
Aspects of Pairing Inversion

S. Galbraith1?, F. Hess2, and F. Vercauteren3??

1 Mathematics Department, Royal Holloway University of London,
Egham, Surrey TW20 0EX, UK.
steven.galbraith@rhul.ac.uk
2 Technische Universität Berlin,

Fakultät II, Institut für Mathematik Sekr. MA 8-1,
Strasse des 17. Juni 136, D-10623 Berlin, Germany.

hess@math.tu-berlin.de
3 Department of Electrical Engineering, University of Leuven
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

frederik.vercauteren@esat.kuleuven.be

Abstract. We discuss some applications of the pairing inversion prob-
lem and outline some potential approaches for solving it. Our analysis of
these approaches gives further evidence that pairing inversion is a hard
problem.
4

Keywords: pairing inversion, Tate pairing, ate pairing, Diffie-Hellman prob-
lem

1 Introduction

Pairing-based cryptography is a major area of research in public key crypto-
graphy. The security of pairing-based cryptosystems relies on the difficulty of
solving various computational problems. Some of these computational problems
have only been very recently proposed, and there has been little scrutiny in the
literature of whether they are truly difficult.

This paper studies a collection of such computational problems namely, the
problems of inverting various pairings on elliptic or hyperelliptic curves. We
describe some potential avenues for solving some pairing inversion problems and
we discuss the limitations of these approaches.

We present several results on applications of pairing inversion. It is well
known (following Verheul) that if one can invert certain pairings on a class of
? This research supported by the EPSRC.

?? Postdoctoral Fellow of the Research Foundation - Flanders (FWO)
4 The work described in this paper has been supported in part by the European Com-

mission through the IST Programme under Contract IST-2002-507932 ECRYPT.
The information in this document reflects only the author’s views, is provided as is
and no guarantee or warranty is given that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability

curves then one can solve the computational Diffie-Hellman problem in a class
of subgroups of finite fields. This shows that the difficulty of pairing inversion
problems has implications not just to pairing-based cryptography, but also to all
cryptography based on exponentiation in finite fields. Verheul’s results [33, 34]
(and also those of Satoh [29]) are usually considered as evidence for the difficulty
of pairing inversion.

We give some applications of being able to solve certain restricted pairing
inversion problems. For example, we show that it is sufficient to solve just a one-
sided pairing inversion problem to be able to solve the bilinear-Diffie-Hellman
problem.

Pairings on (hyper)elliptic curves are computed in two stages. The first stage
is to perform Miller’s algorithm (which computes the evaluation of a certain func-
tion at a certain divisor). The second stage is the final exponentiation (typically,
exponentiation in F∗qk to a power (qk − 1)/n). Hence, naively, to invert a pair-
ing seems to require first inverting the final exponentiation and then inverting
Miller’s algorithm.

It was shown by Galbraith, Ó hÉigeartaigh and Sheedy [13] and Granger
et al. [17] that some pairings can be computed without a final exponentiation
(or with final exponentiation reduced to just a squaring). Hence, in these cases,
the difficulty of pairing inversion depends entirely on the difficulty of inverting
Miller’s algorithm.

On the other hand, we discuss in Section 6 cases where inverting Miller’s
algorithm is easy. However, in these cases the final exponentiation is highly
non-trivial (and is many-to-one). Hence, in these cases, the difficulty of pairing
inversion is entirely due to the difficulty of finding the right pre-image of the
final exponentiation.

One might then conclude that if either finding the right pre-image of the final
exponentiation or inverting Miller’s algorithm is hard, inverting the pairing is
hard. However, it might be possible to invert pairings in one step (rather than
the two stage process mentioned above). In Section 7 we discuss approaches
along these lines, and give the rather subtle reasons why they do not seem to
work.

The plan of the paper is as follows. First we define the pairing inversion
problems and give some applications. In Sections 6 and 7 we consider approaches
to solve pairing inversion problems in the elliptic curve case. We consider curves
of higher genus in Section 8.

2 Statement of the problems

The main technical contents of the paper concern the ate pairing, which is defined
on the product of two distinct cyclic subgroups of elliptic curves (or divisor class
groups of higher genus curves). Hence, we define our pairings on cyclic groups.

Let G1, G2 and GT be cyclic groups of prime order r. In this paper we
consider non-degenerate bilinear pairings of the form

e : G1 ×G2 −→ GT .

2

We now define the two pairing inversion problems under consideration.

Definition 1. Let e be a non-degenerate bilinear pairing as above.
The Fixed Argument Pairing Inversion 1 (FAPI-1) problem is: Given
D1 ∈ G1 and z ∈ GT , compute D2 ∈ G2 such that e(D1, D2) = z.
The Fixed Argument Pairing Inversion 2 (FAPI-2) problem is: Given
D2 ∈ G2 and z ∈ GT , compute D1 ∈ G1 such that e(D1, D2) = z.

Note that both problems FAPI-i have a unique solution for each given pair
(Di, z) ∈ Gi × GT since the pairing is non-degenerate and the groups G1, G2

and GT are cyclic of order r.
We remark that one can solve the discrete logarithm problem in GT in subex-

ponential time (in terms of the input size of GT) and hence one can solve FAPI-1
and FAPI-2 in subexponential time (in terms of the size of the input (D, z)).
Our concern in this paper is whether one can do better than this, in particular
whether there are families of groups for which pairing inversion is polynomial
time. Note that one can solve the discrete logarithm problem in G1 or GT using
Pollard’s methods but this has exponential complexity for families with bounded
embedding degree.

Finally, we mention a more general problem.

Generalised Pairing Inversion (GPI): Given a pairing e and a value
z ∈ GT , find D1 ∈ G1 and D2 ∈ G2 with e(D1, D2) = z.

Obviously, GPI is not harder than either FAPI-1 or FAPI-2.

3 Applications of pairing inversion

In this section we explore some applications of the ability to solve pairing inver-
sion problems. Note that for fixed groups G1, G2 and GT it is often the case that
there are several alternative ways to define/implement pairings e : G1 × G2 →
GT . For most of the following applications it will be sufficient to be able to invert
any one of the different pairings.

We start by generalising the result of Verheul to the case of pairings on cyclic
groups G1 6= G2.

Theorem 1. Let e : G1 × G2 → GT be a non-degenerate bilinear pairing on
cyclic groups of prime order r. Suppose one can solve FAPI-1 and FAPI-2 in
polynomial time. Then one can solve the computational Diffie-Hellman problem
in G1, G2 and GT in polynomial time.

Proof. Let O1 be an oracle to solve FAPI-1 for e and let O2 be an oracle to solve
FAPI-2 for e. In other words, O1(P, z) returns Q ∈ G2 such that e(P,Q) = z.

Let (P, aP, bP) be a CDH input inG1. Choose a randomQ ∈ G2 and compute
z = e(aP,Q). Call O1(P, z) to get aQ. Now compute z′ = e(bP, aQ) and call
O2(Q, z′) to get abP .

The other two cases are similar. �

3

This shows that if one can efficiently solve both pairing inversion problems
FAPI-1 and FAPI-2 for a family of curves then the corresponding subgroups GT
in finite fields are not secure for cryptography.

Now we present new results.

Lemma 1. Let notation be as above. If one can solve FAPI-1 in polynomial
time then one can compute all non-trivial group homomorphisms ψ1 : G1 → G2

in polynomial time.

Proof. Fix generators P ∈ G1 and Q ∈ G2. We will show how to compute the
unique group homomorphism ψ1 : G1 → G2 defined by ψ1(P) = Q. Since any
non-trivial group homomorphism maps a generator onto a generator, we will be
able to compute all non-trivial group homomomorphisms in this way.

Let O1 be an oracle to solve FAPI-1. Given any P ′ ∈ G1 we know that
P ′ = aP for some a. Compute z = e(P ′, Q) = e(P,Q)a. Call O1(P, z) to get
aQ = ψ1(P ′) as required. �

Similarly, one can prove.

Lemma 2. Let notation be as above. If one can solve FAPI-2 in polynomial
time then one can compute all non-trivial group homomorphisms ψ2 : G2 → G1

in polynomial time.

Hence, inverting pairings enables the computation of “distortion maps” be-
tween G1 and G2. We will now present some applications of this idea.

Corollary 1. If one can solve FAPI-1 in polynomial time then one can solve
DDH in G1. If one can solve FAPI-2 in polynomial time then one can solve DDH
in G2.

Proof. Let P, aP, bP, cP be a DDH problem in G1. Let Q ∈ G2 and. By Lemma 1
one can compute a homomorphism ψ1 : G1 → G2 such that ψ1(P) = Q. So
compute aQ = ψ1(aP) and cQ = ψ1(cP) and test whether e(P, cQ) = e(bP, aQ)
as usual. The second statement follows analogously. �

Theorem 2. Let notation be as above. Then the following are equivalent

1. One can solve FAPI-1 and FAPI-2 in polynomial time;
2. One can solve FAPI-1 in polynomial time and one has an efficiently com-

putable homomorphism ψ2 : G2 → G1;
3. One can solve FAPI-2 in polynomial time and one has an efficiently com-

putable homomorphism ψ1 : G1 → G2.

Proof. (1) ⇒ (2) is Lemma 2 and (1) ⇒ (3) is Lemma 1.
We now show (2) ⇒ (1). Given a FAPI-2 instance (Q, z) set P = ψ2(Q)

and run the FAPI-1 oracle O1(P, z) to get Q′. Then Q′ = uQ for some u and
e(P, uQ) = z. Hence, the solution to the original FAPI-2 problem is uP = ψ2(Q′).

Showing (3) ⇒ (1) is similar. �

4

The above results imply a refinement of Verheul’s result which shows that
one does not necessarily have to solve both FAPI-1 and FAPI-2 to get interesting
applications.

Corollary 2. Let e : G1 × G2 → GT be a non-degenerate bilinear pairing on
cyclic groups of prime order r. Suppose there is an efficiently computable (i.e.,
can be computed in polynomial time) homomorphism ψ2 : G2 → G1. If one can
solve FAPI-1 in polynomial time then one can solve the computational Diffie-
Hellman problem in G1, G2 and GT in polynomial time.

By symmetry we get:

Corollary 3. Let e : G1 × G2 → GT be a non-degenerate bilinear pairing on
cyclic groups of prime order r. Suppose there is an efficiently computable ho-
momorphism ψ1 : G1 → G2. If one can solve FAPI-2 in polynomial time then
one can solve the computational Diffie-Hellman problem in G1, G2 and GT in
polynomial time.

The existence of efficiently computable homomorphisms ψi : Gi → G3−i
(i.e., “distortion maps”) depends on the curve and groups G1 and G2. For el-
liptic curves with k > 1, we have the following: except for elements of its two
eigenspaces, the Frobenius endomorphism ϕ can always be used as the basis of
a distortion map. Distortion maps for the 1-eigenspace exist if and only if the
curve is supersingular [34, 12]. Similarly, one can show that for the q-eigenspace,
distortion maps exist if and only if the curve is supersingular.

We now introduce some variants of the bilinear-Diffie-Hellman problem.

Definition 2. Let e : G1 ×G2 → GT be a non-degenerate bilinear pairing.
The bilinear-Diffie-Hellman problem (BDH-1) is: given P, aP, bP ∈ G1

and Q ∈ G2 to compute e(P,Q)ab.
The bilinear-Diffie-Hellman problem (BDH-2) is: given P ∈ G1 and Q,
aQ, bQ ∈ G2 to compute e(P,Q)ab.

Corollary 4. Suppose one can solve FAPI-1 in polynomial time, then one can
solve BDH-1 in polynomial time.

Proof. Suppose we are given a BDH-1 instance (P, aP, bP,Q). Using an oracle to
solve FAPI-1 one can compute a group homomorphism ψ : G1 → G2 such that
ψ(P) = Q. Hence, one can compute aQ = ψ(aP) and obtains z = e(bP, aQ) =
e(P,Q)ab. �

Similarly:

Corollary 5. Suppose one can solve FAPI-2 in polynomial time, then one can
solve BDH-2 in polynomial time.

It follows that if one can solve only one of the two pairing inversion problems,
then there are potential weaknesses for pairing-based cryptosystems. Note that in
this case, cryptography in subgroups of finite fields does not seem to be affected.

5

As a final application we observe that some cryptosystems can be bro-
ken directly using one-sided pairing inversion. For example, the identity-based
signature scheme of Hess [19] has signature (u, v) on message m such that
v = H2(m, e(u, P)e(H1(ID),−QTA)v). If one can solve FAPI-2 then one can
forge signatures by choosing a random element z ∈ GT , setting v = H2(m, z)
and then solving for u the equation e(u, P) = ze(H1(ID), QTA)v.

4 Pairings

We recall some background on pairings. Let C be a non-singular projective curve
of genus g over Fq. Let r be coprime to q. It is typical for cryptographic applica-
tions to take r to be a (large) prime divisor of #Pic0

Fq
(C). It is often the case that

r ≈ qg, but in some situations it is necessary to take r smaller. The embedding
degree is defined to be the smallest positive integer k such that r | (qk−1). Note
that the embedding degree is a function of q and r. The subgroup of r-th roots
of unity of F×

qk is denoted by µr = {z ∈ F×
qk : zr = 1}.

4.1 Tate-Lichtenbaum pairing

The Tate-Lichtenbaum pairing [32, 24, 11] is defined to be a non-degenerate bi-
linear map

Pic0
F

qk
(C)[r]× Pic0

F
qk

(C)/rPic0
F

qk
(C) −→ F×

qk/(F×qk)r

which is denoted 〈D1, D2〉r.
For many cryptographic applications we assume that Pic0

F
qk

(C) contains no

elements of order r2 (so we may identify Pic0
F

qk
(C)[r] with Pic0

F
qk

(C)/rPic0
F

qk
(C)).

and we consider the reduced Tate-Lichtenbaum pairing

t(D1, D2) = 〈D1, D2〉(q
k−1)/r

r .

The mathematical definition of the Tate-Lichtenbaum pairing is as follows.
The argument on the left hand side of the Tate-Lichtenbaum pairing is repre-
sented by an Fqk -rational divisor D1 of degree zero. Since D1 is a divisor class
of order r, there is a function fr,D1 with divisor

div(fr,D1) = rD1.

The argument of the right hand side of the Tate-Lichtenbaum pairing can be
represented by an Fqk -rational divisor D2 of degree zero such that the supports
of D1 and D2 are disjoint. Then the Tate-Lichtenbaum pairing is defined to be

〈D1, D2 + rPic0
F

qk
(C)〉r = fr,D1(D2) =

∏
P

fr,D1(P)vP (D2).

Finally, we note that fr,D with div(fr,D) = rD is only defined up to scalar
multiples from F×q . It is possible to find fr,D which is defined over the field of
definition of D and we assume this in the following. We will need to impose some
additional normalisation conditions on fr,D later.

6

4.2 Ate pairings

For cryptographic purposes one applies one further simplification to the reduced
Tate-Lichtenbaum pairing by restricting the pairing to certain cyclic subgroups
G1 andG2 of Pic0

F
qk

(C)[r] that are Frobenius eigenspaces. Write ϕ for the q-power

Frobenius map on C and the Frobenius endomorphism on Pic0
F

qk
(C). Then we

define
G1 = Pic0

Fq
(C)[r], (1)

for which the eigenvalue of ϕ is 1. We also define

G2 = Pic0
F

qk
(C)[r] ∩ ker(ϕ− q). (2)

Ate pairings on elliptic curves Let E be an ordinary elliptic curve over Fq.
Let t be the trace of the q-power Frobenius endomorphism ϕ of E , such that
#E(Fq) = q − t+ 1. We assume that r ≥ 5 is a sufficiently large prime factor of
#E(Fq) and that k is minimal such that r‖(qk − 1).

If P ∈ E(Fq) has order r, then (P) − (∞) is a divisor of degree zero rep-
resenting a divisor class of order r. For P ∈ E(Fq) of arbitrary order and any
integer s we denote by fs,P a rational function on E , defined over the field of
definition of P , satisfying div(fs,P) = s((P) − (∞)) − ((sP) − (∞)). We also
need to normalise fs,P as follows. Let z ∈ Fq(E) be a local uniformizer at ∞,
that is z satisfies v∞(z) = 1. Then we define lc∞(fs,P) = (z−v∞(fs,P)fs,P)(∞)
and fnorm

s,P = fs,P /lc∞(fs,P). The function fnorm
s,P is defined over the field of defi-

nition K of P and is uniquely determined by s and P up to non-zero sth-power
multiples from K.

Theorem 3. ([22, 25]) Let S be an integer with S ≡ q mod r. Define N =
gcd(Sk−1, qk−1) and L = (Sk−1)/N . Let cS =

∑k−1
i=0 S

k−1−iqi mod N . Then

aS : G2 ×G1 → µr, (Q,P) 7→ fnorm
S,Q (P)cS(qk−1)/N

defines a bilinear pairing, called the elliptic ate pairing. If k | #Aut(E) then

atwist
S : G1 ×G2 → µr, (P,Q) 7→ fS,P (Q)cS(qk−1)/N

also defines a bilinear pairing, called the twisted ate pairing. Both pairings aS
and atwist

S are non-degenerate if and only if r - L.
The relation with the reduced Tate-Lichtenbaum pairing is

aS(Q,P) = t(Q,P)L and atwist
S (P,Q) = t(P,Q)L.

We remark that the condition k | #Aut(E) holds true if and only if E admits
a twist of degree k. We say that E admits a twist of degree d if there is an elliptic
curve E ′ defined over Fq and an isomorphism ψ : E ′ → E defined over Fqd , and d
is minimal with this property. If k | #Aut(E) does not hold one may still apply
the theorem for a divisor e of k using a base extension of degree k/e.

7

One can take S = q in Theorem 3, but the usual choice is S = t − 1, which
has half the bit length of #E(Fq) and thus yields half the loop length of the
standard reduced Tate-Lichtenbaum pairing, if r ≈ q. Note that if S < 0 we
compute fS,Q as

fS,Q = (f−S,QvSQ)−1,

where vSQ = x − xSQ is the vertical line through SQ. In certain cases it may
be possible to choose S strictly smaller than t − 1, which yields an even more
efficient computation [25].

The Duursma-Lee pairing [9] and the ηT -pairing from [3] can be regarded as
a special form of the twisted ate pairing on supersingular elliptic curves.

Ate pairings on hyperelliptic curves For hyperelliptic curves the situation is
somewhat different. In order to formulate the main results from [17], we fix some
notation. Let C be a hyperelliptic curve with a single point ∞ at infinity. For any
divisor class D we denote by ρ(D) the unique reduced divisor in D and by ε(D)
the effective part of ρ(D) so that we have ρ(D) = ε(D)−d(∞). We apply the same
normalisation to the function fs,D as above, namely fnorm

s,D = fs,D/(lc∞(fs,D))
for lc∞(fs,P) = (z−v∞(fs,P)fs,P)(∞) and z ∈ Fq(C) a local uniformizer at ∞
over Fq. A curve is called superspecial if its Jacobian is isomorphic to Eg with E
a supersingular elliptic curve. The Jacobian of superspecial curves is hence also
supersingular, and in particular has p-rank zero.

Theorem 4. ([17]) With the above notation and assumptions,

a : G2 ×G1 → µr : (D2, D1) 7→ fnorm
q,ρ(D2)

(ε(D1))

defines a non-degenerate, bilinear pairing called the hyperelliptic ate pairing. If
C is superspecial and d = gcd(k, qk − 1) then

â : G1 ×G2 → µr : (D1, D2) 7→ fnorm
q,ρ(D1)

(ε(D2))d

defines a non-degenerate, bilinear pairing.
If in any of the two pairings we have supp(ε(Di)) ∩ supp(ρ(Dj)) 6= ∅, then

ε(Di) needs to be replaced by any D ∈ Di with supp(D) ∩ supp(ρ(Dj)) = ∅.
The relation with the reduced Tate-Lichtenbaum pairing is

t(D2, D1) = a(D2, D1)kq
k−1

and t(D1, D1) = â(D1, D2)(k/d)q
k−1

.

One feature of the hyperelliptic ate pairing is that the final exponentiation
is very simple.

5 Restatement of the problems

In Section 2, the problems FAPI-1 and FAPI-2 were defined in the setting of
pairings on cyclic groups. In practice, pairings are often defined on a larger

8

object than a cyclic group, and it may be sufficient for some applications to
solve pairing inversion problems with respect to this larger domain. Hence, we
give some more general definitions which are more suitable when discussing the
Tate-Lichtenbaum pairing.

We now assume that a pairing e is a well defined, bilinear map (not necessarily
non-degenerate)

e : G1 ×G2 → µr ⊆ F∗qk (3)

where r is a large prime, G1, G2 are subgroups of Pic0
C(Fqk) with qk−1 ≡ 0 mod

r. In particular, G1 and G2 are no-longer necessarily cyclic or of exponent r
(which is why we cannot assume non-degeneracy).

We further assume that e is computed on divisor classes D1 and D2, repre-
sented by suitable divisors D1 and D2 with supp(D1) ∩ supp(D2) = ∅, as

e(D1, D2) := (fs,D1(ε(D2)))
d
, (4)

where s and d are integers and fs,D1 a function with divisor sD1 − [s]D1. Note
that s is typically r, q or S = t − 1 (see above) and d is the required final
exponentiation.

Fixed Argument Pairing Inversion 1 (FAPI-1): Given a pairing e, a divisor
class D1 ∈ G1 and z ∈ e(D1, G2) ⊆ µr, compute D2 ∈ G2 such that e(D1, D2) =
z.

Fixed Argument Pairing Inversion 2 (FAPI-2): Given a pairing e,D2 ∈ G2

and z ∈ e(G1, D2) ⊆ µr, compute D1 ∈ G1 such that e(D1, D2) = z.

The above problems generalise the case when G1 and G2 are cyclic groups.
In some situations it is possible to apply homomorphisms from G1 and G2 to
cyclic subgroups, in which case many of the results of Section 3 can be applied
in the more general setting.

Note that since r is prime and e bilinear, we have either e(D1, G2) = {1} or
e(D1, G2) = µr. In the former case, e is called degenerate for D1, whereas in the
latter case e is called non-degenerate for D1.

Let i = 1 or 2 and choose a divisor D3−i ∈ G3−i. It follows that any effi-
cient algorithm to solve FAPI-(3− i) immediately leads to a computable group
homomorphism hi : µr → Gi/Ki, with Ki the kernel of the pairing for fixed
D3−i. Furthermore, note that the homomorphism hi is always injective. How-
ever, it may not be possible in practice to efficiently compute generators for Ki

or Gi/Ki.

Miller inversion (MI). Let D1 be fixed and let S be a set of divisors. Let
z ∈ F∗qk . Compute a divisor D2 ∈ S such that z = fs,D1(D2) or if no such divisor
exists then output ‘no solution’.

One of the main observations of this paper is that Miller inversion is not
necessarily hard.

9

6 Inverting Miller’s algorithm

We assume that e(D1, D2) = fs,D1(D2)d. It is natural to try to invert the pairing
by first inverting the final exponentiation (i.e., taking d-th roots in the finite field)
and then inverting the pairing function (Miller inversion). We discuss inverting
Miller’s algorithm in this section.

6.1 Miller inversion can be easy

The aim of this section is to show that inverting Miller’s algorithm is not neces-
sarily difficult.

Consider the elliptic ate pairing on G2×G1. Then one can explicitly compute
the rational function fS,Q(x, y) for Q ∈ G2, Q 6= ∞ with S = t−1 and t the trace
of Frobenius (as noted earlier, when S < 0 one computes fS,Q as 1/(f−S,QvSQ)).
Note that S can be very small (e.g., S = ±2).

Lemma 3. Suppose S ≥ 2 and that Q has order > 2. Then the functions
fS,Q(x, y) and f−S,Q(x, y)−1 can be written in the form

fS,Q(x, y) = (f1(x) + yf2(x))/(x− xSQ) (5)

f−S,Q(x, y)−1 = f1(x) + yf2(x) (6)

where deg(f1(x)) ≤ (S + 1)/2 and deg(f2(x)) ≤ S/2− 1.

Proof. First, note that fS,Q has poles only at SQ and ∞, and the pole at SQ
has multiplicity one, so fS,Q can be written in the form (5).

For P ∈ E write vP (f(x, y)) for the valuation of the function f(x, y) at P .
Then, by definition, vQ(f1(x) + yf2(x)) = S and v−SQ(f1(x) + yf2(x)) = 1, and
for all affine points P 6= Q,−SQ one has vP (fS,Q(x, y)) = 0.

Suppose E has equation y2 = x3 +Ax+B. Then

S + 1 = vQ(f1(x) + yf2(x)) + v−SQ(f1(x) + yf2(x))
= vQ(N(f1(x) + yf2(x))) + v−SQ(N(f1(x) + yf2(x)))
= degx(f1(x)

2 − (x3 +Ax+B)f2(x)2)
= max{2 degx(f1(x)), 3 + 2 degx(f2(x))}

where N(α) is the norm of α with respect to the quadratic extension k(x, y)/k(x)
of function fields. It follows that degx(f1(x)) ≤ (S + 1)/2 and degx(f2(x)) ≤
S/2− 1.

Equation (6) finally follows from f−1
−S,Q = (x− xSQ)fS,Q. �

Let z be a target element of the finite field. If S > 0 then one can clear
denominators (i.e., obtain f1(x) + yf2(x)− z(x− xSQ)) and, taking a resultant
with the elliptic curve equation F (x, y) = y2 − x3 − ax− b = 0, one obtains the
polynomial (f1(x)− z(x− xSQ))2 − f2(x)2(x3 + ax+ b) in x of degree at most
S + 1. In the case S < 0 we recommend first computing z−1 and then solving
f−S,QvSQ = z−1 in a similar fashion.

10

Hence, the problem of Miller inversion is reduced to finding the unique root
in Fq of a polynomial P ∈ Fqk [x] of degree O(|t|). Equivalently, this is comput-
ing gcd(xq − x, P (x)), which can be done in O(|t|2 log q) operations in Fqk or
equivalently O(|t|2k2(log q)3) bit-operations.

Hence, as long as |t| and k grow as a polynomial function of log r, one can
solve MI in polynomial time. We now show the existence of parameters for which
this can occur. We call parameters (r, q, k) pairing friendly (with respect to a
given security parameter κ) if r is a prime, q is a prime power and there is an
elliptic curve E over Fq with order divisible by r and embedding degree k, and
such that the discrete logarithm problem in E(Fq)[r] and the discrete logarithm
problem in µr ⊂ F∗qk cannot be solved in time less than 2κ.

Lemma 4. There exist families of parameters of pairing friendly curves for
which the Miller inversion problem can be solved in polynomial time.

Proof. To balance the security of the DLP in Gi with the DLP in the finite
field Fqk , we need that r1/2 ≈ Lqk(1/3; c) with c < 2 the constant appearing in
the Number or Function Field Sieve complexities. Let ρ = log q/ log r, then in
practice one often restricts to ρ ≤ 2, which implies that k has to grow. Balancing
the security levels, implies that k has to grow as

k ≈ α(c, ρ)
(

log r
log log r

)2

, (7)

with α a constant depending on c and ρ. In practice, the approximation α ≈
1/(100ρ) seems adequate. From Φk(t − 1) ≡ 0 mod r follows that t can be as
small as r1/ϕ(k). Furthermore,

√
k ≤ ϕ(k) ≤ k for all k except k = 2, 6 and for

large k we have

lim inf
k→∞

ϕ(k)
log log k

k
= e−γ ,

with γ ≈ 0.57721 Euler’s constant. Using the bound
√
k ≤ ϕ(k), we conclude

that the smallest trace of Frobenius grows as

t ≈ exp
(

log r
ϕ(k)

)
≤ exp

(
log log r√
α(c, ρ)

)
= (log r)1/

√
α(c,ρ) , (8)

which is polynomial in log r. �

In fact, the better approximation e−γk/ log log k shows that t is allowed to
grow much faster than its minimal value, basically as O(tlog rmin), so MI is a poly-
nomial time problem for a much larger class of curves than only those with
minimal t.

To construct curves with small t one can use a family of curves, such as
those proposed by Brezing and Weng [6] with t = x + 1, r = Φk(x) for some
x ∈ Z. Alternatively one can use an adaptation of the Cocks-Pinch algorithm as
follows. Given k, a discriminant D and a bound Bt on t, repeat the following:

11

for all t ∈ [−Bt, Bt], set x = t − 1 and choose a (large) prime number r with
r|Φk(x) and k|(r−1). If D is a square mod r, compute f0 ≡ ±(t−2)/

√
D mod r

and test if sj = t2 −D(f0 + jr)2 for j = 0,±1,±2, . . . can be written as 4p with
p prime. If this is the case, output r and p. Of course, in practice, we only test
if Φk(x) has a large prime factor r using trial division and a primality test.

Example 1. We give an example with a simplest possible pairing function. The
elliptic curve E : y2 = x3 + 4 over Fp with p = 41761713112311845269 has
t = −1, r = 715827883, k = 31 and D = −3. Now S = −2 and as a Miller
function we can take 1/fnorm

S,Q instead of fnorm
S,Q . As in Lemma 3, we see that

1/fnorm
S,Q is just the tangent to E at Q and hence is of the form

1/fnorm
S,Q = y − λx− ν

with λ = 3x2
Q/(2yQ) and ν = (−x3

Q + 8)/(2yQ).
One easily checks that the non-degeneracy conditions of Theorem 3 are sat-

isfied and that the final exponentiation (after taking a greatest common divisor
with qk − 1) is equal to (qk − 1)/(3r). So

(Q,P) 7→
(
yP − (3x2

Q)/(2yQ)xP − (−x3
Q + 8)/(2yQ)

)(qk−1)/(3r)

indeed defines a non-degenerate pairing.
The problem of Miller inversion for some z ∈ Fqk then boils down to com-

puting the greatest common divisor of xq − x with

x3 + 4− (λx+ ν + z)2,

giving the x-coordinate of P . The y-coordinate of P is obtained by taking the
square root of x3

P + 4 and checking the result. To give some idea of the running
times for this using Magma, the gcd computation takes only a fraction of a
second while the square root computation takes about 1-2 seconds.

For larger traces t the Miller inversion via the greatest common divisor com-
putation of the resultant and xq−x quickly becomes ineffective due to the large
degrees. It will then be faster to apply the final exponentiation and use the Pol-
lard methods in µr ⊆ F×

qk or index calculus in F×
qk to invert the pairing via a

discrete logarithm computation.

7 Pairing inversion

In this section we consider ways to invert pairings. One approach is to take a
suitable d-th root and then do Miller inversion; this is a ‘two step’ method. An
alternative way to proceed is to try to invert the pairing in a single step. There
seems to be a significant difference between FAPI-1 and FAPI-2. For example,
to solve FAPI-1 for a fixed divisor D1 one can express fs,D1(D2)d as a rational
function with indeterminates corresponding to the divisor D2 (e.g., with the
coefficients in the Mumford representation of D2 being variables). For elliptic

12

curves, the degree of fs,D1(D2)d grows as sd. On the other hand, for FAPI-2 one
can express fs,D1(D2)d for fixed D2 as a rational function; for elliptic curves the
degree grows as s2d.

We first consider a special case which is of interest. Then we analyze the
precise relation between FAPI-1 and MI, i.e. when does one problem polytime
reduce to the other. Later we consider the problem of inverting a pairing in
one step (rather than first inverting the final exponentiation and then inverting
Miller’s algorithm).

7.1 FAPI-1 for the ate pairing on special curves

As seen in Section 6.1 there are cases of the ate pairing where it is easy to invert
Miller’s algorithm and it is natural to try to invert pairings in this case.

We revisit Example 1 in this context. As discussed, a non-degenerate bilinear
pairing can be computed as

a2(Q,P) =
(
yP − (3x2

Q)/(2yQ)xP − (−x3
Q + 8)/(2yQ)

)(qk−1)/(3r)
.

To solve FAPI-1 we are given Q = (xQ, yQ) and a target z ∈ µr ⊆ F∗qk . One can
compute λ = (3x2

Q)/(2yQ) and ν = (−x3
Q+8)/(2yQ). It suffices to find x, y ∈ Fq

such that
(y − λx− ν)(q

k−1)/(3r) = z.

The main problem is that there are d = (qk−1)/(3r) possible roots of z and only
one of them is likely to be of the correct form y−λx−ν for some (x, y) ∈ E(Fq).
It is easy to compute random d-th roots of z, but it seems to be hard to select
the correct root efficiently.

Note that one can obtain further equations with the same solution (x, y) from
a2(uQ,P) = zu for any 1 ≤ u < r.

The problem FAPI-1 is seen to be similar to the following more elementary
problem: Suppose we are given many pairs (a, z) ∈ F2

qk , such that z = (a+ x)d

for some unknown value x ∈ Fq, to find x. Usually a small number of pairs suffice
to determine x uniquely, but it appears a hard problem to actually compute it
when d is a large divisor of (qk − 1).

7.2 Is FAPI-1 ≤P MI?

The conventional wisdom is that FAPI-1 is strictly harder than MI, since the final
exponentiation destroys information. Precisely, given a pairing value z ∈ µr, one
knows that fs,D1(D2)d = z, but there are d possibilities for the value fs,D1(D2).
One might think that the attacker has to try inverting fs,D1 for all d roots in
turn, which would be infeasible if d is large. In this section we show this reasoning
to be fundamentally flawed for the Tate-Lichtenbaum pairing. We will show that,
in most cases, it suffices to choose a random d-th root of z. The situation for
the ate pairing is subtly different and we discuss this case at the end of the next
subsection.

13

Definition 3. Let e : G1 × G2 → µr be a pairing as above and let D1 be a
divisor representing an element of G1. Define S1(D1, G2) to be the set of all
divisors D2 corresponding to elements of G2 for which the pairing e(D1, D2) can
be computed as fs,D1(D2)d.

For example, for the Tate-Lichtenbaum pairing ê : E(Fq)[r]×E(Fqk) → F∗qk

and for D1 = P ∈ G1 = E(Fq)[r] we have G2 = E(Fqk) and

E(Fqk)− 〈P 〉 ⊆ S1(D1, G2) ⊆ E(Fqk).

On the other hand, for the ate or twisted ate pairing we have G1 and G2 as in
equations (1) and (2) so G2 is much smaller than in the Tate-Lichtenbaum case.
We have

S1(D1, G2) = {ε(D2) | D2 ∈ G2 and supp(D1) ∩ supp(ε(D2)) = ∅} ,

where D1 is of the form ρ(D1) for D1 ∈ G1.
Note that if D2, D3, D4 ∈ S1(D1, G2) are such that D4 is equivalent to D2 +

D3 then it follows that

fs,D1(D2)dfs,D1(D3)d = fs,D1(D4)d. (9)

In this section we consider when being able to invert Miller functions is
sufficient for inverting pairings. It is clear that if d = 1, or d is polynomially
small, then FAPI-1 ≤P MI: we invoke MI on each d-th root z′ in turn until a
solution is returned.

For large d, the situation is more interesting. For each z0 = e(D1, D2) ∈ µr
there are precisely d possible d-th roots z to choose from. It is no longer feasible
to run MI on each root in turn. We know of no efficient algorithm to identify
the roots that lie in fs,D1(S1(D1, G2)). Hence, we propose choosing a random
d-th root and then running MI. The following discussion estimates the success
probability of this method.

Fix a divisor D2 such that z0 = fs,D1(D2)d. Note that if D ∈ S1(D1, G2) is
such that fs,D1(D) = z then e(D1, D) = e(D1, D2). Denote by S2(D1) the set
of all divisors D3 such that e(D1, D3) = 1. Bilinearity implies that

D ≡ D2 +D3 where D3 ∈ S2(D1). (10)

The number of choices for D is therefore equal to the number of divisors D ∈
S1(D1, G2)∩S2(D1). If the intersection of S1 and S2 is sufficiently large and if the
corresponding values for z are relatively evenly distributed, then there is a good
chance that a divisor D exists such that fs,D1(D) = z for a randomly chosen
d-th root z of z0. More research is needed to clarify this issue. In particular, it
is necessary to understand the distribution of values z over all choices for D.

Conversely, if |S1(D1, G2)∩S2(D1)|/d < 1/2κ for sufficiently large κ then the
probability of being able to solve Tate-Lichtenbaum pairing inversion by taking
a random d-th root must be negligible.

14

Example 2. To illustrate this approach, we apply the above to the reduced Tate-
Lichtenbaum pairing on elliptic curves. In this case, we have G1 = E(Fq)[r],
G2 = E(Fqk) and d = (qk − 1)/r. Let D1 ∈ G1 and z0 ∈ µr ⊆ F∗qk . We want to
determine the probability, for a randomly chosen d-th root z of z0, that there is
a divisor D2 ∈ G2 such that fs,D1(D2) = z.

From the definition of the Tate-Lichtenbaum pairing follows that rE(Fqk) ⊂
S1(D1, G2) ∩ S2(D1). The size of rE(Fqk) is ≈ qk/r2 and thus is much smaller
than d. Hence this is not sufficient to argue that a random d-th root of z0 is in
S1(D1, G2)∩ S2(D1). However, for k > 1, Lemma IX.8 in [5] shows that S2(D1)
also contains E(Fqe) for all e|k. Since r‖E(Fq), we conclude that E(Fq)[r] ∩
rE(Fqk) = {O} and thus

|S2(D1)| ≥ |E(Fq)[r]||rE(Fqk)| ≈ rqk/r2 ≈ d.

This suggests that for the Tate-Lichtenbaum pairing with k > 1, we indeed have
FAPI-1 ≤P MI.

We remark that the above example does not imply that one can efficiently
solve FAPI-1 for the Tate-Lichtenbaum pairing. We have shown that the final
exponentiation is not an obstacle, but inverting Miller’s algorithm is still hard
since the degree of fs,D1 is exponentially large.

For the ate pairing there is the further complication that S1(D1, G2) is typi-
cally very small. This is because the ate pairing is only bilinear on G1×G2 where
G1 and G2 are Frobenius eigenspaces. In practice one might be able to invert
the Miller function to get a divisor corresponding to a divisor class outside G2,
but it is unclear that this has any usefulness since the pairing is not expected to
be bilinear outside G1 ×G2.

7.3 Is MI ≤P FAPI-1?

Although MI looks easier than FAPI-1, the former does not necessarily polytime
reduce to the latter. More precisely: does MI for fs,D1 and S1(D1, G2) polytime
reduce to FAPI-1 for e and D1, where we make the implicit assumption that
e(D1, ·) is computed as fs,D1(·)d. A possible reduction would be as follows: given
a value z ∈ fs,D1(S1(D1, G2)), call FAPI-1 on zd, which returns a class D2 with
e(D1, D2) = zd.

So for d = 1, any element of V := S1(D1, G2) ∩D2, where D2 is considered
as a set, will be a solution to MI. In this case we do have MI ≤P FAPI-1. It
is interesting to note that the cardinality of the set V can be very large, which
directly follows from the fact that the pairing is well-defined. For instance: in
case of the ate pairing on G2 × G1 which has d = 1, the set V consists of all
Fq-rational degree zero divisors D2 ∈ D2 with supp(D1) ∩ supp(D2) = ∅.

For d > 1, there are two cases: the first case is where V only contains one
element (or a polynomial number of elements), then again we have MI ≤P FAPI-
1. Examples are: the ate pairing on G1 × G2 or the elliptic ate pairing. In the
second and most general case, the cardinality of V does not grow polynomially, so
we cannot conclude that MI ≤P FAPI-1. The reduced Tate-Lichtenbaum pairing
provides an example of this behaviour.

15

7.4 Degree bounds

We have seen that Miller functions can be of (very) low degree and hence easy
to invert. In this section we look at the question whether pairing functions can
have low degree as well.

The following lemma shows that it is not possible to find pairings on ellip-
tic curves which can be inverted for the reason that the corresponding pairing
functions have low degree. It thus provides a security argument for pairing based
cryptography, to some extent at least.

Lemma 5. Let E be an elliptic curve and f ∈ Fqk(E). Assume that Q 7→ f(Q)d

defines a non-constant homomorphism G2 → µr for some positive exponent d.
Then d deg(f) ≥ (1/6)#G2.

Proof. Let h = (fd ◦ [2]) − f2d. Then h(Q) = 0 for all Q ∈ G2. Since f is not
constant, by considering the degrees of fd ◦ [2] and f2d it follows that h is not
zero. Thus #G2 ≤ deg(h) ≤ 4 deg(fd) + 2 deg(fd) ≤ 6d deg(f). �

More precisely, the lemma shows that even just homomorphisms cannot be
obtained using small degree functions. We saw in Section 7.2 that if f has small
degree, then MI is easy. But Lemma 5 implies d = Ω(r) in this case, so d must
be large and there will be many possible d-th roots of z to choose from. As we
have seen, this appears to be the obstacle to pairing inversion.

If on the other hand d is small then it would be easy to compute d-th roots.
But then f would need to have large degree and, in order to solve MI, be of a
particular inversion-friendly form.

It is even hard to construct elliptic curves such that pairing inversion would
be easy. One possible way of attack could be to arrange for f and d such that
there is a map h : µr → G2 given by polynomials or rational functions of “small
degree” together with a final exponentiation. More generally, h should have a
compact representation. Since there does not seem to be a Riemann-Roch theory
available like for the pairing case G2 → µr, it is unclear whether or how such
a representation could be achieved. Note that polynomials for h can always be
obtained via interpolation, but this does not give a compact representation.

8 Inverting pairings on high genus curves

8.1 General considerations

As we have seen, there does not seem to be much hope to efficiently invert
pairings on elliptic curves. So the question arises whether it is possible to actually
construct a curve of higher genus where pairing inversion (or more generally
inversion of a homomorphism given by a rational function) is actually possible
in a non-trivial situation.

There is some reason to expect success in this case, since the hyperelliptic
ate pairing gives both significant loop shortening as well as a very simple final
exponentiation. More precisely, this pairing takes the form

(D1, D2) 7→ fnorm
q,ρ(D1)

(ε(D2)).

16

So there is no final exponentiation and the degree of the function is O(gq), which
is polynomial in log(r) if q is fixed and g tends to infinity.

However, these potential simplifications are opposed by the fact that we are
evaluating functions at divisors rather than a single point. The divisor ε(D2) is
in general a sum of g independent points. Thus FAPI-1 now becomes a problem
of solving multivariate systems of equations.

By replacing D2 with random multiples we can achieve that ε(D2) consists
of a Galois orbit of Fqkg -rational points, or put differently, represents an Fqk -
rational place of degree g. That is we only need to solve a multivariate system
where the variables are conjugated under the qk-power Frobenius. Since qk is
large, this leads to a univariate system of equations but with large degrees.
Hence the situation eventually becomes similar to the elliptic curve case, from a
complexity point of view.

We give some details of this approach in the next section for a very special
family of curves. Our results do not currently imply any weakness for pairing
inversion on these curves.

8.2 Duursma curves

Duursma and Lee [9] proposed implementing pairings on the supersingular curves

C : y2 = xp − x+ b where b = ±1

over Fp where p ≡ 3 (mod 4). These curves have genus g = (p− 1)/2 and have
embedding degree k = 2p. For a point P = (xp, yP) ∈ C(Fpm) one can show
that the point [p]P = (xp

2

P + 2b,−yp
2

P) satisfies p((P)− (∞)) ≡ ([p]P)− (∞) in
the divisor class group.

Duursma and Lee showed how to compute pairings on these curves extremely
efficiently. The key idea is to use, for P = (xp, yP) ∈ C, the function

gP (x, y) = ypP y − (xpP − x+ b)(p+1)/2

which has divisor (gP) = p(P) + (−[p]P) − (p + 1)(∞). One can then compute
eta or ate pairings on C(Fpm) efficiently. Galbraith, Ó hÉigeartaigh and Sheedy
[13] showed that if one includes denominators then the final exponentiation is
just a squaring. One can obtain suitable parameters with rather small values
Fpm . For example, one gets parameters which could be secure by working over
F472 or over F83.

Let us consider the p = 83 case (we do not claim that there is a large
prime divisor of the group order in this case). One has #Pic0

C(F83) ≈ 2262 and
k = 2p = 166 so F83k ≈ 21058. Let P,Q ∈ C(F83). Then the pairing of P with
ψ(Q) (where ψ is the usual distortion map, see [9, 13]) can be computed as

z = (gP (ψ(Q))/(xψ(Q) − xp
2

P − 2b))2.

To solve FAPI-1 for this pairing one tries each of the two square roots z1/2 in
turn, computes f(x, y) = gP (x, y)−z1/2(x−xp

2

P −2b) and takes a resultant with

17

y2 = xp − x + b to get a polynomial in x of degree p + 1. It is then a simple
matter to find roots in Fp.

However, it is not sufficient to be able to invert pairings on single points. As
we have mentioned, we are usually pairing general divisors and for applications
such as those in Section 3 it is necessary to be able to invert pairings in the
general case. We now discuss the two intermediate cases e(D1, Q) and e(P,D2)
in turn.

If D1 =
∑g
i=1(Pi) − g(∞), where the points Pi are typically defined over

some extension of Fp, then e(D1, Q) =
∏g
i=1 e(Pi, Q). The above method can

still be used by taking the product of the g functions before taking the resultant.
This leads to a univariate polynomial of degree < p2 which is still feasible to
solve. This may look like progress towards breaking some cryptographic protocols
which are implemented using special divisors (see [3, 10] for such proposals)
but in such cases we could also have broken the system simply by trying all
Q ∈ C(Fp).

If D2 =
∑g
i=1(Qi)− g(∞), again with Qi defined over some extension of Fp,

then one again defines e(P,D2) =
∏g
i=1 e(P,Qi). If one introduces indetermi-

nates Qi = (xi, yi) for each point then one obtains a large and under-determined
multivariate system. The attack seems hopeless in this case.

As mentioned earlier, we can exploit the fact that with probability 1/g the
divisor D2 is of the form D2 =

∑g
i=1(Q

σi)− g(∞) where Q ∈ C(Fpg) and where
Gal(Fpg/Fp) = {σ1, . . . , σg}. One then notes that

e(P,ψ(D2)) =
g∏
i=1

e(P,ψ(Qσi)).

Now, ψ is defined over Fpk and gcd(k, g) = 1 so we can write the above as

g∏
i=1

e(P,ψ(Q)q
ki

=
g−1∏
i=0

e(P,ψ(Q))p
ki

= e(P,ψ(Q))1+p
k+···+pk(g−1)

which is computing NF
pkg/F

pk
(e(P,ψ(Q)). To solve FAPI-1 now simply requires

inverting the norm and then following the previous method. The problem is now
very similar the problem with the elliptic ate pairing; there are too many possible
pre-images to check. Hence this approach also fails.

Solving FAPI-1 for the fully general case of e(D1, D2) is also hard for the
above reasons. It would be very interesting to have some new techniques to
handle pairing inversion in this case.

9 Conclusion

We have outlined and analysed some potential methods to solve the pairing
inversion problem. Our methods currently do not solve the pairing inversion
problem for cryptographically useful curves. Hence, our results currently support
the security of pairing-based cryptosystems.

18

Acknowledgements

We thank Takakazu Satoh for comments on a draft of the paper.
The first two authors would also like to thank the Fields Institute for pro-

viding a pleasant research environment during part of this research.

References

1. R. Avanzi. Aspects of Hyperelliptic Curves over Large Prime Fields in Software
Implementation. Cryptographic Hardware and Embedded Systems - CHES 2004.
volume 3156 of Lecture Notes in Computer Science, pages 133–147. Springer, 2004.

2. R. Avanzi, N. Thériault, and Z. Wang. Rethinking low genus hyperelliptic jacobian
arithmetic over binary fields: Interplay of field arithmetic and explicit formulae.
Technical report, CACR, 2006. CACR 2006-07.

3. P. S. L. M. Barreto, S. Galbraith, C. O hEigeartaigh, and M. Scott. Efficient pairing
computation on supersingular abelian varieties. Designs, Codes and Cryptography,
Vol. 42, No. 3 (2007) 239–271.

4. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In Moti Yung, editor, CRYPTO, volume 2442 of
Lecture Notes in Computer Science, pages 354–368. Springer, 2002.

5. I. F. Blake, G. Seroussi, and N. P. Smart. Advances in elliptic curve cryptography.
Cambridge, 2005.

6. F. Brezing and A. Weng. Elliptic curves suitable for pairing based cryptography.
Designs, Codes and Cryptography, 37, 133–141, 2005.

7. D. G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math. Comp.,
48(177):95–101, 1987.

8. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren.
Handbook of elliptic and hyperelliptic curve cryptography. Discrete Mathematics
and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2006.

9. I. M. Duursma and Hyang-Sook Lee. Tate Pairing Implementation for Hyperelliptic
Curves y2 = xp − x + d. In Chi-Sung Laih, editor, ASIACRYPT, volume 2894 of
Lecture Notes in Computer Science, pages 111–123. Springer, 2003.

10. G. Frey and T. Lange. Fast Bilinear Maps from the Tate-Lichtenbaum Pairing on
Hyperelliptic Curves. In F. Hess, S. Pauli, M. Pohst, editors, ANTS VII, volume
4076 of Lecture Notes in Computer Science, pages 466–479. Springer, 2006.

11. G. Frey and H-G. Rück. A remark concerning m-divisibility and the discrete
logarithm in the divisor class group of curves. Math. Comp., 62(206):865–874,
1994.

12. S. D. Galbraith and V. Rotger, Easy decision Diffie-Hellman groups, LMS J. Com-
put. Math. 7 (2004) 201–218.

13. S. Galbraith, C. O hEigeartaigh, and C. Sheedy. Simplified pairing computation
and security implications. To appear in J. Math. Crypt., 2007.

14. P. Gaudry, F. Hess and N. P. Smart. Constructive and Destructive Facets of Weil
Descent on Elliptic Curves. J. Cryptology., 15(1):19–46, 2002.

15. P. Gaudry, E. Thomé, N. Thériault and C. Diem. A double large prime variation
for small genus hyperelliptic index calculus. To appear Math. Comp..

16. R. Granger, D. Page, and N. Smart. High security pairing-based cryptography
revisited. In F. Hess, S. Pauli, M. Pohst, editors, ANTS-VII, volume 4076 of
Lecture Notes in Computer Science, pages 480–494. Springer, 2006.

19

17. R. Granger, F. Hess, R. Oyono, N. Thériault and F. Vercauteren. Ate pairing
on hyperelliptic curves. In Advances in Cryptology – EUROCRYPT 2007, volume
4515 of Lecture Notes in Computer Science, pages 419–436. Springer-Verlag, 2007.

18. C. Guyot, K. Kaveh, and V. M. Patankar. Explicit algorithm for the arithmetic
on the hyperelliptic Jacobians of genus 3. J. Ramanujan Math. Soc., 19(2):75–115,
2004.

19. F. Hess, Efficient identity based signature schemes based on pairings, In K. Nyberg
and H. Heys, (eds.), SAC 2002, Springer LNCS 2595 (2000) 310–324.

20. F. Hess. Computing Riemann-Roch spaces in algebraic function fields and related
topics. J. Symb. Comp., 33(4):425-445, 2002.

21. F. Hess. A Note on the Tate Pairing of Curves over Finite Fields. Arch. Math.,
82:28-32, 2004.

22. F. Hess, N. Smart, and F. Vercauteren. The Eta-pairing revisited. IEEE Transac-
tions on Information Theory, 52(10):4595–4602, 2006.

23. T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves. Appl. Algebra
Engrg. Comm. Comput., 15(5):295–328, 2005.

24. S. Lichtenbaum. Duality theorems for curves over p-adic fields. Invent. Math.,
7:120–136, 1969.

25. S. Matsuda, N. Kanayama, F. Hess and E. Okamoto, Optimised versions of the
Ate and Twisted Ate Pairings, preprint 2007.

26. N. Koblitz and A. Menezes. Pairing-Based Cryptography at High Security Levels.
In Nigel Smart, editor, IMA Int. Conf., volume 3796 of Lecture Notes in Computer
Science, pages 13–36. Springer, 2005.

27. V. S. Miller. Short programs for functions on curves. Unpublished manuscript
1986. Available at http://crypto.stanford.edu/miller/miller.pdf.

28. V. S. Miller. The Weil pairing, and its efficient calculation. J. Cryptology,
17(4):235–261, 2004.

29. T. Satoh, On polynomial interpolations related to Verheul homomorphisms, LMS.
J. Comput. Math., 9 (2006) 135–158.

30. J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1986.

31. H. Stichtenoth. Algebraic function fields and codes. Universitext. Springer-Verlag,
Berlin, 1993.

32. J. Tate. WC group over p-adic fields. Séminaire Bourbaki, 1958.
33. E. Verheul. Evidence that XTR Is More Secure than Supersingular Elliptic Curve

Cryptosystems. In B. Pfitzmann, editor, EUROCRYPT, volume of 2045 Lecture
Notes in Computer Science, pages 195–210. Springer, 2001.

34. E. Verheul, Evidence that XTR is more secure than supersingular elliptic curve
cryptosystems, J. Crypt., 17, No. 4 (2004) 277–296.

35. N. Yui. On the Jacobian varieties of hyperelliptic curves over fields of characteristic
p > 2. J. Algebra, 52(2):378–410, 1978.

20

