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Abstract: Cryptography is an important tool in the design and implementation of electronic 
voting schemes for it provides the property of verifiability, which is not provided in the traditional 
voting. But in the real life, neither can most voters understand the profound theory of 
cryptographic e-voting nor can they perform the complicated cryptographic computation. An 
e-voting system is presented in this paper to leverage the use of cryptography between theory and 
practice. It combines the advantages of Moran-Naor’s voting scheme and voting schemes based on 
homomorphic encryption. It makes use of cryptographic techniques, but it hides the details of 
cryptographic computation from voters. Voters can be convinced that the ballot is cast as intended. 
The tally can be verified in public. Compared with Moran-Naor’s voting scheme, the new system 
has three advantages: the ballots can be recovered when the voting machine breaks down, the 
costly cut-and-choose zero-knowledge proofs for shuffling votes made by the voting machine are 
avoided and the partial tally result in each voting machine is kept secret. 
Key words: electronic voting, homomorphic commitment, homomorphic encryption, threshold 
decryption 

1. Introduction 

Electronic voting will replace the traditional paper-based voting in the near future. There has 
been a large amount of research in this area. Some experts focus on the design of the reliable 
voting machine, which is often called “Direct Recording Electronic” (DRE) machine. Others 
engage in the design of e-voting protocols by using cryptographic tools. The cryptographic 
e-voting schemes can be mainly classified into three categories: voting based on anonymous 
channels such as mix-net [1][2][3], voting based on blind signature [4] and voting based on 
homomorphic encryption [5][6][7]. Voting based on homomorphic encryption does not need the 
complicated construction of anonymous channels so it is the most efficient. 

Although many cryptographic voting schemes have been proposed, they only guarantee that 
the ballots are counted as cast. To guarantee that the ballot is cast as intended, voters must verify 
that each step of the complicated cryptographic protocol is strictly executed. However, most voters 
are not familiar with cryptography, and they only have highly constrained computation ability. So 
it is difficult for average voters to perform the verification. To solve this problem, Chaum 
presented a voting scheme based on visual cryptography [8]. Mix-net is employed so his scheme is 
not efficient. In addition, special print device is required. Neff presented a voting scheme called 
“MarkPledge” [9]. In this scheme the verification work is separated into two parts. The voter only 
needs to compare some strings in the voting booth, and the rest of complicated cryptographic 
computation can be carried out by any third party outside the voting booth. The voter is ensured 
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that her ballot is cast as intend and the tally is counted as cast if both parts of the verification 
succeed. Inspired by Neff’s scheme, Moran and Naor presented a simpler voting scheme [10] with 
the same advantage. In Moran-Naor’s scheme1 when a voter enters the voting booth, she chooses 
a candidate on the DRE. The DRE makes commitments to the candidate chosen by the voter. If the 
voting machine is honest, it can always open the commitments according to the challenge given by 
the voter. To hide the voter’s choice the voting machine and the voter jointly simulate pairs of 
challenges and answers for other candidates. When the voter leaves the voting booth, the DRE 
prints a receipt for the voter. The voter only has to make sure that she gave the challenge for the 
real candidate after the DRE committed, and the challenges printed on the receipt match what she 
gave. The rest of verification can be made according to information on the receipt by any trusted 
third party outside the voting booth. The voter is convinced that her ballot is cast as intended after 
the receipt passes the verification. When the tally begins the DRE shuffles ballots stored in the 
memorizer and discloses the content. The receipts in Neff’s scheme and Moran-Naor’s scheme 
leaks no information on the voter’s choice, since the receipts are both constructed on the idea that 
a simulated zero-knowledge proof is indistinguishable from a real zero-knowledge proof. 

In this paper a voting system is designed to combine the advantages of Moran-Naor’s scheme 
and voting schemes based on homomorphic encryption. It solves the hard problem of the ballot 
restoration in Moran-Naor’s scheme. It also improves the efficiency and simplifies the design of 
the DRE. 

The rest of the paper is organized as follows: in section 2 some building blocks of the new 
voting system are introduced. In section 3 the implementation of the voting system is presented. In 
section 4 the voting system is analyzed and compared to Moran-Naor’s scheme. In section 5 some 
concluding remarks is given. 

2 Preliminaries 

Security requirements.  A voting protocol should satisfy the security requirements below: 
Eligibility: Only eligible voters can participate in the election, and each eligible voter can 

cast a single vote. 
Privacy: The content of an individual ballot is kept secret. Only the final tally result is 

published. 
Verifiability: The validity of the individual ballot and the tally process can be verified. When 

any passive third party can also verify the ballot cast and the tally, this property is called universal 
verifiability. Voting based on blind signature is not universal verifiable, but the other two 
categories of voting protocols satisfy the universal verifiability. 

Robustness: The voting protocol can tolerate corrupt voters and dishonest authorities to 
some extent. 

Fairness: The partial results of the tally should not be exposed prior to the end of the voting 
phase. 

Receipt-freeness: The voter cannot convince others how she casts a ballot. This property is 

                                                        
1 The authors of [10] presented a generic voting protocol and a concrete implementation based on Pedersen 
commitment. They claimed that the security proof of the generic protocol would be published in the full version. 
The full version is not published yet. So in this paper when we talk about Moran-Naor’s scheme we only indicate 
the concrete implementation in [10]. 
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crucial to thwart voting buying and coercion. 
System model.  Our voting system is designed to be used in a traditional setting, in which voters 
cast their ballots in a private voting booth. We assume a 1-out-of-L election, that is, the voter 
chooses one candidate from a setting of L candidates. In the election there are four entities: voter, 
DRE, registration authority and tallying authority. Before the election starts the voter must go to a 
registration authority to register her identity. Then the voter enters a voting booth, and casts her 
ballot on a DRE. The DRE encrypts the ballot and publishes the ciphertext on the bulletin board. 
There are  tallying authorities. We assume that at least  of them remain honest. When the 
voting phase ends,  tallying authorities jointly aggregate and decrypt the final tally result. 

l t
t

Encoding votes.  We denote by M  a strict upper bound on the number of voters. We represent 

candidates with numbers  and encode a vote on candidate  as 0, ..., 1L − i iM . Tallying such 

encoded votes gives us an M-addic representation of the result, , where is the number 

of votes on candidate . 
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System parameters.  We assume that the message space of the threshold homomorphic 

encryption used in our voting system is NZ  for a suitable  to avoid overflow. We 

define  as the maximal bit length of a vote. We assume that the distribution of the randomizer 

space of the cryptosystem is to pick a random 

LN M>

Vl

Rl -bit randomizer. Similarly for the integer 

commitment we pick a random -bit number as the randomizer. We need some extra security 

parameters. We use a cryptographic hash function that outputs an -bit number . =160 may 

be sufficient. We use a security parameter 

rl

el e el

sl , such that for any value  we have that  and 

 are indistinguishable, where  is a random 

a aa r+

ar ar | | sa l+  -bit number. In practice sl =80 will be 

fine. 
Homomorphic integer commitment.  Examples of homomorphic integer commitment can be 
found in [11], [12] and [13]. The homomorphic property is 

, Where ⊕ , , ' ' ' ' '
1 1( , ..., ; ) ( , ..., ; )ncom m m r com m m r= ⊗1 1( , ..., ; )n ncom m m m m r r⊕ ⊕ '

n ⊗  

are the binary operations for messages, randomizers and ciphertexts respectively. For notational 
convenience, we will in the rest of paper use +  for the message and randomizers, and  for the 
ciphertexts. In this paper we use the following variant of the Damgard-Fujisaki commitment 
scheme. We choose a moduls  as a product of two safe primes and random generators 

⋅

n

1, , ... ,kg g g h r of . A commitment to an integer m  using randomizer  is 

. To commit to integers  using randomizer  we compute 

. This commitment scheme satisfies the root extraction property ([14] [15]). 

nQR {0,1} rl
R∈

modm rc g h n= 1,..., km m {0,1} rl
Rr ∈

1
1 ... modkmm r

kc g g h n=
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Homomorphic encryption.  In this paper we make use of a semantically secure homomorphic 
threshold cryptosystem. The encryption algorithm  takes as input a message and a randomizer 
and output a ciphertext. The homomorphic property is 

E
( '; ')E m m r r⊕ ( ; ) ( '; ')E m r E m r= ⊗ . 

Again, for notational convenience, we will in the rest of paper use +  for the message and 
randomizers, and  for the ciphertexts. Examples of homomorphic cryptosystems are the additive 
version [5] of ElGamal [16] and Paillier [17]. They both are semantically secure, have the root 
extraction property ([14] [15]) and have threshold variants ([18] [19] [7]). 

⋅

−∑ proofs.  proofs [20] are a type of 3-move honest verifier zero-knowledge proofs that 

work in the following way: the prover and verifier know a common input 

−∑

x  and the prover 
knows a witness  such that (w , )x w R∈  where  is some relation. The prover sends an initial 
message  to the verifier, receives a random challenge  and responds with an answer 

R
a e z . On 

the basis of  the verifier decides whether to accept the claim that ( , , )a e z x L∈  where  is 

the language specified by the relation . Using Fiat-Shamir heuristic [21] proofs can be 

made non-interactive by using a cryptographic hash function and letting the challenge be created 
as . In the random oracle model [22] the resulting hash value is completely 
random. 

L

R −∑

( , )e hash x a=

3 The new voting system 

    The new voting system works as follows: 
Step 1. Voting preparation 
    A bulletin board is constructed for the DREs, the registration authority and tallying 
authorities to publish certified messages. The messages posted on the bulletin board cannot be 
tampered with. Before the election starts all voters must go to the registration authority to register 
their identities. Tallying authorities jointly create the public key of the homomorphic commitment 
and the public key of the homomorphic threshold cryptosystem. The secret key of the 
cryptosystem is shared among  tallying authorities by a  secret sharing algorithm where 

 is the threshold. The public keys are posted on the bulletin board and fixed into the firmware of 
the DREs. The registration authority publishes the list of all eligible voters’ identity information 
and places DREs into all polling stations. 

l ( , )t l
t

Step 2. Casting a ballot 
(1) A voter enters the voting booth after her identity is verified. Assume that she wants 

to vote for the k-th candidate ( {0,1, ..., 1}k L∈ − ). The DRE receives her choice, 

picks  and computes the commitment . {0,1} rl
Rr ∈ ( ; )kc com M r=

(2) The DRE asks the voter to input random challenges for other  candidates. 
Each challenge is a -bit string. In practice the -bit string can be composed of 4 
alphanumeric characters. 

1L −
T T

(3) The DRE computes an L T×  matrix , ,( )i jH h= 0,..., 1i L= − ; 1, ...,j T= . The 

element in the k-th row of the matrix is defined as , , ,(0, )k j k jh c com r= ⋅
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1,...,j T= , . Denote by  the j-th bit of the challenge for the 

i-th candidate ( ;

, {0,1}
lr

k j Rr ∈ ,i jbit

0,..., 1i L= − 1,...,j T= ). The element in the i-th ( , 
; 

0, ..., 1i L= −
i k≠ 1,...,j T= ) row of the matrix is defined as follows: 

, ,( ; )i
i j i jh com M r r= + , 0i jbit if = , 

, ,(0; )i j i jh c com r= ⋅     if , 1i jbit = .              . , {0,1} rl
i j Rr ∈

(4) The DRE computes a commitment to everything it has calculated so far: 

( , ; )xx com c H r= , . It prints {0,1} rl
x Rr ∈ x  in the first two lines of the receipt. 

We require the actual printed information is hidden behind a shield. The voter can 
verify that two rows are actually printed but she cannot learn the exact content. 

(5) The voter enters a random -bit string as the challenge for her chosen candidate 
. 

T
k

(6) The DRE computes an L T×  matrix , ,( )i jS s= 0,..., 1i L= − ; 1, ...,j T= . The 

element of the matrix  is defined as follows:  S

                , ,i j i js r r= +  if , 0i jbit = , 

                ,i j i j,s r=     if , 1i jbit = . 

(7) The DRE prints each candidate’s name and its corresponding challenge on the 
receipt. The voter verifies that the challenges printed on the receipt are identical to 
the challenges she input. If everything is in order she presses “OK” button to 
finalize the vote. If something is wrong she presses “ESC” button to restart the 
voting. 

(8) The DRE prints the voter’s identity information and a “Receipt Certified” message 
on the final two lines of the receipt. The voter takes her receipt and leaves the voting 
booth. 

Step 3. Publishing the vote 

    The DRE picks {0,1} Rl
RR∈  and computes the encryption of the ballot . It 

uses the following 

( ; )kC E M R=

−∑ proof to prove that the commitment  and the encryption  hold the 

same element  modulo : 

c C

m N
Common input: Commitment , Encryption  and public keys. c C

Private input for the prover: Message  and randomizer , m {0,1} rlr ∈ {0,1} RlR∈  so 

, . ( ; )c com m r= ( ; )C E m R=

Initial message: Choose {0,1} V e sl l l
m RR + +∈ , {0,1} R e sl l l

R RR + +∈  and . Set 

 and . 

{0,1} r e sl l l
rr

+ +∈

( ;R mC E R R= )R r( ; )r mc com R r=
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Challenge: . ( , , , )R re hash C c C c=

Answer: Set mm em R= + , RR eR R= +  and rr er r= + . The answer is ( m , R , 

r ). 

Verification: The verifier computes  as above, and verifies that e ( ; )e
RC C E m R=  and 

( , )e
rc c com m r= . 

Next the DRE makes a non-interactive zero-knowledge proof to prove that the encryption of 
the voter’s ballot is correctly formed. The techniques for such proofs have been investigated in 
([5][6][7][14][15]). In appendix an efficient zero-knowledge proof is given. It may be helpful to 
design a DRE. 

The DRE publishes the encryption of the ballot, the two non-interactive zero-knowledge 
proofs made as above and the voting information of the voter on the bulletin board. The voting 
information including the following data: the copy of the voter’s receipt, the commitment , the 

matrix , the randomizer 

c

H xr  and the matrix . S

Step 4 Verifying the individual vote outside the voting booth 
The voter checks that a copy of her receipt appears on the bulletin board. The voter does not 

need to participate in the next verification. She can ask any third party she trusts, such as a helper 
organization, to perform the left verification. The third party carries out the verification as follows: 

① verifies ( , ; )xx com c H r= ; ② verifies  if , or 

 if ; for all 

, ,( ;i
i j i jh com M s= ) , 0i jbit =

, ,(0; )i j i jh c com s= ⋅ , 1i jbit = 0,..., 1i L= − ; 1, ...,j T= . If the DRE made the 

commitment  to some value other than the voter’s choice in the voting booth, the 

DRE will be caught with probability at least 

( ; )kc com M r=

1 2 T−− . ③verifies the proof that a commitment  
and an encryption  hold the same element; ④verifies the proof that the encryption of the 
ballot is correctly formed. The voting schemes based on homomorphic encryption are vulnerable 
to malformed encrypted ballots. A sender who sends 

c
C

( 100)E −  may take 100 yes-votes out of the 
ballot box. We use the zero-knowledge proof for correct encryption of a ballot to guarantee that 
even if a malformed encrypted ballots can escape the former verification, the damage it can do is 
only limited to casting a ballot for another candidate. Note this zero-knowledge proof and its 
corresponding verification are performed by the DRE and the third party respectively. The 
overhead of the voter is not increased. Since the data published on the bulletin board is publicly 
accessible, even a passive third party interested in the election can participate in the verification. If 
the verification fails, the verifier can appeal to the legal authority for arbitration. The incorrect 
votes are excluded from the tallying. 
Step 5. Tallying 

When the voting phase ends, the tallying authorities multiply all the ciphertexts of the ballots. 
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By the homomorphic property of the cryptosystem they get a new ciphertext . The 

tallying authorities threshold decrypt this ciphertext and give the zero-knowledge proof that the 
decryption is correctly performed. It is straightforward to extract the voting result from the 
plaintext. 

1

0
( )

L i
i

i
E v M

−

=
∑

Step 6. Verifying the tally 

Any passive third party interested in the election can re-compute the ciphertext  

and verify the zero-knowledge proof of correct decryption. 

1

0
( )

L i
i

i
E v M

−

=
∑

4 Security analysis and discussion 

The proposed voting system satisfies all security requirements presented in Section 2. 
Eligibility: The voter’s identity must be registered and checked before she can enter the 

voting booth. Everyone can verify that the voter who has cast a ballot is included in the list of all 
eligible voters. 

Privacy: The receipt leaks no information about the voter’s choice. Due to the hiding 
property of the commitment, the semantic security property of the encryption algorithm and the 

zero-knowledge property of the proofs, no information about the content of the vote can be 

inferred from the public data posted on the bulletin board. The single encrypted ballot will never 
be decrypted if the number of honest tallying authorities is more than the threshold. Only the final 
tallying result is jointly decrypted and revealed. 

−∑

Universal Verifiability: The receipts, the tallying process and all zero-knowledge proofs are 
posted on the bulletin board. Any third party can act as a verifier. 

Robustness: The DRE must provide the voter a receipt to prove that it has correctly recorded 
the voter’s choice. The encryption of the ballot made by the DRE and the joint decryption made 

by the tallying authorities are proved by corresponding −∑ proofs. So failure of the participants 

in the election can be detected. The threshold cryptosystem can tolerate l t−  dishonest tallying 
authorities. The corruption of the DRE does not influence the data recovery. This will be discussed 
later. 

Fairness: When  tallying authorities remain honest, they will never cooperate to decrypt 
any of the partial tallying results. 

t

Receipt-freeness: Interestingly, although the voter receives a receipt in the voting booth, any 
adversary can gain no information about the voter’s choice from the receipt. Only the voter knows 
the order of the input challenges for candidates. On the receipt the real zero-knowledge proof for 
the candidate chosen by the voter is indistinguishable from any other zero-knowledge proof 
simulated by the DRE. The voter has no idea about the randomizers used by the DRE. Although 

she is convinced that the DRE correctly encrypts her ballot by the −∑ proofs, she cannot prove to 

others how she casts a ballot. So the proposed voting system satisfies the receipt-free property. 
The new voting system retains the advantage of Moran-Naor’s scheme, that is, the voter only 

needs to remember and compare some strings and she can let any third party she trusted complete 
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the left verification. There are some differences between the new voting system and Moran-Naor’s 
scheme: 

A special vote encoding is used in the new voting system. In Moran-Naor’s scheme, the vote 
is simply encoded as the hash value of the candidate’s name. 

A homomorphic integer commitment scheme is used in the new system, whereas, Pedersen 
commitment [23] is used in Moran-Naor’s scheme. 

The DRE is required to do more work and the tallying authorities are introduced in the new 
system. The DRE encrypts the ballot and gives two relative non-interactive zero-knowledge 
proofs. The tallying authorities jointly decrypt the ciphertext of the final result. 

Compared with Moran-Naor’s scheme, the new voting system has the following advantages: 
Firstly, Moran-Naor’s scheme has the property of everlasting privacy. They use Pedersen 

commitment and the commitment is perfect hiding. Although the commitment to the vote is 
published on the bulletin board, the secrecy of the commitment is in the information-theoretic 
sense. This property is good in theory, however, may be too strong in practice. If the DRE breaks 
down, the ballot stored in it cannot be recovered and will be everlasting lost. In the new voting 
system the encryption of the ballot is published on the bulletin board. The failure of the DRE will 
not have a significant impact on the election. 

Secondly, in the tallying phase of Moran-Naor’s scheme, the ballot is stored in the DRE on 
the form of plaintext. In order to hide the content of the individual ballot, the DRE shuffles the 
ballots and gives a cut-and-choose zero-knowledge proof to prove the correctness of the shuffle. In 
the new voting system the ballots are specially encoded to allow a homomorphic aggregation on 
the form of ciphertexts. The fact that the DRE does not store ballots on the form of plaintext 

provides a higher security level. The −∑ proofs made by the DRE are more efficient than the 

costly cut-and-choose shuffle proof, and the design of the DRE is greatly simplied. 
Finally, in Moran-Naor’s scheme the tallying is separately performed on each DRE. So the 

tallying result on each DRE is disclosed. Although the tally is counted after the voting phase ends 
and the fairness property is not violated, additional information about voters’ choices on each 
DRE is exposed. This is not desirable. In the new voting system the tallies on all DREs are 
combined on the form of ciphertext by the homomorphic property of the cryptosystem. The partial 
tallies are always hidden if  tallying authorities remain honest. t

5. Conclusion 

Cryptography is an important tool in the implement of e-voting. But most voters have little 
knowledge about the theory, and it is unreasonable to assume that voters can perform complicated 
computation. To address the issue, Neff designed the first e-voting scheme that greatly reduced the 
computation cost needed by the voter. Moran and Naor designed a simpler e-voting scheme by 
using the similar idea. In this paper we present a new voting system combining the advantages of 
Moran-Naor’s voting scheme and voting schemes based on homomorphic encryption. The voter is 
free of complicated computation and more advantages are given: the ballots can be recovered 
when the voting machine breaks down, the costly cut-and-choose zero-knowledge proofs made by 
the voting machine are avoided and the partial tally result in each voting machine is kept secret. 
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Appendix 

1. How to prove that a commitment  and an encryption  hold the same element  
modulo . 

c C m
N

In this paper we use a proof to prove that a commitment  and an encryption  hold 

the same element  modulo . The 

−∑ c C

m N −∑ proof is presented in [14]. But the authors of [14] do 

not prove that the proof satisfies the criteria of the special honest verifier zero-knowledge proof. 
Here we give the complete proof. 

Common input: Commitment , Encryption  and public keys. c C

Private input for the prover: Message  and randomizer , m {0,1} rlr ∈ {0,1} RlR∈  so 

, . ( ; )c com m r= ( ; )C E m R=

Initial message: Choose {0,1} V e sl l l
m RR + +∈ , {0,1} R e sl l l

R RR + +∈  and . Set 

 and . 

{0,1} r e sl l l
rr

+ +∈

( ;R mC E R R= )R r( ; )r mc com R r=

Challenge: . ( , , , )R re hash C C c c=

Answer: Set mm em R= + , RR eR R= +  and rr er r= + . The answer is ( m , R , 
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r ). 

Verification: The verifier computes e  as above, and verifies that ( ; )e
RC C E m R=  and 

( , )e
rc c com m r= . 

Theorem 1. In the random oracle model, the protocol above is a non-interactive special 
honest verifier zero-knowledge argument. If the commitment scheme is statistically hiding, 
the protocol is statistically special honest verifier zero-knowledge argument. If the 
commitment scheme is statistically binding, the protocol is a special honest verifier 
zero-knowledge proof. 
Proof. It is straightforward to verify that the protocol is complete. It remains to argue 
zero-knowledge and special soundness. 

    To argue zero-knowledge we pick  at random. We choose e {0,1} V e sl l l
Rm + +∈ , 

{0,1} R e sl l l
RR + +∈  and {0,1} r e sl l l

Rr + +∈ . We set ( ; ) e
RC E m R C−=  and 

( , ) e
rc com m r c−= . Finally, we program the random oracle to output  on input ( ). 

The simulated argument is statistically indistinguishable from a real argument if the commitment 
scheme is statistically hiding. 

e , , ,R rC C c c

To argue special soundness, we suppose an adversary produces a valid proof. We wish to 
extract a witness ( ). To do so we can rewind the adversary to the point where it queries the 

random oracle with , we then give it random challenges until we get a new acceptable 

proof. Let us call the two acceptable arguments (

, ,m r R

, , ,RC C c cr

, , , , ,R rC c e m R r ) and (
' ' '

). ' ' ', , , , ,R r
C c e m R r

Since the proofs are acceptable we have ( ; )e
RC C E m R=  and 

' '' ( ;e
RC C E m R= ) . 

This gives us 
'' ( ;e eC E m m R R− = − −

'
) . With overwhelming probability we have  

and using the root extraction property of the cryptosystem we can extract 

'e e≠

'
( ) /( ') mom m e e Nμ = − − d  and 

'
( ) /(R R e eρ ')= − −  so ( ; )C E μ ρ= . In a similar way 

by the root extraction property of the commitment we can extract 
'

( ) /(m m e eγ ')= − −  and 

'
( ) /(r r e eλ = − − ')  so ( ; )c com γ λ= . We can see μ γ=  . mod N

If the commitment scheme is statistically binding, even an unbounded adversary cannot 
change its mind about the value it has committed to. We actually have a special honest verifier 
zero-knowledge proof. 
 
2. How to prove the encryption of the ballot is correctly formed 
    In voting based on homomorphic encryption, the encrypted ballot is cast with a proof that the 
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encryption of the ballot is correctly formed. The proof techniques have been developed in 
([5][6][7][14][15]). Groth suggested non-interactive zero-knowledge arguments for four types of 
voting: limited vote, approval vote, divisible vote and Borda vote in [15]. To the best of our 
knowledge, his arguments are the most efficient. Following his idea, we give a NIZK argument 
suitable for our voting system. It is a simplified version of Groth’s argument for limited vote. 

Recall that we represent candidates with numbers 0, ..., 1L −  and encode a vote on 

candidate  as i iM . We select 2M p=  where  is a prime. Assume that the voter chooses 

candidate 

p

j  ( ) and give her choice to the DRE. The DRE encrypts {0, ..., 1}j L∈ − jM  and 

gives a non-interactive zero-knowledge argument for the encryption as follows: 
Common input: Ciphertext  and public keys. C

Prover’s input: {0,1} Rl
RR∈  such that . We prove correctness of the 

encryption of the vote by producing the proof of knowledge: [(

( ; ) ( ; )jC E V R E M R= =

, , ,v ρ α β ): ( ; )C E v ρ= , 2v α=  

and Lp pαβ= ]. 

Argument: Let jV M= , choose {0,1}V e sl l l
V RR + +∈ , {0,1} R e sl l l

R RR + +∈ , and set ( ; )R V RC E R R= . 

Let ja p= , 1L jb p − −= . Choose / 2, {0,1}V el l l
a b Rr r s+ +∈ . Let , . 

Set . Set . 

b apar pbrΨ = + 2 a Var RΔ = −

( , , , , )c com a b r= Ψ Δ 2( , , , , )r a b a b ac com r r pr r r r= r

Compute the challenge as ( , , , )R re hash C C c c= . 

Set j
V VV eV R eM R= + = +  and RR eR R= + .  

Set j
a aa ea r ep r= + = + , 1L j

b bb eb r ep r− −= + = +  and rr er r= + . 

The argument is ( , , , , , , ,R rC c c V R a b r ). 

Verification: Compute  as above. Let e 2 Lp a b e pΨ = − , 
2

a e VΔ = − . 

Verify that ( ; )e
RC C E V R=  and ( , , , , )e

rc c com a b r= Ψ Δ . 

 12


	Filling the Gap between Voters and Cryptography in e-Voting
	1. Introduction
	2 Preliminaries
	3 The new voting system
	Step 1. Voting preparation
	Step 2. Casting a ballot
	Step 3. Publishing the vote
	Step 4 Verifying the individual vote outside the voting booth
	Step 5. Tallying
	Step 6. Verifying the tally


	4 Security analysis and discussion
	5. Conclusion
	Acknowledgement
	References
	Appendix
	1. How to prove that a commitment   and an encryption   hold the same element   modulo  .
	2. How to prove the encryption of the ballot is correctly formed




