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Abstract. This paper presents a new approach to precompute all odd
points [3]P, [5]P, . . . , [2k− 1]P , k ≥ 2 on an elliptic curve over Fp. Those
points are required for the efficient evaluation of a scalar multiplication,
the most important operation in elliptic curve cryptography. The pro-
posed method precomputes the points in affine coordinates and needs
only one single field inversion for the computation. The new method is
superior to all known methods that also use one field inversion. Compared
to methods that require several field inversions for the precomputation,
the proposed method is faster for a broad range of ratios of field inver-
sions and field multiplications. The proposed method benefits especially
from ratios as they occur on smart cards.

Keywords: affine coordinates, elliptic curve cryptosystem, precomputa-
tion, scalar multiplication

1 Introduction

Koblitz [Kob87] and Miller [Mil86] independently proposed to use elliptic curves
for cryptographic purposes. The main advantage of elliptic curves is, that high
security can be achieved by using only small key sizes [BSS99].

One of the most time-consuming operation in cryptosystems based on elliptic
curves is a scalar multiplication [u]P , where u is the scalar and P is a point on an
elliptic curve over Fp. Scalar multiplications are computed using the double-and-
add algorithm. The number of point additions required by this algorithm can be
reduced by representing the scalar in a signed representation that provides fewer
non-zero digits [Ava04,Möl02,Möl04,MS04,OSST04,Sol00,SST04]. In this case,
the double-and-add algorithm requires several precomputed points. For efficiency
reasons, those points are usually represented in affine coordinates [CMO98]. If
the point P is not fixed, the precomputation cannot be performed offline and
requires a significant amount of time, since expensive field inversions are required
to precompute points in affine coordinates. Scalar multiplications with non-fixed
points for example occur in the Diffie-Hellman key exchange [DH76] and the
verification step of the elliptic curve digital signature algorithm [JM99]. One



important research goal is to reduce the number of field inversions that are
involved in the precomputation. In [CJLM06], a method to compute [3]P with
only one inversion was proposed.

This paper generalizes this method and presents a new approach to precom-
pute points on an elliptic curve over Fp. The proposed scheme computes all odd
points [3]P, . . . , [2k−1]P , k ≥ 2 by using only one single field inversion, indepen-
dent of the number of points to precompute. The main idea is to use a recursive
strategy to express all values that have to be inverted using only known param-
eters. Then, all values are inverted simultaneously using the Montgomery trick,
e.g. see [CF05] p. 209. Further, the proposed scheme does not require additional
memory for temporary calculations.

Compared to previous approaches for the precomputation (e.g. [CMO98]),
the proposed method benefits from a large ratio of inversions and multiplications
(I/M). This ratio is especially large on smart cards that are equipped with
a cryptographic coprocessor, which is usually the case [Infineon,Renesas]. In
[Sey05], Seysen states that on such smart cards an I/M ratio of I > 100M is
realistic. In [CF05,ELM03,JP03], the authors state that on smart cards with a
cryptographic coprocessor, the inversion is best computed using Fermat’s little
theorem. This approach requires about log2 p field multiplications, where p is the
prime that defines the field. Note that p must be at least 160 bit to guarantee
security.

After introducing the proposed method, this paper states a thorough com-
parison with known methods for the precomputation. Rather than specifying the
advantage of a certain method for a given I/M ratio, the I/M break even points

of the different methods are estimated. The I/M break even points provide in-
formation about which method is the most efficient for a certain I/M ratio. As
it will turn out, the proposed method is the most efficient for I/M ratios as they
occur on smart cards.

The remainder of this paper is organized as follows: Section 2 introduces
the basics of elliptic curves and scalar multiplications. Section 3 reviews known
methods for the precomputation. Section 4 describes the proposed scheme. Sec-
tion 5 compares the proposed scheme with known methods and Section 6 states
the conclusion.

2 Scalar Multiplications in Elliptic Curve Cryptography

An elliptic curve over a prime field Fp is defined by the implicit equation E :
y2 = x3 + ax+ b, where a, b ∈ Fp and p > 3 prime. A further condition on a and
b is, that the so-called discriminant ∆ = 4a3 + 27b2 is non-zero. The points on
an elliptic curve can be used to construct an abelian group E(Fp) with identity
element O called the ”point at infinity” [BSS99]. Point additions (P + Q) and
doublings (2P ) are denoted by ECADD and ECDBL, respectively. Points on an
elliptic curve can be represented in several coordinate systems, such as affine
(A), projective (P), Jacobian (J ), modified Jacobian (J m), and Chudnovsky
Jacobian (J c) coordinates [CMO98]. The number of field multiplications (M),
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squarings (S), and inversions (I) required for an ECADD or ECDBL operation
depends on the coordinate system used to represent the points. See [CMO98] for
an overview of the costs and explicit formulas.

A scalar multiplication [u]P of a point P ∈ E(Fp) and a scalar u > 0 is
defined by adding P to itself u times. An efficient method to compute a
scalar multiplication is the double-and-add algorithm shown in Algorithm
1. This algorithm uses an n-bit base-2 representation (un−1, . . . , u0) of u,
e.g. the binary representation or one of the representations proposed in
[Ava04,Möl02,Möl04,MS04,OSST04,Sol00,SST04].

Algorithm 1 Double-and-Add Algorithm

Require: Point P ∈ E(Fp), n-bit scalar u.
Ensure: Scalar multiplication [u]P
1: X ← O
2: for i = n− 1 down to 0 do

3: X ← ECDBL(X)
4: if ui 6= 0 then X ← ECADD(X, [ui]P )
5: end for

6: return X

Algorithm 1 performs a point doubling in each iteration (line 3) and a point
addition each time the current digit ui is non-zero (line 4). Hence a scalar multi-
plication needs n · AHD ECADD + n ECDBL, where AHD denotes the average

Hamming density, i.e. the average density of non-zero digits in the base-2 repre-
sentation of u. The points [ui]P required in line 4 are precomputed beforehand.
Which and how many points must be precomputed depends on the base-2 rep-
resentation used for u.

To reduce the required number of field operations in the different steps of
Algorithm 1, the authors of [CMO98] represent the points using mixed coor-
dinates. They use Jm coordinates for the result of a doubling followed by a
doubling (ui = 0) and J coordinates for the result of a doubling followed by an
addition (ui 6= 0). The costs for a doubling then are 4M + 4S and 3M + 4S,
respectively. The precomputed points [ui]P are represented either in A or J c co-
ordinates. The costs for an addition then are 9M +5S or 12M +5S, respectively.
Using mixed coordinates, a scalar multiplication with Algorithm 1 requires

csA = n · AHD(9M +5S) + n
(

AHD(3M +4S) + (1−AHD)(4M +4S)
)

(1)

csJ c = n · AHD(12M +5S) + n
(

AHD(3M +4S) + (1−AHD)(4M +4S)
)

(2)

with precomputed points in A and J c coordinates, respectively.
A very flexible base-2 representation is the fractional window recoding method

[Möl02,Möl04,SST04]. For an arbitrary k ≥ 1, this representation uses the digits
in the digit set Dk = {0,±1,±3, . . . ,±(2k − 1)}. When used with Algorithm 1,
the k − 1 points [3]P, [5]P, . . . , [2k − 1]P must be precomputed. Note, that only
the positive points must be precomputed, since point inversions are virtually for
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free, e.g. if [−3]P is required by Algorithm 1, it is obtained from [3]P by an
”on-the-fly” point inversion [BSS99]. The AHD of this representation is

AHDk =

(

k

2⌊log2
k⌋

+ ⌊log2 k⌋ + 2

)−1

(3)

which is minimal among all base-2 representations that use this digit set [Möl04].
Note, that if k = 2w−2 for some w ≥ 2, the fractional window recoding method
has the same AHD as the width-w non adjacent form [Sol00] and its analogs
[Ava04,MS04,OSST04], i.e. 1/(w + 1).

Increasing the parameter k on the one hand decreases the AHD and there-
fore the number of ECADD operations in Algorithm 1 and on the other hand
increases the number of points that must be precomputed. Therefore, increas-
ing k does not automatically yield a better total performance, since additional
ECADD and ECDBL operations are required for the precomputation.

3 Precomputing the required Points

In this section, several methods for the precomputation of the k − 1 points
[3]P, [5]P, . . . , [2k − 1]P required by the fractional window recoding method are
reviewed. Recall that according to [CMO98], the precomputed points should
be represented in A or J c coordinates. The most straightforward method is to
compute each point separately using the chain P → [2]P → [3]P → [5]P →
. . . → [2k − 1]P . This method needs

cpA = 2kM + (k + 1)S + kI (4)

cpJ c = (11k − 6)M + (3k + 3)S (5)

when using A or J c coordinates for the precomputed points, respectively. Storing
the points requires 2(k− 1) registers for affine coordinates and 5(k− 1) registers
for Chudnovsky Jacobian coordinates.

The following methods compute the points in A coordinates and trade inver-
sions for multiplications using the Montgomery trick for simultaneous inversions
[CF05] p. 209. This algorithm computes n inverses using 3nM + I.

Let k = 2w−2 for some w ≥ 2. In [CMO98] the authors compute the
points using the chain P → 2P → [3]P, [4]P → [5]P, [7]P, [8]P → . . . →
[2w−3 + 1]P, . . . , [2w−2 − 1]P, [2w−2]P → [2w−2 + 1]P, . . . , [2w−1 − 1]P . The in-
versions required in each of the w − 1 steps are computed simultaneously using
the Montgomery trick. In terms of k, this method needs

cpCMO = (5k + 2⌈log2 k⌉ − 8)M + (k + 2⌈log2 k⌉ − 1)S + (⌈log2 k⌉ + 1)I. (6)

The logarithm has to be rounded up to cover the case where k is chosen such
that it is not a power of 2. Storing the points requires 2(k − 1) registers.

The last method is a straightforward method that first computes the points
separately in P ,J ,Jm, or J c coordinates. Then the points are converted to A
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coordinates. A conversion from P to A needs 2M + I. A conversion from J , J c,
or J m to A needs 3M + S + I. The inversions required for the conversion are
computed simultaneously using the Montgomery trick. These methods need

cpP→A = (17k − 10)M + (2k + 3)S + I (7)

cpJ→A = (18k − 14)M + (5k + 1)S + I (8)

cpJ c→A = (17k − 12)M + (4k + 2)S + I (9)

cpJ m→A = (19k − 15)M + (7k − 3)S + I (10)

Storing the points in affine coordinates requires 2(k − 1) registers. However, it
has to be considered that the points require more memory prior to conversion
to affine coordinates. The required number of registers is 3(k − 1) for P and J
coordinates, 5(k − 1) for J c coordinates, and 4(k − 1) for J m coordinates.

4 Proposed Scheme

This section describes the proposed scheme. The proposed scheme computes the
required points [3]P, [5]P, . . . , [2k−1]P , k ≥ 2 directly in affine coordinates using
only one field inversion. The proposed scheme needs (10k − 11)M + (4k)S + I
for the precomputation and 2(k − 1) registers to store the points.

The proposed scheme computes [2i − 1]P = (xi+1, yi+1) as [2]P + [2i − 3]P ,
i = 2, . . . , k and therefore the computation of [2]P is also required. The formulas
to compute the points in affine coordinates are

[2]P = (x2, y2) : λ1 =
(3x2

1
+a)

(2y1)

x2 = λ2
1 − 2x1

y2 = λ1(x1 − x2)− y1

[3]P = (x3, y3) : λ2 = (y2−y1)
(x2−x1)

x3 = λ2
2 − x2 − x1

y3 = λ2(x2 − x3)− y2

[2i− 1]P = (xi+1, yi+1) : λi = (yi−y2)
(xi−x2)

xi+1 = λ2
i − x2 − xi

yi+1 = λi(x2 − xi+1)− y2

(11)

The most time consuming operation when computing points in affine coordinates
is the field inversion required to invert the denominator of the λi. Call those
denominators δi. According to the last section, it is possible to compute field
inversions simultaneously using the Montgomery trick [CF05]. However to do so,
all values to invert must be known. For the precomputation this is not the case,
since each point depends on a previous computed point, e.g. [7]P = [2]P + [5]P .

The main idea of the proposed scheme is to write down all δi using only the
base point P = (x1, y1) and the elliptic curve parameters a and b. Then, all δi

are known and can be inverted simultaneously using the Montgomery trick. The
proposed strategy is divided into four steps. The pseudocode of those steps can
be found in Appendix A.
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Step 1: The first step computes d1, . . . , dk, such that di = d2
1 · . . . · d2

i−1 · δi

holds for i = 1, . . . , k. This is done by the following recursive strategy which
successively substitutes the formulas for xi, yi in the formulas for xi+1, yi+1.

[2]P : d1 = 2y1

[3]P : d2 = A2
2 −B2

A2 = 3x2
1 + a

B2 = d2
1 · 3x1

[5]P : d3 = A2
3 − 2D3 −B3

A3 = −d2 · A2 − C3

B3 = d2
2 ·B2

C3 = d4
1

D3 = d3
2

[7]P : d4 = A2
4 −D4 −B4

A4 = −d3 · A3 − C4

B4 = d2
3 (B3 + 3D3)

C4 = D3 (2A3 + C3)
D4 = d3

3

[2i− 1]P : di = A2
i −Di −Bi

i > 4 Ai = −di−1 · Ai−1 − Ci

Bi = d2
i−1 ·Bi−1

Ci = Di−1 · Ci−1

Di = d3
i−1

For example, d1 = 2y1 = δ1 and

d2 = A2
2 − B2

= (3x2
1 + a)2 − (2y1)

2 · 3x1

= (2y1)
2

(

(

3x2
1 + a

2y1

)2

− 2x1 − x1

)

= (2y1)
2
(

(λ2
1 − 2x1) − x1

)

= (2y1)
2 (x2 − x1) = d2

1 · δ2.

Step 2: The second step computes the inverses of d1, . . . , dk using the Mont-
gomery Trick [CF05]. At first, the values ei =

∏i
j=1 di are computed for

i = 1, . . . , k. Next, the inverse of ek,

e−1
k = (d1 · . . . · dk)−1 = d−1

1 · . . . · d−1
k

is computed. Then, the inverses of d1, . . . , dk are obtained as

d−1
k = ek−1 · (d1 · . . . · dk)−1

d−1
i = ei−1 · (d1 · . . . · dk)−1 · dk · . . . · di+1, i = k − 1, . . . , 2

d−1
1 = (d1 · . . . · dk)−1 · dk · . . . · d2

Step 3. The third step recovers the inverses of the denominators δ−1
1 , . . . , δ−1

k

from d−1
1 , . . . , d−1

k computed in Step 2. According to Step 1,

di = d2
1 · . . . · d

2
i−1 · δi ⇐⇒ δ−1

i = d2
1 · . . . · d

2
i−1 · d

−1
i

holds. Therefore, δ−1
i can be recovered as

δ−1
i = e2

i−1 · d
−1
i , i = 1, . . . , k

using e1, . . . , ek computed in Step 2.
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Step 4. The fourth step computes the points [3]P, [5]P, . . . , [2k − 1]P , using the
inverses of the denominators δ−1

1 , . . . , δ−1
k recovered in Step 3 and the formulas

for point additions and doublings shown in Equation (11).

Theorem 1. In total, the proposed scheme needs

cpProp = (10k − 11)M + (4k)S + I (12)

to compute the points [3]P, [5]P, . . . , [2k − 1]P . Further, the proposed scheme

requires 2(k − 1) registers to store the points and no additional memory for

temporary calculations.

The proof of this theorem can be found in Appendix B.

5 Analysis

The proposed method as well as the methods reviewed in Section 3 trade field
inversions for multiplications and squarings. Hence, the advantage of a respec-
tive method depends on the ratio of inversions and multiplications I/M and the
ratio of squarings and multiplications S/M . In this analysis, the S/M ratio is
set to S = 0.8M . For software implementations of an inversion in a prime field,
the I/M ratios vary between I = 4M [ELM03,BSS99] and I = 80M [HMV04].
These ratios depend on many factors like the architecture, the methods used
for multiplication, modular reduction, and inversion, and the size of the prime
field. In software implementations, the inverse is usually computed using the
binary GCD algorithm [HMV04]. However, this algorithm is hardly available
in embedded devices like smart cards. On a smart card equipped with a cryp-
tographic coprocessor it is faster to compute the inverse using Fermat’s little
theorem, i.e. a−1 = ap−2 mod p, since it uses only operations that are supported
by hardware [CF05,ELM03,JP03]. When using Fermat’s little theorem to com-
pute an inversion in a prime field Fp the I/M ratio becomes very large, i.e. about
I = log2 p M , since the inverse is computed using a modular exponentiation. Ac-
cording to [Sey05], I/M ratios of I > 100M are realistic on smart cards equipped
with a cryptographic coprocessor. In the following, the I/M break even points
for the methods introduced in Section 3 and the proposed scheme are estimated.

I/M Break Even Points for the Precomputation At first, the proposed
scheme is compared to the last four methods introduced in Section 3. Note that
all those methods require only one single inversion. If the S/M ratio S = 0.8M
is substituted in Equations (7)-(10) and (12) one gets

cpP→A = (17k − 10)M + (2k + 3)S + I = (18.6k − 7.6)M + I
cpJ→A = (18k − 14)M + (5k + 1)S + I = (22.0k − 13.2)M + I

cpJ c→A = (17k − 12)M + (4k + 2)S + I = (20.2k − 10.4)M + I
cpJ m→A = (19k − 15)M + (7k − 3)S + I = (24.6k − 17.4)M + I

cpProp = (10k − 11)M + (4k) S + I = (13.2k − 11.0)M + I
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This shows that, regardless of the I/M ratio, the proposed method is more
efficient than precomputing the points in a different coordinate system and con-
verting them to A coordinates using the Montgomery trick.

The next step is to estimate the I/M break even points of the proposed
scheme, the precomputation proposed in [CMO98], and the straightforward pre-
computation in A coordinates. A comparison with the straightforward precom-
putation in J c coordinates will be done only for a complete scalar multiplication.
This is because the computation of a scalar multiplication is more expensive if
the precomputed points are represented in J c coordinates (see Equations (1) and
(2)). Table 1 shows for different k, for which I/M ratios the proposed scheme
and the affine precomputation are the most efficient. The method proposed in
[CMO98] is the fastest for the values in between.

k 2 3 4 5 6 7 8 9 10

Proposed > 9.0 > 9.7 > 9.9 > 10.0 > 10.5 > 12.9 > 15.4 > 12.5 > 14.4
Affine 6 9.0 6 9.7 6 9.9 6 10.0 6 9.6 6 7.4 6 6.3 6 8.0 6 7.0

k 11 12 13 14 15 16 17 18 19

Proposed > 16.2 > 18.0 > 19.9 > 21.8 > 23.6 > 25.5 > 21.1 > 22.6 > 24.0
Affine 6 6.3 6 5.8 6 5.5 6 5.2 6 5.0 6 4.8 6 5.4 6 5.2 6 5.0

Table 1. I/M break even points for the precomputation

For example if k = 8, the most efficient method is: the proposed method if
I/M ≥ 15.4, the [CMO98] method if 6.3 ≤ I/M ≤ 15.4, and the affine method
if I/M ≤ 6.3. This table is visualized in Figure 1. Obviously, the advantage of
one method is small if the I/M ratio is close to the break even point and large if
the I/M ratio is far away from the break even point. Also, the I/M break even
points shown in Table 1 are independent of the bit length of the scalar or the
size of the prime field, whereas the actual I/M ratio on a certain platform is not.
This comparison shows, that the affine and the [CMO98] method perform worse
than the proposed method on devices with a large I/M ratio such as smart cards
[Sey05]. See Appendix C for timings and a comparison of I/M ratios.

2 4 6 8 10
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12 14 16 18 20
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30
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Fig. 1. I/M break even points
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I/M Break Even Points for a Scalar Multiplication In section 2 it was
shown that a scalar multiplication requires three additional field multiplications
for each point addition if the precomputed points are represented in J c coordi-
nates instead of A coordinates. In order to compare the proposed scheme with
the straightforward precomputation in J c coordinates (from now on called J c

method), the total costs for a scalar multiplication must be considered. In this
case, the size of the prime field and the bit length n of the scalar is also im-
portant. It is assumed that the scalar is recoded using the fractional window
recoding method and therefore has an AHD as shown in Equation (3). Using
Equations (1),(2),(5), and (12) one obtains that the proposed method is more
efficient than the J c method if

I/M < 0.2k + 7.4 + 3n · AHDk.

Table 2 shows the I/M break even points corresponding to a complete scalar
multiplication for different prime fields Fpn

, where pn is an n bit prime. Smaller
I/M ratios benefit the proposed method.

k 2 3 4 5 6 7 8 9 10

p192 151.8 136.0 123.4 118.1 113.3 109.0 105.0 103.2 101.6
p224 175.8 157.3 142.6 136.4 130.8 125.7 121.0 118.9 116.9
p256 199.8 178.7 161.8 154.7 148.2 142.4 137.0 134.6 132.3

Table 2. I/M break even points for the proposed and J c method

The I/M break even point gets smaller if k grows. However, the total costs for a
scalar multiplication are minimal if k = 8. This can be determined by comparing
the total costs of the proposed method ((1)+(12)) and the J c method ((2)+(5))
for different k. The optimal value for k is independent from the I/M ratio,
since the proposed method requires only one inversion regardless of k. Note,
that such large I/M ratios as shown in Table 2 actually do occur, especially on
smart cards where the field inversion is computed using Fermat’s little theorem
[CF05,ELM03,JP03,Sey05].

The above comparison has one flaw, it does not consider the memory re-
quirement of the precomputed points. Note, that the J c method requires 2.5
times the memory of the proposed method for the same k. This is due to the
fact that a point in J c coordinates consists of five coordinates, whereas a point
in A coordinates consists of only two coordinates [CMO98]. Let r denote the
maximum number of registers that can be used for the precomputed points.
Then kp =

⌊

(r + 2)/2
⌋

and kc =
⌊

(r + 5)/5
⌋

denote the maximum value of k
that can be used for the proposed method and the J c method, respectively. For
example, if r = 15 then kp = 8 and kc = 4. The proposed method with k = 8
needs 1861M + I and the J c method with k = 4 needs 2008.4M for a scalar
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multiplication with a 192 bit scalar. This means, that the proposed method is
more efficient as long as I/M ≤ 147.4. Table 3 shows the I/M break even point
corresponding to a complete scalar multiplication for different limitations on the
number of registers r and different prime fields Fpn

, where pn is an n bit prime.
Again, smaller I/M ratios benefit the proposed method.

r 5 6,7 8,9 10,11 12,13 14 15-19 20-24 25-29 30-34 ≥ 35

kp 3 4 5 6 7 8 8 8 8 8 8
kc 2 2 2 3 3 3 4 5 6 7 8

p192 202.6 240.6 249.3 189.5 194.5 198.0 147.4 133.4 121.8 112.5 105.0
p224 237.3 283.8 296.2 226.3 234.4 240.7 179.4 160.8 145.1 131.9 121.0
p256 271.9 327.0 343.1 263.2 274.3 283.3 211.4 188.2 168.4 151.4 137.0

Table 3. I/M break even points for fixed registers

If less than five registers are available, the only option is to use the proposed
method. If more than 14 registers are available, the proposed method still uses
k = 8 since using a larger value would decrease the total performance. The same
argument holds for the J c method if more than 35 registers are available. Table
3 shows, that including the number of registers in the comparison increases the
I/M break even point of the proposed method and the J c method compared to
Table 2. The I/M break even points of the CMO method, the A method, and
the proposed method shown in Table 1 still hold, since all three methods require
the same number of registers for storing the precomputed points.

To summarize, the proposed method provides the most efficient precompu-
tation for I/M ratios as they occur on smart cards [Sey05]. Another advantage
of the proposed method is, that it precomputes the points in affine coordinates
which require less storage space than J c coordinates. If the memory for the
precomputed points is limited, it is possible to choose larger values of k which
further improves a scalar multiplication compared to the J c method.

6 Conclusion

This paper presented a new method to precompute all odd points [3]P, . . . , [2k−
1]P , k ≥ 2 on an elliptic curve defined over a prime field Fp in affine coordinates.
The proposed method requires only one field inversion regardless of the number
of points to precompute. In total, the proposed scheme requires (10k − 11)M +
(4k)S + I field operations for the precomputation and no additional memory for
temporary calculations. The proposed method is the most efficient for a large
range of I/M ratios, especially for ratios as they occur on smart cards. Further
research includes an implementation of the proposed scheme on a smart card.
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[ELM03] Eisenträger, K., Lauter, K., Montgomery, P., Fast elliptic curve arithmetic
and improved Weil pairing evaluation, Cryptographers’ Track - CT-RSA
2003, LNCS 2612, Springer, 2003, pp. 343-354.

[Flexi] FlexiProvider, available at http://www.flexiprovider.de/.
[HMV04] Hankerson, D., Menezes, A., Vanstone, S., Guide to Elliptic Curve Cryp-

tography, Springer, 2004.
[Infineon] Infineon Technologies, http://www.infineon.com/.
[Java] The Source for Java Developers, http://java.sun.com/.
[JM99] Johnson, D., and Menezes, A., The Elliptic Curve Digital Signature Algo-

rithm (ECDSA) University of Waterloo, Technical Report CORR 99-34,
1999, available at http://www.cacr.math.uwaterloo.ca.

[JP03] Joye, P., Paillier, P., GCD-Free Algorithms for Computing Modular In-
verses, Cryptographic Hardware and Embedded Systems - CHES 2003,
LNCS 2779, Springer, 2003, pp. 243-253.

[Kob87] Koblitz, N., Elliptic Curve Cryptosystems, Mathematics of Computation,
vol. 48, no. 177, 1987, pp. 203-209.

[Mil86] Miller, V.S., Use of Elliptic Curves in Cryptography, Advances in Cryptol-
ogy - CRYPTO ’85, LNCS 218, Springer, 1986, pp. 417-426.
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A Pseudocode of the Proposed Scheme

This section contains the pseudocode of the four steps of the proposed scheme.

Algorithm 2 Step 1: Computation of d1, . . . , dk

Require: P = (x1, y1), k, a
Ensure: d1, . . . , dk

1: d1 ← 2y1

2: C ← d2
1

3: A← 3x2
1 + a

4: B ← C · 3x1

5: d2 ← A2 −B

6: E ← d2
2

7: B ← E ·B
8: C ← C2

9: D← E · d2

10: A← −d2 ·A− C
11: d3 ← A2 − 2D −B

12: E ← d2
3

13: B ← E (B + 3D)
14: C ← D (2A + C)
15: D← E · d3

16: A← −d3 ·A− C
17: d4 ← A2 −D −B

18: for i = 5 to k do

19: E ← d2
i−1

20: B ← E · B
21: C ← D · C
22: D ← E · di−1

23: A← −di−1 ·A−C
24: di ← A2 −D −B
25: end for

26: return d1, . . . , dk.
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Algorithm 3 Step 2: Simultaneous inversion of d1, . . . , dk

Require: di, i = 1, . . . , k
Ensure: fi = d−1

i , ei =
Qi

j=1 di, i = 1, . . . , k
1: e1 ← d1

2: for i = 2 to k do

3: ei ← ei−1 · di

4: end for

5: T1 ← e−1
k

6: for i = k down to 2 do

7: T2 ← di

8: fi ← ei−1 · T1

9: T1 ← T1 · T2

10: end for

11: f1 ← T1

12: return e1, . . . , ek, f1, . . . , fk

Algorithm 4 Step 3: Retrieval of the inverses of the δ1, . . . , δk

Require: fi and ei, i = 1, . . . , k
Ensure: Inverse of denominators li = δ−1

i , i = 1, . . . , k
1: l1 ← f1

2: for i = 2 to k do

3: li ← e2
i−1 · fi

4: end for

5: return l1, . . . , lk

Algorithm 5 Step 4: Computation of the required points

Require: P = (x1, y1), k, a and li, i = 1, . . . , k
Ensure: 3P = (x3, y3), 5P = (x4, y4), . . . , (2k − 1)P = (xk+1, yk+1)
1: T ← (3x2

1 + a) · l1
2: x2 ← T 2 − 2x1

3: y2 ← T (x1 − x2)− y1

4: T ← (y2 − y1) · l2
5: x3 ← T 2 − x2 − x1

6: y3 ← T (x2 − x3)− y2

7: for i = 3 to k do

8: T ← (yi − y2) · li
9: xi+1 ← T 2 − x2 − xi

10: yi+1 ← T (x2 − xi+1)− y2

11: end for

12: return x3, . . . , xk+1, y3, . . . , yk+1
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B Proof of Theorem 1.

This section states the proof of the Theorem 1 of Section 4.

Theorem 1. In total, the proposed scheme requires

(10k − 11)M + (4k)S + I

field operations to compute the points 3P, 5P, . . . , (2k−1)P . Further, the proposed

scheme requires 2(k − 1) registers to store the points and no additional memory

for temporary calculations.

Proof. The costs of each algorithm are calculated separately and summed up.
Additions and multiplications with small numbers are neglected since they can
be computed very fast. Algorithm 2 requires 8M +8S+(k−4)(4M +2S) = (4k−
8)M +(2k)S to compute the di. Algorithm 3 requires 3(k−1)M +I to invert the
di and compute the ei. Algorithm 4 requires (k−1)(S+M) = (k−1)M +(k−1)S
to recover the li. Algorithm 5 requires (4M +3S)+ (k− 2)(2M +S) = (2k)M +
(k + 1)S to compute the points [3]P, [5]P, . . . , [2k− 1]P . The sum of the costs of
all four steps is given as (10k − 11)M + (4k)S + I.

To store the points [3]P, [5]P, . . . , [2k − 1]P , 2(k − 1) registers are required.
Note, that since the double-and-add algorithm stores the intermediate results
in modified Jacobian coordinates, which are represented using four coordinates,
4 additional registers are required for the evaluation of a scalar multiplication.
Hence, 2k+2 registers are available in total. Algorithm 2 requires k+5 registers
to hold di and the temporary variables A, B, C, D, E. Algorithm 3 requires 2k +
2 registers to hold ei, fi and the temporary variables T1, T2. The fi can use
the same registers as the di which explains the necessity of line 7. Algorithm
4 requires k registers to hold li. The li can use the same registers as the fi.
Algorithm 5 requires 2k + 1 registers to hold xi, yi and one temporary variable
T . The xi and yi can use the same registers as the ei and li. In total, 2k + 2
registers are required and therefore no additional memory has to be allocated.

�

C Timings

This Section states timings for the precomputation using Java implementations
of the proposed scheme, the [CMO98] method and the straightforward affine
method. The base points P are randomly chosen points on the elliptic curves
P-192, P-224 and P-256 recommended in [NIST01], which are defined over an
192, 224 and 256 bit prime field Fp, respectively. The timings are CPU time
in microseconds and were obtained on two machines using three versions of
Java [Java]. Table 4 shows the timings on a Pentium Dualcore 1.83Ghz. Table
5 shows the timings on an AMD Athlon 64 X2 Dualcore 4200+ 2.22GHZ. Both
machines have 1GB RAM and use Windows XP. The fastest method is marked
bold. For each combination of Java version and prime field, the timings for field
multiplications and field inversions as well as the resulting I/M ratio are stated.
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k 2 3 4 5 6 7 8 9 10

192 bit prime field

Java v1.4.2 12, M = 3.8, I = 59.9, I/M = 15.9
Affine 158.9 238.6 317.8 396.0 476.3 552.4 632.2 709.7 789.5
[CMO98] 159.4 284.7 299.4 446.9 462.0 476.0 491.9 688.8 702.6
Proposed 132.5 192.8 255.6 316.8 376.7 438.3 496.6 557.2 617.0

Java v1.5.0 10, M = 3.6, I = 59.0, I/M = 16.6
Affine 156.0 232.9 311.9 390.0 467.6 545.7 622.5 699.2 778.7
[CMO98] 156.3 278.3 291.7 434.3 450.0 459.9 475.4 666.8 679.8
Proposed 128.4 186.1 245.5 302.0 358.7 415.1 473.2 529.7 586.9

Java v1.6.0, M = 2.9, I = 52.0, I/M = 17.8
Affine 135.0 203.9 272.7 341.7 408.7 476.5 544.5 614.1 680.6
[CMO98] 136.5 238.7 250.5 372.4 384.8 397.0 407.5 566.0 580.2
Proposed 105.8 154.8 203.4 250.5 298.0 342.1 390.3 437.0 483.4

224 bit prime field

Java v1.4.2 12, M = 4.7, I = 73.1, I/M = 15.7
Affine 198.9 288.2 382.3 475.9 573.6 668.3 762.6 859.1 953.6
[CMO98] 199.9 340.1 359.2 534.3 553.5 572.0 588.3 822.5 842.3
Proposed 165.2 233.0 307.0 380.3 450.7 522.5 596.4 667.9 738.3

Java v1.5.0 10, M = 4.4, I = 72.4, I/M = 16.5
Affine 194.5 285.0 377.1 471.6 568.0 659.7 754.0 848.3 942.1
[CMO98] 196.6 334.5 351.2 523.7 540.5 556.5 571.2 798.6 819.3
Proposed 160.7 224.3 295.8 364.4 431.3 502.1 569.8 640.8 704.4

Java v1.6.0, M = 3.6, I = 63.9, I/M = 17.7
Affine 173.1 249.2 332.5 414.6 497.6 581.8 665.9 748.3 831.8
[CMO98] 171.4 292.4 307.0 455.6 470.2 483.7 500.5 693.4 707.6
Proposed 137.5 191.7 250.8 309.5 365.9 423.7 482.3 539.4 598.8

256 bit prime field

Java v1.4.2 12, M = 5.7, I = 88.7, I/M = 15.4
Affine 240.7 347.4 461.7 574.6 687.9 802.7 917.2 1039.6 1146.2
[CMO98] 239.0 407.4 430.3 643.6 667.3 687.3 707.8 999.3 1015.1
Proposed 200.2 281.1 369.6 457.4 543.9 631.7 718.6 807.2 893.9

Java v1.5.0 10, M = 5.4, I = 88.2, I/M = 16.3
Affine 237.4 344.0 457.6 569.3 684.3 796.4 908.6 1021.2 1135.8
[CMO98] 238.0 404.0 425.1 633.2 654.0 674.5 692.3 969.2 990.9
Proposed 196.4 273.6 358.0 443.3 527.2 610.3 693.5 779.2 859.7

Java v1.6.0, M = 4.5, I = 78.4, I/M = 17.5
Affine 210.6 303.3 403.6 505.1 605.7 705.1 807.0 907.0 1006.4
[CMO98] 208.0 353.5 371.4 551.6 569.9 586.0 603.7 840.0 857.2
Proposed 168.4 233.3 304.4 374.8 443.6 511.0 579.3 650.4 722.2

Table 4. Timings in microseconds on a Pentium dualcore 1.83 GHz
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k 2 3 4 5 6 7 8 9 10

192 bit prime field

Java v1.4.2 12, M = 3.2, I = 53.7, I/M = 17.0
Affine 142.0 212.2 283.5 353.6 423.3 490.0 560.5 627.3 700.7
[CMO98] 144.2 250.9 264.1 391.6 406.7 418.7 429.6 597.3 611.1
Proposed 115.6 169.5 222.4 273.5 324.1 375.6 428.0 481.0 533.3

Java v1.5.0 10, M = 2.9, I = 53.3, I/M = 18.1
Affine 140.5 208.2 275.6 343.7 411.0 480.0 549.3 616.0 688.0
[CMO98] 140.3 245.4 255.0 375.0 389.5 403.0 414.8 572.5 590.0
Proposed 111.6 161.7 207.9 255.0 304.8 353.9 403.1 451.1 500.0

Java v1.6.0, M = 2.4, I = 44.7, I/M = 18.5
Affine 113.1 170.4 225.1 279.4 337.1 392.0 444.8 498.6 552.2
[CMO98] 113.3 197.5 207.9 309.6 318.3 329.1 338.4 469.6 475.3
Proposed 90.9 132.0 171.6 213.3 250.0 289.3 329.6 366.6 400.8

224 bit prime field

Java v1.4.2 12, M = 4.1, I = 66.0, I/M = 16.1
Affine 178.4 256.6 341.8 426.0 503.4 585.7 669.6 751.8 834.5
[CMO98] 178.2 305.1 318.0 477.1 482.8 500.9 511.8 715.9 733.9
Proposed 149.2 207.2 274.5 338.3 390.6 452.1 515.1 578.1 640.7

Java v1.5.0 10, M = 3.7, I = 65.3, I/M = 17.8
Affine 174.7 255.1 336.3 420.2 503.0 588.2 675.6 756.8 833.4
[CMO98] 176.2 295.9 311.0 460.3 476.9 493.0 512.9 704.8 714.6
Proposed 141.7 195.6 254.8 312.5 374.4 434.4 495.5 554.0 608.5

Java v1.6.0, M = 3.0, I = 54.7, I/M = 18.2
Affine 143.0 207.5 275.7 340.7 402.9 467.1 532.8 599.6 665.0
[CMO98] 140.9 239.7 251.6 372.6 380.1 389.2 399.2 552.4 564.8
Proposed 114.9 158.5 205.9 253.9 295.2 337.7 384.3 431.9 476.5

256 bit prime field

Java v1.4.2 12, M = 4.9, I = 79.0, I/M = 16.3
Affine 209.3 302.8 401.4 499.8 599.6 698.7 795.8 895.3 999.2
[CMO98] 208.9 353.7 372.4 554.1 573.1 589.9 609.2 849.2 870.8
Proposed 174.5 242.9 315.1 388.7 461.8 535.2 609.1 683.6 760.4

Java v1.5.0 10, M = 4.5, I = 79.0, I/M = 17.4
Affine 210.3 305.7 403.0 502.3 599.6 696.7 807.1 904.2 1003.0
[CMO98] 212.3 353.2 372.2 551.5 566.2 580.1 610.2 848.1 866.9
Proposed 170.3 236.7 312.7 381.8 447.3 518.8 599.7 674.6 745.8

Java v1.6.0, M = 3.7, I = 66.2, I/M = 17.8
Affine 172.9 247.0 325.9 407.0 487.8 567.3 650.0 733.8 812.8
[CMO98] 172.0 286.7 301.2 446.1 461.6 475.9 493.1 685.6 699.2
Proposed 136.9 190.1 248.5 304.3 361.1 417.4 476.6 533.0 590.8

Table 5. Timings in microseconds on a AMD Athlon 4200+ 2.2GHz
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The implementations of the three methods will eventually be published as part
of the FlexiECProvider [Flexi], an open source Java Cryptographic Service
Provider. The FlexiECProvider computes the field multiplications and inver-
sions using the java.math.BigInteger functions a.multiply(b).mod(p) and
a.modInverse(p), respectively, where p is the n bit prime that defines the prime
field Fp and a, b are n bit integers.

The above timings show that the proposed method has a noticeable advan-
tage compared to the [CMO98] method and the affine method, even for small
I/M ratios. They also confirm the I/M break even points estimated in Section 5,
Table 1 and show that the proposed method has only a small overhead. Further,
Tables 4 and 5 indicate that the I/M ratio constantly increases if the field mul-
tiplication and inversion get faster. This is true for the different Java versions,
where v1.6.0 has the largest I/M ratio and the fastest field multiplications and
inversions, as well as for the faster AMD CPU. The trend definitely goes towards
larger I/M ratios which further benefits the proposed method.
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