
A Cryptographic Model for Branching Time Security Properti es – the Case
of Contract Signing Protocols

Véronique Cortier1, Ralf Küsters2, and Bogdan Warinschi3

1 INRIA, Loria, veronique.cortier@loria.fr
2 ETH Zurich,ralf.kuesters@inf.ethz.ch
3 University of Bristol,bogdan@cs.bris.ac.uk

Abstract. Some cryptographic tasks, such as contract signing and other related tasks, need to ensure complex,
branching time security properties. When defining such properties one needs to deal with subtle problems regarding
the scheduling of non-deterministic decisions, the delivery of messages sent on resilient (non-adversarially con-
trolled) channels, fair executions (executions where no party, both honest and dishonest, is unreasonably precluded
to perform its actions), and defining strategies of adversaries against all possible non-deterministic choices of parties
and arbitrary delivery of messages via resilient channels.These problems are typically not addressed in crypto-
graphic models and these models therefore do not suffice to formalize branching time properties, such as those
required of contract signing protocols.
In this paper, we develop a cryptographic model that deals with all of the above problems. One central feature of
our model is a general definition of fair scheduling which notonly formalizes fair scheduling of resilient channels
but also fair scheduling of actions of honest and dishonest principals. Based on this model and the notion of fair
scheduling, we provide a definition of a prominent branchingtime property of contract signing protocols, namely
balance, and give the firstcryptographicproof that the Asokan-Shoup-Waidner two-party contract signing protocol
is balanced.

1 Introduction

Cryptographic tasks, such as contract signing [1, 14, 8] andother related tasks, need to ensure complex,
branching time properties, i.e., properties of the overallstructure of the set of all possible executions of a
protocol, as opposed to just properties of single executiontraces. Examples of such properties are balance
[11] and abuse-freeness [14]. Defining such properties requires to cope with several challenges that are
typically not addressed in cryptographic models. The main challenges include: modeling non-deterministic
behavior of honest parties, resilient (non-adversariallycontrolled) channels, fair executions in which no party,
honest ordishonest, can unreasonably be precluded to perform its actions, and strategies of adversaries to
achieve certain goals against all possible behaviors of resilient channels and honest parties; the existence or
absence of such strategies is a branching time property of a protocol, not a property of a single execution
trace. Providing a computational model that deals with all such challenges and applying it to branching time
properties of contract signing protocols is the main purpose of this paper.

We illustrate the above points via the balance property for (two-party) optimistic contract signing proto-
cols as first defined by Chadha et al. [11] in a symbolic (Dolev-Yao based) model. These protocols can be
used by two parties,A andB, to obtain each other’s signature on a previously agreed contractual text with the
help of a trusted third party (TTP), which, however, is only contacted in case of a problem. If and when the
TTP is contacted depends onnon-deterministic decisionsof the parties. For example,A may decide to send
an abort request to the TTP in case she doesn’t want to wait anylonger for a message fromB, or suspects
that B is dishonest. Contract signing protocols typically assumethatA andB communicate with the TTP
over resilient (non-adversarially controlled) channels: without such channels an adversary could block all
messages from/to the TTP. Now, balance for an honest partyA and a dishonest partyB, as defined by Chadha
et al., requires that in a protocol run it is not possible to reach a state whereB has both i) astrategyto obtain

a signed contract fromA (no matter howA, the TTP, and the resilient channels behave) and ii) a (possibly
different) strategyto preventA from obtaining a signed contract fromB (no matter howA, the TTP, and
the resilient channels behave). Since, when following one of these strategies, the adversary, i.e.,B, has to
achieve his goal—obtaining a signed contract or preventingA from obtaining a signed contract—against the
behavior of other entities that he cannot control or foresee(non-deterministic choices ofA and delivery of
messages on resilient channels), in a computational model it is necessary to determine the behavior of these
entities by aschedulerwhich is independentof the adversary, and in fact, may work against the adversary.
Moreover, for the balance property to make sense, the scheduler should not stop the run of a system if one
of the entities in the system (A, theTTP , the resilient channels, the adversary) “can still take an action”.
In other words, the scheduling should befair for all entities (both honest and dishonest). For example, if at
some pointA could still contact the TTP, then the scheduler should not stop the run of the system at this
point but should eventually scheduleA: contacting the TTP might enableA to get the contract. Stopping
the system before schedulingA would be unfair and unrealistic since no one stopsA from contacting the
TTP in a real protocol run. Note that a scheduler is just an imaginary entity that is only needed tomodel
how things are potentially scheduled in a real protocol run.Conversely, ifB (the adversary) wants to send a
message to the TTP, the scheduler should not stop the run of the system but eventually scheduleB: sending
a message to the TTP might enableB to obtain a signed contract which he otherwise might not be able to
get. Again, stopping the system before schedulingB would be unfair and unrealistic since no one stopsB

from contacting the TTP in a real protocol run. Note thatB is an arbitrary adversary (machine), and hence,
a general notion of fair scheduling is needed to capture whether “B can still take an action” (e.g., send a
message).

Clearly, standard cryptographic models, in which only one adversary is considered controlling the com-
plete communication network, and honest principals can notmake non-deterministic choices are insufficient
for dealing with the class of protocols and properties considered here. Some cryptographic models take some
(not all) of the above aspects into account, but with a different focus and in a way not suitable for the classes
of protocols and properties we consider (see the related work).

CONTRIBUTION OF THIS PAPER. In this paper, we propose a computational model that deals with the chal-
lenges mentioned above and allows to specify complex, branching time properties.

More precisely, our model is based on a general computational model for systems of interactive Turing
machines (ITMs); while related to models in [4, 9, 13, 16], our exposition follows more closely the one in
[23]. Based on the general computational model, we define a security-specific model where we use ITMs
to capture the behavior of the honest principals, the adversary, the network and resilient channels, and the
scheduler. The purpose of the scheduler is to resolve non-deterministic behavior of honest principals, to
schedule the resilient channels, and to trigger the adversary. As explained above, modeling the scheduler as
an entity independent of the adversary is important. The adversary and the scheduler are each equipped with
what we call aview oraclewhich can be invoked by these entities to obtain aviewon the history of the run of
the protocol so far, and hence, to adapt their actions accordingly; typically, the adversary and the scheduler
have different view oracles, and hence, different views on the history. The view of the adversary typically
includes all messages on the network channels and only messages on those resilient channels which are not
required to be read-protected. Conversely, the scheduler might have complete information about the resilient
channels. The exact definition of the views (view oracles) depends on the security properties considered and
can be adapted depending on the strength of the security guarantee desired. The ITMs that we use cannot
be exhausted and can respond to an unbounded number of requests, as for example needed when modeling
the TTP in contract signing protocols. Also, this, for example, ensures that the scheduler cannot exhaust the

2

adversary or honest parties, which otherwise would lead to unrealistic runs (recall that the scheduler is only
an imaginary entity that is used to model reality).

As mentioned, fair scheduling is an important ingredient inthe definition of many security properties,
and it is non-trivial to define in computational, resource-bounded settings. We provide a general definition of
when a scheduler is fair for a system of ITMs. We emphasize that our definition is independent of the specific
structure of the system or the specific ITMs used in the system. This is important as we need to capture fair
scheduling also for arbitrary dishonest parties, i.e., adversary machines. Intuitively, we call a scheduler fair
for a system if it does not stop the run of the system at a point where at least one of the other machines in
the system, e.g., honest parties, the adversary, resilientchannels, “can still take an action”, e.g., an honest
principal could (non-deterministically) decide to start an abort protocol, a resilient channel could deliver a
message, or the adversary is ready to send a message to an honest principal. We formalize that a machine “can
still take an action” in a general way as follows: We say that amachine can take an action if the machine can
be activated by the scheduler with some input so that at the end of the activation the machine has changed its
local configuration, and hence, performed some action. (We note that according to our definition of ITMs, if
an ITM outputs a message, then it changes its local configuration.) The above definition in particular applies
to adversary machines and also to honest parties and resilient channels. For example, if at some pointA in a
contract signing protocol could either wait for a message fromB or contact the TTP to run the abort protocol
and the scheduler schedulesA to run the abort protocol with TTP, thenA changes its local configuration, e.g.,
goes from stateqwait to stateqabort. Similarly, if a resilient channel is scheduled by the scheduler to deliver a
message, then the resilient channel sends the message and then deletes it from its buffer, and hence, changes
its local configuration. While there does not exist a fair scheduler for every system, we identify sufficient,
reasonable conditions for a system to have a fair scheduler.The way fair scheduling is defined here appears
to be new and is of interest independent of its application tobranching time properties (see also the related
work).

Based on our computational model and the notion of fair schedulers, we provide definitions for fairness
and balance of (contract signing) protocols. One should notconfuse the concept of fair scheduling with
the notion of fairness of protocols. The concept of fair scheduling is needed in the definition of fairness
(and balance) of protocols. The definition of balance requires to quantify (universally and existentially) over
two different schedulers. The first scheduler may be unfair and may collude with the adversary in order to
reach a certain point in the protocol run. The second one has to be fair, but tries to prevent the adversary
from achieving his goal. As a proof of concept, we apply our definitions to the ASW two-party optimistic
contract-signing protocol [1] and show it to be fair and balanced when implemented with primitives that
satisfy standard security assumptions. Our proof of balance of this protocol is the first computational proof
of this (now rigorously defined) property for a contract signing protocol. Also, while Asokan et al. [1] argue
informally about the fairness of their protocol, our proof of fairness is the first one for this protocol w.r.t. a
rigorous definition of fairness.

RELATED WORK. Rigorous models and security definitions for branching time properties of contract sign-
ing protocols have already been proposed in [11, 21, 20]. However, these definitions are w.r.t. a symbolic
(Dolev-Yao based) model and do not consider the more involved computational case. Within Dolev-Yao
based models, different contract-signing protocols have been analyzed using finite-state model checkers or
certain logics [24, 21, 5] (see also [12]), and decision procedures for automatic analysis have been proposed
[18, 19].

Backes et al. [7] (see also [6]) proposed a definition of fair scheduling in a computational model. Their
notion and setting differs from ours in several aspects. First, and most importantly, while their notion of fair
scheduling is only w.r.t. the scheduling of buffers (fair message delivery), we need, as explained, a more

3

general notion which captures fair scheduling also for honest principals and the adversary. We therefore base
our notion on the general concept of change of local configuration, which is essential in the present work, but
has not been considered by Backes et al. The notion by Backes et al. is in fact unsuitable for the properties of
contract signing protocols, fairness and balance, we consider since it does not capture that honest principals
and the adversary finish their execution. Second, they studyfair scheduling in a simulation-based setting
which we do not do. Third, the notion of fair scheduling of Backes et al. is parameterized by a polynomial
which determines after what time a buffer has to be triggered. Our definition does not need such parameters.
Other works that use some kind of fairness in specific settings are [3] and [15]. None of the mentioned works,
[7, 6, 3, 15], studies branching time properties or properties of contract signing protocols.

Asokan, Shoup, and Waidner [2] propose a fair contract signing protocol and present a computational
model to study fairness of this protocol. However, the modeland the notion of fair scheduling that they use
is tailored to their specific setting and does not apply to branching time properties, which they do not study.
In their setting, fair scheduling is only w.r.t.honestparties and is guaranteed by imposing restrictions on
the adversary; they do not have a separate scheduler. This isinsufficient for branching time properties, such
as balance: First, as explained, for branching time properties fair scheduling has to be guaranteed also for
dishonest parties, i.e., the adversary, which is why we propose a general notion of fair scheduling that applies
to arbitrary ITMs. Second, a scheduler independent of the adversary is needed in order to model situations
in which the scheduler plays against the adversary.

Canetti et al. [10] study a computational model based on probabilistic I/O automata (PIOAs) in which
non-deterministic behavior of principals can be modeled. However, they focus on simulation-based security
and do not study fairness issues or branching time properties.

STRUCTURE OF THE PAPER. We start with an informal description of the ASW protocol which serves as
our running example throughout the paper. Next, in Section 3, we present the general computational model,
which forms the basis of our security-specific model, introduced in Section 4. We then define fair schedulers
in Section 5. The model and the notion of fair schedulers are then used in Section 6 for defining fairness of
(contract signing). We also show here that the ASW protocol is fair. The more complex notion of balance,
and the proof that the ASW protocol is balanced are in Section7. We conclude in Section 8. More details
and proofs can be found in the appendix.

2 A Running Example: The ASW Protocol

In this section, we provide an informal description of the ASW protocol [1]. This protocol is our running
example which we use throughout the paper to provide intuition for the models and the notions that we
introduce. A more formal description in terms of the model that we propose in this paper can be found in
Appendix B.

CRYPTOGRAPHIC PRIMITIVES. The ASW protocol uses concatenation, signatures and (keyed) hashing. We
denote the concatenation of bit stringsm1, . . . ,mn by 〈m1, . . . ,mn〉, and sometimes bym1, . . . ,mn. We
assume that everymi can uniquely be recovered from the concatenation. Verification and signing keys of
principal P are denoted byvP andsP , respectively. The signature ofm generated usingsP is denoted by
sigvP

(m). We require for the associated signature verification algorithm sigver(·, ·, ·) thatsigver(m, s, vP) =
true if s is a signature onm generated usingsP , and thatsigver(m, s, vP) = false otherwise. We write
sig[m, vP] for 〈m, sigvP

(m)〉, and writeh(m) for the hash of messagem.

PROTOCOL DESCRIPTION. The ASW protocol enables two principalsA (the originator) andB (the respon-
der) to obtain each other’s signature on a previously agreedcontractual texttext (a fixed bit string) with the

4

mA = 〈vA, vB , vT , text, h(NA)〉

mB = 〈sig[mA, vA], h(NB)〉

aA = sig[〈aborted, sig[mA, vA]〉, vA]

aT = sig[〈aborted, aA〉, vT]

r = 〈sig[mA, vA], sig[mB, vB]〉

rT = sig[r, vT]

A TaA

ma
else aborted=true

ma = aT

If resolved thenma = rT

Abort protocol:

A Bsig[mA, vA]

sig[mB , vB]

NA

NB

abort?

resolve?

resolve?

A, B T

mr

r If aborted thenmr = aT

else resolved=true
mr = rT

Exchange protocol:

Resolve protocol:

Fig. 1. The ASW Protocol. We indicate where during the execution of the Exchange protocol parties can choose to run the Abort of
the Resolve subprotocols.

help of a trusted third party (TTP)T , which however is only invoked in case of problems. In other words,
the ASW protocol is an optimistic two-party contract-signing protocol.

There are two kinds of valid contracts: the standard contract, which is of the form〈sig[mA, vA], NA,

sig[mB, vB], NB〉, and the replacement contract, which is of the formsig[〈sig[mA, vA], sig[mB , vB]〉, vT],
wheremA = 〈vA, vB , vT , text, h(NA)〉, mB = 〈sig[mA, vA], h(NB)〉, andNA andNB are nonces.

The ASW protocol consists of three subprotocols: the exchange, abort, and resolve protocol. These sub-
protocols are explained next (see also Figure 1).

Exchange protocol.The basic idea of theexchange protocolis that A first indicates her interest to sign
the contract. To this end, she sends toB the messagesig[mA, vA] as defined above, whereNA is a nonce
generated byA. By sending this message,A “commits” to signing the contract. Then, similarly,B indicates
his interest to sign the contract by generating a nonceNB and sending the messagesig[mB, vB] to A. Finally,
first A and thenB revealNA andNB , respectively.

Abort protocol.If, after A has sent her first message,B does not respond,A may contactT to abort, i.e.,
A runs the abort protocol withT . Note thatA may wait as long as she wants before contactingT . (In
our formal model, this is modeled as a non-deterministic action of A and we use schedulers to resolve this
non-determinism.) In the abort protocol,A first sends the messageaA = sig[〈aborted, sig[mA, vA]〉, vA].
If T has not received a resolve request before (see below), thenT sends back toA the abort tokenaT =
sig[〈aborted, aA〉, vT]. Otherwise (ifT received a resolve request, which in particular involves the messages
sig[mA, vA] and sig[mB, vB] from above), it sends thereplacement contractrT = sig[r, vT] to A with
r = 〈sig[mA, vA], sig[mB , vB]〉.

5

Resolve protocol.If, after A has sent the nonceNA, B does not respond,A may contactT to resolve, i.e.,
A runs the resolve protocol withT . Again,A may wait for as long as she wants before contactingT . In the
resolve protocol,A sends the messager to T . If T has not sent out an abort token before, thenT returns
the replacement contractrT , and otherwiseT returns the abort tokenaT . Analogously, if, afterB has sent
the nonceNB , A does not respond,B may contactT to resolve, i.e.,B runs the resolve protocol withT
similarly to the case forA. Note that contactingT is again a non-deterministic action ofB.

We note that the communication withT (for bothA andB) is carried out over resilient channels. More
specifically, these channels are authenticated, so the adversary can read their content but he is not entitled to
modify, delete, or delay messages sent over these channels.

In our formal model, afair scheduler guarantees, for example, that messages on resilient channels will
eventually be delivered and that if (honest)A in the exchange protocol is in state “abort?” and (dishonest) B

does not respond, thenA will start the abort protocol with the TTP.

3 The General Computational Model

Our general computational model talks about systems of interactive Turing machines (ITMs) and is related
to the models in [4, 9, 13, 16]. However, our exposition follows more closely that of [23] since the model in
[23] contains most features needed in the present work. Similar to [23], our general computational model
uses inexhaustible interactive Turing machines; the attribute “inexhaustible” will become clear later. While
in [23] systems with an unbounded number of ITMs have been studied, in the present work, we only need
to deal with systems consisting of a fixed and finite number of ITMs, and therefore, we do not need to
define how new ITMs are generated and how dynamically generated ITMs are addressed. Conversely, in the
present work we consider ITMs which may have access to certain oracles. This is a convenient feature of
our setting. We note that while the works mentioned above areconcerned with simulation-based security,
simulation-based security is not considered here; we only borrow the definition of systems of ITMs.

SYNTAX OF ITM S. An (inexhaustible) interactive Turing machine (ITM, for short) M is a probabilistic
Turing machine with the following tapes: a read-only tape onwhich the security parameter is written (the
security parameter tape), a read-only tape on which random coins are stored (therandom tape), zero or
moreinput andoutput tapes, andwork tapes. The input and output tapes have names and, in addition, input
tapes have an attribute with valuesconsuming or enriching (see below for an explanation). We require that
different tapes ofM have different names. The names of input and output tapes determine how ITMs are
connected in a system of ITMs: If an ITM sends a message on an output tape namedc, then only an ITM
with an input tape namedc can receive this message. We require that each ITM comes withan associated
polynomialq which is used to bound the time taken by the computations ofM . An ITM M may use oracles,
calledthe oracles associated with the ITM. If the oraclesO1, . . . ,On are associated withM we sometimes
write M(O1, . . . ,On) instead ofM to emphasize this fact.

An ITM may have a (consuming) input tape namedstart which serves a particular purpose: It will be
used to trigger an ITM if no other ITM was triggered. An ITM is triggered by another ITM if the latter sends
a message to the former. An ITM with an input tape namedstart is calledmaster ITM.

COMPUTATION OF ITM S. To specify the computation of an ITM, letl denote the length of the security
parameter plus the accumulated length of all inputs writtenon enriching input tapes ofM so far (i.e., the
sum of the lengths of inputs written on enriching input tapesin the current and all previous activations).

Each time whenM is activated, it is the case that the security parameterη is written on the security
parameter tape, and one message, saym, is written on one of the input tapes, sayc (the other input tapes
and the output tapes are empty—or otherwise will be emptied beforeM starts to run). We require that the

6

computation in every activation ofM satisfies the following conditions: (i) Similar to other models [23, 4,
9, 13, 16], at the end of the activation,M has writtenat most onemessage on one of its output tapes (i.e.,
only one message can be sent to another ITM at a time), (ii) thenumber of transitions taken in the activation
is bounded byq(n) whereq is the polynomial associated withM andn is the security parameter plus the
length of the content of the input and work tapes at the beginning of the activation, (iii) the sum of the lengths
of all outputs written on output tapes so far byM (in all activations) is bounded byq(l), (iv) at the end of
the current activation, the length of the content of the worktapes is bounded byq(l), and (v) if (non-empty)
output was written on one of the output tapes, the local configuration of the machine before the activation
is different from the local configuration of the machine after the activation, where alocal configurationof
an ITM consists of the current state of the ITM, the content and head positions of all work tapes as well as
the head position of the security parameter tape and the random tape. This last condition guarantees that if a
machine wants to “take an action” by sending a message (see the introduction), then this is indicated by the
change of the local configuration. This is obviously not a real restriction but a useful and natural requirement
in the context of fair scheduling. When activated,M may query oracles associated to it. To query one oracle,
M writes a message on a designated work tape. The answer of the oracle will then immediately be returned
(on some designated work tape). The evaluation of the queries is not part of the computation ofM , and in
particular, the steps taken by oracles are not added toM ’s runtime. OnceM finishes its current activation,
the input tapes are emptied. Hence, at the end of an activation at most one of the output tapes is non-empty
and the other output tape as well as the input tapes are empty.

We emphasize that an ITMM as defined above can not be exhausted (therefore the nameinexhaustible
interactive Turing machine): WheneverM is activated it is able to “scan” its complete current configuration,
including the incoming message. As can be seen from the aboveconditions, by writing messages onenriching
input tapes ofM the resources ofM , in terms of number and length of messagesM may output and the size
of the local configurationM may have, increases. Conversely, messages written onconsuminginput tapes
of M do not increaseM ’s resources.

SYSTEMS OF ITM S. A systemS of ITMs is a parallel compositionM1 || · · · ||Mn of ITMs Mi, i =
1, . . . , n, such that the set of names of input tapes ofMi is disjoint from the set of names of input tapes
of Mj for i 6= j. In particular,S can only have at most one master ITM, i.e., at most one ITM inS may have
start as input tape. Also, the output tape of an ITM inS is connected to at most one input tape of (another)
ITM. The set of tapes of a systemS is defined to be the set of all tapes of ITMs occurring inS. We call a
tape ofS internal if it occurs both as an input tape of an ITM inS and an output tape of (another) ITM in
S. Otherwise, a tape is calledexternal. An external tape is calledexternal input tapeif it occurs as an input
tape of some ITM inS. Otherwise, it is calledexternal output tape.

Given S = M1 || · · · ||Mn, we writeS(1η, r1, . . . , rn) for the system obtained fromS by writing a
security parameterη on the security parameter tapes and random coinsri ∈ {0, 1}

∗ on the random tapes of
theMi.

RUNS OF SYSTEMS. In a run ofS(1η , r1, . . . , rn) at every time only one ITM is active and all other ITMs
wait for new input. The active machine may write at most one message on one of its output tapes, sayc.
This message is then delivered to an ITM with an input tape namedc, if any (recall that there exists at most
one such machine). The previously active machine goes into await state and the receiver of the message is
activated, resulting, after some internal computation, into a new output which is sent to another ITM, and so
on. The first ITM to be activated in a run is the master ITM. It gets ε as external input (on tapestart). The
master ITM is also activated if an ITM does not produce output(and hence, does not trigger another machine)
or the output is written on an output tape for which there is noITM with a matching input tape. A run stops
if the master ITM, after being activated, does not produce output. More formally, a run ofS(1η , r1, . . . , rn)

7

is defined to be a sequence of global configurationsq where aglobal configurationq is a tuple(q1, . . . , qn)
of the configurationsqi of the single machinesMi, for everyi = 1, . . . , n.

In general a run of a system does not necessarily terminate. For example, if inS = M1 ||M2 the ITMs
M1 andM2 are connected via enriching input tapes, then they can send message back and forth between
each other forever.

We say that a systemS is apolynomial-time systemif there exists a probabilistic Turing machine which
given a security parameter simulates runs ofS and runs in polynomial-time with overwhelming probability
(in the security parameter). For polynomial-time systems,we denote byS(η) the random variable that returns
runs ofS with security parameterη where the coins for the ITMs inS are chosen uniformly at random. It
suffices to choose a polynomial number of coins since the portion of runs exceeding the polynomial bound
is negligible and can be ignored. For a global configurationq, we writeS(η) ❀ q to say that the final global
configuration in a run returned byS(η) is q. If q′ is a global configuration forS(η), we writeSq′(η) to
denote the distribution of runs obtained when the initial configuration of the ITMs inS are defined according
to q′ (with possibly random coins added on random tapes if needed). In caseq′ is drawn from a familyD =
{Dη}η of distributions, we writeSD(η) for the random variable that returns a run according to the following

experiment:q′ R
← Dη, outputSq′(η). We defineSq′(η) ❀ q andSD(η) ❀ q analogously toS(η) ❀ q. Here,

and in the rest of the paper we only consider families of distributionsD that are polynomially samplable,
i.e., that are the output of a probabilistic polynomial-time Turing machine.

Given a systemS, we call an ITME anenvironmentfor S if i) all input tapes ofE are consuming and
ii) E is I/O-compatible withS, i.e.,E only writes to external input tapes ofS andE only reads from external
output tapes ofS: formally, the set of input tapes ofE is disjoint from the set of external input tapes and
internal tapes ofS, and the set of output tapes ofE is disjoint from the set of external output and internal
tapes ofS. Adopting terminology from [17], we callS reactively polynomialif S || E is a polynomial-time
system for every environmentE of S whereE does not have an associated oracle.

4 The Security-specific Model

Based on the general computational model introduced above,we define below the security-specific model. In
this model, we consider specific systems of ITMs, called protocol systems. These systems consist of protocol
machines, which determine the actions of honest principals, an adversary machine, a scheduler, and buffers
for network and resilient channels. The adversary does not have complete control over the communication.
Specifically, while we let the adversary control the network, he does not control resilient channels, i.e., the
adversary can not modify, delete, or delay messages sent on this channel. (We often allow the adversary to
read messages sent on resilient channels, though.) The purpose of the scheduler is to schedule messages sent
over resilient channels, i.e., the scheduler decides when and which messages written on the resilient channel
are delivered. Also, the scheduler resolves non-deterministic choices made by honest principals, e.g., whether
to wait for a message of another party or to abort the protocol. Furthermore, the scheduler determines when
the adversary is activated. In particular, the adversary isnot necessarily scheduled as soon as an honest
principal outputs a message. Instead some message sent on a resilient channel or an honest principal that
needs to make a non-deterministic decision might be scheduled first (by the scheduler). However, if the
adversary sends a message to an honest principal this principal is activated right away. Allowing the scheduler
to first schedule other entities (honest principals or resilient channels) would significantly weaken the power
of the adversary.

PROTOCOLS. A protocol Π is defined by a tuple(H,D, {Hi}i∈H) whereH andD are finite disjoint sets
of names ofhonestand dishonest principals, respectively, and{Hi}i∈H is a family of ITMs, called pro-

8

tocol machines (see below), which specify honest principals; dishonest principals will be simulated by the
adversary.

We defineP = H∪D to be the set of all principals. We note thatHi may specify the actions of principal
i in one session of a specific protocol, e.g., it specifies one session of the initiator of the ASW protocol, or
multiple sessions ofi in possibly different roles.

PROTOCOL SYSTEMS. A system induced byΠ consists of the protocol machines ofΠ, an adversary machine
A, a scheduler machineS, and buffer machines for the network and resilient channels. More precisely, a
(protocol) systemS for Π is of the form

S = (|| i∈HHi) || (|| i∈H,j∈PNetij) || (|| i∈H,j∈PRCi
j) || A || S

whereHi, i ∈ H, is a protocol machine ofΠ modeling an honest principal,Netij, i ∈ H, j ∈ P is a network
buffer (machine) on whichi sends messages over the network intended forj, RCi

j , i ∈ H, j ∈ P is a resilient
channel buffer (machine) on whichi sends messages intended forj, A is the adversary (machine), andS the
scheduler (machine). We callS the system induced byΠ, A, andS and denote it byS(Π, A, S). We refer
to the systemS with A andS removed byS(Π). Analogously, we refer to the systemS with S removed by
S(Π, A).

We now explain informally how the machines ofS(Π, A, S) work and how they are connected via tapes
(see Appendix A for details).

A network buffer machineNetij works as follows: It internally stores a sequence of messages, which is
initially empty. Whenever it receives a message fromHi (on some designated tape), it appends this message
at the end of the internal sequence and acknowledges receiptof the message by sendingack on back toHi.
The acknowledgment gives control back toHi thereby allowingHi to send further messages (to possibly
other buffers). In other words,Hi can broadcast messages. We do not have tapes between the adversary
machine and the network buffer as the adversary can read the network buffer via its view oracle (see below).

A resilient channel buffer machineRCi
j works as follows: It internally stores a sequences of messages,

which initially is empty. WheneverRCi
j receives a message fromHi, it appends it at the end of the internal

sequence and acknowledges receipt of the message by sendingack back toHi. (Again, the purpose of the
acknowledgment is to enableHi to broadcast messages.) The resilient channel buffer is scheduled by the
scheduler who can send a numberk to RCi

j to instructRCi
j to deliver thekth message of the sequence of

messages stored inRCi
j (if any). Again, the adversary does not have direct access toRCi

j . If RCi
j is not

required to be read-protected, then the view oracle of the adversary can be defined in such a way that it
provides the adversary with the messages stored inRCi

j .
A protocol machineHi may send messages to the network buffersNetij and the resilient channel buffers

RCi
j for everyj ∈ P as explained above. IfHi does not produce output, the schedulerS (which is declared

to be the master ITM) is activated. A protocol machineHi can be activated in three different ways: a) It
receives a message from the network onnetin

j
i supposedly fromj for somej ∈ P (these messages will

always come from the adversary who controls the network); b)It receives a message from a resilient channel
rcin

j
i from j for j ∈ P (if j ∈ H, then the message received was in fact sent byj and if j ∈ D, then the

message comes from some dishonest principal, and hence, theadversary); c) It receives a message (on some
designated tape) from the scheduler, where we assume thatHi only accepts a fixed, finite set of messages
on this channel and ignores all messages that do not belong tothis set. The messages from the scheduler are
meant to resolve non-deterministic choices made byHi. If, for example, in the ASW protocol, at some point
of the protocol runHi has the choice to wait for a message (sent over the network) from the communication
partner or start the abort protocol with the TTP, then the scheduler could send the messageabort to Hi in
order to instructHi to start the abort protocol.

9

We allow all input tapes of network, resilient channel, and protocol machines to be enriching. We there-
fore explicitly require that the systemS(Π) is reactively polynomial. (For a given protocolΠ this is typically
not hard to check, see, e.g., Section 6.2 and 7.2.) Note that if all input tapes of protocol machines were con-
suming (the buffers could have enriching input tapes), thenreactive polynomiality would follow. However,
if protocol machines may have enriching tapes, then, for example, TTPs (as those in the ASW protocol) can
conveniently be modeled in such a way that they process an arbitrary number of requests, without any fixed
polynomial bound.

The adversary machineA is associated with an oracle, called theview oracle. Recall that if this oracle
is O, we often writeA(O) to say thatA is an ITM with associated oracleO. This oracle can be invoked
by A to obtain aviewon the history of the run of the overall system so far. The exact definition of the view
oracle depends on whatA should be allowed to see. Typically, the view contains not full information about
the history but the content of all network buffers (so far) and the content of (some) resilient channel buffers.
The view of the resilient channels depends on the type of the channel. For example, for an authenticated
but not read-protected channel the view oracle returns the complete content of the channel. In addition to
invoking the view oracle,A can send messages to honest principals either via network orresilient channel
connections. A message sent by the adversary on one of these channels is delivered directly. In particular,
the protocol machine connected to this channel will be activated immediately. More precisely, since network
connections are not authenticated,A can send a message pretending to bej directly to honest principalsHi,
i ∈ H, via the tapenetinj

i for everyj ∈ P. Resilient channels are meant to be authenticated and therefore
the adversary can only send a message pretending to bej′ directly to an honest principalHi, i ∈ H (via
the tapercinj′

i) if j′ ∈ D. A possible alternative to allowing the adversary to send messages directly to
the honest principals is to add resilient (scheduler controlled) and/or network channel buffers between the
adversary and honest principals. We note, however, that in this case the adversary would be less powerful,
and therefore the resulting model would yield weaker security guarantees. The adversary machineA can be
activated by the scheduler (and no other machine). For this purpose, the scheduler sendsschedule on some
designated tape toA. We require thatA ignores all other messages on this tape. All input tapes ofA may
be enriching. However, we only allow those adversary machines for which the systemS(Π, A) is reactively
polynomial, which, for example, includes all adversary machines whose input tapes are consuming. (Recall
thatS(Π) is also required to be reactively polynomial.)

The schedulerS is also associated with aview oraclewhich providesS with a view on the history of
the run of the overall system so far. Typically this view willbe different from the view of the adversary and
depending on the security property may contain full information about the history, no information at all,
or something in between. As explained above, the purpose ofS is to resolve non-deterministic choices of
honest principals (Hi), to schedule messages on resilient channels, and to determine when the adversaryA is
triggered. More precisely,S can send messages toHi, i ∈ H, in order to resolve non-deterministic choices,
e.g., in the ASW protocolS could sendabort or resolve to Hi in order to instructHi to start the abort or
resolve protocol. As explained above, the scheduler can also send messages to the resilient channel buffers
RCi

j to determine which message is scheduled next. The message scheduled is then immediately sent to the
intended recipientj. Finally, S can send the messageschedule to A in order to triggerA. Note that there
is no direct connection betweenS and the network buffers since these buffers are under the control of the
adversary. However, the view oracle ofS might (or might not, depending on the security property and the
desired strength of the security guarantee) provideSwith the messages stored in network buffers.

10

5 Fair Schedulers

Intuitively, we define a scheduler to be fair if it does not stop the run of a system when at least one of the
(other) machines in the system can still take an action, e.g., an honest principal could start an abort protocol,
a resilient channel could deliver a message, or the adversary is ready to output a message to an honest
principal. As already explained in the introduction, fair scheduling is important in the definition of many
security properties, such as fairness and balance for contract signing protocols.

The problem of defining fair schedulers is to make precise what it means that a machine “can still take
an action”. Notice that we need a general definition that works for arbitrary machines (honest principal ma-
chines, resilient channel machines, and adversary machines) not only for specific machines, such as specific
buffers as in [7, 6]; these works were only concerned with fair message delivery, which, however, does not
suffice for fairness and balance of contract signing protocols.

Roughly speaking, we say that a machine “can still take an action” if the machine can be activated
by the scheduler with some input so that at the end of the activation the machine has changed its local
configuration, i.e., scheduling the machine causes it to make some progress or to perform some action.
(Recall from Section 3 that if an ITM sends out a message, thenit changes its local configuration.) For
example, if an adversary machine wants to send a message to anhonest principal, then when it is triggered
by the scheduler it would send the message and change its local configuration. Hence, a fair scheduler has
to eventually trigger the adversary as the adversary “can still take an action” in the above sense. Similarly, a
fair scheduler has to eventually trigger a protocol machinethat does not receive a message from the network
but has the option of contacting the TTP, as contacting the TTP causes the protocol machine to change its
local configuration.

We note that a scheduler does not necessarily know when a machine, including the adversary, “can
still take an action” in the sense just explained. Hence, it might schedule such a machine even though this
machine does not want to take an action. However, a machine can always read the message received from the
scheduler (possibly even query the view oracle in case of theadversary) and, in case it does not want to take
an action, it can return to its old local configuration. Note that here we use that ITMs cannot be exhausted.
In case of exhaustible ITMs unrealistic runs would occur.

The above discussion motivates the following definition of fair schedulers. Roughly speaking, the defi-
nition below says that if the run of a system stops, then even if in the system the old scheduler is replaced
by a new one (even one with full information on the history of the run), the new scheduler cannot continue
the run of the system (at least not with non-negligible probability) such that one of the ITMs in the system
changes its local configuration. In other words, a fair scheduler may only stop the run of a system if no ITM
in the system (other than the scheduler itself) can or wants to take a further action, i.e., no other scheduler
can cause an ITM to change its local configuration. We state this definition for general systems rather than
only for protocol systems (Section 4). In this definition, weuse what we call a full-information oracle. Called
at some point in a run of a system, afull-information oraclereturns the whole history of the run so far for
all machines involved including the random coins used so farby the ITMs. We state the definition for the
case that the initial global configuration comes from a family D = {Dη}η of distributions. This is useful for
modeling, for example, an initialization phase.

Definition 1. Let Q be a reactively polynomial system which does not contain a master scheduler. An ITM
S is a fair schedulerfor Q and a familyD = {Dη}η of distributions on (initial) global configurations if it is
an environment forQ and if for every environmentS′ for Q which has access to a full-information oracle the
probability that the following experiment returns1 is negligible in the security parameterη:

Exp(η, S, S′):

11

RunQ with S, i.e.:SD(η) ❀ q′ with S = Q ||S
Continue the run withS′ instead ofS, i.e.: S ′q′′(η) ❀ q′′′ with S ′ = Q ||S′ and q′′ is obtained fromq′ by
replacing the configuration ofS by the initial configuration ofS′ and writing the history of the run so far on
one of the work tapes ofS′.

If there exists an ITMM in Q such that the local configuration ofM in q′ is different from the corresponding
local configuration inq′′′, then output1, and otherwise, output0.

Alternatively to using a full-information oracle, the definition could be parameterized with an oracle thatS′

is allowed to use.
Applied to protocol systems (Section 4), a fair scheduler may only stop if i) the resilient channel buffers

are empty, since otherwise a scheduler could schedule a message in a non-empty buffer, which would cause
the buffer to deliver the message and delete it, and hence, the buffer would change its local configuration,
ii) triggering a protocol machine with any message (among the finite set of possible once, e.g.,abort) does
not change the local configuration of this machine, since otherwise a scheduler could send such a message
causing the protocol machine to change its local configuration (e.g., go from stateqwait to qabort), and iii)
triggering the adversary machine with the messageschedule does not change the local configuration of this
machine (which means that the adversary does not want to takea step anymore), since otherwise a scheduler
could sendschedule to the adversary and the adversary would change its local configuration.

Since ITMs cannot be exhausted they might change their localconfiguration whenever they are invoked.
Hence, a fair scheduler would never be allowed to stop. Thus,we observe:

Observation 1 There exist systems for which no fair scheduler exists.

SYSTEMS WITH FAIR SCHEDULERS. We now identify some reasonable restrictions on protocolsand adver-
saries as to ensure the existence of a fair scheduler. First,we put a restriction on the adversary. As formalized
in the following definition, we require that the number of configuration changes of the adversary in a run
of a system (and hence, the number of actions, such as sendingmessages, the adversary can perform) can
polynomially be bounded independently of the scheduler considered. This restriction follows the intuition
that the adversary is the entity which “pushes” the run of a system, and hence, it is mainly the adversary
who determines the runtime of the system. Conversely, the scheduler is not meant to “push” the run of the
system. It is only an imaginary entity which is used to determine how non-deterministic choices are resolved
in real protocol runs and who goes next if anybody wants to take an action. In particular, note that the role of
the scheduler is different from the role of an environment insimulation-based settings: Such an environment
tries to distinguish real from ideal systems, and therefore, “pushes” the run of a system following its own
interests. In the following definition, the number of changes of local configurations of the adversary in a run
q1 · · · qn of a system is defined as follows: IfqA

i denotes the local configuration ofA in the global config-

urationqi, then this number is#{i ∈ {0, . . . , n − 1} | qA
i 6= qA

i+1}; in Definition 3 we use an analogous
definition for protocol machines.

Definition 2. Given a protocolΠ, oraclesOadv andOsch, and a family of distributionsD = {Dη}η on
(initial) global configurations, we say that an adversary machine A(Oadv) for Π, Oadv , Osch, and D is
fairness-enablingif there exists a polynomialp such that for all schedulersS(Osch) for Π the probability
that in a run ofSD(η), withS = S(Π, A(Oadv), S(Osch)), the number of changes of local configurations of
A(Oadv) is bounded byp(η) is overwhelming (inη), where the probability is over the random coins used by
Dη and the machines inS.

Analogously to the above definition, we could put a restriction on protocol machines. However, this would
be too restrictive since the number of configuration changesof a protocol machine might depend on the

12

number of interactions with the adversary, and hence, depends on the adversary. For example, if a TTP is
modeled in such a way that it reacts to all requests (which could come from the adversary), then the number
of configuration changes of the TTP depends on the adversary.This motivates the following definition.

Definition 3. Given a protocolΠ, oraclesOadv andOsch, and a family of distributionsD = {Dη}η on
(initial) global configurations, we say thatΠ is fairness-enablingif for all fairness-enabling adversary ma-
chinesA(Oadv) for Π, Oadv , Osch, andD there exists a polynomialp such that for all schedulersS(Osch)
for Π the probability that in a run ofSD(η), with S = S(Π, A(Oadv), S(Osch)), the number of changes of
local configurations of every protocol machine ofS is bounded byp(η) is overwhelming (inη), where the
probability is over the random coins used byDη and the machines inS.

The following theorem, proved in Appendix C, states that forevery fairness-enabling protocol and every
fairness-enabling adversary, there exists a fair scheduler (even without access to a view oracle). Hence, for
systems built from fairness-enabling protocols and adversaries, fair scheduling is possible. In the rest of the
paper, we concentrate on such systems, which seem to captureall realistic cases. In order to state and prove
the theorem, we first need to be more precise about the view oracle of adversaries.

A view oracle is called anadversary view oracleif it is a deterministic polynomial-time algorithm which
when invoked in a run of a protocol system gets as input the history of the run so far, except for the history of
the scheduler, i.e., the history of the configurations (including the random coins used so far) of all machines in
the system, except for the history of the configurations of the scheduler. We require that if the configurations
of the ITMs, other than the scheduler, in a run of the protocolsystem have not changed from one point in
the run to the next step in the run, then the adversary view oracle returns the same view as before. Note that
even if the adversary view oracle obtains as input the full history of the system (excluding the scheduler) it
typically will only return a restricted view on that historyto the adversary.

Theorem 2. For every fairness-enabling protocolΠ, view oracleOsch, adversary view oracleOadv , polyno-
mially samplable family of distributionsD = {Dη}η on (initial) global configurations, and fairness-enabling
adversariesA = A(Oadv), there exists a schedulerS (even one without access to a view oracle) that is fair
for S(Π, A) andD.

6 Fair Protocols and Results for the ASW Protocol

In this section, we define the notion of fairness of protocolsand, as a proof of concept, apply it to the ASW
protocol. In the definition of fairness, we use the previously introduced concept of fair schedulers. We note
that fairness is not a branching time property. However, it is a good warming-up for the more complex notion
of balance studied in the next section.

6.1 Definition of Fairness

The definition of fairness of a protocolΠ is w.r.t. a deterministic polynomial-time algorithmcheckfair
which given a global configuration of a run of a system forΠ returns1 (for fair) or 0 (for unfair). We do
not put any restriction oncheckfair at this point. This function will be defined depending on the protocol
and the party under consideration. In the ASW protocol, for instance,checkfair may return0 in a global
configuration if dishonestB has a signed contract from honestA butA does not have a signed contract from
B (see Section 6.2). Parameterizing the definition of fairness bycheckfair seems unavoidable since, for
example, what a signed contract is and what it means for a party to have a signed contract are details that
may differ from one protocol to another (see, e.g., [1] and [14]).

13

The following definition says thatΠ is fair (relative to a particularcheckfair algorithm) if for every
(fairness-enabling) adversary and everyfair scheduler the probability that a run ends in an unfair global
configuration is negligible. (One should not confuse fair scheduling with fair global configurations, the latter
is determined bycheckfair.) While in the following definition, we use the notions of fairness-enabling
protocol, fairness-enabling adversaries, and fair scheduler, which were defined w.r.t. a family of distributions
D = {Dη}η on (initial) global configurations, we now omitD and simply assume that (standard) initial
configurations, with empty work tapes, are used as starting points of runs.

Definition 4. Let Π be a fairness-enabling protocol,Osch be a view oracle for a scheduler,Oadv be an
adversary view oracle, andcheckfair be a deterministic polynomial-time algorithm as above. Then, Π is
called fair w.r.t.Osch,Oadv , andcheckfair if for every fairness-enabling adversary machineA = A(Oadv)
for Π and every schedulerS = S(Osch) fair for S(Π, A), we have that the probability that in the following
experiment0 is returned is negligible in the security parameterη where the probability is taken over the
random coins of the protocol machines ofΠ, the adversaryA, and the schedulerS.

Exp(η,Π, A, S, checkfair):

S(η) ❀ q whereS = S(Π, A, S).
Returncheckfair(q).

Note that the above definition would not make sense if our notion of fair scheduling would only talk about
fair message delivery (as, e.g., in [7, 6]) as in this case a fair scheduler could stop the run of the system even
though, for example, an honest principal could still contact the TTP or the adversary still wants to send a
message to some honest principal. Hence, fair message delivery on its own would be insufficient for defining
fairness of, e.g., contract signing protocols.

6.2 The ASW Protocol is Fair

We prove that the ASW protocol is fair for i) the case that an honest initiatorA runs an instance of the
protocol with a dishonest responderB (modeled as the adversary) and an honest TTPT on the contractual
text text, and ii) the case that an honest responderB runs an instance of the protocol with a dishonest initiator
A (modeled as the adversary) and an honest TTPT on text.

More formally, letΠASW-A denote the protocol with honest partiesA, T , andW , and dishonest party
B whereA acts as an initiator,T as a TTP, andW as a “watch dog”. Formal specifications ofA andT in
terms of ITMs can be found in Appendix B.1 and B.1, respectively (also see the remarks and notation at the
beginning of Appendix B.1). We note thatA writes Contract on some of her work tapes if according to
the specification of the protocol she has a valid contract (standard or replacement) withB andT on text.
The watch dogW is used to check whether the adversary (dishonestB) has a valid contract. More precisely,
W waits for a messagem on some network channel and writesContract on some of its work tapes ifm
is a standard or replacement contract forA,B,T ,text as described in Section 2;W ignores messages if they
do not have the correct format. The protocolΠASW-B is defined similarly, except that nowA is dishonest
andB is honest. The formal specification of the responderB as ITM can be found in Appendix B.1. It is
not hard to check thatΠASW-A (S(ΠASW-A)) andΠASW-B (S(ΠASW-A)) are fairness-enabling (reactively
polynomial).

The algorithmcheckfair that checks whether a global configuration is fair for an honest party is defined
as follows: given a global configurationq, checkfair(q) = 1 if and only if Contract is not written on the
work tape ofW or Contract is written on the honest protocol machineA andB for ΠASW-A andΠASW-B,
respectively, i.e.,checkfair returns1 if the adversary (dishonest party) does not have a signed contract
from the honest party or the honest party has a signed contract from the dishonest party.

14

We define the view oracleOASW
adv for the adversary to be an adversary view oracle (Section 5) which

returns the history of all network and resilient channel buffers in the system (but no other machines). In
particular, resilient channel buffers are not required to be read protected. To get strong security guarantees, we
consider a very weak view oracleOASW

sch for the scheduler which provides the scheduler with no information
whatsoever about the current status of the protocol run; this potentially makes the job of the adversary easier.
(Note that according to Theorem 2, in this situation fair scheduling is still possible.)

We are now ready to state the theorem on fairness of the ASW protocol. The theorem holds for instances
of the protocol implemented with primitives that satisfy standard cryptographic assumptions (see Appendix F
and G for precise definitions).

Theorem 3. If the signature scheme is existentially unforgeable underchosen message attacks and the hash
function is preimage-resistant, thenΠASW-A andΠASW-B are fair w.r.t.checkfair and view oraclesOASW

adv

andOASW
sch .

The proof, presented in Appendix D, is by reduction to the security of the underlying cryptographic prim-
itives. It cannot be carried out using existing results on relating symbolic and cryptographic methods since
these results do not (and in some cases provably cannot) takeinto account preimage-resistant hash functions.
Our proof uses in an essential way that schedulers are fair. Without fair scheduling the proof would not go
through and in fact the notion of fairness would not make sense since as soon as the dishonest party has a
valid contract, the scheduler could stop the run of the protocol. We note that the ASW protocol could be
proved to be unfair in our setting, if honest parties are optimistic in the sense that they only contact the TTP
if the dishonest party tells them to do so (see [12] for more onoptimistic parties in Dolev-Yao based models).

While in ΠASW-A and ΠASW-B the honest initiator and responder, respectively, are modeled in such
a way that they only run one instance of the protocol, we can, as illustrated in Appendix B.2, also model
principals that run an unbounded number of copies of the protocol. The proof of the theorem should extend
to this case if for different instances of the protocol unique session identifiers are used (see remarks in
Section B.2), but this is not the main focus of this paper.

7 Balanced Protocols and Results for the ASW Protocol

In this section, we define the notion of balance and show that the Asokan-Shoup-Waidner protocol is bal-
anced. As in the definition of fairness, the definition uses the previously introduced concept of fair scheduling.

7.1 Definition of Balance

The notion of balance for (two-party) contract-signing protocols was first introduced by Chadha et al. [11] in
the symbolic (Dolev-Yao) setting. In a nutshell, their definition says that a protocol is balanced for an honest
signer, sayA, if no “unbalanced” state can be reached in a run of the contract-signing protocol where a run
involves A, the Dolev-Yao intruder playing the role of the dishonest signerB, the TTP, the network and
resilient channels. A state isunbalanced(for A) if in this stateB has both i) a strategy to obtain a signature
on the contract fromA and ii) a (possibly different) strategy to preventA from obtaining a signature on the
contract fromB. In other words,B can unilaterally determine the outcome of the protocol, which puts him in
an advantageous position, for example, when making a deal with another party. In the first phase ofreaching
an (unbalanced) state the non-deterministic choices made by honest principals and the way messages on
resilient channels are scheduled might helpB to reach the (unbalanced) state. However, in the second phase,
B needs to have the mentioned strategies to achieve the two goals—obtaining a valid contract and preventing

15

A from obtaining a valid contract—, and these strategies haveto work no matter what non-deterministic
choices the honest principals make and no matter how messages on resilient channels are scheduled.

Now, we introduce a computational analogue of the notion that we sketched above. We measure the
success probability of an adversary that tries to underminethe balancedness of the protocol via an experiment
which works in two phases (see below for a formal definition):In the first phase, the protocol runs along with
the adversaryA and a schedulerS which may resolve non-deterministic choices of honest principals and
schedule messages on resilient channels and the adversary in a way that helpsA. At the end of this phase, a
state (global configuration), sayq, is reached. Now, one of the two goals (having the contract orpreventing
the other party from getting one) is picked (by some functionchallenge) and the adversary is asked to
reach the chosen goal, starting fromq but now running with a different scheduler which will try to resolve
non-deterministic choices of honest principals and schedule resilient channels and the adversary in a way
that is disadvantageous forA. Intuitively, for balanced protocols, from any stateq that is reached, at least for
one of the two goals the probability that the adversary can reach this goal should be low.

In the following definition, we require that the scheduler used in the second phase of the experiment
is fair in order to ensure that protocol runs are in fact completed both by honest parties and the adversary.
This is crucial for two reasons: On the one hand, the adversary might otherwise be prevented from taking
further actions, but these actions may be necessary for the adversary to achieve the required goal. Hence, the
scheduling would be unfair for the adversary. And in fact, itwould be unrealistic since in real protocol runs
no one stops the adversary from taking further actions. On the other hand, honest principals might otherwise
be prevented from taking counter-measures to the misbehavior of the adversary. Hence, the scheduling would
be unfair (and again unrealistic) for the honest parties. Note that achieving fair scheduling for both honest
parties and the adversary is guaranteed by our definition of fair scheduling (Section 5). However, a notion
only based on fair message delivery [7, 6] would, as in case offairness (Section 6.1), be insufficient.

In order to ensure that, in the second phase, fair schedulingis possible, we split the adversary in two
parts,A andA′—one for the first phase and one for the second phase of the experiment—and require thatA′

is fairness-enabling. The scheduler used in the first phase is not required to be fair (in particular it can stop
at arbitrary points), and adversaryA is not assumed to be fairness-enabling.

The definition of balance is parameterized by two deterministic polynomial-time algorithms,goal1 and
goal2, thegoal functions, which given a global configuration return1 (goal reached) or0 (failed to reach the
goal). Similarly to the functioncheckfair (Section 6.1), the precise definition of these functions depends
on the protocol under consideration and cannot be avoided inthe general definition (see Section 7.2 for
an example of these functions). We call a deterministic polynomial-time algorithm which given a global
configuration returns1 (requiring the adversary to achievegoal1) or 2 (requiring the adversary to achieve
goal2) achallenge function.

Definition 5. Let Π be a protocol andgoal1 and goal2 be deterministic polynomial-time algorithms as
above. LetOsch andO′

sch be view oracles, andOadv andO′
adv be adversary view oracles. Then,Π is called

balancedw.r.t. goal1, goal2, Oadv , O′
adv , Osch, andO′

sch if for all adversary machinesA = A(Oadv) and
A′ = A′(O′

adv) for Π, and all (not necessarily fair) schedulersS = S(Osch) for Π, there exists a challenge
functionchallenge such that ifA′ is fairness-enabling forΠ, O′

sch, Oadv , and a familyD = {Dη}η of
distributions on (initial) global configurations defined below, then there exists a schedulerS′ = S′(O′

sch)
fair for S(Π, A′) andD such that the probability that the following experiment returns1 is negligible in the
security parameterη.

Exp(η,Π, A, A′, S, S′, goal1, goal2, challenge):

S(η) ❀ q whereS = S(Π, A, S).
i = challenge(q).

16

S ′q′(η) ❀ q′′ whereS ′ = S(Π, A′, S′), the initial configuration ofA′ is obtained by writingi and the current
configuration ofA on the work tape ofA′, andq′ is obtained fromq by replacing the configuration ofS by
the initial configuration ofS′ and the configuration ofA by the initial configuration ofA′.
Returngoali(q

′′).

The distributionDη is defined to be the distribution ofq′ in the above experiment. (Note thatD = {Dη} is
polynomially samplable.)

We emphasize that the above experiment can be simulated in polynomial time. This is a crucial fact when
trying to show that a protocol is balanced via a proof by reduction. Note that while one could provide
challenge andS′ with more information, giving them less information only makes the balance property
stronger. We also point out that in typical applications of the above definition the protocolΠ will be fairness-
enabling w.r.t.O′

sch, O′
adv , andD, and hence, fair scheduling is possible in the second phase of the experi-

ment.

7.2 The ASW Protocol is Balanced

We prove that the ASW protocol is balanced for i) the case thatan honest initiatorA runs an instance of the
protocol with a dishonest responderB (modeled as the adversary) and an honest TTPT on the contractual
text text, and ii) the case that an honest responderB runs an instance of the protocol with a dishonest initiator
A (modeled as the adversary) and an honest TTPT on text. More formally, we need to specify the protocols,
oracles, and functions used as parameters in the balance definition.

The protocols that we consider are the same as in Section 6.2,i.e., ΠASW-A (honest initiatorA) and
ΠASW-B (honest responderB); it is easy to check that these protocols are fairness-enabling w.r.t. the dis-
tribution used in Definition 5. We also defineOASW

adv andOASW
adv′ as in Section 6.2. To get strong security

guarantees, we allow the scheduler in the first phase of the definition of the balance property to see what the
adversary sees plus the history of the configurations of the adversary (including the random coins used by
the adversary);OASW

sch is defined accordingly. Conversely, we make the scheduler inthe second phase weak
by definingOASW

sch′ in such a way that it does not provide any information about the history. For a global
configurationq let goal1(q) = 1 iff the honest party (A in ΠASW-A andB in ΠASW-B) does not have a
contract, i.e.,Contract is not written on one of its work tapes. Letgoal2(q) = 1 iff the adversary has a
valid contract, i.e.,Contract is written on a work tape of the watch dog. The following theorem is proved
in Appendix E.

Theorem 4. If the signature scheme is existentially unforgeable underchosen message attacks and the hash
function is preimage resistant, thenΠASW-A andΠASW-B are balanced w.r.t.goal1, goal2,OASW

adv ,OASW
adv′ ,

OASW
sch , andOASW

sch′ .

The proof is again done by reduction to the security of the primitives: Assuming that the protocol is un-
balanced, it is shown that one of the primitives would be insecure. As in case of fairness, the proof should
extend to the case that a party runs multiple copies of the protocol (see also Section B.2).

8 Conclusion

In this paper, we introduced the first computational model for the specification and rigorous analysis of com-
plex, branching time properties of protocols. Our model includes schedulers to deal with non-deterministic
behavior of principals and resilient channels. We proposeda general definition of what it means for a sched-
uler to be fair. Our definition not only takes into account fair scheduling for honest parties and certain chan-
nels, but alsodishonestparties, and hence, arbitrary ITMs. This definition is of interest independent of our

17

application to branching time properties. Using our computational model and the notion of fair scheduling,
we provided definitions of fairness and balance in (contractsigning) protocols. The definition of balance
required to talk about different strategies and goals of principals, and involved both schedulers that work
with and schedulers that work against the adversary. As a proof of concept, we applied these definitions to
the ASW two-party contract signing protocol. Our model and the notion of fair scheduling that we intro-
duced form a good basis for also dealing with other branchingtime properties, such as abuse-freeness, which
is a weak form of balance, or properties studied in [22, 21]. Our computational model uses an interleaving
semantics; it might be interesting to study concurrent models as concurrency may have an impact on the
security properties (see, e.g., [20] for the case of Dolev-Yao based models).

References

1. N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic fair exchange. InProceedings of the IEEE
Symposium on Research in Security and Privacy, pages 86–99. IEEE Computer Society, 1998.

2. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures.IEEE Journal on Selected Areas in
Communications, 18(4):593–610, 2000.

3. M. Backes and B. Pfitzmann. Computational probabilistic non-interference. InProceedings of the 7th European Symposium
on Research in Computer Security (ESORICS), volume 2502 ofLecture Notes in Computer Science, pages 1–23, 2002.

4. M. Backes, B. Pfitzmann, and M. Waidner. Secure Asynchronous Reactive Systems. Technical Report 082, Cryptology ePrint
Archive, 2004.

5. Michael Backes, Anupam Datta, Ante Derek, John C. Mitchell, and Mathieu Turuani. Compositional analysis of contract
signing protocols. InCSFW ’05: Proceedings of the 18th IEEE Computer Security Foundations Workshop (CSFW’05), pages
94–110, Washington, DC, USA, 2005. IEEE Computer Society.

6. Michael Backes, Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. On fairness in simulatability-based crypto-
graphic systems. In3rd ACM Workshop on Formal Methods in Security Engineering:From Specifications to Code, pages
13–22, September 2005. Preprint on IACR ePrint 2005/294.

7. Michael Backes, Birgit Pfitzmann, Michael Steiner, and Michael Waidner. Polynomial fairness and liveness. InProceedings of
the 15th IEEE Computer Security Foundations Workshop (CSFW’02), pages 160–169. IEEE Computer Society, 2002.

8. B. Baum-Waidner and M. Waidner. Round-optimal and abuse free optimistic multi-party contract signing. In U. Montanari,
J.D.P. Rolim, and E. Welzl, editors,Automata, Languages and Programming, 27th International Colloqium (ICALP 2000),
volume 1853 ofLecture Notes in Computer Science, pages 524–535. Springer, 2000.

9. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. Technical report, Cryptology
ePrint Archive, December 2005. Online available athttp://eprint.iacr.org/2000/067.ps.

10. Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira, and Roberto Segala. Time-bounded
Task-PIOAs: A Framework for Analyzing Security Protocols.In S. Dolev, editor,20th International Symposium on Distributed
Computing (DISC 2006), pages 238–253. Springer, 2006.

11. R. Chadha, M.I. Kanovich, and A.Scedrov. Inductive methods and contract-signing protocols. In P. Samarati, editor, 8-th ACM
Conference on Computer and Communications Security (CCS 2001), pages 176–185. ACM Press, 2001.

12. R. Chadha, J.C. Mitchell, A. Scedrov, and V. Shmatikov:.Contract Signing, Optimism, and Advantage. In R.M. Amadio and
D. Lugiez, editors,CONCUR 2003 - Concurrency Theory, 14th International Conference, volume 2761 ofLecture Notes in
Computer Science, pages 361–377. Springer, 2003.

13. A. Datta, R. Küsters, J.C. Mitchell, and A. Ramanathan.On the Relationships Between Notions of Simulation-Based Secu-
rity. In J. Kilian, editor,Proceedings of the 2nd Theory of Cryptography Conference (TCC 2005), volume 3378 ofLecture
Notes in Computer Science, pages 476–494. Springer-Verlag, 2005. Full version available at http://www.ti.informatik.uni-
kiel.de/˜kuesters/publicationshtml/DattaKuestersMitchellRamanathan-TR-SPPC-2004.ps.gz.

14. J.A. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract signing. InAdvances in Cryptology – CRYPTO’99,
19th Annual International Cryptology Conference, volume 1666 ofLecture Notes in Computer Science, pages 449–466.
Springer-Verlag, 1999.

15. D. Hofheinz and J. Müller-Quade. A synchronous model for multi-party computation and the incompleteness of oblivious
transfer. InProceedings of the Foundations of Computer Security Workshop, Proceedings of FCS 2004, 2004., 2004.

16. D. Hofheinz, J. Müller-Quade, and D. Unruh. PolynomialRuntime in Simulatability Definitions. In18th IEEE Computer
Security Foundations Workshop (CSFW-18 2005), pages 156–169. IEEE Computer Society, 2005.

17. Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. A simple model of polynomial time uc. Presented at the ECRYPT
Workshop on Models for Cryptographic Protocols – MCP’06.

18

18. D. Kähler and R. Küsters. Constraint Solving for Contract-Signing Protocols. In M. Abadi and L. de Alfaro, editors, Pro-
ceedings of the 16th International Conference on Concurrency Theory (CONCUR 2005), volume 3653 ofLecture Notes in
Computer Science, pages 233–247. Springer, 2005.

19. D. Kähler, R. Küsters, and Th. Wilke. Deciding Properties of Contract-Signing Protocols. In Volker Diekert and Bruno Durand,
editors,Proceedings of the 22nd Symposium on Theoretical Aspects ofComputer Science (STACS 2005), number 3404 in
Lecture Notes in Computer Science, pages 158–169. Springer-Verlag, 2005.

20. D. Kähler, R. Küsters, and Th. Wilke. A Dolev-Yao-based Definition of Abuse-free Protocols. In M. Bugliesi, B. Preneel,
V. Sassone, and I. Wegener, editors,Proceedings of the 33rd International Colloqium on Automata, Languages, and Program-
ming (ICALP 2006), volume 4052 ofLecture Notes in Computer Science, pages 95–106. Springer, 2006.

21. S. Kremer and J.-F. Raskin. Game analysis of abuse-free contract signing. InComputer Security Foundations Workshop 2002
(CSFW 2002), pages 206–220. IEEE Computer Society, 2002.

22. Steve Kremer and Jean-François Raskin. A game-based verification of non-repudiation and fair exchange protocols.In 12th
International Conference on Concurrency Theory (CONCUR 2001), volume 2154 ofLecture Notes in Computer Science, pages
551–565. Springer-Verlag, 2001.

23. R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Machines. InProceedings of the 19th IEEE
Computer Security Foundations Workshop (CSFW-19 2006), pages 309–320. IEEE Computer Society, 2006.

24. V. Shmatikov and J.C. Mitchell. Finite-state analysis of two contract signing protocols.Theoretical Computer Science (TCS),
special issue on Theoretical Foundations of Security Analysis and Design, 283(2):419–450, 2002.

A Specification of the ITMs in Protocol Systems

In this section, we provide more formal definitions of protocol, network buffer, resilient channel buffer,
adversary, and scheduler machines. In particular, we are more precise about how machines are connected via
tapes.

A protocol machineM = Ai, i ∈ H for principal i in protocolΠ is an ITM which has the following
tapes for everyj ∈ P:

– Input tapesnetinj
i and rcin

j
i for receiving input over the network or the resilient channel from j,

respectively.
– Output tapesnetouti

j andrcini
j for sending messages on the network or the resilient channelto j,

respectively. (Theses messages will be written into a network or resilient channel buffer, which will
acknowledge receipt of the messages).

– Input tapesnetacki
j andrcacki

j on whichM receives an acknowledgment that the message sent before
on netouti

j or rcini
j , respectively, has been received. (This allows to broadcast messages since after

sending a message on one of the network or resilient channel output tapes, control is given back toM
such thatM can send other messages as well).

– An input tapesch pi on whichM expects a message, such asabort or resolve, after whichM may
or may not take an action (e.g., start the abort or resolve subprotocol).

All input tapes ofM are defined to be enriching.
A network buffer (machine)Netij , i ∈ H andj ∈ P, for a protocolΠ is an ITM which has the following

tapes:

– An input tapenetouti
j for receiving messages fromAi. (Recall thatAi has an identically named output

tape.)
– An output tapenetacki

j to acknowledge receipt of a message fromAi. (Recall thatAi has an identically
named input tape.)

All input tapes ofNetij are enriching. The machineNetij works as follows: It internally stores a sequence of
messages, which initially is empty. WheneverNetij receives a message onnetouti

j , it appends it at the end
of the internal sequence and acknowledges receipt of the message by sendingack onnetacki

j (to Ai).

19

A resilient channel buffer (machine)RCi
j, i ∈ H andj ∈ P,4 for a protocolΠ is an ITM which has the

following tapes:

– An input tapercouti
j for receiving messages fromAi. (Recall thatAi has an identically named output

tape.)
– An output tapercacki

j to acknowledge receipt of a message fromAi. (Recall thatAi has an identically
named input tape.)

– An input tapercin schi
j on whichRCi

j expects a number (the index of the message to be sent) from the
scheduler.

– An output tapercini
j on whichRCi

j sends the messages requested onrcin schi
j .

All input tapes ofRCi
j are enriching. The machineRCi

j works as follows: It internally stores a sequences of
messages, which initially is empty. WheneverRCi

j receives a message onrcouti
j, it appends it at the end of

the internal sequence and acknowledges receipt of the message by sendingack onrcacki
j (to Ai). Whenever

RCi
j receives a numberk on rcin schi

j (from the scheduler),5 it writes thekth message of the sequences
on the tapercini

j (if the kth message exists, otherwise is does nothing) and deletes this message from the
sequence.

An adversary (machine)A for a protocolΠ is an ITM which may have a view oracle as described in
Section 4 and which has the following tapes:

– Output tapesnetinj
i for all j ∈ P andi ∈ H to send a message (asj) to i over the network.

– Output tapesrcinj
i for all j ∈ D andi ∈ H to send a message (asj) to i over the resilient channel.

– An input tapeschadv on whichA expects the messageschedule after whichA may or may not take an
action.

All input tapes ofA are enriching. Note thatA does not have any direct connection to the network buffers.
This is becauseA can use the view oracle to obtain all messages sent to the network. Similarly for resilient
channels.

A scheduler (machine)S for a protocolΠ is an ITM which has the following tapes:

– Output tapessch pi, for everyi ∈ H, on whichSmay write a message to triggerAi. (Recall thatAi will
only accept a message among a finite set of messages and will ignore all other messages.)

– Output tapesrcin schi
j , for everyi ∈ H andj ∈ P, on whichS may write a number, the index of the

message to be send over the resilient channel fromi to j.6

– An output tapeschadv on whichS may writeschedule to triggerA.
– An input tapestart, i.e.,S is a master ITM.

All input tapes ofS are declared to be consuming. As explained in Section 4, the schedulerS is equipped
with an oracle, calledview oracle. This oracle can be invoked byS to obtain a view on the history of the run
of the overall system so far.

4 Alternatively, one could consider resilient channel buffer machines also fori ∈ D (and in this casej ∈ H), which would mean
that the adversary would also have to write into a resilient channel buffer machine to send a message to a another principal.

5 Alternatively, one could require thatRCi
j only expects a messagenext which would triggerRCi

j to send the next message in
its internal sequence.

6 If j ∈ D and one wants to model that the channelRCi
j is controlled by the adversary, thenS would not have the output tape

rcin sch
i
j , i.e.,S can not triggerRCi

j .

20

B Formal Specification of the ASW Protocol

In this section, we provide a formal specification of the ASW protocol. More precisely, we specify the actions
of honest principals in the ASW protocol as ITMs. While in Section B.1, we consider honest principals
running a single session on their machine, in Section B.2 we specify an honest principal running multiple
sessions.

B.1 Single Session Specification

In this section, we specifyA running one instance of the ASW protocol as an initiator withB (Section B.1),
B running one instance of the ASW protocol as a responder withA (Section B.1), and the TTP (Section B.1).

For simplicity of presentation, in the following specifications we implicitly assume an initialization phase
where the parties are provided with a randomk ∈ {0, 1}η (the index of the hash function to use) and the
public-keys of the other parties. This initialization phase could be modeled in different ways. For example,
every entity could generate its own public and private keys and then send the public keys over resilient
channels to the other parties. One trusted entity, e.g., theTTP, could in addition randomly choosek and send
it to the other entities. Alternatively, one could model theinitialization phase by an additional entity (ITM)
which generates the public and private keys (at least for thehonest parties) and the indexk and then distribute
the keys over resilient, read-protected channels to the different entities.

In what follows, whenever we say that, for example,A receives messagesig[m, vB], we implicitly require
thatA verifiesB’s signature. Also, we often simply writeh(m) instead ofhk(m), i.e., the key (index) for
the hash function is omitted. We assume thath(m) ∈ {0, 1}l for a fixedl.

Specification of the Honest Initiator A The honest initiatorA of the ASW protocol when talking toB,
using the TTPT , and running the protocol on the contractual texttext performs the following steps: We use
the naming convention for tapes introduced in Section 4 and Appendix A. We modelA in such a way that
she non-deterministically decides whether or not to start the protocol, i.e., the scheduler makes this decision.
This property is crucial for proving the balance of the protocol.

E.1 If input init is received onsch pA (from the scheduler), then continue with E.2. Otherwise, ifinput
stop is received onsch pA, then stop, i.e., from now on ignore all incoming messages. Otherwise, ignore
the incoming message and continue to wait in state E.1.

E.2 ChooseNA
R
← {0, 1}η and outputm1 = sig[〈vA, vB , vT , text, h(NA)〉, vA] on netoutA

B ; ignore the
subsequent acknowledgment onnetackA

B from NetAB and continue with E.3.
E.3 If a message of the formm2 = sig[〈m1, x〉, vB] is received onnetinB

A wherex ∈ {0, 1}l, then output
NA on netoutA

B ; ignore the subsequent acknowledgment onnetackA
B from NetAB and continue with

E.4. Otherwise, if the messageabort is received onsch pA, then continue with A.1 (abort protocol).
Otherwise, ignore the incoming message and continue to waitin E.3

E.4 If a nonceN ∈ {0, 1}η is received onnetinB
A such thath(N) = x, then writeContract on some work

tape and stop. Otherwise, ifresolve is received onsch pA, then continue with R.1 (resolve protocol).
Otherwise, ignore the incoming message and continue to waitin state E.4.

A.1 Sendma = sig[〈aborted,m1〉, vA] on rcoutA
T ; ignore the subsequent acknowledgment fromRCA

T and
continue with A.2.

A.2 If the messagesig[〈aborted,ma〉, vT] is received onrcinT
A, then stop. Otherwise, if a message of the

form sig[〈m1,m2〉, vT] is received onrcinT
A, then writeContract on some work tape and stop. Other-

wise, ignore the incoming message and continue to wait in state A.2.

21

R.1 Send〈m1,m2〉 onrcoutA
T ; ignore the subsequent acknowledgment fromRCA

T and continue with R.2.
R.2 If sig[〈m1,m2〉, vT] is received onrcinT

A, then writeContract on some work tape and stop. Otherwise,
ignore the incoming message and continue to wait in state R.2.

Specification of the Honest ResponderB The honest responderB of the ASW protocol when talking
to A, using the TTPT , and running the protocol on the contractual texttext performs the following steps:
Similar to the case ofA, whenB receives the first message,B makes a non-deterministic decision whether
or not to continue the protocol run, i.e., the scheduler makes this decision.

E.1 If a message of the formm1 = sig[〈vA, vB , vT , text, x〉, vA] for somex ∈ {0, 1}l is received onnetinA
B ,

then continue with E.2. Otherwise, ignore the incoming message and continue to wait in state E.1.
E.2 If input start is received onsch pB (from the scheduler), then continue with E.3. Otherwise, ifinput

stop is received onsch pB , then stop.7 Otherwise, ignore the incoming message and continue to waitin
state E.2.

E.3 ChooseNB
R
← {0, 1}η and outputm2 = sig[〈m1, h(NB)〉, B] onnetoutB

A ; then, ignore the subsequent
acknowledgment onnetackB

A from NetBA and continue with E.4.
E.4 If a nonceN ∈ {0, 1}η is received onnetinA

B such thath(N) = x, then writeContract on some work
tape, outputNB on netoutB

A (the subsequent acknowledgment can be ignored), and stop. Otherwise,
if resolve is received onsch pB , then continue with R.1 (resolve protocol). Otherwise, ignore the
incoming message and continue to wait in state E.4.

R.1 Send〈m1,m2〉 onrcoutB
T ; ignore the subsequent acknowledgment fromRCB

T and continue with R.2.
R.2 If sig[〈m1,m2〉, T] is received onrcinT

B , then writeContract on some work tape and stop. Otherwise,
ignore the incoming message and continues to wait in state R.2.

Specification of the Honest TTPT The TTPT maintains a databaseDB of requests received so far. It can
interact with the parties in the set{P1, . . . , Pn}. Entries of the database are of the form〈〈vO, vR, vT , text〉,
token〉 wherevO andvR are public-keys of principals in the mentioned set of principals (the public-keyvT

is the public key ofT), text is a contractual text, andtoken is either an abort or a resolve token.

T.0 DB := ε.
T.1 If input of the formm=sig[〈aborted, sig[〈vO, vR, vT , text, h〉, vO]〉, vO] is received onrcoutO

T , then
check whetherDB contains an entry〈〈vO, vR, vT , text〉, token〉 for sometoken. If so, then returntoken

on rcinT
O; ignore the subsequent acknowledgment fromRCT

O and continue with T.1. Otherwise, ifDB

does not contain such an entry, then add the entry〈〈vO, vR, vT , text〉, sig[〈aborted,m〉, vT]〉 to DB and
output (the abort token)sig[〈aborted,m〉, vT]; ignore the subsequent acknowledgment fromRCT

O and
continue with T.1.
Otherwise, if input of the formm′ = 〈m′′, sig[〈m′′, h′〉, vR]〉 for somem′′ = sig[〈vO, vR, vT , text,

h〉, vO] is received onrcoutO
T , then check whetherDB contains an entry of the form〈〈vO, vR, vT , text〉,

token〉 for sometoken. If so, then returntoken on rcinT
O; ignore the subsequent acknowledgment

from RCT
O and continue with T.1. Otherwise, ifDB does not contain such an entry, then add the entry

〈〈vO, vR, vT , text〉, sig[m′, vT]〉 to the DB and output (the resolve token)sig[m′, vT]; ignore the subse-
quent acknowledgment fromRCT

O and continue with T.1.

The model of the TTP as just described corresponds to the TTP as specified by Asokan et al. [1], although
Asokan et al. only specify the TTP for handling one session ofthe protocol, and therefore, they do not specify
how the database the TTP has to maintain looks like.

7 Alternatively,B could go back to E.1.

22

As pointed out by Chadha et al. [11] for the GJM protocol [14] (and the same it true for the ASW pro-
tocol), in case multiple runs of the protocol (with the same contractual partners and on the same contractual
text) are carried out, a session identifiers is needed that uniquely identifies a session. Such identifiers need to
be part of the entries that the TTP stores in the database. Without such identifiers the ASW protocol would
neither be fair nor balanced: Consider the situation of an honest initiatorO and a dishonest responderR. If,
in a first session of the protocol,R does not respond to the first messageO sends, thenO sends an abort
request to the TTP. If later, in a second session of the protocol, O agrees to run the protocol again withR (on
the same contractual text), and the session gets to a point whereO sent the nonce, thenR has a valid contract
from O. If at this pointR doesn’t return his nonce, thenO cannot get a valid contract since when contacting
the TTP,O would get back the abort token from the previous session. Hence, this state of the protocol is
unfair and unbalanced forO. We note that including in the database the digesth(NO) computed byO would
still not solve the problem: It is not hard to see that ifO is dishonest, the protocol would be unbalanced for
R.

B.2 Multi-Session Specification

In this Section B.2, we specify a principal willing to run multiple sessions of the ASW protocol. As pointed
out at the end of Section B.1, in this case every session should have a unique session identifier. Such an
identifier can easily be established by the initiator and responder: At the beginning of the session, both
parties contribute to one part of the identifier. Even if one party is dishonest, if the honest party ensures that
the part of the identifier that he/she contributes is different from the parts contributed in other sessions, then
the combined identifier will be unique. We note that the TTP asdefined in Section B.1 can already deal
with an unbounded number of requests, which possibly come from different sessions. However, now the
messages the TTP receives should include the session identifiers and these session identifiers will be part of
the database entries.

Now, let us turn to the principal, sayA, willing to run multiple sessions of the protocol. We will model
principal A in such a way that she can run an unbounded number of sessions with B, using the TTPT ,
on the contractual texttext. However,A will only start another session withB if the previous session has
been aborted. This models the realistic situation that eventhoughA has aborted the protocol, she might be
convinced byB to start another session because, for example, technical problems preventedB from sending
his willingness to sign the contract in time. More precisely, A first receives a request fromB asking whether
A wants to take part in a protocol run. If she is currently running a session withB, she ignores such requests.
If she is not running a session withB she can non-deterministically decide whether or not to start a (new)
session withB, i.e., the scheduler makes this decision. Before starting anew session,A andB establish an
identifier for the session which is required to be unique for all sessions and which will be part of the messages
signed. As explained above, the uniqueness of the identifieris easily guaranteed if both parties contribute to
the identifier. The formal specification follows:

E.0 counter := 0.8

E.1 If input of the form〈request, idB〉 is received onnetinB
A, then continue with E.2. Otherwise, ignore the

incoming message and continue to wait in state E.1.
E.2 If input start is received onsch pA (from the scheduler), then continue with E.3. Otherwise, ifinput

stop is received onsch pA, then stop, i.e., from now on ignore all incoming messages.9 Otherwise,
ignore the incoming message and continue to wait in state E.2.

8 Instead of a counter, one could defineA to choose a random number bit string in{0, 1}η .
9 Instead of stopping for ever, one could alternatively go back to E.1.

23

E.3 Setcounter := counter + 1. Next, chose a random nonceNA
R
← {0, 1}η and output the messagem =

sig[〈A,B, T, text, hk(NA), 〈〈A, counter〉, idB 〉〉, A] onnetoutA
B (see Section 2); ignore the subsequent

acknowledgment onnetackA
B from NetAB and continue with E.4.

E.4 If a message of the formsig[〈m,x〉, B] is received onnetinB
A wherex ∈ {0, 1}l, then outputNA on

netoutA
B ; ignore the subsequent acknowledgment onnetackA

B from NetAB and continue with E.5. Other-
wise, if the messageaborted is received onsch pA, then continue with A.1 (abort protocol). Otherwise,
ignore the incoming message and continue to wait in E.4

E.5 If a nonceN ∈ {0, 1}η is received onnetinB
A such thathk(N) = x, then write the messageContract

on some work tape and stop. Otherwise, ifresolve is received onsch pA, then continue with R.1
(resolve protocol). Otherwise, ignore the incoming message and continue to wait in state E.5.

A.1 Sendm′ = sig[〈aborted,m〉, A] on rcoutA
T ; ignore the subsequent acknowledgment fromRCA

T and
continue with A.2.

A.2 If the messagesig[〈aborted,m′〉, T] is received onrcinT
A, then continue with E.1. Otherwise, if a mes-

sage of the formsig[〈m, sig[〈m,x〉, B]〉, T] is received onrcinT
A, then write the messageContract

on some work tape and stop. Otherwise, ignore the incoming message and continue to wait in state A.2.
R.1 Send〈m, sig[〈m,x〉, B]〉 on rcoutA

T ; ignore the subsequent acknowledgment fromRCA
T and continue

with R.2.
R.2 If sig[〈m, sig[〈m,x〉, B]〉, T] is received onrcinT

A, then writeContract on some work tape and stop.
Otherwise, ignore the incoming message and continue to waitin state R.2.

In a similar way, a responder running multiple sessions could be specified. It is also straightforward (but
tedious) to model principals that run multiple sessions with different principals, on different contractual
texts, and in different roles at the same time (and these parameter could be determined by the adversary). In
particular, one could model principals in such a way that they run several instances of the ASW protocol with
the same contractual partner and the same TTP on the same contractual text at the same time. This may or
may not be realistic. Also, one could add to the protocol specification a signing oracle (formally modeled as
an honest party in the protocol specification, similar to thewatch dog) which allows the adversary to generate
signatures of the honest party, e.g.,A, on messages of his choice, subject to certain restrictions, as otherwise
the adversary could simply simulateA.

C Proof of Theorem 2

PROOF. We denote the protocol machines ofΠ by Hi for i ∈ H.
SinceA is fairness-enabling, we know that there exists a polynomial pA(η) such that the number of

configuration changes ofA in a run ofSD(η) with S(Π, A, S′) is bounded bypA(η) (with overwhelming
probability) for any schedulerS′. Also, sinceΠ is fairness-enabling we know that there exists a polynomial
pΠ(η) such that the number of configuration changes of every protocol machine ofΠ in a run ofSD(η)
is bounded bypΠ(η). Hence, givenΠ andA there exists a polynomialp(η) such that the overall number
of configuration changes ofA and the protocol machines ofΠ in a run ofSD(η) is bounded byp(η) (with
overwhelming probability).

Since, by definition, ITMs can only output messages if they change their local configuration, we know
that the number of messages written on output tapes byA and the ITMs inΠ is bounded byp(η) (with over-
whelming probability). In particular, the overall number of messages sent to resilient channels is bounded by
p(η) (with overwhelming probability). SinceD is polynomially samplable, the number of messages initially
stored in resilient channel buffers is also bounded by some polynomial p′(η). Hence, with overwhelming

24

probability, not more thanp′′(η) = p(η) + p′(η) messages are stored in a resilient channel at any point in a
run.

By definition, protocol and adversary machines only accept afixed and finite set of messages from a
scheduler. ForA the set is the singletonMA = {schedule}. LetMi denote the (finite) set of messages
thatHi accepts from a scheduler.

We are now ready to define a schedulerSand then show that it is fair forS(Π, A) andD. The schedulerS
works in rounds. Every round consists of two phases. In the first phase of a round,Sdoes the following: First,
S sendsschedule to A. When activated again,S sends for everyi ∈ H and everym ∈Mi, the messagem
to Hi. Note that after sending one messagem, S has to wait to be scheduled again before another message
can be sent. Once the first phase of a round is completed,Ssends, in the second phase of the round, to every
resilient channel the index1 p′′(η) times. (Again, after every activation of a resilient channel, S has to wait
to be activated again.) Note that since, as explained above,the number of messages in a resilient channel is
bounded byp′′(η), after the second phase of a round, the resilient channels are guaranteed to be empty. We
defineS to performp(η) rounds. We now argue thatS is fair.

We first observe that if in one round no ITM inS(Π, A) has changed its local configuration, then these
ITMs will also not change their configuration in subsequent rounds.

For the ITMs inS(Π) this is obvious: If such a machine is activated by the scheduler again, the machine
will perform exactly the same computation as before and willas before return to the local configuration at the
beginning of the activation. Note that the head position on the random tape is part of the local configuration,
and hence, the random coins used in these activations do not change.

ForA, we use that if the ITMs inS(Π, A) do not change their local configuration, then the adversary view
oracle ofA will return the same view when invoked byA. As a result,A’s computation will be unchanged.
In particular, the local configuration ofA at the beginning and at the end of the activation will be the same.

As explained above, after every round the resilient channels are empty, and hence, they do not change
their configuration in the next round unless they receive a new message in the next round. Hence, if the
adversary and the protocol machines do not change their local configuration in one round (and hence, do not
produce output), then no machine inS(Π, A) will change its local configuration again. Since the adversary
and the protocol machines can only change their local configurations at mostp(η) times (only with negligible
probability they can change their local configurations moreoften) it follows that afterp(η) rounds, no ITM in
S(Π, A) will change its local configuration again (only with negligible probability). Thus, sinceS performs
p(η) rounds, it follows thatS is fair. ✷

D The ASW Protocol is Fair

We provide a proof sketch of Theorem 3. The case of an honest initiator is restated in Proposition 1 and the
case of an honest responder in Proposition 2.

Proposition 1. ΠASW-A is strongly fair w.r.t.checkfair and view oraclesOASW
adv andOASW

sch .

We prove Proposition 1 by contradiction. Assume that there exist an adversaryA and a fair schedulerSsuch
thatExp(η,ΠASW-A, A, S, checkfair) = 0 with non negligible probability. There are three cases.

1. Either the agentA has not sent her first messagesig[mA, A],
2. OrA has sentsig[mA, A] but has not received any valid answer from the adversary,
3. OrA has sentsig[mA, A] and has received a valid answer from the adversary.

25

At least one of the three cases must happen with non negligible probability. For each case in turn, we show
how to turn an adversaryA that wins againstΠASW-A into adversaries against that break the primitives used
in ΠASW-A.

Case 1 The agentA has not sent her first messagesig[mA, A] thus A cannot have the contract. Since
checkfair=0 it follows that the adversary succeeded in getting a valid contract of the form〈sig[mA, A],
NA, sig[mB , B], NB〉 or of the formsig[〈sig[mA, A], sig[mB , B]〉, T]. Either the adversary did not make
any valid query to the trusted party (for the instance of the protocol under consideration), in which case,
it means that he forged a valid signature ofA or T . Or the adversary made a valid query to the trusted
party, which means that he sent a message of the form〈sig[mA, A], sig[mB, B]〉 to T . Thus the adversary
has forged a valid signature ofA. In both cases, the adversary must have forged a valid signature of an
honest agent.
The above intuition can be easily transformed into a reduction from the security of the protocol to that of
the underlying signature scheme. Given an adversaryA (that plays the role of partyB) we construct an
adversaryADS against the signature schemeDS. Recall thatADS has access to a signing oracleODS(sk, ·)
and takes as input the verification keypk that corresponds tosk. AdversaryADS simulates the experiment
Exp(η,ΠASW-A, A, S, checkfair). It usesA as a subroutine and it simulates the environment ofA, i.e.
it simulates partiesA andT , as well as the execution ofS. Moreover, it also simulates oraclesOASW

sch and
OASW

adv . In particular,ADS sets the public key ofA to pk. The adversaryADS starts the execution ofA
and answers all its queries (essentially only queries toOASW

adv .) AdversaryADS tracks the messages sent
to the “watch dog” and verifies if any of the messages is a validcontract which (by definition) contains a
valid signature on some message, with respect topk. SinceADS did not make any queries to its signing
oracle, such a signature is a valid forgery, and thusADS breaks the security ofDS. We note thatADS can
simulate any adversary oracle, as long as it does not need thesecret key ofA to do so (i.e. the simulation
works virtually for all reasonable adversaries).

Case 2 The agentA has sentsig[mA, A] but has not received any valid answer from the adversary. SinceS is
fair, A must have contacted the trusted party, asking for aborting.EitherT sent a valid contract in return,
which means the adversary has sent a valid resolve request toSand thus has received a valid contract, in
which casecheckfair = 1. Or T replied with an abort message toA so,A does not have the contract.
Sincecheckfair = 0 it must be the case that the adversary succeeded in obtaininga valid contract. We
distinguish two cases, depending on the form of the contract.
First, assume that the contract is of the formsig[〈sig[mA, A], sig[mB , B]〉, T]. SinceA should not be
able to obtain a contract, it must be the case thatA did not send a resolve request toT , and therefore the
contract must have been obtained by forging a signature ofT .
Under these circumstances, we show how construct an adversary ADS againstDS. AdversaryADS sim-
ulates the experimentExp(η,ΠASW-A, A, S, checkfair). In the execution,A plays the roles of parties
A andT . It generates a pair of signing verification keys forA, via (skA,pkA)

R
← K(η), it generates a

key k for the hash function viak R
← hkg(η), and then setspk as the public key ofT . It then simulates

the execution of the experiment answering the adversary’s queries to oracleOASW
sch (using the parameters

set as above). WhenS schedulesA to output its first message,ADS generates a nonceNA and com-
putes a signatureσ = S(skA,mA) on messagemA = (A,B, T, text, hk(NA)) and sends(mA, σ) to
the adversary. Since we are in the case whenA obtains a replacement contract, it must be the case that
the replacement contract was created byA itself (without involvingT , since otherwise whenA contacts
T (this event happens becauseS is fair)), thenA would also obtain a replacement contract). SinceADS

never makes a query to its signing oracle, the replacement contract output byA is in fact a successful
forgery againstDS.

26

In the case thatA obtains a standard contract〈sig[m′
A, A], N ′

A, sig[mB , B], NB〉, we further distinguish
two cases, depending on whetherhk(N

′
A) = hk(NA) or not.

First we construct an adversaryAH againstH which is successful ifhk(N
′
A) = hk(NA) (hereNA is the

nonce thatA sends in its first message andN ′
A is the nonce in the contract thatA′ obtains.) As before,

the adversaryAH simulates the execution ofExp(η,ΠASW-A, A, S, checkfair): it plays the role of
bothA andT (in particular generates signing/verification keys for both) and simulates the execution of
S. Recall thatAH takes as input a keyk and a hash valuey ← hk(x) for somex

R
←∈ {0, 1}η . The

key of the hash function is set tok. WhenA has to output its first message,AH composes message
mA = (A,B, T, text, y), computes a signatureσ onmA, and sends(mA, σ) to the adversary. When the
adversary outputs a contract〈sig[m′

A, A], N ′
A, sig[mB , B], NB〉 such thathk(N

′
A) = hk(NA), adversary

AH outputsN ′
A as a forgery. Notice that ifA is successful inExp(η,ΠASW-A, A, S, checkfair) (and

the contract thatA outputs is as above) thenAH outputs a preimage ofy with non-negligible probability.
Finally, if hk(N

′
A) 6= hk(NA) we show how to construct an adversaryADS against signature schemeDS.

AdversaryADS simulates the execution of the experimentExp(η,ΠASW-A, A, S, checkfair) where it
simulates the partiesA andT . In particular, it generates signing/verification keys forT , and the keyk for
the hash function. The public key ofA is set topk (the key thatADS has as input). WhenA has to output
its first message,ADS selectsNA

R
← {0, 1}η , computes the messagemA = (A,B, T, text, hk(NA)),

sendsmA to its signing oracleODS(sk, ·) and receives a signatureσ on mA. It sends(mA, σ) to A. It
the continues execution, answering all queries thatA may make to oracleOASW

adv , until A outputs the
forgery contract〈sig[m′

A, A], N ′
A, sig[mB , B], NB〉. At this point,ADS outputs(m′

A, sig[m′
A, A]) as its

attempted forgery. Since the contract is valid,sig[m′
A, A] is a valid signature onm′

A. Moreover, since
hk(NA) 6= hk(N

′
A), it follows that the messagem′

A 6= mA, and thereforem′
A was not queried byADS

to its signing oracle. We conclude that the forgery thatADS outputs is valid.
Case 3 The agentA has sentsig[mA, A] and has received a valid answer from the adversary. SinceA is

honest, she must have sent her nonceNa to the adversary thus the adversary has the contract. Eitherthe
adversary sent his nonceNb to A, which means thatA has also a valid contract orA did not get any valid
answer from the adversary. SinceS is fair, A must have contacted the trusted party, asking for resolving.
If the trusted party did not receive previously a valid abortrequest, he must have returned a valid contract
to A. Otherwise (ifT did receive a valid abort request), the adversary must have sent of message of the
form sig[aborted, sig[mA, A], A] to T on the secure channel betweenA andT (which is impossible in
our model).

Conversely, the ASW protocol is fair toB, the second participant.

Proposition 2. ΠASW-B is strongly fair w.r.t.checkfair and view oraclesOASW-B
adv andOASW-B

sch .

The proof is quite similar to the previous one. Assume that there exist an adversaryA and a fair schedulerS
such thatExp(η,ΠASW-B, A, S, checkfair) = 0 with non negligible probability.

There are four cases.

1. Either the agentB has not received any valid message of the formsig[mA, A] from the adversary,
2. The agentB has or has not received a valid message of the formsig[mA, A] from the adversary but he

has chosen not to answer
3. The agentB has received a valid message of the formsig[mA, A] from the adversary and he has sent his

promise to signsig[mB , B] but he did not get a valid answer from the adversary,
4. The agentB has received a valid message of the formsig[mA, A] from the adversary, he has sent his

promise to signsig[mB , B] and he got a valid answer from the adversary.

27

At least one of the following four cases must happen with non-negligible probability. Here, we describe
how a successful forgery would relate to the security of the underlying primitives of the protocol. Security
reductions similar to those for Proposition 1 can be easily constructed.

Cases 1 and 2are similar. In both cases,B has not sent his promise to signsig[mB, B]. Sincecheckfair =
0 it follows that the adversary obtained a valid contract of the form〈sig[mA, A], NA, sig[mB , B], NB〉 or
sig[〈sig[mA, A], sig[mB , B]〉, T]. Either the adversary did not make any valid query to the trusted party,
in which case, it means that he forged a valid signature ofB or T . Or the adversary made a valid query
to the trusted party, which means that he sent a message of theform 〈sig[mA, A], sig[mB , B]〉 to T . Thus
the adversary has forged a valid signature ofB. In both cases, the adversary must have forged a valid
signature of an honest agent.

Case 3 The agentB has received a valid message of the formsig[mA, A] from the adversary and he has
sent his promise to signsig[mB , B] but he did not get a valid answer from the adversary. SinceS is
fair, B must have contacted the TTP, asking for resolving. EitherT sent a valid contract in return,
in which casecheckfair = 1. Or T sent an abort message toB thus B does not have the con-
tract. Sincecheckfair = 0, it must be the case that the adversary obtained a contract ofthe form
〈sig[mA, A], NA, sig[mB , B], NB〉 or sig[〈sig[mA, A], sig[mB, B]〉, T]. SinceB get an abort message,
this means thatT did not sent a valid contract to the adversary even if he sent valid resolve requests
afterward. Thus the adversary must have forged a valid signature of an honest agent or computedNB out
of sig[mB , B].

Case 4 The agentB obtained a valid contract. However, this can not be the case sincecheckfair = 1.

E Proving the ASW Protocol to be Balanced

We provide a proof sketch of Theorem 4. The case of an honest initiator is restated in Proposition 3 and the
case of an honest responder in Proposition 4.

Proposition 3. ΠASW-A is balanced w.r.t.goal1, goal2,OASW
adv ,OASW

adv′ ,OASW
sch , andOASW

sch′ .

Proof (sketch):The proof is done by contradiction. Assume there exist restricted adversary machinesA =
A(OASW

adv) andA′ = A′(OASW
adv′) for ΠASW-A and a schedulerS = S(OASW

sch) for ΠASW-A andA such that,
for any fair schedulerS′ = S′(OASW

sch′) for ΠASW-A andA′ and for any challenge functionchallenge, it is
the case thatExp(η,ΠASW-A, A, A′, S, S′, goal1, goal2, challenge) = 1 with non negligible probability.

Let q be such thatS(η) ❀ q whereS = S(ΠASW-A, A, S). We distinguish several cases forq:

1. Either the agentA has not sent her first messagesig[mA, A],
2. OrA has sentsig[mA, A] but has not received any valid answer from the adversaryA and the TTP has

answered a valid resolve query from the adversary for this contract,
3. OrA has sentsig[mA, A] but has not received any valid answer from the adversaryA and the TTP has

not answered a valid resolve query from the adversary for this contract,
4. Or A has sentsig[mA, A] and has received a valid answer from the adversaryA (thus she has sent her

nonceNA) but did not get the last message from the adversary,
5. OrA has finished her protocol, that is, she got the last message from A.

At least one of the five cases must happen with non negligible probability.

Case 1 The agentA has not sent her first messagesig[mA, A]. For all statesq as above this case, we set
challenge(q) = 2, and show that there exists a fair schedulerS′ for ΠASW-A such that adversaryA′

cannot achievegoal2.

28

Consider the schedulerS′ that causesA to stop the execution of the protocol before sending its first
message toA′ (recall that stopping the execution is one of the valid actions that a protocol participant can
take at any point). SinceA′ achievesgoal2, it follows that there are three possibilities regarding how A′

to obtains a valid contract. The first two are to compute by itself (with no interaction withT) a contract
〈sig[mA, A], NA, sig[mB , B], NB〉, or a contractsig[〈sig[mA, A], sig[mB, B]〉, T] (which would imply
forging a signature ofA), or to contact the TTP with a message of the form〈sig[mA, A], sig[mB , B]〉
(which would also imply thatA′ has forged a signature ofA).
As we did in the case of fairness, we turn this intuition into areduction. Assume that there exists adver-
sariesA andA′, schedulerS such that for all schedulersS′ adversaryA′ achieves goalgoal2 from state
q (whereS(η) ❀ q).
We show how to use the above adversaries and schedulers, together with the schedulerS′ described also
above in order to build an adversaryADS againstDS.
AdversaryADS simulatesExp(η,ΠASW-A, A, A′, S, S′, goal1, goal2, challenge). In the executionA
plays the role of partiesA andT . In particular it generates keys for signing/verifying forparty T , and
sets the public verification key ofA to pk (the key thatADS takes as input). It keeps tracks of the global
state of the system, until simulatorSfinishes its execution. If in the resulting stateq partyA had already
sent its first message the adversaryADS aborts. Otherwise, it continues its simulation with scheduler S′.
It answers all queries thatA′ makes to its oracle (this is possible sinceADS knows the local states of all
parties, except the signing key that corresponds topk). It answers the queries thatA′ makes toT . If A′

sends a valid contract to the “watch dog”,ADS extracts an appropriate forgery (the part of the contract
that consists of a valid signature ofA) and outputs it as its own attempted forgery. SinceADS does not
make any oracle requests to its own oracle, any valid signature with respect topk is a valid forgery, and
thereforeADS wins.

Case 2 The agentA has sentsig[mA, A] but has not received any valid answer fromA′ and the TTP has
answered a valid resolve query fromA′ for this contract. Let us show that the adversaryA′ cannot
achievegoal1 (A does not have a contract). In particular, consider the scheduler S′ that schedulesA
such that she immediately contacts the TTP, with the abort requestsig[aborted, sig[mA, A], A]. SinceT

has already answered a resolve request fromA′ for this contract,A would receive a valid contract from
the TTP thusgoal1 is not achieved.

Case 3 The agentA has sentsig[mA, A] but has not received any valid answer from the adversaryA′ and the
TTP has not received a valid resolve query from the adversarythat corresponds to this message ofA. For
such a stateq, we setchallenge(q) = 2 and show that there exists a schedulerS′ such that adversaryA′

cannot achievegoal2 (“having a valid contract”). Consider the scheduleS′ that as soon asA outputs its
first message (i.e.sig[mA, A]) schedulesA to send an abort requestsig[aborted, sig[mA, A], A] to TTP
T .
By assumptionT has not received a resolve request from the adversary soT would send a valid abort
message toA. Since we only consider fair schedulers, this abort messagewould eventually be delivered
to A so no party would receive a valid contact fromT . We now distinguish two different cases depending
on the contract thatA′ obtains.
If the contract is a replacement contract,sig[〈sig[mA, A], sig[mB, B]〉, T], thenA′ managed to forge a
signature ofT .
We turn this intuition into a proof by reduction. We construct the following adversaryAH against the
hash function family. As before, adversaryADS simulatesExp(η,ΠASW-A, A, A ′, S, S′, goal1, goal2,

challenge), and in the executionADS usesA, A′, S as subroutines. Here,ADS plays the roles of both
partiesA and T . It generates a pair of signing verification keys forA, via (skA,pkA)

R
← K(η), it

29

generates a keyk for the hash function viak R
← hkg(η), and then setspk as the public key ofT (recall

thatpk is the key thatADS receives as input.)
It then simulates the execution of the experiment answeringthe adversary’s queries to oracleOASW

sch

(using the parameters set as above). WhenS schedulesA to output its first message,ADS generates
a nonceNA and computes a signatureσ = S(skA,mA) on messagemA = (A,B, T, text, hk(NA))
and sends(mA, σ) to the adversary. At this point the schedulerS is changed with schedulerS′ (which
schedulesA to contactT with an abort message, and carries out the abort protocol). Since we are in the
case whenA obtains a replacement contract, it must be the case that the replacement contract was created
by A itself (sinceT would not provide one due to the abort message described above). The replacement
contract is a valid signature with respect topk. Furthermore,ADS never makes a query to its signing
oracle, the replacement contract output byA is therefore a successful forgery againstDS.
If A obtains a standard contract〈sig[m′

A, A], N ′
A, sig[mB, B], NB〉, we further distinguish two cases,

depending on whetherhk(N ′
A) = hk(NA) or not (hereNA is the nonce thatA sends in its first message

andN ′
A is the nonce in the contract thatA′ obtains).

Assume for now thathk(N
′
A) = hk(NA) Therefore, the only way for the adversaryA′ to obtain a valid

contract of the form〈sig[m′
A, A], N ′

A, sig[mB, B], NB〉 or sig[〈sig[mA, A], sig[mB, B]〉, T] is to compute
NA in the first case or compute a valid signature ofT in the second case.
AdversaryAH simulatesExp(η,ΠASW-A, A, A′, S, S′, goal1, goal2, challenge) and it uses adver-
sariesA, A′ soubroutines. In the simulation,AH plays the roles of bothA andT (in particular generates
signing/verification keys for both). Recall thatAH takes as input a keyk and a hash valuey ← hk(x)

for somex
R
←∈ {0, 1}η . The key of the hash function is set tok. AdversaryAH uses in its simula-

tion the schedulerS up to the point whenA sends its first message to the adversaryA. It then starts
using the schedulerS′, which as before, directsA to requestT to abort the protocol. Next, it continues
the execution up to the point when the adversary outputs a contract 〈sig[m′

A, A], N ′
A, sig[mB , B], NB〉

such thathk(N
′
A) = hk(NA), adversaryAH outputsN ′

A as a forgery. Notice that ifA is successful
in Exp(η,ΠASW-A, A, S, checkfair) (and the contract thatA outputs is as above) thenAH outputs a
preimage ofy with non-negligible probability.
Finally, if the adversary outputs a contract such thathk(N

′
A) 6= hk(NA), then we construct an adversary

againstDS.
AdversaryADS uses adversariesA, A′ and the schedulerS as subroutines by simulating the experiment
Exp(η,ΠASW-A, A, A′, S, S′, goal1, goal2, challenge) as above, and simulates partiesA andT . The
public key ofA is set topk (the key thatA receives as input). WhenA has to output its first message,ADS

selectsNA
R
← {0, 1}η , computes the messagemA = (A,B, T, text, hk(NA)), sendsmA to its signing

oracleODS(sk, ·) and receives a signatureσ on mA. It sends(mA, σ) to A. At this point, it switches
the scheduler toS′ (which directsA to carry out the abort protocol withT). In the remainder of the
execution,ADS answers all queries thatA may make to oracleOASW

adv , until A outputs the forgery contract
〈sig[m′

A, A], N ′
A, sig[mB , B], NB〉. At this point,ADS outputs(m′

A, sig[m′
A, A]) as its attempted forgery.

Since the contract is valid,sig[m′
A, A] is a valid signature onm′

A. Moreover, sincehk(NA) 6= hk(N
′
A),

it follows that the messagem′
A 6= mA, and thereforem′

A was not queried byADS to its signing oracle.
We conclude that the forgery thatADS outputs is valid.

Case 4 The agentA has sentsig[mA, A] and has received a valid answer from the adversaryA′ (thus
she has sent her nonceNA) but did not get the last message fromA′. We show that the adversary
A′ cannot achievegoal1 (A does not have a contract). In particular, consider the scheduler S′ that
schedulesA such that she immediately contacts the TTP, sending a resolve request with the message
〈sig[mA, A], sig[mB , B]〉. SinceA did not send any abort request, the TTP will return a valid contract to
A thatS′ will immediately deliver toA thusgoal1 is not achieved. Note that the adversary cannot have

30

sent an abort request to the TTP, masqueradingA, since the communications betweenA and the TTP are
made over a secure channel.

Case 5 The agentA has finished her protocol, that is, she got the last message from the adversary. She has
the contract thusgoal1 cannot be achieved.

Conversely, the ASW protocol is balanced w.r.t. the second participantB. Let goal1 be “B does not
have a contract” andgoal2 be “the adversary has a valid contract”.

Proposition 4. ΠASW-B is balanced w.r.t.goal1, goal2,OASW-B
adv ,OASW-B

adv′ ,OASW-B
sch , andOASW-B

sch′ .

Proof (sketch):The proof is again done by contradiction. Assume there existrestricted adversary machines
A = A(OASW

adv) andA′ = A′(OASW
adv′) for ΠASW-B and a schedulerS = S(OASW

sch) for ΠASW-B andA such
that, for any fair schedulerS′ = S′(OASW

sch′) for ΠASW-B andA′ and for any challenge functionchallenge,
with non negligible probability it holds thatExp(η,ΠASW-B, A, A′, S, S′, goal1, goal2, challenge) = 1.

We haveS(η) ❀ q whereS = S(ΠASW-B, A, S). We consider several cases forq.

1. Either the agentB has not received any valid message of the formsig[mA, A] from the adversary,
2. The agentB has or has not received a valid message of the formsig[mA, A] from the adversary but he

has chosen not to answer,
3. The agentB has received a valid message of the formsig[mA, A] from the adversary and he has sent his

promise to signsig[mB , B] but he did not get a valid answer fromA, and the TTP has answered a valid
abort query fromA for this contract,

4. The agentB has received a valid message of the formsig[mA, A] from the adversary and he has sent his
promise to signsig[mB , B] but he did not get a valid answer fromA, and the TTP has not answered a
valid abort query fromA for this contract,

5. The agentB has received a valid message of the formsig[mA, A] from the adversary, he has sent his
promise to signsig[mB , B] and he got a valid answer from the adversary.

At least one of these cases must happen with non negligible probability. Bellow we give the intuition
that shows how attacks against the protocols can be translated into attacks against the primitives used in
the construction. The intuition can be transformed into reduction proofs similar to the ones in the proof of
Proposition 3.

Cases 1 and 2are similar. In both cases,B has not sent his promise to signsig[mB , B]. Let us show
that A′ cannot achievegoal2 (“having a valid contract”) for every schedulerS′ fair for ΠASW-B and
A′. In particular, consider the scheduler that schedulesB such that he refuses to initiate any contract-
signing protocol with the adversaryA′. The only way forA′ to obtain a valid contract either of the form
〈sig[mA, A], NA, sig[mB , B], NB〉 or of the formsig[〈sig[mA, A], sig[mB , B]〉, T] is to forge a valid sig-
nature ofB or T or to contact the TTP sending a message of the form〈sig[mA, A], sig[mB , B]〉 to T . In
that caseA′ has forged a valid signature ofB. In both cases,A′ must have forged a valid signature of an
honest agent.

Case 3 The agentB has received a valid message of the formsig[mA, A] from the adversary and he has
sent his promise to signsig[mB , B] but he did not get a valid answer from the adversary, and the TTP
has answered a valid abort query fromA for this contract. Let us show that the adversaryA′ can-
not achievegoal2 (“having a valid contract”). The TTP has not provided and would not provide any
valid contract to any party. The only way for the adversaryA′ to obtain a valid contract of the form
〈sig[mA, A], NA, sig[mB , B], NB〉 or sig[〈sig[mA, A], sig[mB, B]〉, T] is to forge computeNB in the
first case or compute a valid signature ofT in the second case.

31

Case 4 The agentB has received a valid message of the formsig[mA, A] from the adversary and he has
sent his promise to signsig[mB , B] but he did not get a valid answer fromA, and the TTP has not
answered a valid abort query fromA for this contract. Let us show that the adversaryA′ cannot achieve
goal1 (B does not have a contract). In particular, consider the scheduler S′ that schedulesB such that
she immediately contacts the TTP, sending a resolve requestwith the message〈sig[mA, A], sig[mB, B]〉.
SinceT has not answered a valid abort request fromA′ for this contract,B would receive a valid contract
from the TTP thusgoal1 is not achieved.

Case 5 The agentB has has the contract thusgoal1 cannot be achieved.

F Security for Digital Signature Schemes

Definition 6. [Security of a digital signature scheme]Let DS = (G,K,S,V) be a digital signature
scheme. Consider an adversaryA that is given input a public keypk and access to a signing oracleOS(sk, ·),
wherepk andsk are matching keys generated via(pk, sk)

R
← K(1η). The oracle takes input a messageM

and returns a signatureσ R
← S(sk,M). A queries this oracle on messages of its choice, and eventually out-

puts a forgery(M,σ). The adversary’s advantage in attacking the scheme is the probability that it outputs a
pair (M,σ) such thatσ is a valid signature for messageM and this message was not queried to the signing
oracle.DS is said to be secure against existential forgery under adaptive chosen-message attacks (or, simply,
secure) if the advantage of any efficientA is negligible ink. Here and for other definitions in the paper we
adopt the convention that the time complexity of adversaryA is the execution time of the entire experiment,
including the time taken for parameter and key generation, and computation of answers to oracle queries.

G Preimage Resistant Hash Functions

Definition 7 (Hash Functions.).A hash function family{hk(·)}k∈{0,1}η consists of algorithms for key gen-
eration and function evaluation. We assume that for security parameterη, key generation consists in choosing
k

R
← {0, 1}η . Hash function evaluation for keyk takes an arbitrary input in{0, 1}∗ and returns a bit string

y ∈ {0, 1}l, for some constantl. We writey ← hk(x) for the process of evaluating the hash function onx

for keyk.

In this paper we use hash functions that are preimage resistant.

Definition 8 (Preimage resistance).We say that the hash function family{hk(·)}k∈{0,1}η is preimage resis-
tant if for probabilistic polynomial time algorithmsA

Pr
[

y ← hk(x) ; x′ R
← A(k, y) : hk(x

′) = y
]

is a negligible function inη. The probability is taken over the random choicesk
R
← {0, 1}η ; x

R
← {0, 1}η ,

as well as the coins used by the adversary.

32

