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Abstract: Recently, Au et al. [Au et al. 2007] pointed out a seemingly neglected se-
curity concern for certificateless public key encryption (CL-PKE) scheme, where a
malicious key generation center (KGC) can compromise the confidentiality of the mes-
sages by embedding extra trapdoors in the system parameter. Although some schemes
are secure against such an attack, they require random oracles to prove the security.
In this paper, we first show that two existing CL-PKE schemes without random ora-
cles are not secure against malicious KGC, we then propose the first CL-PKE scheme
secure against malicious KGC attack, with proof in the standard model.
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1 Introduction

In the traditional Public Key Cryptosystem (PKC), a trusted party called the

Certification Authority (CA) issues a digitally signed certificate binding the iden-

tity and the public key of a user. However, the need for public key infrastructure

supporting certificates is considered the main difficulty on the deployment and

management of a traditional PKC. Identity Based Cryptography (IBC), envi-

sioned in [Shamir 1984], solved this problem by using any string (such as email

address, user name or phone number) as public keys, where a trusted third

party called the Private Key Generator (PKG) manages the generation and dis-

tribution of all system parameters including the user’s private key. While the

complexity involved with the certificates is gone, it has the key escrow problem

since the PKG generates the private key of every user.

Certificateless Public Key Cryptography (CL-PKC) is an intermediate be-

tween IBC and PKC [Al-Riyami and Paterson 2003]. Its main purpose is to solve

the key escrow problem inherited from IBC without the use of certificates as in



the traditional PKC. In CL-PKC, a Key Generation Center (KGC) is involved

in issuing user partial private key computed from the master secret. The user

also independently generates an additional user private key and the correspond-

ing user public key. Cryptographic operations such as decryption and signature

generation can then be performed successfully only when both the user partial

private key and the user private key are known. Knowing only one of them should

not be able to impersonate the user, that is, carrying out any cryptographic op-

erations for a user. In this way, even if the KGC knows the user partial private

key, impersonation is not possible. Since the KGC is no longer fully trusted, we

thus have two different types of CL-PKE adversaries:

Type I. The adversary gets the user private key and/or replaces the user public

key with some value chosen by the adversary. However, it does not know the

user partial private key and the master secret.

Type II. The adversary knows the master secret, but does not know the user

private key or being able to replace the user public key.

1.1 Certificateless Encryption Schemes in the Standard Model

Since CL-PKE offers both the advantages of identity-based encryption (IBE) for

having no certificate, and public key encryption (PKE) for being free from key

escrow, it is natural to build a CL-PKE scheme using an IBE scheme and a PKE

scheme. Some generic constructions [Yum and Lee 2004a, Yum and Lee 2004b]

take this approach, but are later shown to be insecure [Galindo et al. 2006].

Some generic constructions [Bentahar et al. 2005, Libert and Quisquater 2006]

actually require on the random oracles for the formal security analysis. A generic

construction without random oracles, when instantiated by IBE and PKE in the

standard model, gives a CL-PKE in the standard model.

Chow, Boyd and Gonzalez Nieto [Chow et al. 2006] introduced the paradigm

of Security-Mediated Certificateless Encryption (SMCE), which is a generaliza-

tion of CL-PKE. In SMCE, the user partial private key is not issued directly to

the user, but to a security-mediator (SEM). For decryption, the user needs to

ask the SEM to perform the partial decryption first, and gets the message back

by a further decryption using the user private key. In this way, instant revocation

is possible by instructing the SEM to stop answering any further decryption re-

quests for revoked users. When two partial decryption algorithms in SMCE are

combined into one, it gives back the normal CL-PKE scheme.

In [Chow et al. 2006], a concrete construction in the random oracle model,

and a generic construction from IBE and PKE without random oracles, are

proposed. Only the concrete construction is secure against the Type I adversary.

The generic construction is secure in a weaker sense (Type I− adversary, see

Section 2).



A concrete construction secure only under the same attack model as the

generic construction in [Chow et al. 2006] is proposed in [Liu et al. 2007]. While

this construction does not follow the generic approach in [Chow et al. 2006], it

seems that there is no efficiency gain when compared with the generic construc-

tion in [Chow et al. 2006] instantiated with PKE and IBE in the standard model

Recently, [Dent et al. 2008] proposed the first CL-PKE secure against the usual

Type I adversary in the standard model.

1.2 Malicious KGC Attack

Recently, [Au et al. 2007] pointed out a seemingly neglected security concern in

the Type II security model [Al-Riyami and Paterson 2003, Bentahar et al. 2005,

Dent 2006, Galindo et al. 2006, Libert and Quisquater 2006], which implicitly

assumes the KGC always generates the system parameters honestly according

to the scheme specification. The model only allows the Type II adversary to

know the master secret key of the KGC but not to choose the system parameter.

The resulting scheme in such a model is definitely not strong enough to defend

against a malicious KGC which may try every effort to break the system. In

particular, a Type II adversary should be allowed to generate the key pair in

any way it favours, which matches better with the original spirit of the CL-PKC.

Unfortunately, most of the existing schemes only focus on the study of Type

I security, but neglect the significance of the malicious KGC (Type II security).

A generic CL-PKE scheme [Libert and Quisquater 2006] is shown to be secure

against malicious KGC attacks in [Au et al. 2007]. However, it requires the ran-

dom oracle in the security proof.

Even all these generic constructions [Bentahar et al. 2005, Chow et al. 2006,

Libert and Quisquater 2006] do not aim for achieving security against malicious

KGC attack, one may think it is easy for a generic construction to achieve such a

level of security as long as the PKE and the IBE are used in blackbox manners,

and hence the decryption of the PKE part should be independent of that of the

IBE part. However, a similar argument cannot be applied in concrete construc-

tions. Indeed, we will show later that [Liu et al. 2007] and [Dent et al. 2008] are

insecure in this sense. In addition, we propose the first concrete CL-PKE scheme

secure against malicious KGC attack with proof in the standard model.

Organization. The rest of the paper is organized as follow. In Section 2, nota-

tions, preliminaries and the security model are reviewed. Section 3 shows that

two existing CL-PKE schemes without random oracles are not secure against

malicious KGC. We then propose the first CL-PKE scheme secure against ma-

licious KGC attack. with proof in the standard model, in Section 4.



2 Preliminaries

2.1 Notation

If k ∈ N, 1k denotes the string of k ones. Let A be a probabilistic polynomial-

time (PPT) algorithm. We use s← A(x) denotes A outputs a string s on input

of x. Note that x may be a vector having more than one element. We write

AO1,O2,...(x) to indicate that A is an algorithm with input x and access to

O1,O2, . . . oracles. Similarly, z ← AO1,O2,...(x) the operation of running A with

inputs x and access to oracles O1,O2, . . . and letting z be the output.

For a finite set X , x ← X denotes the algorithm that samples an element

uniformly at random from X . If w is neither an algorithm nor a set then x← w

is a simple assignment statement. For a probability space P , x ← P denotes

the algorithm that samples a random element according to P . If p(·, ·, · · · ) is

a boolean function, then Pr[p(x1, x2, . . . )|x1 ← P1, x2 ← P2, . . . ] denotes the

probability that p(x1, x2, . . . ) is true after executing x1 ← P1, x2 ← P2, . . . .

Finally, a function ǫ : N → R is negligible if for every constant c > 0 there exists

an integer nc such that ǫ(n) < n−c for all n ≥ nc.

2.2 Certificateless Public Key Encryption

We review the definition and security notions of CL-PKE. We use the simplified

model as used in [Au et al. 2007, Hu et al. 2006, Liu et al. 2007] which is slightly

different from the original one [Al-Riyami and Paterson 2003]. The discussion of

the main difference can be referred to [Hu et al. 2006].

Definition 1. A certificateless public key encryption is specified by 5 algorithms:

– Setup is a setup algorithm run by a key generation center (KGC). It takes

a security parameter 1k as input and returns the system parameters mpk

and the master key msk. Intuitively, the system parameters will be publicly

known, while the master secret key will be known only to the KGC.

– PSK is a partial private key extraction algorithm run by the KGC. It takes

as inputs mpk, msk, and an identity ID of a user. It returns a partial private

key pskID to a user with an identity ID.

– UKeyGen is a user key generation algorithm that takes as inputs mpk and

pskID, and outputs the public/private key pair (pkID, skID).

– Enc is an encryption algorithm that takes as inputs mpk, ID, pkID, and a

message m ∈ M whereM is a message space. It returns a ciphertext C.

– Dec is a decryption algorithm that takes as inputs mpk, skID, and a ciphertext

C. It returns a message m ∈ M if the ciphertext is valid and ⊥ otherwise.

Correctness property requires that Dec(mpk, skID, Enc(mpk, ID, pkID, m)) = m.

Security Model. An adversary A is allowed to access to the following oracles.



– PKO. A public key broadcast oracle takes as input an identity ID and returns

pkID.

– RepO. A public key replacement oracle takes as input an identity ID and a

valid public key pkID. It replaces the associated user’s public key with the

new one pk′ID.

– PSKO. A partial private key extraction oracle takes as input an identity ID

and returns pskID.

– SKO. A private key extraction oracle takes as input an identity ID and returns

skID if the associated public key with ID was not replaced.

– DecO. A decryption oracle takes as inputs an identity ID and a ciphertext

C, returns the decrypted ciphertext using skID. If the user’s public key has

been replaced, it requires an additional input of the corresponding private

key. If it is not given or the ciphertext is invalid, ⊥ will be returned.

First we consider the most common security goal and attack model: Indistin-

guishability against adaptive chosen ciphertext attacks (IND-CL-CCA). For an

efficient algorithm A, which runs in two stages (A1,A2), we define the adver-

sary’s advantage as

AdvACL

X
(k) =

∣

∣

∣
Pr

[

b = b
′

∣

∣

∣

(mpk, msk)← Setup(1k),

(m0, m1, ID
∗, s)← AOX

1 (mpk, a),

b← {0, 1}, C∗ ← Enc(mb, pkID∗ , ID∗, mpk),

b
′ ← AOX

2 (C∗, s)

]

−
1

2

∣

∣

∣

where OI = {PSKO, PKO, RepO, SKO, DecO}, OII = {PKO, SKO, DecO} (i.e. X

is I or II), and s is some internal state information. If A is a Type I adversary,

a = ∅. Otherwise, a = msk. Actually, AII does not need to issue partial private

key queries, since it can compute them from the master key by itself. There are

some restrictions as follows.

– AI ,AII cannot extract the private key for ID∗.

– AI ,AII cannot make a decryption query on C∗.

– AI cannot request the private key for any identity whose public key has

already been replaced.

– AI cannot extract the partial private key for ID∗ if it has replaced the public

key for ID∗ before the challenge phase.

In the Type I security model, we do not allow the Type I adversary to is-

sue decryption queries made on identities for which it has replaced the public

keys and the corresponding private key is not given. However, the strongest se-

curity model of [Al-Riyami and Paterson 2003] does expect that the decryption

oracle should be able to output consistent answers even for identities whose

public keys have been replaced and for which they do not know the corre-

sponding private keys. This is a very strong notion of security. Generic schemes

like [Bentahar et al. 2005, Chow et al. 2006] usually cannot afford such a strong



attack, and have weakened this definition that the adversary does not make

the decryption queries for which the public key has been replaced. We adopt

this model for the Type I security. It is also referred as Type I− security in

[Bentahar et al. 2005]. The rest of the paper omits the − sign.

In previous work, to simulate an honest-but-curious KGC, AII is given msk.

In the above model, we assume that the KGC honestly generates all the public

parameters. However, we need a stronger security model to capture the actions

of a malicious KGC, since it can maliciously compute the public parameters. In

a real environment, the KGC generates the public parameters and the master

secret key by itself, while in a security game the simulation algorithm B gener-

ates the public parameters and the master secret key which are then given to

an adversary. From it, there is the gap between the real environment and the

simulation environment. Therefore, to simulate a malicious KGC, we adopt the

modification from [Au et al. 2007] to allow AII to generate all the public pa-

rameters and the master secret key. In our model, an adversarial algorithm AII

runs in three stages A0,A1,A2. We define the Type II adversary’s advantage as

AdvACL

II
(k) =

∣

∣

∣
Pr

[

b = b
′

∣

∣

∣

(mpk, msk)← A0(1
k),

(m0, m1, ID
∗, s)← AOII

1 (mpk, msk),

b← {0, 1}, C∗ ← Enc(mb, pkID∗ , ID∗, mpk),

b
′ ← AOII

2 (C∗, s)

]

−
1

2

∣

∣

∣

The original model believes that the KGC honestly generates the public

parameters. However, the KGC can maliciously generate them. For example,

we assume that the KGC should pick three random elements (g, g1, g2) in a

multiplicative group G of order p as the public parameters. The KGC maliciously

generates random elements such as g1 = gα, g2 = gβ from elements α, β of Z∗
p and

it can try to break the system from α, β. Actually, we can show that there exists

a CCA-secure CL-PKE scheme against Type II adversaries in previous model,

but not secure against the modified Type II adversarial model [Liu et al. 2007,

Dent et al. 2008]. Some previous work are broken by this attack. Therefore, we

allow the type II adversary to generate all public parameters.

2.3 Assumptions

We briefly review bilinear maps and describe complexity assumptions related to

our construction. Let G and GT be the two multiplicative cyclic groups of order

p for some large prime p. A bilinear map should satisfy the following properties:

1. Bilinear: We say that a map e: G×G→ GT is bilinear if e(ga, hb) = e(g, h)ab

for all g, h ∈ G and a, b ∈ Z∗
p.

2. Non-degenerate: The map does not send all pairs in G × G to the identity

in GT . Observe that since G, G are groups of prime order this implies that

if g is a generator of G then e(g, g) is a generator of GT .



3. Computable: It is efficient to compute e(g, h) for any g, h ∈ G.

The security of our construction is based on the Decisional Bilinear Diffie-

Hellman (DBDH) assumption. In addition, our construction uses a collision re-

sistant hash function to check the validity of a ciphertext.

Definition 2 Decisional Bilinear Diffie-Hellman (DBDH) Assumption.

Given a group G of prime order p with generator g, a pairing e : G × G → GT

and elements ga, gb, gc ∈ G, e(g, g)z ∈ GT where a, b, c, z are selected uniformly

at random from Z∗
p. A fair coin b ∈ {0, 1} is flipped. If b = 1, it outputs the

tuple (g, A = ga, B = gb, C = gc, Z = e(g, g)abc). If b = 0, it outputs the tuple

(g, A = ga, B = gb, C = gc, Z = e(g, g)z). The problem is to guess the bit b.

We define the advantage of any PPT algorithm A, AdvDBDH
A (k), as

∣

∣

∣

∣

Pr[1← A(g, ga, gb, gc, e(g, g)abc)]− Pr[1← A(g, ga, gb, gc, e(g, g)z)]

∣

∣

∣

∣

where the probability is over the randomly chosen a, b, c, z and the random bits

consumed by A. We assume that AdvDBDH
A (k) is a negligible function.

Definition 3 Collision Resistant (CR) Assumption. A hash function H ←

H(k) is collision resistant if for all PPT algorithms A the advantage

AdvCR

A (k) = Pr[H(x) = H(y) ∧ x 6= y | (x, y)← A(1k, H) ∧H ← H(k)]

is negligible as a function of the security parameter.

Definition 4 One-Time Signature (OT). A one-time signature scheme is ex-

istential unforgeable against chosen message attack if for all PPT algorithms A

the advantage AdvOT
A (k), which is

Pr[VF(PK, M, σ) = 1 | (PK, SK)← KG(k) ∧ (M, σ)← ASGN(SK,Mq)(PK)]

is negligible as a function of the security parameter, if M 6= Mq, where KG,

SGN and VF are the key generation, signing and verification algorithm of the

one-time signature scheme respectively. Note that the adversary can make at

most one query to the signing oracle.

3 Malicious KGC Attack of Existing CL-PKE Schemes

In this section, we illustrate how a KGC can easily implant trapdoor in the

system parameter to compromise the security of the user, using the scheme in

[Liu et al. 2007] (called LAS scheme) as an example.



3.1 Review of LAS Scheme

The LAS scheme is constructed from Waters’ IBE scheme [Waters 2005] by using

a message authentication code and an encapsulation scheme as building blocks.

A message authentication code is a pair of PPT algorithms (Mac, Vrfy) such

that Mac takes as input a key sk and a message m to produce a tag tag. The

algorithm Vrfy takes as input a key sk, a message m and tag and outputs either

⊤ or ⊥. It is required that for all sk and m, Vrfy(sk, m, Mac(sk, m)) = ⊤.

In addition, an encapsulation scheme is a weak variant of commitment and is

defined by a triple of PPT algorithms (Init, S, R) as follow. On input security

parameter k′, Init outputs some public parameters pub. On input k′ and pub, S
outputs com, dec on some appropriate range and a string r ∈ {0, 1}k

′

. On input

pub, com and dec, R outputs r.

The LAS scheme is as follows.

– Setup(1k′

). The KGC selects groups G and GT of prime order p with a pairing

e : G×G→ GT . Let g be a generator of G. Randomly pick α← Zp, g2 ← G1,

and compute g1 = gα and pub = Init(k′). Also randomly select u′, g′1, h1 ← G

and ui ← G for i = 1, . . . , n. Let U = {ui}. The public parameters mpk are

(e, G, GT , g, g1, g2, u
′, g′1, h1, U, pub) and the master secret key msk is gα

2 .

– PSK(mpk, msk, ID). Let ID be a bit string of length n and ID[i] be the i-th

bit. Define U ⊂ {1, . . . , n} to be the set of indices i such that ID[i] = 1. The

KGC picks a random value r ∈ Z∗
p and computes;

pskID = (psk1 = gα
2 · Fu(ID)r, psk2 = gr) where Fu(ID) = u′

∏

i∈U

ui.

A user with an identity ID is given pskID as a partial private key.

– UKeyGen(mpk, pskID). User selects a secret value x ∈ Zp, sets his private key

skID = (sk1 = psk1, sk2 = psk2, sk3 = x) and computes his public key pkID

as (gx, gx
1 ) = (pk1, pk2).

– Enc(mpk, ID, pkID, m). To encrypt a message m ∈ {0, 1}κ
′

(κ′ = ⌊κ−1
2 ⌋ and

κ is the number of bit representing an element in GT ) for an identity ID

and public key pkID = (pk1, pk2), first check whether pk1, pk2 ∈ G and

e(pk1, g1) = e(pk2, g). If not, output ⊥ and abort encryption. Otherwise, run

S(pub) to obtain (r ∈ {0, 1}k
′

, com ∈ Zp, dec ∈ {0, 1}κ
′

) and set M = m||dec.

Randomly select s ∈R Zp, and compute

C1 = e(pk2, g2)
s ·M C2 = gs C3 = Fu(ID)s C4 = (g′1

com
h1)

s.

Let Ĉ = (C1, C2, C3, C4). Compute tag = Mac(r, Ĉ). The ciphertext is C =

(Ĉ, com, tag).

– Dec(mpk, skID, C). On receiving C, compute M = C1

(

e(psk2,C3)e(g,C4)
e(psk1·g′

1

comh1,C2)

)x

and obtain m and dec. Compute r = R(pub, com, dec). If Vrfy(r, Ĉ, tag) = ⊤,

then the plaintext is m, else output ⊥.



3.2 Analysis

It has shown in [Liu et al. 2007] that the security of the LAS scheme in the most

common security models, where the KGC starts launching Type II attacks only

after it has honestly generated the public parameters. However, the KGC can

maliciously generate the parameters as follows and then decrypt every ciphertext.

– Setup. When generating the public parameters, the malicious KGC computes

u′ and ui as follows:

1. Select random values β and µi in Zp for i = 1, . . . , n.

2. Compute u′ = gβ
2 and ui = gµi

2 for i = 1, . . . , n.

It then publishes mpk = (e, G, GT , g, g1, g2, u
′, g′1, h1, U, pub) and securely

keeps (β, µ1, . . . , µn) with msk.

– Dec. Eavesdropping a ciphertext C = (C1, C2, C3, C4, com, tag), the KGC

can obtain the encoded message M by computing:

1. gs
2 ← (C3)

1/(β+
∑

i∈U
µi)

(C3 = Fu(ID)s = (u′
∏

i∈U
ui)

s = (g
β+

∑

i∈U
µi

2 )s = (gs
2)

β+
∑

i∈U
µi)

2. M ← C1/e(pk2, g
s
2)

The scheme in [Dent et al. 2008] shares similarities with the LAS scheme

[Liu et al. 2007], thus an attack similar to the above can be applied. We remark

that there is no security claim against malicious KGC attacks in [Liu et al. 2007],

and it has already been stated in [Dent et al. 2008] that neither of their schemes

are secure against adversaries that maliciously generate the system parameters.

4 New Construction

We construct a CCA-secure CL-PKE scheme against Type I and Type II ad-

versaries in our modified model. Our scheme is constructed by a similar way to

[Dent et al. 2008]. We apply the techniques of [Boyen et al. 2005] to the 2-level

hierarchical extension of Waters’ IBE [Waters 2005] to achieve the CCA-security

as in [Dent et al. 2008]. To fight against the malicious KGC attack, our scheme

uses a different public key generation algorithm.

– Setup(1k). The KGC chooses groups G and GT of prime order p such that

a pairing e : G × G → GT can be constructed and selects a generator

g of G. It picks random values α, β, µ′, µ1, . . . , µn, ν′, ν1, · · · , νn in Z∗
p and

computes g1 = gα, h = e(gα, gβ), u′ = gµ′

, u1 = gµ1 , . . . , un = gµn , v′ =

gν′

, v1 = gν1 , . . . , vn = gνn , where n is the length of an identity in bi-

nary string representation. Let H : {0, 1}∗ → {0, 1}n be a collision-resistant

hash function. The master public key mpk and the master secret key msk

are: mpk ← (e, G, GT , g, g1, h, u′, u1, . . . , un, v′, v1, . . . , vn, H) and msk ←

(α, β, µ′, µ1, . . . , µn, ν′, ν1, . . . , νn) respectively.



– PSK(mpk, msk, ID). Let ID be a bit string of length n and ID[i] be the i-th

bit. Define U ⊂ {1, . . . , n} to be the set of indices i such that ID[i] = 1. The

KGC picks a random value r ∈ Z
∗
p and computes;

pskID = (psk1, psk2) = (gβ
1 · Fu(ID)r, gr) where Fu(ID) = u′

∏

i∈U

ui.

A user with an identity ID is given pskID as a partial private key.

– UKeyGen(mpk, pskID). Pick a secret value xID ∈ Z∗
p. The public key pkID

is generated as pkID = (XID, σID) where XID = hxID and σID is the Schnorr

one-time signature using xID as the signing key and (h, XID = hxID) as the ver-

ification key. The message can be any arbitrary string which can be included

in mpk. The signature can be generated using the technique of Fiat-Shamir

transform without random oracles as described in [Bellare and Shoup 2007].

Then it picks r′ randomly from Z∗
p and computes the private key skID as

(sk1, sk2) = (pskxID

1 · Fu(ID)r′

, pskxID

2 · gr′

) = (gβxID

1 · Fu(ID)rxID+r′

, grxID+r′

).

– Enc(mpk, ID, pkID, m). To encrypt m ∈ GT , first check whether the public key

XID is correctly formed, by checking whether σID is a valid signature, using

(h, XID) as the verification key. If not, output ⊥ and abort the algorithm.

Otherwise, select a random value s ∈ Z∗
p and compute: (Let w be a n-bit

string and wi the i-th bit of w.)

C = (C0, C1, C2, C3) = (m · (XID)s, gs, Fu(ID)s, Fv(w)s)

where w = H(C0, C1, C2, ID, pkID) ∈ {0, 1}n and Fv(w) = v′
∏n

j=1 v
wj

j .

– Dec(mpk, skID, C). For a ciphertext C = (C0, C1, C2, C3), check that

e(C1, Fu(ID) · Fv(w)) = e(g, C2C3)

where w = H(C0, C1, C2, ID, pkID) ∈ {0, 1}n. If not, output ⊥. Otherwise,

compute

m = C0 · e(C2, sk2)/e(C1, sk1).

Security Proof. Here, we show that our construction above is secure against a

malicious KGC under the Decisional Bilinear Diffie-Hellman (DBDH) assump-

tion in the standard model.

Theorem 5. Let AII be a Type II adversary that makes at most qd decryption

queries, qpk public key queries, then we have

AdvCL

AII
≤ 4qpkqd(n + 1) ·AdvDBDH

A′ (k) + qpk · AdvCR

A′′ (k)

where A′ and A′′ are algorithms that run in approximately the same time as

AII .



Proof. We define a sequence of modified attack games. Each of the games operates

on the same underlying probability space. The attacker attempts to distinguish

a hidden bit b and eventually outputs a guess b
′, where the hidden bit b takes

on identical values across all games, while some of the rules that define how a

simulator responds to oracle queries may differ from game to game.

We let Si be the event that b = b
′ in the Game i and Advi denote the

adversary’s advantage in the Game i. Then, Advi = |Pr[Si]−1/2|. We start from

the Game 1 and show from the definition of Game i for i > 1 that |Pr[Si]− 1/2|

is negligible if and only if |Pr[Si−1]− 1/2| is negligible. Let E be an event that

can occur during the execution of the adversary and it is independent of Si (i.e

Pr[Si|E] = Pr[Si]). Let Game i+1 be the attack environment which is identical to

Game i unless E occurs. If E does not occur, the adversary will choose the same

bit that it did in Game i (i.e. Pr[Si+1|¬E] = Pr[Si|¬E] = Pr[Si].) Otherwise, it

outputs a random bit b
′ (i.e. Pr[Si+1|E]− 1/2). Then we have

∣

∣ Pr[Si+1]− 1/2
∣

∣ =
∣

∣ Pr[Si+1|E] Pr[E] + Pr[Si+1|¬E] Pr[¬E]− 1/2
∣

∣

=
∣

∣ Pr[E]/2 + Pr[Si|¬E] Pr[¬E]− 1/2
∣

∣

=
∣

∣(1− Pr[¬E])/2 + Pr[Si] Pr[¬E]− 1/2
∣

∣

= Pr[¬E]|
∣

∣ Pr[Si]− 1/2
∣

∣.

Therefore, Advi+1 = Pr[¬E] ·Advi.

Game 1. This game is identical to the original attack environment. A Type II

adversary AII first outputs (mpk, msk) to the simulator B and interacts with

B. It issues up to qpk, qsk, and qd queries to PKO, SKO, and DecO respectively.

We define the following sets.

– pkL = {ID1, . . . , IDqpk
}: the set of identities queried for public key oracle.

– skL = {ID′
1, . . . , ID

′
qsk
}: the set of identities queried for private key extract

oracle.

– Dw = {w1, . . . , wqd
}: the set of string wj = H(C0, C1, C2, IDj , pkj) involved

in decryption queries.

AII selects a target identity/public key pair (ID∗, pkID∗) with two equal length

messages m0, m1, where ID∗ /∈ skL, and sends them to B. It is given C∗ =

(C∗
0 , C∗

1 , C∗
2 , C∗

3 ) as the challenge ciphertext. At this time, we denote w∗ =

H(C∗
0 , C∗

1 , C∗
2 , ID∗, pkID∗) and w∗ /∈ Dw.

Game 2. In this game, B first selects an identity IDi in pkL at random. Let

ga, gb be random elements such that a, b are unknown to B. Then, it sets XIDi

by e(ga, gb)αβ . At this time, xIDi
is regarded as ab because h = e(gα, gβ). πIDi

can

be simulated in the same way as in the signing oracle of the one-time signature.

It also picks κ ∈ {0, . . . , n} and let τ be an integers such that τ(n + 1) < p. In



addition, it randomly selects vectors (x′, x1, . . . , xn) in Zτ and (y′, y1, . . . , yn) in

Zp and sets:

v′ = (ga)x′
−κτgy′

, vj = (ga)xj gyj for 1 ≤ j ≤ n.

If A does not select IDi as a target identity (namely, IDi 6= ID∗), then B aborts.

Therefore, Adv2 = 1
qpk

Adv1.

Game 3. This game is identical to Game 2 except that B halts if the at-

tacker submits a decryption query (C, ID, pkID) for a well-formed ciphertext

C = (C0, C1, C2, C3) where w is either equal to the same value as a previously

submitted ciphertext or w is equal to w∗ in the post challenge phase. For such

a legal decryption query, we have C 6= C∗ or (ID, pkID) 6= (ID∗, pkID∗). In either

case, this implies a collision for H . Hence, we can construct an algorithm A′′

such | Pr[S2]− Pr[S3] |≤ AdvCR
A′′ (k).

Game 4. We define the following functions from the values of Game 2 as

J(w) = x′ + Σn
j=1wjxj − κτ, K(w) = y′ + Σn

j=1wjyj

taking as input n-bit string w = w1 . . . wn. Then Fv(w) = v′
∏n

j=1 v
wj

j =

(ga)J(w) · gK(w).

Game 4 is the same as Game 3 except that, after A outputs her guess b
′ for

b, B checks whether J(w∗) = 0 mod p. If J(w∗) 6= 0 mod p, then B aborts and

outputs a random bit b
′. The event that J(w∗) = 0 mod p happens by chance

because AII does not know information on all values (x′, x1, . . . , xn, κ, τ) to

compute J(w) at all. Actually, Pr[J(w∗) = 0 mod p] = Pr[κτ = (x′+Σn
j=1wjxj)]

since (x′ + Σn
j=1wjxj) < τ(n + 1), κτ < τ(n + 1) and τ(n + 1) < p. Therefore,

Pr[J(w∗) = 0 mod p] =
1

τ(n + 1)

and Adv4 = 1
τ(n+1)Adv3.

Game 5. We modify the way the challenge ciphertext is constructed. B in-

troduces a new variable c ← Z
∗
p and C∗

1 = gc. It flips a coin b, computes

C∗
0 = mb · Xc

ID∗ , C∗
2 = C∗UID∗

1 = (gc)UID∗ , C∗
3 = C

∗K(w∗)
1 = (gc)K(w∗) where

w∗ = H(C∗
0 , C∗

1 , C∗
2 , ID∗, pkID∗) and UID∗ =

∑

i∈U
µj . Clearly, Adv5 = Adv4.

Game 6. We change Game 5 so that, after A outputs her guess b
′, B aborts

and replaces A’s output by a random bit b
′ if J(wℓ) = 0 mod τ for some

wℓ ∈ Dw where ℓ ∈ {1, . . . , qd}. Since Pr[J(w) = 0 mod τ ] = 1/τ , Adv6 =

(1 − 1
τ )qd · Adv5 ≥ (1 − qd

τ ) · Adv5 as Pr[J(w) = 0 mod τ ] = 1/τ . If we set



τ = 2qd, then Adv6 ≥
1
2Adv5.

Game 7. We effectively change the treatment of A’s queries. For all pub-

lic key queries, private key queries and decryption key queries not involving

ID∗, B can respond to queries by running the algorithms PSK(mpk, msk, ID),

UKeyGen(mpk, pskID) and Dec(mpk, skID, C). In addition, it responds to all de-

cryption queries involving ID∗ as follows. When it receives decryption queries for

a valid ciphertext (C0, C1, C2, C3) for ID∗, B aborts and outputs a random bit

b
′ as in Game 6 if J(w) = 0 mod τ , Otherwise, B can extract m by computing

w ← H(C0, C1, C2, ID
∗, pkID∗)

(ga)s ← (C3/C
K(w)
1 )1/J(w)

m← C0/e(gas, gb)αβ = C0/e(gα, gβ)abs = C0/Xs
ID∗ .

Note that we can compute (C3/C
K(w)
1 )1/J(w), since J(w) 6= 0 mod p if J(w) 6=

0 mod τ . We observe that B correctly answers A’s queries as in Game 6. This

implies Adv7 = Adv6.

Game 8. We again alter the generation of the challenge ciphertext. For a vari-

able c introduced in Game 5, let C∗
1 = gc and Z = e(ga, gb)c. B retrieves values

α, β, flips a coin b, and computes C∗
0 = mb ·Zαβ, C∗

2 = (gc)UID∗ , C∗
3 = (gc)K(w∗)

where w∗ = H(C∗
0 , C∗

1 , C∗
2 , ID∗, pkID∗). We have Adv8 = Adv7.

Game 9. We again alter the challenge phase. This time, B “forgets” the value c

and simply retains C∗
1 . The challenge ciphertext is constructed as in Game 8 but

using a randomly chosen Z ∈ GT this time. The whole simulation only depends

on the values ga, gb, gc and the simulator does not use a, b, c at all. Therefore,

| Pr[S8]− Pr[S9] |≤ AdvDBDH
A′ (k) and Pr[S9] = 1/2.

Adv6 = Adv7 = Adv8 ≤ AdvDBDH
A′ (k)

Adv4 = Adv5 ≤ 2 · Adv6

Since Adv4 = Adv3/(τ(n + 1)) and τ = 2qd, we get

Adv3 ≤ 4qd(n + 1) · AdvDBDH
A′ (k)

Adv2 ≤ AdvCR
A′′ (k) + Adv3 ≤ 4qd(n + 1) · AdvDBDH

A′ (k) + AdvCR
A′′ (k)

In consequence, since Adv2 = 1/qpk · Adv1, we obtain

Adv1 ≤ 4qpkqd(n + 1) ·AdvDBDH

A′ (k) + qpk · AdvCR

A′′ (k).

�

Now we provide the security proof of our scheme against Type I adversaries.



Theorem 6. Let AI be a Type I adversary that makes at most qd decryption

queries, then we have

AdvCL

AI
≤ 4qd(n + 1) ·AdvDBDH

A′ (k) + AdvCR

A′′ (k) + AdvOT

As
(k)

where A′ , A′′ and As are algorithms that run in approximately the same time

as AI .

Proof. The proof is done in a way similar to that of Theorem 5.

Game 1. This game is identical to the original attack environment. B runs

Setup(1k) and outputs (mpk, msk). A Type I adversary AI is given mpk. Then

it issues up to qpsk, qpk, qrpk, qsk, and qd queries to PSKO, PKO, RepO, SKO,

and DecO respectively. We define the following sets.

– pkL = {ID1, . . . , IDqpk
}: the set of identities queried for public key oracle.

– rpkL = {ID1, . . . , IDqrpk
}: the set of identities queried for public key replace

oracle.

– pskL = {ID′
1, . . . , ID

′
qpsk
}: the set of identities queried for partial private key

extract oracle.

– Dw = {w1, . . . , wqd
}: the set of string wj = H(C0, C1, C2, IDj , pkj) involved

in decryption queries.

AI selects a target identity/public key pair (ID∗, pkID∗) with two equal length

messages m0, m1, where ID∗ /∈ pskL or ID∗ /∈ rpkL, and sends them to B. It is

given C∗ = (C∗
0 , C∗

1 , C∗
2 , C∗

3 ) as the challenge ciphertext. At this time, we denote

w∗ = H(C∗
0 , C∗

1 , C∗
2 , ID∗, pkID∗) and w∗ /∈ Dw.

Game 2. This game is identical to Game 1, except some value of the mpk in the

system parameters are replaced with following. Let ga be a random element in G

such that a is unknown to B. It randomly selects β ∈ Z∗
p, and sets g1 = ga, h =

(ga, gβ). In addition, it also picks κv ∈ {0, . . . , n} and let τv be an integers such

that τv(n + 1) < p. It randomly selects vectors (x′
v, xv,1, . . . , xv,n) in Zτv

and

(y′
v, yv,1, . . . , yv,n) in Zp and sets:

v′ = (ga)x′

v−κvτvgy′

v , vj = (ga)xv,j gyv,j for 1 ≤ j ≤ n.

The replaced public key has the same distribution as the public key generated

in the previous game. It should also contain a valid one-time signature π. Hence,

we can construct an algorithm As such that |Pr[S1]−Pr[S2]| ≤ AdvOT
As

(k). Note

that (ν1, . . . , νn) and α of msk (which is regarded as a) are unknown to B. How-

ever, it securely keeps other values (β, µ′, µ1, . . . , µn, ν′) of msk.

Game 3. In this game, B first selects an identity IDi in pkL at random. Let gb

be a random element in G such that b is unknown to B. Then it sets XIDi
by



e(ga, gbβ). At this time, xIDi
is regarded as b because h = e(ga, gβ). We can see

that Adv3 = Adv2.

Game 4. This game is identical to Game 3 except that B halts if the at-

tacker submits a decryption query (C, ID, pkID) for a well-formed ciphertext

C = (C0, C1, C2, C3) where w is either equal to the same value as a previously

submitted ciphertext or w is equal to w∗ in the post challenge phase. For such

a legal decryption query, we have C 6= C∗ or (ID, pkID) 6= (ID∗, pkID∗). In either

case, this implies a collision for H . Hence, we can construct an algorithm A′′

such | Pr[S3]− Pr[S4] |≤ AdvCR
A′′ (k).

Game 5. We define the following functions from the values of Game 3 as

J(w) = x′ + Σn
j=1wjxj − κτ, K(w) = y′ + Σn

j=1wjyj

taking as input n-bit string w = w1 . . . wn. Then Fv(w) = v′
∏n

j=1 v
wj

j =

(ga)J(w) · gK(w).

Game 5 is the same as Game 4 except that, after A outputs her guess b
′ for

b, B checks whether J(w∗) = 0 mod p. If J(w∗) 6= 0 mod p, then B aborts and

outputs a random bit b
′. The event that J(w∗) = 0 mod p happens by chance

because AII does not know information on all values (x′, x1, . . . , xn, κ, τ) to

compute J(w) at all. Actually, Pr[J(w∗) = 0 mod p] = Pr[κτ = (x′+Σn
j=1wjxj)]

since (x′ + Σn
j=1wjxj) < τ(n + 1), κτ < τ(n + 1) and τ(n + 1) < p. Therefore,

Pr[J(w∗) = 0 mod p] =
1

τ(n + 1)

and Adv5 = 1
τ(n+1)Adv4.

Game 6. We modify the way the challenge ciphertext is constructed. B in-

troduces a new variable c ← Z∗
p and C∗

1 = gc. It flips a coin b, computes

C∗
0 = mb · Xc

ID∗ , C∗
2 = C∗UID∗

1 = (gc)UID∗ , C∗
3 = C

∗K(w∗)
1 = (gc)K(w∗) where

w∗ = H(C∗
0 , C∗

1 , C∗
2 , ID∗, pkID∗) and UID∗ =

∑

i∈U
µj . Clearly, Adv6 = Adv5.

Game 7. We change Game 6 so that, after A outputs her guess b
′, B aborts

and replaces A’s output by a random bit b
′ if J(wℓ) = 0 mod τ for some

wℓ ∈ Dw where ℓ ∈ {1, . . . , qd}. Since Pr[J(w) = 0 mod τ ] = 1/τ , Adv6 =

(1 − 1
τ )qd · Adv5 ≥ (1 − qd

τ ) · Adv5 as Pr[J(w) = 0 mod τ ] = 1/τ . If we set

τ = 2qd, then Adv7 ≥
1
2Adv6.

Game 8. We effectively change the treatment of A’s queries. For all public

key queries, private key queries and decryption key queries not involving ID∗,

B can respond to queries by running the algorithms PSK(mpk, β, ID) (only



β in msk, instead of msk, is required to generate pskID for a queried ID),

UKeyGen(mpk, pskID) and Dec(mpk, skID, C). When it receives a public key re-

place query, it replaces a previously generated public key pkID for ID with a new

one pk′
ID

. If the decryption query involves an identity ID with a replaced public

key, the corresponding private key xID is required to be supplied. Otherwise it

aborts. In addition, it responds to all decryption queries involving ID∗ as fol-

lows. When it receives decryption queries for a valid ciphertext (C0, C1, C2, C3)

for ID∗, B aborts and outputs a random bit b
′ as in Game 6 if J(w) = 0 mod τ ,

Otherwise, B can extract m by computing

w← H(C0, C1, C2, ID
∗, pkID∗)

(ga)s ← (C3/C
K(w)
1 )1/J(w)

m← C0/e(gas, B)β = C0/e(ga, Bβ)s = C0/Xs
ID∗ .

where B = gb if ID∗ /∈ rpkL or B = gxID∗ otherwise, since xID∗ should be given to

the decryption oracle if ID∗ ∈ rpkL. Note that we can compute (C3/C
K(w)
1 )1/J(w),

since J(w) 6= 0 mod p if J(w) 6= 0 mod τ . We observe that B correctly answers

A’s queries as in Game 6. This implies Adv8 = Adv7.

Game 9. We again alter the generation of the challenge ciphertext. For a vari-

able c introduced in Game 5, let C∗
1 = gc and Z = e(ga, gb)c. B retrieves values

α, β, flips a coin b, and computes C∗
0 = mb · Zβ , C∗

2 = (gc)UID∗ , C∗
3 = (gc)K(w∗)

where w∗ = H(C∗
0 , C∗

1 , C∗
2 , ID∗, pkID∗). We have Adv9 = Adv8.

Game 10. We again alter the challenge phase. This time, B “forgets” the value c

and simply retains C∗
1 . The challenge ciphertext is constructed as in Game 9 but

using a randomly chosen Z ∈ GT this time. The whole simulation only depends

on the values ga, gb, gc and the simulator does not use a, b, c at all. Therefore,

| Pr[S9]− Pr[S10] |≤ AdvDBDH
A′ (k) and Pr[S10] = 1/2.

Adv7 = Adv8 = Adv9 ≤ AdvDBDH
A′ (k)

Adv5 = Adv6 ≤ 2 · Adv7

Since Adv5 = Adv4/(τ(n + 1)) and τ = 2qd, we get

Adv4 ≤ 4qd(n + 1) · AdvDBDH
A′ (k)

Adv3 ≤ AdvCR
A′′ (k) + Adv4 ≤ 4qd(n + 1) ·AdvDBDH

A′ (k) + AdvCR
A′′ (k)

In consequence, since Adv3 = Adv2 and Adv1 ≤ AdvOT
As

(k) + Adv2, we obtain

Adv1 ≤ 4qd(n + 1) · AdvDBDH

A′ (k) + AdvCR

A′′ (k) + AdvOT

As
(k).

�



5 Concluding Remarks

We have showed that some previous CL-PKE scheme in the standard model

are not secure against the malicious KGC attacks, and proposed a new CL-

PKE scheme which is provably secure against the malicious KGC attacks in the

standard model. It is believed to be the first in the literature to achieve the

strongest Type II security without random oracles.

We remark that one may also construct a certificateless signature scheme

secure against malicious KGC in the standard model using a similar technique

presented in this paper, which will be our future work.
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