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Abstract Algebraic immunity of Boolean functions is a very important concept in recently intro-

duced algebraic attacks of stream cipher. For a n-variable Boolean function f , the algebraic immunity

AIn(f) takes values in {0, 1, . . . , dn
2 e}. For every k in this range, denote Bn,k the set of all n-variable

Boolean functions with algebraic immunity k, and we know that Bn,k is always non-empty. According

to the algebraic immunity, we can form a hierarchy of Boolean functions. Trivially, |Bn,0| = 2. In

general, about this integer sequence |Bn,k|, k = 0, 1, . . . , dn
2 e, very few results are known. In this

paper, we show an explicit formula for |Bn,1|. That is, we obtain an exact formula for the number of

Boolean functions with algebraic immunity one. This is the first exact formula for the terms in the

above integer sequence. We also give a tight upper bound for nonlinearity of Boolean functions with

algebraic immunity one.
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1 Introduction

Boolean functions are very important in stream ciphers, of which there are two models: combiner

model and filter model. They have been proved to be theoretically equivalent, but the attacks do not

works quite similarly on each model. What they have in common is that both the combining function

and the filtering function should be balanced, have high algebraic degree, high nonlinearity and high

correlation immunity.

Recently, a new clever attack [3] [2] [1] upon stream cipher, the so called algebraic attack, brings a

completely new criterion for the design of secure stream cipher systems, known as algebraic immunity.

A Boolean function on n variables is a mapping from Fn
2 into F2, which is the finite field with two

∗The work was supported by NNSF of China (No. 10501049) and 973 Project (No. 2004CB318000).
†Corresponding author. E-mail address: dengyp@amss.ac.cn (Y. Deng)

1



elements. We denote Bn the set of all n-variable Boolean functions.

Any Boolean function f in Bn has a unique representation as multivariate polynomials over F2,

which is called the algebraic normal form (ANF)

f(x1, x2, ..., xn) =
∑

I⊆{1,...,n}
aI

∏

i∈I

xi

where the aI ’s are in F2. The algebraic degree deg(f) of f equals the maximum degree of those

monomials with nonzero coefficients in its algebraic normal form. A Boolean function f is called

affine, if deg(f) ≤ 1. The support of f is defined as Supp(f) = {x ∈ Fn
2 : f(x) = 1}, and the wt(f) is

the number of vectors which lies in Supp(f).

Definition 1.1[6] The algebraic immunity AIn(f) of an n-variable Boolean function f is defined

to be the lowest degree of nonzero functions g such that fg = 0 or (f + 1)g = 0.

It is known that for arbitrary n-variable Boolean function f , we have AIn(f) ≤ dn
2 e. Let Bn,k =

{f ∈ Bn : AIn(f) = k}, where k = 0, 1, ..., dn
2 e. From [5], we know that Bn,k is always non-empty.

Thus we have an integer sequence |Bn,k|, k = 0, 1, ..., dn
2 e. Trivially, |Bn,0| = 2. We are interested

in what kinds of Boolean functions in Bn,k, and their cardinals. If we know this, we can successfully

form a hierarchy of Boolean functions according their algebraic immunities, but unfortunately, for a

general k, it seems rather difficult to determine completely the number |Bn,k|, so far as we know, there

is little results about this. For example, the references [7] [4] give some lower bound for |Bn,dn
2 e|.

In this paper, we have a try to understand more about this problem, we can give a definite formula

to count the number of Boolean functions in Bn,1, this is the first nontrivial exact formula for the

terms in the above integer sequence, and we also give a tight upper bound of nonlinearity for those

functions.

2 Main Results

In this section, we give our main results and their proofs. Let us start with a simple fact.

Lemma 2.1 Let f ∈ Bn be a non-constant Boolean function, then AIn(f) = 1 if and only if

there exists a hyperplane (i.e. (n− 1)-dimensional subspace of Fn
2 ) H in Fn

2 such that Supp(f)⊆ H or

Supp(f)⊇ H or Supp(f)⊆ H or Supp(f)⊇ H, where H = Fn
2\H.

Proof. AIn(f) = 1 means there exists a degree-1 function g such that f · g = 0 or (f + 1) · g = 0,

the support of g is a hyperplane or its complement, then it’s easy to derive the lemma.
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Lemma 2.2 We choose m distinct vectors from Fn
2\{(0, 0, .., 0)} to form a matrix over F2 with

rank r, denote the total number of this kind of matrices by fn(m, r), then

fn(m, r) =
{

0 if r > m
fn(m− 1, r) · (2r −m) + fn(m− 1, r − 1) · (2n − 2r−1) otherwise

Proof. Suppose we’ve already a matrix composed by m− 1 distinct non-zero vectors α1, α2, ...,

αm−1 in Fn
2 , we need to choose αm such that rank{α1, α2, ..., αm} = r, there are two cases to be

considered: first, if rank{α1, α2, ..., αm−1} = r, then we should choose αm in the subspace spanned by

α1, α2, ..., αm−1, there are 2r −m choices for αm; second, if rank{α1, α2, ..., αm−1} = r − 1, we should

choose αm not in the subspace spanned by α1, α2, ..., αm−1, there are 2n − 2r−1 possibilities, then we

obtain our recursive relation.

When m = r, from [8] we know

fn(r, r) = (2n − 1) · (2n − 2) · ... · (2n − 2r−1)

and by Lemma 2.2 we can obtain iteratively all fn(m, r).

Lemma 2.3 We denote Fn(m, r) the number of possibilities to choose m distinct non-zero vectors

from Fn
2 whose rank is r, then Fn(m, r) = fn(m, r)/m!.

Proof. It is obvious.

Now, we can deduce our definite formula to count the number of n-variable Boolean functions with

algebraic immunity one, this is the following theorem.

Theorem 2.4 We have |Bn,1| = 2− 2n+1 +
∑2n−1

m=1

∑n
r=1 Fn(m, r) · 2r+1 · (22n−r − 1) · (−1)m+1.

Proof. By Lemma 2.1, we only need to consider the following set

A = {X ⊆ Fn
2 : X 6= ∅ and X 6= Fn

2 , there exists a hyperplane H such that X ⊆ H or X ⊆ H or

X ⊇ H or X ⊇ H}, and |A| is what we want, that is, |A| = |Bn,1|.

Let us give an order on all 2n − 1 nonzero vectors in Fn
2 , let αi be the ith vector and Hi be the

hyperplane which is {x ∈ Fn
2 :< x, αi >= 0} , where < x, αi > denotes the inner-product of x and αi,

i = 1, ..., 2n − 1.

We denote Ai = {X ⊆ Fn
2 : X 6= ∅, X 6= Fn

2 , X 6= Hi, X 6= Hi and X ⊇ Hi or X ⊆ Hi or X ⊇ Hi

or X ⊆ Hi}, we have |A| = |⋃2n−1
i=1 Ai| + 2n+1 − 2, in which 2n+1 − 2 is the number of non-constant
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affine functions. By the Inclusion and Exclusion-Principle, then

|
2n−1⋃

i=1

Ai| =
∑

i

|Ai| −
∑

i,j

|Ai

⋂
Aj |+ ... + (−1)m+1

∑

i1,i2,...,im

|
m⋂

j=1

Aij |+ ... + |
2n−1⋂

i=1

Ai|.

We need to compute |⋂m
j=1 Aij

|. If m = 1, it is easy to compute that |Ai| = 22 · (22n−1 − 2). Suppose

m > 1, we can divide
⋂m

j=1 Aij
into two parts

m⋂

j=1

Aij
=

⋃

Sij
=Hij

orHij

{X ⊆ Fn
2 : X 6= ∅, X ⊆

m⋂

j=1

Sij
}

⋃ ⋃

Sij
=Hij

orHij

{X ⊆ Fn
2 : X 6= Fn

2 , X ⊇
m⋃

j=1

Sij
}.

Since {X ⊆ Fn
2 : X 6= ∅, X ⊆ ⋂m

j=1 Sij
} and {X ⊆ Fn

2 : X 6= Fn
2 , X ⊇ ⋃m

j=1 Sij
} are symmetric, these

two parts have the same cardinal, we can only consider the first part. If rank{αi1 , αi2 , ..., αim
} = r,

then
⋂m

j=1 Hij is a (n−r)-dimensional subspace, and then
⋂m

j=1 Sij is either ∅ or a (n−r)-dimensional

flat, note that the components of the first part are disjoint, in other words, there are 2r disjoint flats

with dimension (n− r), we get

|
⋃

Sij
=Hij

orHij

{X ⊆ Fn
2 : X 6= ∅, X ⊆

m⋂

j=1

Sij
}| = 2r · (22n−r − 1).

then

|
m⋂

j=1

Aij
| = 2r+1 · (22n−r − 1).

When we choose randomly m non-zero vectors from Fn
2 , its rank may distribute from 1 to Min{n,m},

by lemma 2.3, there are Fn(m, r) possibilities that the rank of this group of vectors is r, we have

∑

i1,i2,...,im

|
m⋂

j=1

Aij
| =

n∑
r=1

Fn(m, r) · 2r+1 · (22n−r − 1).

Finally, don’t forget that we should take into account the 2n+1 − 2 non-constant affine functions, we

can get

|A| = 2n+1 − 2 +
2n−1∑
m=2

n∑
r=1

Fn(m, r) · 2r+1 · (22n−r − 1) · (−1)m+1 + Fn(1, 1) · 22 · (22n−1 − 2)

= 2− 2n+1 +
2n−1∑
m=1

n∑
r=1

Fn(m, r) · 2r+1 · (22n−r − 1) · (−1)m+1.

This proves our theorem.

Remark From our formula, we have the following table

n |Bn,1| |Bn,1|/|Bn|
1 2 0.5
2 14 0.875
3 198 0.7734375
4 10582 0.161468505859
5 7666550 0.00178500777110457420349121093750
6 1081682871734 0.000000058638145973718101833238591780
7 9370945806264076577334 2.75387346428130707474160629154766355497062e-17
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We can see from the above table, that Bn,1 constitutes only a very small part of Bn, and as n grows

up, the proportion of Bn,1 in Bn approaches 0.

It is well known that for any α ∈ Fn
2 , the value

Wf (α) =
∑

x∈Fn
2

(−1)f(x)+<x,α>

is called the Walsh coefficient of f at α. The nonlinearity of Boolean function f can be expressed via

its Walsh coefficients by the next formula

nl(f) = 2n−1 − 1
2
Maxu∈Fn

2
|Wf (u)|.

We also derive a tight upper bound on the nonlinearity of Boolean functions with algebraic immunity

one.

Theorem 2.5 Let f be in Bn with AIn(f) = 1, then nl(f) ≤ 2n−2, and this bound is tight.

Proof. Suppose f and g in Bn, it’s easy to verify that

2 · (−1)f ·g = 1 + (−1)f + (−1)g − (−1)f+g.

By the definition of Walsh coefficient, we have

2 ·Wf ·g(α) = W0(α) + Wf (α) + Wg(α)−Wf+g(α),

if f · g = 0, then

2nδα,0 + Wf+g(α) = Wf (α) + Wg(α).

Since AIn(f) = 1, we assume g(x) =< β, x > +a0, in which β is nonzero in Fn
2 and a0 in F2. Let

α = 0, we get

2n + (−1)a0Wf (β) = Wf (0).

Then

2n ≤ |Wf (0)|+ |Wf (β)| ≤ 2 ·Maxu∈Fn
2
|Wf (u)|.

Finally

nl(f) = 2n−1 − 1
2
Maxu∈Fn

2
|Wf (u)| ≤ 2n−1 − 2n−2 = 2n−2.

Note that the upper bound we obtained above is also tight. For n = 1, the above bound gives

nl(f) ≤ 1
2 , that is, nl(f) = 0. Suppose n ≥ 2. Consider f(x1, x2, . . . , xn) = x1x2 in Bn, clearly

AIn(f) = 1, because x1x2(x1 + x2) = 0. The Walsh coefficient of f at (a1, a2, ..., an) ∈ Fn
2 is

Wf (a1, a2, ..., an) =
∑

x∈Fn
2

(−1)x1x2+a1x1+a2x2+···+anxn =
∑

x1,x2∈F2
(−1)x1x2+a1x1+a2x2

n∏

i=3

∑

xi∈F2
(−1)aixi .
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If (a3, a4, ..., an) 6= (0, 0, ..., 0), then Wf (a1, a2, ..., an) = 0. So Wf (0, 0, 0, ..., 0) = 2n−1,

Wf (0, 1, 0, ..., 0) = Wf (1, 0, 0, ..., 0) = 2n−1 and Wf (1, 1, 0, ..., 0) = −2n−1, we get nl(f) = 2n−2.

3 Conclusion

According to the algebraic immunity, we can form a hierarchy of Boolean functions. It is very difficult

to determine the number of Boolean functions with a specified algebraic immunity. In this paper, we

obtain the first complete answer to this problem, that is, we give the exact formula for the number of

any n-variable Boolean functions with algebraic immunity one, and we also give a tight upper bound

of nonlinearity for those functions.
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