext, and ii) the case that an honest respondeuns an instance of the protocol with a dishonest initiator
A (modeled as the adversary) and an honest TR text. More formally, we need to specify the protocols,
oracles, and functions used as parameters in the balanod@idefi

The protocols that we consider are the same as in Section.&.2I7*5V"A (honest initiator4) and
IT"SWB (honest respondeB): it is easy to check that these protocols are fairnesshegaty.r.t. the dis-
tribution used in Definition 5. We also defir@}?"V and O22Y as in Section 6.2. To get strong security
guarantees, we allow the scheduler in the first phase of tiwtian of the balance property to see what the
adversary sees plus the history of the configurations of diweraary (including the random coins used by
the adversary)OQCShW is defined accordingly. Conversely, we make the scheduldéreiisecond phase weak
by defining (’)SACS,LW in such a way that it does not provide any information aboathtstory. For a global
configurationg let goal,(q) = 1 iff the honest party 4 in I7ASW-A and B in I1A5W"B) does not have a
contract, i.e.Contract is not written on one of its work tapes. Lgbal,(¢) = 1 iff the adversary has a
valid contract, i.e.Contract is written on a work tape of the watch dog. The following theoris proved
in Appendix E.

Theorem 4. If the signature scheme is existentially unforgeable umti@sen message attacks and the hash

function is preimage resistant, théi*>"V"A and I7A5W"B are balanced w.r.tgoal,, goal,, OV, OAW

ASW ASW adv * ~adv’ 1
O, and O3 .

The proof is again done by reduction to the security of thenprres: Assuming that the protocol is un-
balanced, it is shown that one of the primitives would bednse. As in case of fairness, the proof should
extend to the case that a party runs multiple copies of thiogob(see also Section B.2).

8 Conclusion

In this paper, we introduced the first computational modette specification and rigorous analysis of com-
plex, branching time properties of protocols. Our modeludes schedulers to deal with non-deterministic
behavior of principals and resilient channels. We prop@sgdneral definition of what it means for a sched-
uler to be fair. Our definition not only takes into account fiheduling for honest parties and certain chan-
nels, but alsalishonesiparties, and hence, arbitrary ITMs. This definition is oeneist independent of our

17



application to branching time properties. Using our corapabhal model and the notion of fair scheduling,
we provided definitions of fairness and balance in (contsigming) protocols. The definition of balance
required to talk about different strategies and goals aigypals, and involved both schedulers that work
with and schedulers that work against the adversary. As af pfoconcept, we applied these definitions to
the ASW two-party contract signing protocol. Our model ane hotion of fair scheduling that we intro-
duced form a good basis for also dealing with other branctiing properties, such as abuse-freeness, which
is a weak form of balance, or properties studied in [22, 21t @mputational model uses an interleaving
semantics; it might be interesting to study concurrent ri®ode concurrency may have an impact on the
security properties (see, e.g., [20] for the case of Dolag-vased models).

References

1. N. Asokan, V. Shoup, and M. Waidner. Asynchronous prdséar optimistic fair exchange. IRProceedings of the IEEE
Symposium on Research in Security and Priypeges 86—99. IEEE Computer Society, 1998.

2. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exope of digital signatureslEEE Journal on Selected Areas in
Communications18(4):593-610, 2000.

3. M. Backes and B. Pfitzmann. Computational probabilistin-mterference. IfProceedings of the 7th European Symposium
on Research in Computer Security (ESOR|@8ume 2502 ot_ecture Notes in Computer Sciengages 1-23, 2002.

4. M. Backes, B. Pfitzmann, and M. Waidner. Secure AsynchusiReactive Systems. Technical Report 082, CryptologynePri
Archive, 2004.

5. Michael Backes, Anupam Datta, Ante Derek, John C. Mitclald Mathieu Turuani. Compositional analysis of contract
signing protocols. ICSFW '05: Proceedings of the 18th IEEE Computer Securitynfflations Workshop (CSFW’'QF)ages
94-110, Washington, DC, USA, 2005. IEEE Computer Society.

6. Michael Backes, Dennis Hofheinz, Jorn Muller-Quade] &®ominique Unruh. On fairness in simulatability-basegpto-
graphic systems. 18rd ACM Workshop on Formal Methods in Security Engineerfagim Specifications to Codgages
13-22, September 2005. Preprint on IACR ePrint 2005/294.

7. Michael Backes, Birgit Pfitzmann, Michael Steiner, anahéiel Waidner. Polynomial fairness and livenesPioceedings of
the 15th IEEE Computer Security Foundations Workshop (C8EW\pages 160-169. IEEE Computer Society, 2002.

8. B. Baum-Waidner and M. Waidner. Round-optimal and abtese dptimistic multi-party contract signing. In U. Montaina
J.D.P. Rolim, and E. Welzl, editorgutomata, Languages and Programming, 27th Internationallagium (ICALP 2000)
volume 1853 oL ecture Notes in Computer Scienpages 524-535. Springer, 2000.

9. R. Canetti. Universally Composable Security: A New Payadfor Cryptographic Protocols. Technical report, Crypty
ePrint Archive, December 2005. Online availabl&at p: / / eprint . i acr. or g/ 2000/ 067. ps.

10. Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskaan®y Lynch, Olivier Pereira, and Roberto Segala. Time-bedn
Task-PIOAs: A Framework for Analyzing Security ProtocdlsS. Doley, editor20th International Symposium on Distributed
Computing (DISC 2006pages 238-253. Springer, 2006.

11. R. Chadha, M.l. Kanovich, and A.Scedrov. Inductive madthand contract-signing protocols. In P. Samarati, edttn ACM
Conference on Computer and Communications Security (CG$)3tages 176-185. ACM Press, 2001.

12. R. Chadha, J.C. Mitchell, A. Scedrov, and V. Shmatik@ontract Signing, Optimism, and Advantage. In R.M. Amadid a
D. Lugiez, editorsCONCUR 2003 - Concurrency Theory, 14th International Crafeg volume 2761 of_ecture Notes in
Computer Sciencgages 361-377. Springer, 2003.

13. A. Datta, R. Kusters, J.C. Mitchell, and A. Ramanath@m the Relationships Between Notions of Simulation-BasecuS
rity. In J. Kilian, editor,Proceedings of the 2nd Theory of Cryptography Conferen€C(2005) volume 3378 ofLecture
Notes in Computer Sciencpages 476—494. Springer-Verlag, 2005. Full version akikel at http://www.ti.informatik.uni-
kiel.de/"kuesters/publicatiortstml/DattaKuestersMitchellRamanathan-TR-SPPC-2@d2

14. J.A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-frémistic contract signing. Iddvances in Cryptology — CRYPTO’'99,
19th Annual International Cryptology Conferenceolume 1666 ofLecture Notes in Computer Scienqeages 449-466.
Springer-Verlag, 1999.

15. D. Hofheinz and J. Muller-Quade. A synchronous modelnfiolti-party computation and the incompleteness of obligi
transfer. InProceedings of the Foundations of Computer Security WogksRroceedings of FCS 2004, 2002004.

16. D. Hofheinz, J. Muller-Quade, and D. Unruh. Polynoniaintime in Simulatability Definitions. [18th IEEE Computer
Security Foundations Workshop (CSFW-18 20@5pes 156—169. IEEE Computer Society, 2005.

17. Dennis Hofheinz, Jorn Muller-Quade, and Dominiqueltin A simple model of polynomial time uc. Presented at th&REERT
Workshop on Models for Cryptographic Protocols — MCP’'06.

18



18. D. Kahler and R. Kiisters. Constraint Solving for CantiSigning Protocols. In M. Abadi and L. de Alfaro, editdPso-
ceedings of the 16th International Conference on Concusrerheory (CONCUR 2005)olume 3653 ofLecture Notes in
Computer Sciencgages 233—247. Springer, 2005.

19. D. Kahler, R. Kiisters, and Th. Wilke. Deciding Projesof Contract-Signing Protocols. In Volker Diekert andiBo Durand,
editors, Proceedings of the 22nd Symposium on Theoretical Asped@®mputer Science (STACS 2006)mber 3404 in
Lecture Notes in Computer Science, pages 158-169. Spyifaykrg, 2005.

20. D. Kahler, R. Kusters, and Th. Wilke. A Dolev-Yao-bddeefinition of Abuse-free Protocols. In M. Bugliesi, B. Peeh
V. Sassone, and |. Wegener, editd®spceedings of the 33rd International Collogium on Automy&ianguages, and Program-
ming (ICALP 2006)volume 4052 of_ecture Notes in Computer Scienpages 95-106. Springer, 2006.

21. S. Kremer and J.-F. Raskin. Game analysis of abuse-firgeact signing. IrComputer Security Foundations Workshop 2002
(CSFW 2002)pages 206—220. IEEE Computer Society, 2002.

22. Steve Kremer and Jean-Francois Raskin. A game-basidat@on of non-repudiation and fair exchange protocdfs12th
International Conference on Concurrency Theory (CONCUBI20/0lume 2154 of ecture Notes in Computer Scienpages
551-565. Springer-Verlag, 2001.

23. R. Kusters. Simulation-Based Security with Inexhilsstinteractive Turing Machines. |Rroceedings of the 19th IEEE
Computer Security Foundations Workshop (CSFW-19 2Qq)es 309-320. IEEE Computer Society, 2006.

24. V. Shmatikov and J.C. Mitchell. Finite-state analydisnm contract signing protocolsTheoretical Computer Science (TCS),
special issue on Theoretical Foundations of Security Asislgnd Design283(2):419—-450, 2002.

A Specification of the ITMs in Protocol Systems

In this section, we provide more formal definitions of prathmetwork buffer, resilient channel buffer,
adversary, and scheduler machines. In particular, we are precise about how machines are connected via
tapes.

A protocol machineM = A;, i € H for principal i in protocol I7 is an ITM which has the following
tapes for every € P:

— Input tapESneting and rcin{ for receiving input over the network or the resilient chdninem j,
respectively.

— Output tapemetout§ and rcin§ for sending messages on the network or the resilient chaongl
respectively. (Theses messages will be written into a métwo resilient channel buffer, which will
acknowledge receipt of the messages).

— Input tapeSnetack§ andrcack§ on which M receives an acknowledgment that the message sent before
on netout§- or rcin§-, respectively, has been received. (This allows to broddoassages since after
sending a message on one of the network or resilient chammglitotapes, control is given back id
such thatd can send other messages as well).

— An input tapesch_p, on whichM expects a message, suchaasrt or resolve, after which)M may
or may not take an action (e.g., start the abort or resolvprstiicol).

All input tapes ofM are defined to be enriching.
A network buffer (machingyet:, i € H and;j € P, for a protocoll] is an ITM which has the following
tapes:

— Aninput taperletout§ for receiving messages frof,. (Recall thatA; has an identically named output
tape.)

— An output tapeletacké- to acknowledge receipt of a message frAm (Recall thatA; has an identically
named input tape.)

All input tapes oﬂ\let;ﬂ are enriching. The machin\deetj- works as follows: It internally stores a sequence of
messages, which initially is empty. Whenem@- receives a message aatout’, it appends it at the end
of the internal sequence and acknowledges receipt of theagesy sendingck on netack§ (to A;).

19



A resilient channel buffer (machin®C:, i € H and;j € P,* for a protocol/7 is an ITM which has the
following tapes:

— An input tapercout§ for receiving messages frof;. (Recall thatA; has an identically named output
tape.)

— An output tap&cacké- to acknowledge receipt of a message frAm (Recall thatA; has an identically
named input tape.)

— Aninput tapercin_sch;l on whichRCj- expects a number (the index of the message to be sent) from the
scheduler.

— An output tapercin§ on which RC§- sends the messages requestedcoim_sch;.

All input tapes 01RC§» are enriching. The machiri%Cé» works as follows: It internally stores a sequences of
messages, which initially is empty. WheneRRC); receives a message onout?, it appends it at the end of
the internal sequence and acknowledges receipt of the geebgasending.ck onrcack; (to A;). Whenever
RCé» receives a numbek on rcin_schj- (from the schedulen,it writes thekth message of the sequences
on the tapercin (if the kth message exists, otherwise is does nothing) and deleseméssage from the
sequence.

An adversary (machinel for a protocollI is an ITM which may have a view oracle as described in
Section 4 and which has the following tapes:

— Output tapesletin{ for all j € P andi € H to send a message (gsto i over the network.
— Output tapescin] for all j € D andi € H to send a message (@sto i over the resilient channel.

— An input tapeschadv on whichA expects the messagehedule after whichA may or may not take an
action.

All input tapes ofA are enriching. Note thak does not have any direct connection to the network buffers.
This is becausé@ can use the view oracle to obtain all messages sent to the@rnet@imilarly for resilient
channels.

A scheduler (machine$ for a protocoll! is an ITM which has the following tapes:

— Output tapesch_p,, for every: € H, on whichS may write a message to triggas. (Recall thatA; will
only accept a message among a finite set of messages andnoikigll other messages.)

— Output tapescin_sch?, for everyi € H andj € P, on whichS may write a number, the index of the
message to be send over the resilient channel frtony .6

— An output tapeschadv on whichS may writeschedule to triggerA.

— An input tapestart, i.e.,Sis a master ITM.

All input tapes ofS are declared to be consuming. As explained in Section 4,dhedsilerS is equipped
with an oracle, callediew oracle This oracle can be invoked [$to obtain a view on the history of the run
of the overall system so far.

* Alternatively, one could consider resilient channel buffeachines also foi € D (and in this casg € ), which would mean
that the adversary would also have to write into a resili@annel buffer machine to send a message to a another piincipa

5 Alternatively, one could require thﬁth~ only expects a messagext which would triggerRCj~ to send the next message in
its internal sequence.

®1f 5 € D and one wants to model that the chanRélj~ is controlled by the adversary, th&would not have the output tape
rcin_schj, i.e.,Scan not triggeRCj.

20



B Formal Specification of the ASW Protocol

In this section, we provide a formal specification of the ASkdMpcol. More precisely, we specify the actions
of honest principals in the ASW protocol as ITMs. While in &t B.1, we consider honest principals
running a single session on their machine, in Section B.2eeiy an honest principal running multiple
sessions.

B.1 Single Session Specification

In this section, we specifyl running one instance of the ASW protocol as an initiator wit{Section B.1),
B running one instance of the ASW protocol as a responderAvitBection B.1), and the TTP (Section B.1).
For simplicity of presentation, in the following specificats we implicitly assume an initialization phase
where the parties are provided with a randbne {0, 1}" (the index of the hash function to use) and the
public-keys of the other parties. This initialization paauld be modeled in different ways. For example,
every entity could generate its own public and private keyd #nen send the public keys over resilient
channels to the other parties. One trusted entity, e.gT TR could in addition randomly choogeand send
it to the other entities. Alternatively, one could model thigialization phase by an additional entity (ITM)
which generates the public and private keys (at least fondinest parties) and the indg&xand then distribute
the keys over resilient, read-protected channels to tlierdiit entities.
In what follows, whenever we say that, for examplageceives message|m, vz, we implicitly require
that A verifies B’s signature. Also, we often simply writk(m) instead ofh;(m), i.e., the key (index) for
the hash function is omitted. We assume théak) € {0, 1} for a fixed!.

Specification of the Honest Initiator A The honest initiatord of the ASW protocol when talking t@3,
using the TTPI, and running the protocol on the contractual text performs the following steps: We use
the naming convention for tapes introduced in Section 4 apgeAdix A. We model in such a way that
she non-deterministically decides whether or not to st&rforotocol, i.e., the scheduler makes this decision.
This property is crucial for proving the balance of the pooio

E.1 If inputinit is received orsch_p, (from the scheduler), then continue with E.2. Otherwiseénpiut
stop is received orsch_p 4, then stop, i.e., from now on ignore all incoming messagéseise, ignore
the incoming message and continue to wait in state E.1.

E.2 ChooseN, < {0,1}" and outputm; = sig[(va,vp, vy, text, h(N4)),v4] on netout4; ignore the
subsequent acknowledgmentMackg from Netg and continue with E.3.

E.3 If a message of the formy = sig[(m1, ), vp] is received ometinZ wherez € {0,1}, then output
N4 onnetout4; ignore the subsequent acknowledgmentnemackg from Netg and continue with
E.4. Otherwise, if the messageort is received onsch_p 4, then continue with A.1 (abort protocol).
Otherwise, ignore the incoming message and continue toinv&it3

E.4 IfanonceV € {0,1}" is received ometinZ such thati(N) = z, then writeContract on some work
tape and stop. Otherwise,itsolve is received orsch_p 4, then continue with R.1 (resolve protocol).
Otherwise, ignore the incoming message and continue toinvsiate E.4.

A.1 Sendm, = sig[(aborted,m ), va] Onrcouts}; ignore the subsequent acknowledgment fiR@; and
continue with A.2.

A.2 If the messageig[(aborted, m,), v7| is received orrcin’}, then stop. Otherwise, if a message of the
form sig[(m1, ma), vr] is received orrcin’;, then writeContract on some work tape and stop. Other-
wise, ignore the incoming message and continue to wait te #t22.

21



R.1 Sendm;,ms) Onrcout4; ignore the subsequent acknowledgment fiR@¥! and continue with R.2.
R.2 Ifsig[(m1, ma), vr] is received orrcin’, then writeContract on some work tape and stop. Otherwise,
ignore the incoming message and continue to wait in state R.2

Specification of the Honest RespondeB The honest respondds of the ASW protocol when talking
to A, using the TTPT", and running the protocol on the contractual test performs the following steps:
Similar to the case ofl, when B receives the first message,makes a non-deterministic decision whether
or not to continue the protocol run, i.e., the scheduler radhis decision.

E.1 If a message of the form; = sig[(v4,vp, vr, text, ), v4] for somer € {0, 1}! is received ometins,
then continue with E.2. Otherwise, ignore the incoming ragesand continue to wait in state E.1.

E.2 If inputstart is received orsch_py (from the scheduler), then continue with E.3. Otherwiséput
stop is received orsch_p, then stop. Otherwise, ignore the incoming message and continue toimvait
state E.2.

E.3 ChooseVy <~ {0,1}" and outputny = sig[(my, h(Np)), B] onnetout’; then, ignore the subsequent
acknowledgment onetackX from Net5 and continue with E.4.

E.4 IfanonceV € {0,1}" is received ometiny such that:(N) = x, then writeContract on some work
tape, outputNp onnetout? (the subsequent acknowledgment can be ignored), and stbprvise,
if resolve is received onsch_pg, then continue with R.1 (resolve protocol). Otherwise,oignthe
incoming message and continue to wait in state E.4.

R.1 Sendm1,ms) onrcoutk; ignore the subsequent acknowledgment fiR@% and continue with R.2.

R.2 Ifsig[(m1,ma), T is received orrcink, then writeContract on some work tape and stop. Otherwise,
ignore the incoming message and continues to wait in st&e R.

Specification of the Honest TTPT' The TTPT maintains a databa$&B of requests received so far. It can
interact with the parties in the s¢Py, ..., P, }. Entries of the database are of the foftno, vr, vr, text),
token) wherevp andvy are public-keys of principals in the mentioned set of ppats (the public-key

is the public key ofl"), text is a contractual text, andken is either an abort or a resolve token.

T.0 DB :=«e.

T.1 If input of the formm=sig[(aborted, sig[(vo, vgr, vr, text, h),vol), vo] is received onccout?, then
check whetheDB contains an entry(vo, vr, vr, text), token) for sometoken. If so, then returrtoken
on rcing; ignore the subsequent acknowledgment fnamg and continue with T.1. Otherwise, [iiB
does not contain such an entry, then add the efiiry, v, vr, text), sig[(aborted, m), vr]) to DB and
output (the abort tokengig[(aborted, m), v7]; ignore the subsequent acknowledgment fie@}, and
continue with T.1.
Otherwise, if input of the formn’ = (m” sig[(m”, h'),vg]) for somem” = sig[{vo,vg, vy, text,
h), vo] is received orrcout?, then check whethédB contains an entry of the forf{vo, vr, vr, text),
token) for sometoken. If so, then returntoken on rcing; ignore the subsequent acknowledgment
from RCS and continue with T.1. Otherwise, B does not contain such an entry, then add the entry
{{vo,vR,vr, text), siglm’, vr]) to the DB and output (the resolve tokesig[m’, vr|; ignore the subse-
quent acknowledgment froRC} and continue with T.1.

The model of the TTP as just described corresponds to the $Bpecified by Asokan et al. [1], although
Asokan et al. only specify the TTP for handling one sessigdh@protocol, and therefore, they do not specify
how the database the TTP has to maintain looks like.

7 Alternatively, B could go back to E.1.

22



As pointed out by Chadha et al. [11] for the GIM protocol [l2id the same it true for the ASW pro-
tocol), in case multiple runs of the protocol (with the saroattactual partners and on the same contractual
text) are carried out, a session identifiers is needed thatiely identifies a session. Such identifiers need to
be part of the entries that the TTP stores in the databas@oWisuch identifiers the ASW protocol would
neither be fair nor balanced: Consider the situation of arelbinitiatorO and a dishonest respondgr If,
in a first session of the protocak does not respond to the first messdgesends, ther® sends an abort
request to the TTP. If later, in a second session of the pobtétagrees to run the protocol again wih(on
the same contractual text), and the session gets to a poare@whsent the nonce, thel has a valid contract
from O. If at this pointR doesn'’t return his nonce, th&h cannot get a valid contract since when contacting
the TTP,0 would get back the abort token from the previous sessioncélehis state of the protocol is
unfair and unbalanced f@p. We note that including in the database the digg#{, ) computed byO would
still not solve the problem: It is not hard to see thabiis dishonest, the protocol would be unbalanced for
R.

B.2 Multi-Session Specification

In this Section B.2, we specify a principal willing to run rtiple sessions of the ASW protocol. As pointed
out at the end of Section B.1, in this case every session ghl@mye a unique session identifier. Such an
identifier can easily be established by the initiator anghaader: At the beginning of the session, both
parties contribute to one part of the identifier. Even if oaetyis dishonest, if the honest party ensures that
the part of the identifier that he/she contributes is diffefeom the parts contributed in other sessions, then
the combined identifier will be unique. We note that the TTRia@lned in Section B.1 can already deal
with an unbounded number of requests, which possibly cowr filifferent sessions. However, now the
messages the TTP receives should include the sessiorfielsnéind these session identifiers will be part of
the database entries.

Now, let us turn to the principal, sa¥, willing to run multiple sessions of the protocol. We will ohal
principal A in such a way that she can run an unbounded number of sessitin&wising the TTPT,
on the contractual texixt. However, A will only start another session witB if the previous session has
been aborted. This models the realistic situation that #vemgh A has aborted the protocol, she might be
convinced byB to start another session because, for example, techniallepns prevente@ from sending
his willingness to sign the contract in time. More preciselyiirst receives a request from asking whether
A wants to take part in a protocol run. If she is currently roigra session witl3, she ignores such requests.
If she is not running a session with she can non-deterministically decide whether or not td sténew)
session withB, i.e., the scheduler makes this decision. Before startingvasessionA and B establish an
identifier for the session which is required to be unique fisessions and which will be part of the messages
signed. As explained above, the uniqueness of the idensfeasily guaranteed if both parties contribute to
the identifier. The formal specification follows:

E.O counter := 0.8

E.1 Ifinput of the form(request, id) is received ometin%, then continue with E.2. Otherwise, ignore the
incoming message and continue to wait in state E.1.

E.2 If inputstart is received orsch_p 4 (from the scheduler), then continue with E.3. Otherwisépiut
stop is received onsch_p ,, then stop, i.e., from now on ignore all incoming messdg&therwise,
ignore the incoming message and continue to wait in state E.2

8 Instead of a counter, one could defirgo choose a random number bit string{io 1}7.
% Instead of stopping for ever, one could alternatively gokiiacE. 1.

23



E.3 Setcounter := counter + 1. Next, chose a random non@é, <~ {0,1}"” and output the message =
sig[(A, B, T, text, hy(Na), ((A, counter),idp)), A] onnetout4 (see Section 2); ignore the subsequent
acknowledgment onetack? from Net;s and continue with E.4.

E.4 If a message of the forsig[(m, z), B] is received ometinf wherez € {0,1}}, then outputN on
netout4; ignore the subsequent acknowledgmentebacks from Nets and continue with E.5. Other-
wise, if the messageborted is received orsch_p 4, then continue with A.1 (abort protocol). Otherwise,
ignore the incoming message and continue to wait in E.4

E.5 IfanonceV € {0,1}7is received ometinf such that,(N) = z, then write the messaggont r act
on some work tape and stop. Otherwiserdsolve is received onsch_p,, then continue with R.1
(resolve protocol). Otherwise, ignore the incoming messagl continue to wait in state E.5.

A.1 Sendm’ = sig[(aborted, m), A] on rcout?; ignore the subsequent acknowledgment fie@; and
continue with A.2.

A.2 If the messageig|(aborted, m’), T is received orrcin’}, then continue with E.1. Otherwise, if a mes-
sage of the fornsig[(m, sig[(m, ), B]), T] is received onccin’;, then write the messagéont r act
on some work tape and stop. Otherwise, ignore the incomirggage and continue to wait in state A.2.

R.1 Send(m,sig[(m,z), B]) onrcout#; ignore the subsequent acknowledgment file@; and continue
with R.2.

R.2 Ifsig[(m,sig[(m,z), B]), T] is received orrcin’, then writeCont r act on some work tape and stop.
Otherwise, ignore the incoming message and continue toinvsiate R.2.

In a similar way, a responder running multiple sessionsada specified. It is also straightforward (but
tedious) to model principals that run multiple sessionshwdifferent principals, on different contractual
texts, and in different roles at the same time (and theseygea could be determined by the adversary). In
particular, one could model principals in such a way thay tiia several instances of the ASW protocol with
the same contractual partner and the same TTP on the sameaatoal text at the same time. This may or
may not be realistic. Also, one could add to the protocol gigation a signing oracle (formally modeled as
an honest party in the protocol specification, similar tovilaéch dog) which allows the adversary to generate
signatures of the honest party, ed,,0n messages of his choice, subject to certain restrigtametherwise
the adversary could simply simulate

C Proof of Theorem 2

PrROOFE We denote the protocol machinesiéfby H; for i € H.

SinceA is fairness-enabling, we know that there exists a polynbmjgn) such that the number of
configuration changes @ in a run of Sp(n) with S(I1,A, S') is bounded by, (1) (with overwhelming
probability) for any schedule®'. Also, sincell is fairness-enabling we know that there exists a polynomial
prr(n) such that the number of configuration changes of every pobtmachine ofif in a run of Sp(n)
is bounded by ;7 (). Hence, given/T andA there exists a polynomial(n) such that the overall number
of configuration changes @& and the protocol machines &f in a run ofSp(n) is bounded by(n) (with
overwhelming probability).

Since, by definition, ITMs can only output messages if thegnge their local configuration, we know
that the number of messages written on output tapes &yd the ITMs inl7 is bounded by(n) (with over-
whelming probability). In particular, the overall numbdmoessages sent to resilient channels is bounded by
p(n) (with overwhelming probability). Sinc® is polynomially samplable, the number of messages injtiall
stored in resilient channel buffers is also bounded by soatgnpmial p’(n). Hence, with overwhelming

24



probability, not more thap”(n) = p(n) + p’(n) messages are stored in a resilient channel at any point in a
run.

By definition, protocol and adversary machines only accefitesl and finite set of messages from a
scheduler. FoA the set is the singletoM p = {schedule}. Let M; denote the (finite) set of messages
thatH; accepts from a scheduler.

We are now ready to define a schedBand then show that it is fair f& (17, A) andD. The schedule®
works in rounds. Every round consists of two phases. In teegdhase of a roun& does the following: First,
Ssendsschedule to A. When activated agaiig sends for every € ‘H and everym € M;, the message:
to H;. Note that after sending one messaggeS has to wait to be scheduled again before another message
can be sent. Once the first phase of a round is compl&tselnds, in the second phase of the round, to every
resilient channel the indek p”(n) times. (Again, after every activation of a resilient chdn&has to wait
to be activated again.) Note that since, as explained atloeaumber of messages in a resilient channel is
bounded by (n), after the second phase of a round, the resilient channelguaranteed to be empty. We
defineS to performp(n) rounds. We now argue th&tis fair.

We first observe that if in one round no ITM &(/I, A) has changed its local configuration, then these
ITMs will also not change their configuration in subsequeninds.

For the ITMs inS(I7) this is obvious: If such a machine is activated by the scledagain, the machine
will perform exactly the same computation as before andagilbefore return to the local configuration at the
beginning of the activation. Note that the head positionhenrandom tape is part of the local configuration,
and hence, the random coins used in these activations ddange.

ForA, we use that if the ITMs i (17, A) do not change their local configuration, then the adversaw v
oracle ofA will return the same view when invoked By. As a resultA’s computation will be unchanged.

In particular, the local configuration &f at the beginning and at the end of the activation will be theesa

As explained above, after every round the resilient chanast empty, and hence, they do not change
their configuration in the next round unless they receiveva message in the next round. Hence, if the
adversary and the protocol machines do not change theirdonéiguration in one round (and hence, do not
produce output), then no machineSit/7, A) will change its local configuration again. Since the adwgrsa
and the protocol machines can only change their local corafiguns at mosp(n) times (only with negligible
probability they can change their local configurations nudten) it follows that aftep(n) rounds, no ITM in
S(11,A) will change its local configuration again (only with neghtg probability). Thus, sincg performs
p(n) rounds, it follows thaSis fair. O

D The ASW Protocol is Fair

We provide a proof sketch of Theorem 3. The case of an honiéistan is restated in Proposition 1 and the
case of an honest responder in Proposition 2.

Proposition 1. I7A5WA is strongly fair w.r.t.checkfair and view oracleO22"V and OASWV.

adv

We prove Proposition 1 by contradiction. Assume that thgigt an adversaryl and a fair schedules such
thatExp(n, IT*W"A A, S checkfair) = 0 with non negligible probability. There are three cases.

1. Either the agentl has not sent her first messaggm 4, A],
2. Or A has sensig[m 4, A] but has not received any valid answer from the adversary,
3. Or A has sensig[m 4, A] and has received a valid answer from the adversary.

25



At least one of the three cases must happen with non negigitabability. For each case in turn, we show

how to turn an adversar that wins against7*>"V™A into adversaries against that break the primitives used
in [JASW-A

Case 1 The agentA has not sent her first messasjg[m 4, A] thus A cannot have the contract. Since
checkfair=0 it follows that the adversary succeeded in getting a valitreet of the form(sig[m 4, 4],

N a,sig[mp, B], Np) or of the formsig[(sig[m 4, A],sig[m g, B]), T]. Either the adversary did not make
any valid query to the trusted party (for the instance of ttegqrol under consideration), in which case,
it means that he forged a valid signature/hbr T'. Or the adversary made a valid query to the trusted
party, which means that he sent a message of the f@gim 4, A, sigmp, B]) to T'. Thus the adversary
has forged a valid signature d@f. In both cases, the adversary must have forged a valid signaf an
honest agent.

The above intuition can be easily transformed into a redaditiom the security of the protocol to that of
the underlying signature scheme. Given an adver8atphat plays the role of partyg) we construct an
adversanAps against the signature sche8. Recall thatAps has access to a signing oralgs (sk, )
and takes as input the verification kel that corresponds tdk. AdversaryAps simulates the experiment
Exp(n, IT"W™A A,S, checkfair). It usesA as a subroutine and it simulates the environme dfe.

it simulates partiest and7', as well as the execution 8f Moreover, it also simulates oraclé®'s" and
Osdsyv . In particular,Aps sets the public key ofl to pk. The adversanfAps starts the execution @k
and answers all its queries (essentially only querie@@@’v.) AdversaryAps tracks the messages sent
to the “watch dog” and verifies if any of the messages is a @ittract which (by definition) contains a
valid signature on some message, with respepktdSinceAps did not make any queries to its signing
oracle, such a signature is a valid forgery, and thys breaks the security ddS. We note thaAps can
simulate any adversary oracle, as long as it does not neesthet key ofd to do so (i.e. the simulation
works virtually for all reasonable adversaries).

Case 2 The agentd has sensig[m 4, A] but has not received any valid answer from the adversargeSirs
fair, A must have contacted the trusted party, asking for aborfiiiger 7" sent a valid contract in return,
which means the adversary has sent a valid resolve requBsirnto thus has received a valid contract, in
which casecheckfair = 1. Or T replied with an abort message #0so, A does not have the contract.
Sincecheckfair = 0 it must be the case that the adversary succeeded in obtanialid contract. We
distinguish two cases, depending on the form of the contract
First, assume that the contract is of the fosig[(sig[ma, A],siglmp, B]),T]. SinceA should not be
able to obtain a contract, it must be the case #dtd not send a resolve requestifpand therefore the
contract must have been obtained by forging a signatuié of
Under these circumstances, we show how construct an ady&gg againstDS. AdversaryAps sim-
ulates the experimerExp(n, II*SW"A A,S, checkfair). In the executionA plays the roles of parties
A andT'. It generates a pair of signing verification keys forvia (sk 4, pk 4) <~ K(n), it generates a
key % for the hash function via < hkg(n), and then setpk as the public key of . It then simulates
the execution of the experiment answering the adversaugsies to oracl@?cshw (using the parameters
set as above). Whe8 schedulesA to output its first messagé\ps generates a nonc&'4 and com-
putes a signature = S(ska,m4) on messagens = (A, B, T,text, h;(N4)) and sendgm, o) to
the adversary. Since we are in the case whearbtains a replacement contract, it must be the case that
the replacement contract was createddbiyself (without involvingT’, since otherwise whed contacts
T (this event happens becausés fair)), thenA would also obtain a replacement contract). SiAgg
never makes a query to its signing oracle, the replacemerttaz output byA is in fact a successful
forgery againsDS.

26



In the case thah obtains a standard contragig|[m’,, A], Ny, sig[mp, B], Ng), we further distinguish
two cases, depending on whettig(N',) = hj(N4) or not.

First we construct an adversaty, againstH which is successful if,(N/) = hi,(N4) (hereNy is the
nonce that4d sends in its first message and, is the nonce in the contract that obtains.) As before,
the adversaryA,, simulates the execution @&xp(n, II*°W™A A, S, checkfair): it plays the role of
both A andT (in particular generates signing/verification keys forf)@nd simulates the execution of
S. Recall thatA takes as input a key and a hash valug «— hy(x) for somez <€ {0,1}". The
key of the hash function is set ta When A has to output its first messagky, composes message
my = (A, B, T, text,y), computes a signaturkeonm 4, and send$m 4, o) to the adversary. When the
adversary outputs a contrastg[m/y, A], Ny, sigmp, B], Np) such that,(N/,) = hi(N4), adversary
Az outputsN', as a forgery. Notice that i\ is successful ifExp(n, TASW™A A S, checkfair) (and
the contract thaf outputs is as above) théky, outputs a preimage a@f with non-negligible probability.
Finally, if h,(N) # hi,(N4) we show how to construct an adversérys against signature schers.
AdversaryAps simulates the execution of the experim@&xp(n, IT"SW™A A, S, checkfair) where it
simulates the partiegd andT'. In particular, it generates signing/verification keysTomand the key: for
the hash function. The public key df is set topk (the key thatAps has as input). Whed has to output
its first messageAps selectsN4 <~ {0,1}", computes the messagey = (A, B, T, text, hi(N4)),
sendsm 4 to its signing oraclé)ps(sk, -) and receives a signatureon m 4. It sends(m 4, o) to A. It
the continues execution, answering all queries #hahay make to oracl@c’jdsi)’v , until A outputs the
forgery contract(sig[m’,, A], N'y,sig[mp, B], Ng). At this point, Aps outputs(m/y, sig[m’,, A]) as its
attempted forgery. Since the contract is vatig[m',, 4] is a valid signature om’,. Moreover, since
hi(Na) # hi(NY), it follows that the message’, # m4, and thereforen’, was not queried bAps
to its signing oracle. We conclude that the forgery thgt outputs is valid.

Case 3 The agentA has sensig[m 4, A] and has received a valid answer from the adversary. Sinise
honest, she must have sent her nongeo the adversary thus the adversary has the contract. Hitber
adversary sent his noncé, to A, which means thatl has also a valid contract et did not get any valid
answer from the adversary. Singeés fair, A must have contacted the trusted party, asking for resalving
If the trusted party did not receive previously a valid alveduest, he must have returned a valid contract
to A. Otherwise (ifI" did receive a valid abort request), the adversary must haweo$ message of the
form sig[aborted, sig[m 4, A], A] to T' on the secure channel betwedrand 7" (which is impossible in
our maodel).

Conversely, the ASW protocol is fair 8, the second participant.

Proposition 2. I7"5W"B is strongly fair w.r.t.checkfair and view oracle/:2\V"B and OA5WB.

adv

The proof is quite similar to the previous one. Assume thatelexist an adversady and a fair schedules
such thaExp(n, ITASW™B A'S, checkfair) = 0 with non negligible probability.
There are four cases.

1. Either the agenB has not received any valid message of the feighm 4, A] from the adversary,

2. The agen3 has or has not received a valid message of the fgim 4, A] from the adversary but he
has chosen not to answer

3. The agenB has received a valid message of the faigim 4, A] from the adversary and he has sent his
promise to sigrig[mp, B] but he did not get a valid answer from the adversary,

4. The agentB has received a valid message of the faigjm 4, A] from the adversary, he has sent his
promise to signig[mpz, B] and he got a valid answer from the adversary.

27



At least one of the following four cases must happen with neghgible probability. Here, we describe
how a successful forgery would relate to the security of theeulying primitives of the protocol. Security
reductions similar to those for Proposition 1 can be easihstructed.

Cases 1 and 2are similar. In both case® has not sent his promise to sigig[m 5, B]. Sincecheckfair =
0 it follows that the adversary obtained a valid contract efftiym (sig[m 4, A], Na, siglmp, B], Ng) or
sig[(sigma, A],sig[mp, B]), T]. Either the adversary did not make any valid query to theddiparty,
in which case, it means that he forged a valid signaturB of 7. Or the adversary made a valid query
to the trusted party, which means that he sent a messagefofithésig[m 4, A, siglmp, B]) toT. Thus
the adversary has forged a valid signatureBofin both cases, the adversary must have forged a valid
signature of an honest agent.

Case 3 The agentB has received a valid message of the faigim 4, A] from the adversary and he has
sent his promise to sigsig[mp, B] but he did not get a valid answer from the adversary. SBice
fair, B must have contacted the TTP, asking for resolving. Eithesent a valid contract in return,
in which casecheckfair = 1. Or T' sent an abort message 1 thus B does not have the con-
tract. Sincecheckfair = 0, it must be the case that the adversary obtained a contrabedbrm
(sig[ma, A], Na,sig[mp, B], Ng) or sig|[(sig[ma, Al],sig[mp, B]), T]. Since B get an abort message,
this means thai” did not sent a valid contract to the adversary even if he selid vesolve requests
afterward. Thus the adversary must have forged a valid signaf an honest agent or comput®g out
of sigmp, B].

Case 4 The agentB obtained a valid contract. However, this can not be the dase sheckfair = 1.

E Proving the ASW Protocol to be Balanced

We provide a proof sketch of Theorem 4. The case of an honiéistan is restated in Proposition 3 and the
case of an honest responder in Proposition 4.

Proposition 3. ITASWA is balanced w.r.tgoal,, goal,, OXW, OASW OASW “and OASW.

adv ' ~adv' ' M sch !

Proof (sketch):The proof is done by contradiction. Assume there existimstt adversary machings =
A(OMWY andA’ = A/(OAW) for ITASWA and a schedule = S(OASW) for 1745W-A and A such that,
for any fair scheduleB = S/(OASW) for ITASW™A andA’ and for any challenge functiothallenge, it is
the case thaExp(n, TAW™A A A''S S goal,, goal,, challenge) = 1 with non negligible probability.

Let ¢ be such thaf(n) ~ ¢ whereS = S(IT"SW™A A S). We distinguish several cases for

=

Either the agentl has not sent her first messagg/m 4, Al

2. Or A has sensig[m 4, A] but has not received any valid answer from the adversaand the TTP has
answered a valid resolve query from the adversary for thigraot,

3. Or A has sensig|m 4, A] but has not received any valid answer from the adversaand the TTP has
not answered a valid resolve query from the adversary ferdbintract,

4. Or A has sensig[m 4, A] and has received a valid answer from the advergathus she has sent her
noncelN 4) but did not get the last message from the adversary,

5. Or A has finished her protocol, that is, she got the last messageAr

At least one of the five cases must happen with non negligitabgbility.

Case 1 The agent4 has not sent her first messagg[m 4, A]. For all states; as above this case, we set
challenge(q) = 2, and show that there exists a fair sched@efor I745W"A such that adversan’
cannot achievgoal,.

28



Consider the schedulé&®' that causesd to stop the execution of the protocol before sending its first
message téd\’ (recall that stopping the execution is one of the valid axtithat a protocol participant can
take at any point). SincA’ achievegoal,, it follows that there are three possibilities regardingvi?d

to obtains a valid contract. The first two are to compute ksffifsvith no interaction withl") a contract
(siglma, A]l, Na,siglmp, B], Ng), or a contrackig[(sig[m, A],sig[mp, B]), T| (which would imply
forging a signature ofd), or to contact the TTP with a message of the fauig[m 4, A], siglmp, B])
(which would also imply thatd’ has forged a signature df).

As we did in the case of fairness, we turn this intuition inteduction. Assume that there exists adver-
sariesA andA’, schedulesS such that for all scheduleS adversaryA’ achieves goagoal, from state

q (whereS(n) ~ q).

We show how to use the above adversaries and schedulers)apgéth the schedule®’ described also
above in order to build an adversahy,s againstDS.

AdversaryAps simulatesExp(n, ITASW™A A A''S S goal,, goal,, challenge). In the executiom
plays the role of partiegl andT'. In particular it generates keys for signing/verifying foarty 7', and
sets the public verification key of to pk (the key thatAps takes as input). It keeps tracks of the global
state of the system, until simulatSifinishes its execution. If in the resulting stgtparty A had already
sent its first message the adversary aborts. Otherwise, it continues its simulation with scheds'.

It answers all queries th&’ makes to its oracle (this is possible sinkgs knows the local states of alll
parties, except the signing key that correspondskip It answers the queries thaf makes tdl'. If A’
sends a valid contract to the “watch do@ps extracts an appropriate forgery (the part of the contract
that consists of a valid signature df) and outputs it as its own attempted forgery. SiAgg does not
make any oracle requests to its own oracle, any valid sigaatith respect tek is a valid forgery, and
thereforeAps wins.

Case 2 The agentd has sensig[m 4, A] but has not received any valid answer fréchand the TTP has
answered a valid resolve query froAd for this contract. Let us show that the advers&’ycannot
achievegoal, (A does not have a contract). In particular, consider the stbe& that schedulest
such that she immediately contacts the TTP, with the abque®tsig[aborted, sig[m 4, A], A]. SinceT'
has already answered a resolve request #drfor this contract,A would receive a valid contract from
the TTP thuggoal, is not achieved.

Case 3 The agentd has sensig[m 4, A] but has not received any valid answer from the adverdagnd the
TTP has not received a valid resolve query from the advetsaitycorresponds to this messagedof-or
such a state, we sefchallenge(q) = 2 and show that there exists a sched@esuch that adversaiy’
cannot achievgoal, (“having a valid contract”). Consider the sched@lehat as soon a& outputs its
first message (i.&ig[m 4, A]) schedulesA to send an abort requesg|aborted, sig[m 4, A], A] to TTP
T.

By assumptiorl” has not received a resolve request from the adversaffy would send a valid abort
message tal. Since we only consider fair schedulers, this abort messagéd eventually be delivered
to A so no party would receive a valid contact frdmWe now distinguish two different cases depending
on the contract tha’ obtains.

If the contract is a replacement contrasig|(sig[m 4, 4], sig[mp, B]), T], thenA’ managed to forge a
signature off".

We turn this intuition into a proof by reduction. We constrtize following adversanA4 against the
hash function family. As before, adversahys simulatesExp(n, TASW™A A A’ S S’ goal,, goal,,
challenge), and in the executioAps usesA, A’, S as subroutines. Heréps plays the roles of both

parties A and 7. It generates a pair of signing verification keys fy via (sk 4, pk 4) & K(n), it

29



generates a key for the hash function via <~ hkg(n), and then setpk as the public key of” (recall
that pk is the key that\ps receives as input.)

It then simulates the execution of the experiment answettiegadversary’s queries to orac®’5"
(using the parameters set as above). WBesthedulesA to output its first messagé\ps generates
a nonceN,4 and computes a signatuse = S(sk4,m4) on messageny = (A, B, T, text, hi(Na))
and sendgm 4, o) to the adversary. At this point the schedukis changed with schedul& (which
schedulesA to contactI’ with an abort message, and carries out the abort protodaeSve are in the
case wher\ obtains a replacement contract, it must be the case thagplecement contract was created
by A itself (sincel” would not provide one due to the abort message describeatpbidve replacement
contract is a valid signature with respectpk. Furthermore Aps never makes a query to its signing
oracle, the replacement contract output®is therefore a successful forgery agaibDst

If A obtains a standard contra@tig[m/,, A], N',,sigmp, B], Ng), we further distinguish two cases,
depending on whethér, (N';) = hi(N4) or not (hereN 4 is the nonce thatl sends in its first message
and N/, is the nonce in the contract that obtains).

Assume for now thaky(N’y) = hi(N4) Therefore, the only way for the adversakyto obtain a valid
contract of the fornisig[m/,, A], N',, sig[mp, B], Np) orsig|(sig[ma, A, siglmp, B]), T] is to compute
N4 in the first case or compute a valid signaturé/ah the second case.

Adversary Ay, simulatesExp(n, TASW™A A A''S S goal,, goal,, challenge) and it uses adver-
sariesA, A’ soubroutines. In the simulatioA;, plays the roles of botd andT (in particular generates
signing/verification keys for both). Recall thay, takes as input a key and a hash valug < h(x)
for somez <-c {0,1}". The key of the hash function is set ko AdversaryAs uses in its simula-
tion the schedulet up to the point whem sends its first message to the adversanit then starts
using the schedule®’, which as before, directd to request’ to abort the protocol. Next, it continues
the execution up to the point when the adversary outputs &amrisig[m’y, A], N'y,siglmp, B], Ng)
such thath;(N',) = hi(Na), adversaryAy, outputs N’y as a forgery. Notice that i\ is successful
in Exp(n, IT"W™A A|S, checkfair) (and the contract thak outputs is as above) theky, outputs a
preimage ofy with non-negligible probability.

Finally, if the adversary outputs a contract such thdtV’,) # h;(N4), then we construct an adversary
againstDS.

AdversaryAps uses adversaries, A’ and the schedule® as subroutines by simulating the experiment
Exp(n, T"WA A A''S S, goal,, goal,, challenge) as above, and simulates parti¢sand7'. The
public key of A is set topk (the key thatA receives as input). Whe# has to output its first messadgeps
selectsN,4 <~ {0,1}", computes the message, = (A, B, T text, hy,(N4)), sendsm 4 to its signing
oracle Ops(sk, -) and receives a signatureon m 4. It sends(m 4, o) to A. At this point, it switches
the scheduler t& (which directsA to carry out the abort protocol witl). In the remainder of the
executionAps answers all queries thAtmay make to oraclé){;\jvw , until A outputs the forgery contract
(siglm/y, A], Ny, sigmp, B], Np). Atthis point,Aps outputs(m/y, sig[m/,, A]) as its attempted forgery.
Since the contract is validig[m/,, A] is a valid signature om/,. Moreover, sincéy,(N4) # hi(N'y),

it follows that the message/’, # m 4, and thereforen’, was not queried by ps to its signing oracle.
We conclude that the forgery thAps outputs is valid.

Case 4The agentA has sensig|m, A] and has received a valid answer from the advergdrythus
she has sent her nondé,) but did not get the last message from. We show that the adversary
A’ cannot achievesoal, (A does not have a contract). In particular, consider the sdbed that
schedulesA such that she immediately contacts the TTP, sending a esetyuest with the message
(siglma, A],siglmp, B]). SinceA did not send any abort request, the TTP will return a validrem to
A thatS' willimmediately deliver toA thusgoal, is not achieved. Note that the adversary cannot have

30



sent an abort request to the TTP, masqueradingince the communications betwedrand the TTP are
made over a secure channel.

Case 5 The agentd has finished her protocol, that is, she got the last messagetfre adversary. She has
the contract thugoal, cannot be achieved.

Conversely, the ASW protocol is balanced w.r.t. the secaatigipant B. Let goal; be “B does not
have a contract” angoal, be “the adversary has a valid contract”.
ASW-B  )ASW-B  ASW-B 44 HASW-B.

adv adv’ sch sch’!

Proposition 4. ITA5W"B is balanced w.r.tgoal,, goal,, O

Proof (sketch):The proof is again done by contradiction. Assume there egsticted adversary machines
A = A(OMW) andA’ = A'(OMW) for ITASWB and a schedule® = S(OASW) for I7A5WB andA such
that, for any fair schedule®’ = S (OA5W) for ITA5W"B andA’ and for any challenge functiothallenge,
with non negligible probability it holds thdxp(n, II*5W"B A A’S S goal,, goal,, challenge) = 1.

We haveS(n) ~» ¢ whereS = S(ITASW™B A''S). We consider several cases for

=

Either the agenB has not received any valid message of the feighm 4, A] from the adversary,

2. The agen3 has or has not received a valid message of the fgim 4, A] from the adversary but he
has chosen not to answer,

3. The agen3 has received a valid message of the faigim 4, A] from the adversary and he has sent his
promise to sigrsig[m , B] but he did not get a valid answer frofn and the TTP has answered a valid
abort query fromA for this contract,

4. The agen3 has received a valid message of the faigim 4, A] from the adversary and he has sent his
promise to sigrsig[m g, B] but he did not get a valid answer frof and the TTP has not answered a
valid abort query fronA for this contract,

5. The agentB has received a valid message of the faiigjm 4, A] from the adversary, he has sent his

promise to signig[mp, B] and he got a valid answer from the adversary.

At least one of these cases must happen with non negligibleapility. Bellow we give the intuition
that shows how attacks against the protocols can be tradsiato attacks against the primitives used in
the construction. The intuition can be transformed intaucgidn proofs similar to the ones in the proof of
Proposition 3.

Cases 1 and 2are similar. In both cased? has not sent his promise to sigig[mp, B]. Let us show
that A’ cannot achievegoal, (“having a valid contract”) for every schedul&f fair for II"SW°B and
A, In particular, consider the scheduler that scheditesuch that he refuses to initiate any contract-
signing protocol with the adversa®y. The only way forA’ to obtain a valid contract either of the form
(sig[ma, A], Na,sig[mp, B], Np) or of the formsig|[(sig[m 4, A], sig[m g, B]), T] is to forge a valid sig-
nature ofB or T or to contact the TTP sending a message of the f@igim 4, A], sig/mp, B]) toT. In
that cased’ has forged a valid signature &f. In both casesA’ must have forged a valid signature of an
honest agent.

Case 3 The agentB has received a valid message of the faigjm 4, A] from the adversary and he has
sent his promise to sigsig[m g, B] but he did not get a valid answer from the adversary, and tHe TT
has answered a valid abort query frofnfor this contract. Let us show that the adversa’ycan-
not achievegoal, (“having a valid contract”). The TTP has not provided and idowaot provide any
valid contract to any party. The only way for the adversAfyto obtain a valid contract of the form
(siglma, A], Na,sig[mp, B], Ng) or sig[(sig[ma, A],siglmp, B]),T] is to forge computeVp in the
first case or compute a valid signaturelomn the second case.

31



Case 4 The agentB has received a valid message of the faigim 4, A] from the adversary and he has
sent his promise to sigsig[mp, B] but he did not get a valid answer frof, and the TTP has not
answered a valid abort query frofnfor this contract. Let us show that the adversafycannot achieve
goal, (B does not have a contract). In particular, consider the stbe8 that schedules$3 such that
she immediately contacts the TTP, sending a resolve reqitestne messagésig(m 4, A, siglmp, B]).
SinceT has not answered a valid abort request fédnfor this contract,3 would receive a valid contract
from the TTP thugoal, is not achieved.

Case 5 The agentB has has the contract thgsal, cannot be achieved.

F Security for Digital Signature Schemes

Definition 6. [Security of a digital signature scheme]Let DS = (G,K,S,V) be a digital signature
scheme. Consider an adversakyhat is given input a public keyk and access to a signing oradt@s (sk, -),
wherepk and sk are matching keys generated \figk, sk) <~ KC(17). The oracle takes input a messatje
and returns a signature <- S(sk, M). A queries this oracle on messages of its choice, and eveytoai}
puts a forgery(M, o). The adversary’s advantage in attacking the scheme is thiegpility that it outputs a
pair (M, o) such thatr is a valid signature for message and this message was not queried to the signing
oracle.DS is said to be secure against existential forgery under agethosen-message attacks (or, simply,
secure) if the advantage of any efficignts negligible ink. Here and for other definitions in the paper we
adopt the convention that the time complexity of advergaiythe execution time of the entire experiment,
including the time taken for parameter and key generatiow, @omputation of answers to oracle queries.

G Preimage Resistant Hash Functions

Definition 7 (Hash Functions.).A hash function family /4 (-) }xe0,13» consists of algorithms for key gen-
eration and function evaluation. We assume that for segparameter, key generation consists in choosing
k & {0,1}". Hash function evaluation for kdytakes an arbitrary input if{0, 1}* and returns a bit string
y € {0,1}!, for some constarit We writey < hy,(z) for the process of evaluating the hash functionzon
for keyk.

In this paper we use hash functions that are preimage nefista

Definition 8 (Preimage resistance)We say that the hash function fam{liy,,(-) } .c(0,13» iS preimage resis-
tant if for probabilistic polynomial time algorithm&

Prly —hy(a); 2 & Alhy) « hi(a') =]

is a negligible function iny. The probability is taken over the random choides™- {0,117 ; = & {0,1}7,
as well as the coins used by the adversary.

32



