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Abstract

Consider the permutation S in RC4. Roos pointed out in 1995 that after the Key
Scheduling Algorithm (KSA) of RC4, each of the initial bytes of the permutation,
i.e., S[y] for small values of y, is biased towards some linear combination of the secret
key bytes. In this paper, for the first time we show that the bias can be observed in
S[S[y]] too. Based on this new form of permutation bias after the KSA and other
related results, a complete framework is presented to show that many keystream
output bytes of RC4 are significantly biased towards several linear combinations of
the secret key bytes. The results do not assume any condition on the secret key.
We find new biases in the initial as well as in the 256-th and 257-th keystream
output bytes. For the first time biases at such later stages are discovered without
any knowledge of the secret key bytes. We also identify that these biases propagate
further, once the information for the index j is revealed.

Keywords: Bias, Cryptanalysis, Keystream, Key Leakage, RC4, Stream Cipher.

∗This is a revised and extended version of the paper with the same title which has been presented in
the 15th Fast Software Encryption (FSE) Workshop, February 10-13, 2008, Lausanne, Switzerland and
published in LNCS vol. 5086, pages 253-269. In the current version, Theorem 6 is included as a new result
and minor revisions have been made in the formula of Theorem 7.
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1 Introduction

RC4 is one of the most well known stream ciphers. It has very simple implementation and
is used in a number of commercial products till date. Being one of the popular stream
ciphers, it has also been subjected to many cryptanalytic attempts for more than a decade.
Though lots of weaknesses have already been explored in RC4 [1, 2, 3, 4, 5, 6, 7, 8, 10, 11,
12, 14, 15, 16, 18, 19, 20], it could not be thoroughly cracked yet and proper use of this
stream cipher is still believed to be quite secure. This motivates the analysis of RC4.

The Key Scheduling Algorithm (KSA) and the Pseudo Random Generation Algorithm
(PRGA) of RC4 are presented below. The data structure contains an array S of size N
(typically, 256), which contains a permutation of the integers {0, . . . , N − 1}, two indices
i, j and the secret key array K. Given a secret key k of l bytes (typically 5 to 16), the
array K of size N is such that K[y] = k[y mod l] for any y, 0 ≤ y ≤ N − 1.

Algorithm KSA
Initialization:

For i = 0, . . . , N − 1
S[i] = i;

j = 0;
Scrambling :

For i = 0, . . . , N − 1
j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

Algorithm PRGA
Initialization:

i = j = 0;
Output Keystream Generation Loop:

i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

Apart from some minor details, the KSA and the PRGA are almost the same. In the
KSA, the update of the index j depends on the secret key, whereas the key is not used in
the PRGA. One may consider the PRGA as the KSA with all zero key. All additions in
both the KSA and the PRGA are additions modulo N .

Initial empirical works based on the weaknesses of the RC4 KSA were explored in [16,
20] and several classes of weak keys had been identified. In [16], experimental evidences
of the bias of the initial permutation bytes after the KSA towards the secret key have
been reported. It was also observed in [16] that the first keystream output byte of RC4
leaks information about the secret key when the first two secret key bytes add to 0 mod
256. A more general theoretical study has been performed in [11, 12] which includes the
observations of [16]. These biases do propagate to the keystream output bytes as observed
in [5, 11]. In [5], the Glimpse theorem [4] is used to show the propagation of biases in the
initial keystream output bytes. On the other hand, a bias in the choice of index has been
exploited in [11] to show a bias in the first keystream output byte.

More than a decade ago (1995), Roos [16] pointed out that the initial bytes S[y] of
the permutation after the KSA are biased towards some function fy (see Section 1.1 for
the definition of fy) of the secret key. Since then several works [2, 9, 10, 11, 12, 13] have
considered biases of S[y] either with functions of the secret key bytes or with absolute values
and discussed applications of these biases. However, no research has so far been published
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to study how the bytes S[S[y]] are related to the secret key for different values of y. Here
we solve this problem, identifying substantial biases in this direction. It is interesting to
note that as the KSA proceeds, the probabilities P (S[y] = fy) decrease monotonically,
whereas the probabilities P (S[S[y]] = fy) first increases monotonically till the middle of
the KSA and then decreases monotonically until the end of the KSA.

Using these results and other related techniques, we find new biases in the keystream
output bytes towards the secret key. A complete framework is presented towards the
leakage of information about the secret key in the keystream output bytes, that not only
reveals new biases at a later stage (256, 257-th bytes), but also points out that the biases
propagate further, once the information regarding j is known.

The works [2, 7] also explain how secret key information is leaked in the keystream
output bytes. In [2], it is considered that the first few bytes of the secret key is known and
based on that the next byte of the secret key is predicted. The attack is based on how
secret key information is leaked in the first keystream output byte of the PRGA. In [7], the
same idea of [2] has been exploited with the Glimpse theorem [4] to find the information
leakage about the secret key at the 257-th byte of the PRGA. Note that, our result is
better than that of [7], as in [7] the bias is observed only when certain conditions on the
secret key and IV hold. However, the biases we note at 256, 257-th bytes do not assume
any such condition on the secret key.

1.1 Notations, Contributions and Outline

Let Sr be the permutation, ir and jr be the values of the indices i and j after r many
rounds of the RC4 KSA, 1 ≤ r ≤ N . Hence SN is the permutation after the complete key
scheduling. By S0, we denote the initial identity permutation. During round r of the KSA,
ir = r − 1, 1 ≤ r ≤ N , and hence the permutation Sr after round r can also be denoted
by Sir+1.

Let SG
r be the permutation, iGr and jG

r be the values of the indices i and j, and zr be the
keystream output byte after r many rounds of the PRGA, r ≥ 1. Clearly, iGr = r mod N .
We also denote SN by SG

0 as this is the permutation before the PRGA starts.
Further, let

fy =
y(y + 1)

2
+

y
∑

x=0

K[x],

for y ≥ 0. Note that all the additions and subtractions related to the key bytes, the
permutation bytes and the indices are modulo N .

Our contribution can be summarized as follows.

• In Section 2, we present the results related to biased association of SN [SN [y]] towards
the linear combination fy of the secret key bytes.

• In Section 3, we present a framework for identifying biases in RC4 keystream bytes
towards several linear combinations of the secret key bytes.
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– In Section 3.2, we show that P (zN = N − f0) is not a random association. This
indicates bias at z256.

– In Section 3.3, we use the bias of SN [SN [1]] (from Section 2) to prove that
P (zN+1 = N + 1 − f1) is not a random association. This indicates bias at z257.

– In Section 3.4, we observe new biases in the initial keystream bytes apart from
the known ones [5]. It is shown that for r = 1 and 3 ≤ r ≤ 32, P (zr = fr−1) are
not random associations.

– These results are taken together in Section 3.5 to present cryptanalytic appli-
cations.

• In Section 4, considering that the values of index j are leaked at some points during
the PRGA, we show that biases of the keystream output bytes towards the secret
key are observed at a much later stage.

2 Bias of S[S[y]] to Secret Key

We start this section discussing how P (Sr[Sr[1]] = f1) varies with round r, 1 ≤ r ≤ N , dur-
ing the KSA of RC4. Once again, note that f1 = (K[0]+K[1]+1) mod N . To motivate, we
like to refer to Figure 1 that demonstrates the nature of the curve with an experimentation
using 10 million randomly chosen secret keys. The probability P (Sr[Sr[1]] = f1) increases
till around r = N

2
where it gets the maximum value around 0.185 and then it decreases to

0.136 at r = N . Note that this nature is not similar to the nature of P (Sr[1] = f1) that
decreases continuously as r increases during the KSA.

Towards the theoretical results, let us first present the base case for r = 2, i.e., after
round 2 of the RC4 KSA.

Lemma 1 P (S2[S2[1]] = K[0] + K[1] + 1) = 3
N
− 4

N2 + 2
N3 .

Further, P (S2[S2[1]] = K[0] + K[1] + 1 ∧ S2[1] ≤ 1) ≈ 2
N

.

Proof: The proof is based on three cases.

1. Let K[0] 6= 0, K[1] = N − 1. The probability of this event is N−1
N2 . Now S2[1] =

S1[K[0] + K[1] + 1] = S1[K[0]] = S0[0] = 0. So, S2[S2[1]] = S2[0] = S1[0] = K[0] =
K[0] + K[1] + 1. Note that S2[0] = S1[0], as K[0] + K[1] + 1 6= 0.

Moreover, in this case, S2[1] ≤ 1.

2. Let K[0] + K[1] = 0, K[0] 6= 1, i.e., K[1] 6= N − 1. The probability of this event is
N−1
N2 . Now S2[1] = S1[K[0] + K[1] + 1] = S1[1] = S0[1] = 1. Note that S1[1] = S0[1],

as K[0] 6= 1. So, S2[S2[1]] = S2[1] = 1 = K[0] + K[1] + 1.

Also, in this case, S2[1] ≤ 1.
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Figure 1: P (Si+1[Si+1[1]] = f1) versus i (r = i + 1) during RC4 KSA.

3. S2[S2[1]] could be K[0] + K[1] + 1 by random association except the two previous
cases.

Out of that, S2[1] ≤ 1 will happen in 2
N

proportion of cases.

Thus P (S2[S2[1]] = K[0] + K[1] + 1) = 2(N−1)
N2 + (1 − 2(N−1)

N2 ) 1
N

= 3
N
− 4

N2 + 2
N3 . Further

P (S2[S2[1]] = K[0] + K[1] + 1 ∧ S2[1] ≤ 1) = 2(N−1)
N2 + 2

N
(1− 2(N−1)

N2 ) 1
N

= 2
N
− 4(N−1)

N4 ≈ 2
N

.

Lemma 1 shows that after the second round (i = 1, r = 2), the event (S2[S2[1]] =
K[0] + K[1] + 1) is not a random association.

Lemma 2 Let pr = P (Sr[Sr[1]] = K[0] + K[1] + 1 ∧ Sr[1] ≤ r − 1) for r ≥ 2. Then for
r ≥ 3, pr = (N−2

N
)pr−1 + 1

N
· (N−2

N
) · (N−1

N
)2(r−2).

Proof: After the (r − 1)-th round is over, the permutation is Sr−1. In this case, pr−1 =
P (Sr−1[Sr−1[1]] = K[0]+K[1]+1∧Sr−1[1] ≤ r−2). The event

(

(Sr[Sr[1]] = K[0]+K[1]+
1)∧(Sr[1] ≤ r−1)

)

can occur in two mutually exclusive and exhaustive ways:
(

(Sr[Sr[1]] =
K[0] + K[1] + 1) ∧ (Sr[1] ≤ r − 2)

)

and
(

(Sr[Sr[1]] = K[0] + K[1] + 1) ∧ (Sr[1] = r − 1)
)

.
We compute the contribution of each separately.

In the r-th round, i = r − 1 and hence does not touch the indices 0, . . . , r − 2. Thus,
the event

(

(Sr[Sr[1]] = K[0] + K[1] + 1) ∧ (Sr[1] ≤ r − 2)
)

occurs if we already had
(

(Sr−1[Sr−1[1]] = K[0] + K[1] + 1) ∧ (Sr−1[1] ≤ r − 2)
)

and jr /∈ {1, r − 1}. Thus, the
contribution of this part is pr−1(

N−2
N

).
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The event
(

(Sr[Sr[1]] = K[0]+K[1]+ 1)∧ (Sr[1] = r− 1)
)

occurs if after the (r− 1)-th
round, Sr−1[r − 1] = r − 1, Sr−1[1] = K[0] + K[1] + 1 and jr = 1 causing a swap involving
the indices 1 and r − 1.

1. We have Sr−1[r − 1] = r − 1 if the location r − 1 is not touched during the rounds
i = 0, . . . , r − 2. This happens with a probability at least (N−1

N
)r−1.

2. The event Sr−1[1] = K[0] + K[1] + 1 may happen as follows. In the first round
(when i = 0), j1 /∈ {1, K[0] + K[1] + 1} so that S1[1] = 1 and S1[K[0] + K[1] + 1] =
K[0]+K[1]+1 with probability (N−2

N
). After this, in the second round (when i = 1),

we will have j2 = j1 + S1[1] + K[1] = K[0] + K[1] + 1, and so after the swap,
S2[1] = K[0] + K[1] + 1. Now, K[0] + K[1] + 1 remains in location 1 from the end
of round 2 till the end of round (r − 1) (when i = r − 2) with probability (N−1

N
)r−3.

Thus, P (Sr−1[1] = K[0] + K[1] + 1) = (N−2
N

) · (N−1
N

)r−3.

3. In the r-th round (when i = r − 1), jr becomes 1 with probability 1
N

.

Thus, P
(

(Sr[Sr[1]] = K[0]+K[1]+1)∧(Sr[1] = r−1)
)

= (N−1
N

)r−1·(N−2
N

)·(N−1
N

)r−3· 1
N

=
1
N
· (N−2

N
) · (N−1

N
)2(r−2).

Adding the above two contributions, we get pr = (N−2
N

)pr−1 + 1
N
· (N−2

N
) · (N−1

N
)2(r−2).

The recurrence in Lemma 2 along with the base case in Lemma 1 completely specify
the probabilities pr for all r ∈[2,. . . ,N].

Theorem 1 After the complete KSA,
P (SN [SN [1]] = K[0] + K[1] + 1) ≈ (N−1

N
)2(N−1).

Proof: Using the approximation N−2
N

≈ (N−1
N

)2, the recurrence in Lemma 2 can be rewrit-
ten as pr = apr−1 + ar−1b, where a = (N−1

N
)2 and b = 1

N
. The solution of this recurrence is

given by pr = ar−2p2 +(r−2)ar−1b, r ≥ 2. Substituting the values of p2 (from Lemma 1), a
and b, we get pr = 2

N
(N−1

N
)2(r−2)+( r−2

N
)(N−1

N
)2(r−1). Substituting r = N and noting the fact

that P
(

(SN [SN [1]] = K[0]+K[1]+1)∧(SN [1] ≤ N−1)
)

= P (SN [SN [1]] = K[0]+K[1]+1),

we get P (SN [SN [1]] = K[0] + K[1] + 1) = 2
N

(N−1
N

)2(N−2) + (N−2
N

)(N−1
N

)2(N−1). Note that
the second term (≈ 0.1348 for N = 256) dominates over the negligibly small first term
(≈ 0.0011 for N = 256), and so P (SN [SN [1]] = K[0] + K[1] + 1) ≈ (N−1

N
)2(N−1) (replacing

N−2
N

= 1 − 2
N

by 1 in the second term).
Now we like to present a more detailed observation. In [16, 12], the association between

SN [y] and fy is shown. As we have observed the non-random association between SN [SN [1]]
and f1, it is important to study what is the association between SN [SN [y]] and fy, and
moving further, the association between SN [SN [SN [y]]] and fy, for 0 ≤ y ≤ N − 1 and
so on. Our experimental observations show that these associations are not random (i.e.,
much more than 1

N
) for initial values of y. The experimental observations (over 10 million

runs of randomly chosen keys) are presented in Figure 2.
The theoretical analysis of the biases of Sr[Sr[y]] towards fy for small values of y is

presented in Appendix A. The results involved in the process are tedious and we need to
approximate certain quantities to get the following closed form formula.
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Figure 2: A: P (SN [y] = fy), B: P (SN [SN [y]] = fy), C: P (SN [SN [SN [y]]] = fy) versus y
(0 ≤ y ≤ 255).

Theorem 2 After the complete KSA,

P (SN [SN [y]] = fy) ≈
y

N
· (N−1

N
)

y(y+1)
2

+2(N−2) + 1
N
· (N−1

N
)

y(y+1)
2

−y+2(N−1) + (N−y−1
N

) · (N−y

N
) ·

(N−1
N

)
y(y+1)

2
+2N−3, 0 ≤ y ≤ 31.

Extending similar techniques, the association between SN [SN . . . [SN [y]] . . .] and fy can be
studied in general. Though the general results are combinatorially interesting, it is not im-
mediate how they will be applicable to find further weaknesses in the RC4 PRGA. In terms
of cryptanalytic point of view, we use the non-random association of SN [SN [1]] relating f1

(Theorem 1) to obtain the bias at the 257-th keystream output byte in Section 3.3.

3 Biases in RC4 Keystream

We present new biases in Sections 3.2, 3.3 and 3.4, which were not known earlier. For
presenting these results, we need to build a framework. That is presented in Section 3.1.
Some biases in initial keystream bytes of RC4 has earlier been pointed out in [5] that has
later been discussed in [18] too. Under our framework, the biases of [5] is presented in
Theorem 3.

3.1 Existing Results under Our Framework

Let SG
r be the permutation, iGr and jG

r be the values of the indices i and j, and zr be the
keystream output byte after r many rounds of the PRGA, r ≥ 1. Clearly, iGr = r mod N .
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We also denote SN by SG
0 as this is the permutation before the PRGA starts.

Let us consider the existing result that relates each permutation byte after the KSA
with certain linear combination of the secret key bytes.

Proposition 1 [12, Theorem 1] Consider that the index j takes its values uniformly

at random during the KSA rounds. Then, P (Sr[y] = fy) ≈ (N−y

N
) · (N−1

N
)[ y(y+1)

2
+r] + 1

N
,

0 ≤ y ≤ r − 1, 1 ≤ r ≤ N .

Substituting r = N in the statement of the above Proposition, we get the following.

Corollary 1 The bias of the final permutation after the KSA towards the secret key is

given by P (SN [y] = fy) = (N−y

N
) · (N−1

N
)[ y(y+1)

2
+N ] + 1

N
, 0 ≤ y ≤ N − 1.

As explained in [12], the above result indicates significant biases for small values of y
(more precisely, for 0 ≤ y ≤ 47), that is supported by the experimental result presented
in [16].

The Glimpse Main Theorem [4, 7] states that after the r-th round of the PRGA, r ≥ 1,
P (SG

r [jG
r ] = r − zr) = P (SG

r [iGr ] = jG
r − zr) = 2

N
. We rewrite the first relation between

SG
r [jG

r ] and r − zr as the following proposition.

Proposition 2 P (zr = r − SG
r−1[i

G
r ]) = 2

N
, r ≥ 1.

Proof: SG
r [jG

r ] is assigned the value of SG
r−1[i

G
r ]. As the Glimpse Main Theorem gives

P (zr = r − SG
r [jG

r ]) = 2
N

for r ≥ 1, we get P (zr = r − SG
r−1[i

G
r ]) = 2

N
for r ≥ 1.

The idea of writing the Glimpse Main Theorem in the form of Proposition 2 is due to
the fact that relating “zr to SG

r−1[i
G
r ]” will ultimately relate “zr to the secret key bytes”,

as the permutations in the initial rounds of the PRGA are related to the secret key.
The following lemma shows how the permutation bytes at rounds t and r − 1 of the

PRGA, for t + 2 ≤ r, are related.

Lemma 3 Let P (SG
t [iGr ] = X) = qt,r, for some X. Then, for t + 2 ≤ r ≤ t + N ,

P (SG
r−1[i

G
r ] = X) = qt,r ·

[

(N−1
N

)r−t−1 − 1
N

]

+ 1
N

.

Proof: We consider two separate cases.

1. SG
t [iGr ] = X and during the next (r− t− 1) rounds of the PRGA, the index iGr is not

touched by any of the r − t− 1 many j values (since t + 2 ≤ r ≤ t + N , the index iGr
is not touched by any of the r − t− 1 many i values anyway). The first event occurs
with probability qt,r and the second event occurs with probability (N−1

N
)r−t−1. Thus

the contribution of this case is qt,r · (
N−1
N

)r−t−1.

2. SG
t [iGr ] 6= X and still SG

r−1[i
G
r ] equals X by random association. The contribution of

this case is (1 − qt,r) ·
1
N

.

Thus, adding the above two contributions, we get P (SG
r−1[i

G
r ] = X) = qt,r · (

N−1
N

)r−t−1 +
(1 − qt,r) ·

1
N

= qt,r ·
[

(N−1
N

)r−t−1 − 1
N

]

+ 1
N

.
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Remark 1 The above result holds for t + 2 ≤ r ≤ t + N , and not for r = t + 1. If we take
r = t+1, then SG

r−1 = SG
t , which is our starting point, i.e., P (SG

r−1[i
G
r ] = X) = P (SG

t [iGr ] =
X) = qt,r.

The following is an immediate consequence of Lemma 3.

Corollary 2 For 2 ≤ r ≤ N − 1, P (SG
r−1[r] = fr) =

[

(N−r
N

) · (N−1
N

)[
r(r+1)

2
+N ] + 1

N

]

·
[

(N−1
N

)r−1 − 1
N

]

+ 1
N

.

Proof: For 2 ≤ r ≤ N − 1, we have iGr = r. Taking X = fr and t = 0 in Lemma 3, we

have q0,r = P (SG
0 [r] = fr) = P (SN [r] = fr) = (N−r

N
) · (N−1

N
)[

r(r+1)
2

+N ] + 1
N

(by Corollary 1),

and hence P (SG
r−1[r] = fr) =

[

(N−r
N

) · (N−1
N

)[ r(r+1)
2

+N ] + 1
N

]

·
[

(N−1
N

)r−1 − 1
N

]

+ 1
N

.
Next, we present the bias of each keystream output byte to a combination of the secret

key bytes in the following lemma.

Lemma 4 Let P (SG
r−1[i

G
r ] = fiGr

) = wr, for r ≥ 1. Then P (zr = r − fiGr
) = 1

N
· (1 + wr),

r ≥ 1.

Proof: We consider two separate cases in which the event (zr = r − fiGr
) can occur.

1. SG
r−1[i

G
r ] = fiGr

and zr = r − SG
r−1[i

G
r ]. The contribution of this case is P (SG

r−1[i
G
r ] =

fiGr
) · P (zr = r − SG

r−1[i
G
r ]) = wr ·

2
N

(by Proposition 2).

2. SG
r−1[i

G
r ] 6= fiGr

, and still zr = r − fiGr
due to random association. So the contribution

of this case is P (SG
r−1[i

G
r ] 6= fiGr

) · 1
N

= (1 − wr) ·
1
N

.

Adding the above two contributions, we get the total probability as wr ·
2
N

+ (1 − wr) ·
1
N

= 1
N
· (1 + wr).

The following biases were discovered in [5].

Theorem 3
(1) P (z1 = 1 − f1) = 1

N
·
(

1 + (N−1
N

)N+2 + 1
N

)

.

(2) For 2 ≤ r ≤ N − 1,

P (zr = r − fr) = 1
N
·
(

1 +
[

(N−r
N

) · (N−1
N

)[ r(r+1)
2

+N ] + 1
N

]

·
[

(N−1
N

)r−1 − 1
N

]

+ 1
N

)

.

Proof: First, we prove part (1). In the first round, i.e., when r = 1, we have iGr = 1 and

fiGr
= f1, and so w1 = P (SG

0 [1] = f1) = P (SN [1] = f1) = (N−1
N

) · (N−1
N

)[
1(1+1)

2
+N ] + 1

N
=

(N−1
N

)N+2+ 1
N

(by Corollary 1). Now, using Lemma 4, we get P (z1 = 1−f1) = 1
N
·(1+w1) =

1
N
·
(

1 + (N−1
N

)N+2 + 1
N

)

.

Next, we prove part (2). From Corollary 2, wr = P (SG
r−1[r] = fr) =

[

(N−r
N

) ·

(N−1
N

)[
r(r+1)

2
+N ] + 1

N

]

·
[

(N−1
N

)r−1 − 1
N

]

+ 1
N

, 2 ≤ r ≤ N − 1. Now, using Lemma 4, we get

P (zr = r−fr) = 1
N
· (1+wr) = 1

N
·
(

1+
[

(N−r
N

) · (N−1
N

)[
r(r+1)

2
+N ] + 1

N

]

·
[

(N−1
N

)r−1− 1
N

]

+ 1
N

)

.
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Note that Lemma 3 or Corollary 2 is not used in proving part (1) of the above theorem.
It is proved directly from Corollary 1. In fact, Lemma 3 can not be used in part (1), as
here we have r = t + 1 with t = 0 (see Remark 1).

To have a clear understanding of the quantity of the biases, Table 1 lists the numerical
values of the probabilities according to the formula given in Theorem 3. Note that the
random association is 1

N
, which is 0.0039 for N = 256.

Close to the round 48, the biases tend to disappear. This is indicated by the convergence
of the values to the probability 1

256
= 0.0039.

r P (zr = r − fr)
1-8 0.0053 0.0053 0.0053 0.0053 0.0052 0.0052 0.0052 0.0051

9-16 0.0051 0.0050 0.0050 0.0049 0.0048 0.0048 0.0047 0.0047
17-24 0.0046 0.0046 0.0045 0.0045 0.0044 0.0044 0.0043 0.0043
25-32 0.0043 0.0042 0.0042 0.0042 0.0041 0.0041 0.0041 0.0041
33-40 0.0041 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040
41-48 0.0040 0.0040 0.0040 0.0040 0.0040 0.0039 0.0039 0.0039

Table 1: The probabilities computed following Theorem 3.

One may check that P (z1 = 1 − f1) = 1
N

(1 + 0.36) and that decreases to P (z32 =
32 − f32) = 1

N
(1 + 0.05), but still then it is 5% more than the random association.

3.2 New Bias in the 256-th Keystream Output Byte

Interestingly, the biases again reappear after rounds 256 and 257. First we present the bias
for the 256-th keystream byte.

Theorem 4 P (zN = N − f0) = 1
N
·
(

1 + (N−1
N

)2N−1 + 1
N2 · (

N−1
N

)N−1 − 1
N2 + 1

N

)

.

Proof: During the N -th round of the PRGA, iGN = N mod N = 0. Taking X = f0, t = 0
and r = N in Lemma 3, we have q0,N = P (SG

0 [0] = f0) = P (SN [0] = f0) = (N−1
N

)N + 1
N

(by Corollary 1), and hence wN = P (SG
N−1[0] = f0) =

[

(N−1
N

)N + 1
N

]

·
[

(N−1
N

)N−1 − 1
N

]

+
1
N

= (N−1
N

)2N−1 + 1
N2 · (N−1

N
)N−1 − 1

N2 + 1
N

. Thus, by Lemma 4, the bias is given by

P (zN = N − f0) = 1
N
· (1 + wN) = 1

N
·
(

1 + (N−1
N

)2N−1 + 1
N2 · (

N−1
N

)N−1 − 1
N2 + 1

N

)

.

For N = 256, wN = w256 = 0.1392 and the bias turns out to be 0.0045 (i.e., 1
256

(1 +
0.1392)). Experimental results confirm this bias.

3.3 New Bias in the 257-th Keystream Output Byte

We will now show that the bias in the 257-th keystream output byte follows from Theo-
rem 1, i.e., P (SN [SN [1]] = K[0] + K[1] + 1) ≈ (N−1

N
)2(N−1).
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Theorem 5 P (zN+1 = N + 1 − f1)

= 1
N
·
(

1 + (N−1
N

)3(N−1) − 1
N
· (N−1

N
)2(N−1) + 1

N

)

.

Proof: During the (N +1)-th round, we have, iGN+1 = (N +1) mod N = 1. Taking X = f1,
t = 1 and r = N + 1 in Lemma 3, we have q1,N+1 = P (SG

1 [1] = f1) = P (SN [SN [1]] = f1) =
(N−1

N
)2(N−1), and hence wN+1 = P (SG

N [1] = f1) = (N−1
N

)2(N−1) ·
[

(N−1
N

)N−1 − 1
N

]

+ 1
N

=

(N−1
N

)3(N−1) − 1
N
· (N−1

N
)2(N−1) + 1

N
. Now, using Lemma 4, we get P (zN+1 = N + 1− f1) =

1
N
· (1 + wN+1) = 1

N
·
(

1 + (N−1
N

)3(N−1) − 1
N
· (N−1

N
)2(N−1) + 1

N

)

.

For N = 256, wN+1 = w257 = 0.0535 and P (z257 = 257−f1) = 1
N
· (1+0.0535) = 0.0041

which also conforms to experimental observation.

3.4 More New Biases in Initial Bytes of RC4 Keystream

The biases of zr with r−fr for the initial keystream output bytes have been pointed out in
Theorem 3. Interestingly, experimental observation reveals bias of zr with fr−1 too. The
results are presented in Table 2 which is experimented over hundred million (108) randomly
chosen keys of 16 bytes. For proper random association, P (zr = fr−1) should have been
1

256
, i.e., 0.0039.

r P (zr = fr−1)
1-8 0.0043 0.0039 0.0044 0.0044 0.0044 0.0044 0.0043 0.0043
9-16 0.0043 0.0043 0.0043 0.0042 0.0042 0.0042 0.0042 0.0042
17-24 0.0041 0.0041 0.0041 0.0041 0.0041 0.0040 0.0040 0.0040
25-32 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040
33-40 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039
41-48 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039

Table 2: Additional bias of the keystream bytes towards the secret key.

Following our experimental observation, the explanation of the fact P (z3 = f2) > 1
256

was pointed out in [17]. We present the idea of [17] in this paragraph. Assume that after
the third round of the KSA, S3[2] takes the value f2, and is hit by j later in the KSA.
Then f2 is swapped with Sk[k] and consider that Sk[k] has remained k so far. Further,
suppose that SN [3] = 0 holds. Thus, SN [2] = k, SN [k] = f2 and SN [3] = 0 at the end of
the KSA. In the second round of the PRGA, SG

1 [2] = k is swapped with a more or less
random location SG

1 [l]. Therefore, SG
2 [l] = k and jG

2 = l. In the next round, i = 3 and
points to SG

2 [3] = 0. So j does not change and hence jG
3 = l = jG

2 . Thus, SG
2 [l] = k is

swapped with SG
2 [3] = 0, and one gets SG

3 [l] = 0 and SG
3 [3] = k. The output z3 is now

SG
3 [SG

3 [i] + SG
3 [jG

3 ]] = SG
3 [k + 0] = SG

3 [k] = f2.
Along the same line of arguments given in [17], we here provide a detailed theoretical

analysis of the event zr = fr−1 in general and explicitly derive a formula for P (zr = fr−1).
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The proof depends on P (SN [r] = 0) for different r values. The explicit formula for the
probabilities P (SN [u] = v) was derived for the first time in [9] and the problem was
addressed again in [10, 13].

Proposition 3 [13, Theorem 1, Item 2] For 0 ≤ v ≤ N − 1, v ≤ u ≤ N − 1,
P (SN [u] = v) = 1

N
· (N−1

N
)N−1−u + 1

N
· (N−1

N
)v+1 − 1

N
· (N−1

N
)N+v−u.

Theorem 6 P (z1 = f0) = (N−1
N

)2 · (N−2
N

)N−1 · γ1 + 1
N

, where γ1 = 1
N

· (N−1
N

)N−2 + 1
N

·
(N−1

N
) − 1

N
· (N−1

N
)N−1.

Proof: Substituting r = 1, y = 0 in Proposition 1, we have P (S1[0] = f0) = 1. After the
first round, suppose that the index 0 is touched for the first time by jt+1 in round t + 1 of
the KSA and due to the swap the value f0 is moved to the index t, 1 ≤ t ≤ N − 1 and
also prior to this swap the value at the index t was t itself, which now comes to the index
0. This means that from round 1 to round t (both inclusive), the pseudo-random index j
has not taken the values 0 and t. So, after round t + 1, P

(

(St+1[0] = t) ∧ (St+1[t] = f0)
)

= P
(

(St[0] = f0) ∧ (St[t] = t) ∧ (jt+1 = 0)
)

= (N−2
N

)t · 1
N

.
From the end of round t + 1 to the end of the KSA, f0 remains in index t and t remains in
index 0 with probability (N−2

N
)N−t−1. Thus,

P
(

(SN [0] = t) ∧ (SN [t] = f0)
)

= (N−2
N

)t · 1
N
· (N−2

N
)N−t−1

= (N−2
N

)N−1 · 1
N

= β1 (say).
In the first round of the PRGA, jG

1 = 0 + SG
0 [1] = SN [1]. From Proposition 3, we have

P (SN [1] = 0) = γ1, where γ1 = 1
N
· (N−1

N
)N−2 + 1

N
· (N−1

N
)− 1

N
· (N−1

N
)N−1. If SN [1] = 0, then

jG
1 = 0 and z1 = SG

1

[

SG
1 [1] + SG

1 [jG
1 ]

]

= SG
1

[

SG
0 [1] + SG

0 [jG
1 ]

]

= SG
1 [0 + t] = SG

1 [t]. Since
t 6= 0, the swap of the values at the indices 0 and 1 does not move the value at the index t.
Thereby SG

1 [t] = SG
0 [t] = SN [t] = f0 and z1 = f0 with probability β1 · γ1 = δ1 (say). Since,

t can values 1, 2, 3, . . . , N − 1, the total probability is δ1 · (N − 1). Substituting the values
of β1, γ1, δ1, we get the probability that the event (z1 = f0) occurs in the above path is
p = (N−1

N
)1 · (N−2

N
)N−1 · γ1.

If the above path is not followed, still there is (1 − p) · 1
N

probability of occurrence of
the event due to random association. Adding these two probabilities, we get the result.

Theorem 7 For 3 ≤ r ≤ N , P (zr = fr−1) = (N−1
N

) · (N−r
N

) ·
(

(N−r+1
N

) · (N−1
N

)[ r(r−1)
2

+r] +

1
N

)

· (N−2
N

)N−r · (N−3
N

)r−2 · γr + 1
N

,

where γr = 1
N
· (N−1

N
)N−1−r + 1

N
· (N−1

N
) − 1

N
· (N−1

N
)N−r.

Proof: Substituting y = r − 1 in Proposition 1, we have P (Sr[r − 1] = fr−1) = αr, where

αr ≈ (N−r+1
N

) · (N−1
N

)[
r(r−1)

2
+r] + 1

N
, 1 ≤ r ≤ N . After round r, suppose that the index r− 1

is touched for the first time by jt+1 in round t + 1 of the KSA and due to the swap the
value fr−1 is moved to the index t, r ≤ t ≤ N − 1 and also prior to this swap the value at

12



the index t was t itself, which now comes to the index r − 1. This means that from round
r+1 to round t (both inclusive), the pseudo-random index j has not taken the values r−1
and t. So, after round t + 1, P

(

(St+1[r − 1] = t) ∧ (St+1[t] = fr−1)
)

= P
(

(St[r − 1] = fr−1) ∧ (St[t] = t) ∧ (jt+1 = r − 1)
)

= αr · (
N−2
N

)t−r · 1
N

.
From the end of round t+1 until the end of the KSA, fr−1 remains in index t and t remains
in index r − 1 with probability (N−2

N
)N−t−1. Thus,

P
(

(SN [r − 1] = t) ∧ (SN [t] = fr−1)
)

= αr · (
N−2
N

)t−r · 1
N
· (N−2

N
)N−t−1

= αr · (
N−2

N
)N−r−1 · 1

N
= βr (say). Also, from Proposition 3, we have P (SN [r] = 0) = γr,

where γr = 1
N
· (N−1

N
)N−1−r + 1

N
· (N−1

N
) − 1

N
· (N−1

N
)N−r.

Suppose the indices r−1, t and r are not touched by the pseudo-random index j in the
first r−2 rounds of the PRGA. This happens with probability (N−3

N
)r−2. In round r−1 of the

PRGA, due to the swap, the value t at index r−1 moves to the index jG
r−1 with probability

1, and jG
r−1 /∈ {t, r} with probability (N−2

N
). Further, if SG

r−1[r] remains 0, then in round
r of the PRGA, jG

r = jG
r−1 and zr = SG

r

[

SG
r [r] + SG

r [jG
r ]

]

= SG
r

[

SG
r−1[r] + SG

r−1[j
G
r−1]

]

=
SG

r [0 + t] = SG
r [t] = fr−1 with probability βr · γr · (

N−3
N

)r−2 · (N−2
N

) = δr (say). Since, t can
values r, r +1, r +2, . . . , N − 1, the total probability is δr · (N − r). Substituting the values
of αr, βr, γr, δr, we get the probability that the event (zr = fr−1) occurs in the above path

is p = (N−r
N

) ·
(

(N−r+1
N

) · (N−1
N

)[
r(r−1)

2
+r] + 1

N

)

· (N−2
N

)N−r · (N−3
N

)r−2 · γr.

If the above path is not followed, still there is (1 − p) · 1
N

probability of occurrence of
the event due to random association. Adding these two probabilities, we get the result.

The theoretically computed values of the probabilities according to the above two the-
orems match with the experimental values provided in Table 2. Theorem 7 does not cover
cases r = 1 and r = 2. Case r = 1 was already separately presented in Theorem 6. It
is interesting to justify the absence of bias in case r = 2 as observed experimentally in
Table 2.

3.5 Cryptanalytic Applications

Here we accumulate the results explained above. Consider the first keystream output
byte z1 of the PRGA. We find the results that P (z1 = 1 − f1) = 0.0053 (see Theorem 3
and Table 1) and that P (z1 = f0) = 0.0043 (see Theorem 6 and Table 2). Further,
from [11], we have the result that P (z1 = f2) = 0.0053. Taking them together, one can
check that the P (z1 = f0 ∨ z1 = 1 − f1 ∨ z1 = f2) = 1 − (1 − 0.0043) · (1 − 0.0053) ·
(1 − 0.0053) = 0.0148. (The independence assumption in calculating the probability is
supported by detailed experimentation with 100 different runs, each run presenting the
average probability considering 10 million randomly chosen secret keys of 16 bytes.) Our
result indicates that out of randomly chosen 10000 secret keys, in 148 cases on an average,
z1 reveals f0 or 1−f1 or f2, i.e., K[0] or 1−(K[0]+K[1]+1) or (K[0]+K[1]+K[2]+3). If,
however, one tries a random association, considering that z1 will be among three randomly
chosen values v1, v2, v3 from [0, . . . , 255], then P (z1 = v1∨z1 = v2∨z1 = v3) = 1−(1− 1

256
)3 =
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0.0117. Thus one can guess z1 with an additional advantage of 0.0148−0.0117
0.0117

· 100% = 27%
over the random guess.

Looking at z2, we have P (z2 = 2 − f2) = 0.0053 (see Theorem 3 and Table 1), which
provides an advantage of 0.0053−0.0039

0.0039
· 100% = 36%.

Similarly, referring to Theorem 3 and Theorem 7 (and also Table 1 and Table 2),
significant biases can be observed in P (zr = fr−1∨zr = r−fr) for r = 3 to 32 over random
association.

Now consider the following scenario with the events E1, . . . , E32, where E1 : (z1 =
f0 ∨ z1 = 1 − f1 ∨ z1 = f2), E2 : (z2 = 2 − f2), and Er : (zr = fr−1 ∨ zr = r − fr) for
3 ≤ r ≤ 32. Observing the first 32 keystream output bytes z1, . . . , z32, one may try to guess
the secret key assuming that 3 or more of the events E1, . . . , E32 occur. We experimented
with 10 million randomly chosen secret keys of length 16 bytes. We found that 3 or more of
the events occur in 0.0028 proportion of cases, which is true for 0.0020 proportion of cases
for random association. This demonstrates a substantial advantage (40%) over random
guess.

4 Further Biases when j is Known during PRGA

In all the currently known biases as well as in all the new biases discussed in this paper
so far, it is assumed that the value of the pseudo-random index j is unknown. In this
section, we are going to show that the biases in the permutation at some stage of the
PRGA propagates to the keystream output bytes at a later stage, if the value of the index
j at the earlier stage is known.

Suppose that we know the value jG
t of j after the round t in the PRGA. With high

probability, the value V at the index jG
t will remain there until jG

t is touched by the
deterministic index i for the first time after a few more rounds depending on what was
the position (t mod N) of i at the t-th stage. This immediately leaks V in keystream
output byte. More importantly, if the value V is biased to the secret key bytes, then that
information will be leaked too.

Formally, let P (SG
t [jG

t ] = V ) = ηt for some V . Note that, jG
t will be touched by

i in round r, where r = t + (jG
t − t mod N) or t + (N − t mod N) + jG

t depending on
whether jG

t > t mod N or jG
t ≤ t mod N respectively. By Lemma 3, we would have

P (SG
r−1[j

G
t ] = V ) = ηt ·

[

(N−1
N

)r−t−1 − 1
N

]

+ 1
N

. Now, Lemma 4 immediately gives

P (zr = r − V ) = 1
N
·
(

1 + ηt ·
[

(N−1
N

)r−t−1 − 1
N

]

+ 1
N

)

.

For some special V ’s, the form of ηt may be known. In that case, it will be advantageous
to probe the values of j at particular rounds. For example, according to Corollary 2, after
the (t − 1)-th round of the PRGA, SG

t−1[t] is biased to the linear combination ft of the

secret key bytes with probability ηt =
[

(N−t
N

) · (N−1
N

)[
t(t+1)

2
+N ] + 1

N

]

·
[

(N−1
N

)t−1 − 1
N

]

+ 1
N

.
Now, at round t, ft would move to the index jt due to the swap, and hence SG

t [jt] will be
biased to ft with the same probability. So, the knowledge of jt will leak information about
ft in round r = t + (jG

t − t mod N) or t + (N − t mod N) + jG
t depending on whether
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jG
t > t mod N or jG

t ≤ t mod N respectively. If we know the values of j at multiple stages
of the PRGA (it may be possible to read some values of j through side-channel attacks),
then the biases propagate further down the keystream output bytes. The following example
illustrates how the biases propagate down the keystream output bytes when single as well
as multiple jG values are known.

Example 1 Suppose we know the value of jG
5 as 18. With probability η5, SG

4 [5] would have
remained f5 which would move to index 18 due to the swap in round 5, i.e., SG

5 [18] = f5.
With approximately η5 ·

[

(N−1
N

)18−5−1 − 1
N

]

+ 1
N

probability, f5 would remain in index 18
till the end of the round 18-1 = 17. So, we immediately get a bias of z18 with 18 − f5.

Moreover, in round 18, f5 would move from index 18 to jG
18. So, if the value of jG

18

is also known, say jG
18 = 3, then we have SG

18[3] = f5. We can apply the same line of
arguments for round 256 + 3 = 259 to get a bias of z259 with 259 − f5.

Experiments with 1 billion random keys demonstrate that in this case the bias of z18

towards 18−f5 is 0.0052 and the bias of z259 towards 259−f5 is 0.0044. These conform to
the theoretical values and show that the knowledge of j during the PRGA helps in finding
non-random association (away from 1

256
= 0.0039) between the keystream output bytes and

the secret key.

5 Conclusion

In this paper, we present several new observations on weaknesses of RC4. It is shown that
biases towards the secret key exists at the permutation bytes S[S[y]] for different y values.
To our knowledge, this is the first attempt to formally analyze the biases of S[S[y]] and
its implications towards the security of RC4. Moreover, a framework is built to analyze
biases of the keystream output bytes towards different linear combinations of the secret
key bytes. Subsequently, theoretical results are proved to show that RC4 keystream output
bytes at the indices 1 to 32 leak significant information about the secret key bytes. We
also discovered and proved new biases towards the secret key at the 256-th and the 257-th
keystream output bytes. Moreover, we show that if one knows the value of j during some
rounds of the PRGA, then the biases propagate further down the keystream.

Acknowledgment: The authors like to thank Mr. Snehasis Mukherjee, Indian Statistical
Institute, Kolkata for his support in the preparation of the graphs.
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Appendix A

Lemma 5 P
(

(Sy+1[Sy+1[y]] = fy) ∧ (Sy+1[y] ≤ y)
)

≈
(

1
N

· (N−1
N

)
y(y+1)

2

)

·
(

y(N−2
N

)y−1 +
(N−1

N
)y

)

, 0 ≤ y ≤ 31.

Proof: Sy+1[y] ≤ y means that it can take y+1 many values 0, 1, . . . , y. Suppose Sy+1[y] =
x, 0 ≤ x ≤ y − 1. Then Sy+1[x] can equal fy in the following way.

1. From round 1 (when i = 0) to x (when i = x−1), j does not touch the indices x and
fy. Thus, after round x, Sx[x] = x and Sx[fy] = fy. This happens with probability
(N−2

N
)x.

2. In round x+1 (when i = x), jx+1 becomes equal to fy, and after the swap, Sx+1[x] =
fy and Sx+1[fy] = x. The probability of this event is P (jx+1 = fy) = 1

N
.

3. From round x+2 (when i = x+1) to y (when i = y− 1), again j does not touch the
indices x and fy. Thus, after round y, Sy[x] = fy and Sy[fy] = x. This occurs with
probability (N−2

N
)y−x−1.

4. In round y +1 (when i = y), jy+1 becomes equal to fy, and after the swap, Sy+1[y] =
Sy[fy] = x and Sy+1[Sy+1[y]] = Sy+1[x] = Sy[x] = fy. According to [12, Lemma

1], this happens with probability (N−1
N

)1+ y(y+1)
2 + 1

N
. For small values of y, this is

approximately equal to (N−1
N

)
y(y+1)

2 , which gives a simpler expression. We consider
0 ≤ y ≤ 31 for good approximation.

Considering the above events to be independent, we have
P

(

(Sy+1[Sy+1[y]] = fy) ∧ (Sy+1[y] = x)
)

= (N−2
N

)x · 1
N
·(N−2

N
)y−x−1 ·(N−1

N
)

y(y+1)
2 = ( 1

N
)·(N−2

N
)y−1 ·(N−1

N
)

y(y+1)
2 . Summing for all x in

[0, . . . , y−1], we get P
(

(Sy+1[Sy+1[y]] = fy)∧(Sy+1[y] ≤ y−1)
)

= ( y

N
)·(N−2

N
)y−1·(N−1

N
)

y(y+1)
2 .
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If Sy+1[y] = y, then Sy+1[Sy+1[y]] can equal fy in the following ways: (a) fy has to
be equal to y; this happens with probability 1

N
, (b) index y is not touched by j in any

of the first y rounds; this happens with probability (N−1
N

)y, and (c) in the (y + 1)-th
round, jy+1 = fy so that there is no swap; this happens approximately with probability

(N−1
N

)
y(y+1)

2 (as explained in Item 4 above). Hence, P
(

(Sy+1[Sy+1[y]] = fy) ∧ (Sy+1[y] =

y)
)

= ( 1
N

) · (N−1
N

)y · (N−1
N

)
y(y+1)

2 .
Adding the above two contributions (one for 0 ≤ Sy+1[y] ≤ y − 1 and the other

for Sy+1[y] = y), we get P
(

(Sy+1[Sy+1[y]] = fy) ∧ (Sy+1[y] ≤ y)
)

=
(

1
N

· (N−1
N

)
y(y+1)

2

)

·
(

y(N−2
N

)y−1 + (N−1
N

)y
)

.

Lemma 6 Let pr(y) = P
(

(Sr[Sr[y]] = fy) ∧ (Sr[y] ≤ r − 1)
)

, 0 ≤ y ≤ N − 1, 1 ≤ r ≤ N .

Then pr(y) = (N−2
N

)pr−1(y) + 1
N
· (N−y

N
) · (N−1

N
)

y(y+1)
2

+2r−3, 0 ≤ y ≤ 31, y + 2 ≤ r ≤ N .

Proof: Then event
(

(Sr[Sr[y]] = fy) ∧ (Sr[y] ≤ r − 1)
)

, where r ≥ y + 2, can occur in
two mutually exclusive and exhaustive ways:

(

(Sr[Sr[y]] = fy) ∧ (Sr[y] ≤ r − 2)
)

and
(

(Sr[Sr[y]] = fy) ∧ (Sr[y] = r − 1)
)

. We compute the contribution of each separately.
In the r-th round, i = r − 1 /∈ {0, . . . , r − 2}. Hence the event

(

(Sr[Sr[y]] = fy) ∧
(Sr[y] ≤ r − 2)

)

occurs if we already had
(

(Sr−1[Sr−1[y]] = fy) ∧ (Sr−1[y] ≤ r − 2)
)

and
jr /∈ {y, Sr−1[y]}. Thus, the contribution of this part is pr−1(y) · (N−2

N
).

The event
(

(Sr[Sr[y]] = fy) ∧ (Sr[y] = r − 1)
)

occurs if after the (r − 1)-th round,
Sr−1[r−1] = r−1, Sr−1[y] = fy and in the r-th round (i.e., when i = r−1), jr = y causing
a swap involving the indices y and r − 1.

1. We have Sr−1[r − 1] = r − 1 if the location r − 1 is not touched during the rounds
i = 0, . . . , r − 2. This happens with probability (N−1

N
)r−1.

2. The event Sr−1[y] = fy, according to Proposition 1, happens with a probability

(N−y

N
) · (N−1

N
)[

y(y+1)
2

+r−1] + 1
N

. For small values of y, this is approximately equal to

(N−y

N
) · (N−1

N
)[ y(y+1)

2
+r−2] which gives a simpler expression. We consider 0 ≤ y ≤ 31

for good approximation.

3. In the r-th round (when i = r − 1), jr becomes y with probability 1
N

.

Thus, P
(

(Sr[Sr[y]] = fy) ∧ (Sr[y] = r − 1)
)

= (N−1
N

)r−1 · (N−y

N
)(N−1

N
)[ y(y+1)

2
+r−2] · 1

N
=

1
N
· (N−y

N
) · (N−1

N
)

y(y+1)
2

+2r−3.
Adding the above two contributions, we get

pr(y) = (N−2
N

)pr−1(y) + 1
N
· (N−y

N
) · (N−1

N
)

y(y+1)
2

+2r−3.
The recurrence in Lemma 6 and the base case in Lemma 5 completely specify the

probabilities pr(y) for all y in [0, . . . , 31] and r in [y + 1, . . . , N ].

Theorem 2 (Section 2): After the complete KSA,

P (SN [SN [y]] = fy) ≈
y

N
· (N−1

N
)

y(y+1)
2

+2(N−2) + 1
N
· (N−1

N
)

y(y+1)
2

−y+2(N−1) + (N−y−1
N

) · (N−y

N
) ·
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(N−1
N

)
y(y+1)

2
+2N−3, 0 ≤ y ≤ 31.

Proof: Using the approximation N−2
N

≈ (N−1
N

)2, the recurrence in Lemma 6 can be rewrit-

ten as pr(y) = (N−1
N

)2pr−1(y) + 1
N

(N−y

N
) · (N−1

N
)

y(y+1)
2

+2r−3, i.e., pr(y) = apr−1(y) + ar−1b,

where a = (N−1
N

)2 and b = 1
N

(N−y

N
) · (N−1

N
)

y(y+1)
2

−1. The solution of this recurrence is
pr(y) = ar−y−1py+1(y) + (r − y − 1)ar−1b, r ≥ y + 1. Substituting the values of py+1(y)

(from Lemma 5), a and b, we get pr(y) = y

N
· (N−1

N
)

y(y+1)
2

+2(r−2) + 1
N
· (N−1

N
)

y(y+1)
2

−y+2(r−1) +

( r−y−1
N

) · (N−y

N
) · (N−1

N
)

y(y+1)
2

+2r−3, y + 1 ≤ r ≤ N , for initial values of y (0 ≤ y ≤ 31).
Substituting r = N and noting the fact that P

(

(SN [SN [y]] = fy) ∧ (SN [y] ≤ N − 1)
)

= P (SN [SN [y]] = fy), we get the result.
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