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Voting with Unconditional Privacy
by Merging Pr̂et-̀a-Voter and PunchScan

Jeroen van de Graaf

Abstract—We present a detailed comparison of the Pr̂et-à-
Voter and Punchscan protocols for booth voting. We also describe
a simpler variation that keeps the ballot layout of Pr̂et-à-
Voter but borrows the cryptography from Punchscan, which
is based on any commitment scheme. By using unconditionally
hiding commitments we obtain a conceptually very simple voting
protocol with unconditional privacy.

Index Terms—election protocols, voting protocols, bit commit-
ment, unconditional privacy

I. I NTRODUCTION

A. Motivation

Over the last few years we have seen a sequence of papers
on voter-verifiable elections. The idea of these systems is to
provide the voter with a receipt which, on the one hand, allows
her to verify that her vote is included in the tally; but on the
other, the receipt does not reveal any information about her
choice. Though this idea is not new[1], Chaum’s paper [2]
arguably gave a new impetus to this line of research (see also
[3]). Subsequently, Chaum’s protocol was improved upon in
two significant ways. First there is a protocol called the Prˆet-
à-Voter (PaV) protocol, as was described in [4][5]. Shortly
afterwards, and inspired by PaV, Chaum developed PunchScan
(PS). See the sitewww.punchscan.orgfor demos and technical
descriptions [6][7].

Both protocols have important advantages over [2]: a sim-
pler ballot layout, and pre-printed ballots on which the voter
marks his preferences with a pen, thus ensuring that the voting
machine does not learn the vote. This improvement implies
a significant leap forwards, since until then most e-voting
systems had the disadvantage that a machine learned how a
person voted, and protecting thousands of voting machines is
very difficult.

There are also some important differences between PaV
and PS. First, their ballot layouts are different, and so is the
mechanics of voting. But as we will show, these differences
are marginal. Second, PaV uses decryption mixing as the
underlying cryptographic primitive, whereas PS uses a bit
commitment scheme on a cleverly-constructed audit table
which is published on a web site, and that uses permutations
to hide the links between the voters and the votes cast. This
is an important breakthrough since the commitment primitive
is much simpler than the mixing primitive. Additionally, from
a theoretical point of view, PS makes a clear link between
commitment schemes and voting protocols, with interesting
implications for unconditional (or everlasting) privacy.
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B. Unconditional or everlasting privacy

Most election systems so far, with the notable exception
of [8],[9] and [10], have the property that they provide
only computational privacy of the ballot. This flaw is really
worrisome for the following reason: with storage becoming
cheaper and cheaper every year, wemustassume that all data
published during an election protocol will never be erased,
i.e. that some copy of it survives forever. Sooner or later,
the underlying computational assumption will be broken, so
eventually it will become public who voted for whom.

Though one can argue that this information might have
become irrelevant after many decades, this point is more
important than it seems. For instance, people might like to
know who the President of the United States voted for when he
was young—perhaps he flirted with the communist party. Even
today historians will find it interesting to know Churchill’s
voting behavior in 1900, when he was about twenty-five years
old. More dramatic is a scenario in which a ruthless dictator
gets into power after decades of trying. Once in power, he
systematically goes after the voters who voted against him in
earlier elections, or after their descendants.

Real world voting systems have always had the property
that the vote (the information containing the voter’s choice) is
permanently destroyed. Newly-proposed protocols should have
this property too.Computational privacy is hence not sufficient
for a voting protocol, as the computational assumption is
likely to be broken in the future. Though this implies that the
correctness of the election outcome is “only” computational,
we believe this is a sensible trade-off, since the authorities
would have to break the computational assumptionbefore
the election has terminatedin order to alter the election
result. Though it is very hard to estimate how difficult it is
to break a computational assumption fifty years from now
(computational privacy), it is easy to design a protocol based
on a computational assumption that will not be broken in the
next few months (computational correctness).

C. Summary of results

We present a detailed comparison of Prêt-à-Voter and
Punchscan. Then we describe a variation that keeps the simpler
ballot layout of Prêt-à-Voter but borrows, and slightly simpli-
fies, the cryptography from Punchscan. Using bit commitments
that are unconditionally hiding and computationally binding,
we obtain a conceptually simple election scheme that has com-
putational correctness, whereas its privacy is unconditional. An
earlier version of this work was published as a four-page short
paper [11], which essentially corresponds to the contents of
Section IV.
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We claim that our protocol has the following properties, all
of which, except the first one, are inherited from both PaV
and PS:

• Unconditional privacy of the ballot: The public view,
including all receipts and all other data published on
the election web site, reveals no information (in the
Shannon sense) about a voter’s choice. This implies that,
assuming that all unopened commitments are perma-
nently destroyed after the final audit step took place,
we obtain everlasting privacy. This property is inherited
from PS provided an unconditional commitment scheme
is used. PaV uses mixing, thus inherently providing only
computational privacy.

• Coercion-resistance:As a consequence of the previous
property, our protocol is immune to vote buying/selling
schemes in the sense that a voter cannot prove whom she
has voted for. However, we have no satisfying solution
to the randomized coercion attack, in which a coercer
forces the voter to bring back a receipt with a mark in
a specific location, effectively forcing the voter to cast a
random vote.

• Computational correctness of vote count:If the elec-
tion authority passes the post-election audit steps, this
means that the vote count is correct, unless an extremely
unlikely event has occurred or the authority has succeeded
in breaking, before the election ends, the computational
assumption on which the commitment scheme is based.
This statement is trueindependentof whether the author-
ity tried to cheat and whether the programs that run the
election are correct.

• Individual Voter Verifiability: Each voter receives a
receipt that she can compare with the image published
on the election web site. If this image is different or
absent, the receipt serves as a proof that the authority
is dishonest.

• Universal Verifiability: Any observer can verify that the
tally has been calculated correctly with overwhelming
probability.

D. Comparison to other work

As we advocate the position that privacy should be un-
conditional, we do not consider voting protocols based on
homomorphic encryption and/or (re)encryption mixes which,
in fact, constitute the large majority of the voting literature.

To our knowledge, the first voting protocol that provides
unconditional privacy was published by Bos in chapter 3
of his thesis[12]. This protocol, which employs the dining
cryptographers protocol as an underlying primitive, requires
all voters to be online simultaneously and hence is not very
practical. For an attempt to remove this limitation, see [13].

In [8], Cramer, Franklin, Schoenmakers and Yung present
an elegant protocol with unconditional privacy. Though the
protocol presented is tuned towards internet voting (in which
each voter is assumed to have his own, trusted computer), this
protocol can be recast for booth voting (see [14]).

Moran and Naor have published two papers which also
present protocols that provide unconditional privacy. The

protocol presented in [9] uses the a voting machine and the
ballot casting assurance techniques of Neff and Adida[15][16],
resulting in a very different user interface. The protocol
presented in the second paper[10] bears some resemblance to
the one presented here, which is not surprising since both are
based on PunchScan. In fact, it seems that by applying our
observations about ballot layout, a simpler user interfacefor
Split-Ballot can be obtained, since both protocols requirethe
voter to perform an addition modulo the number of candidates
on the ballot. See [14] for further discussion.

Scantegrity [17] also uses a commitment scheme as the
underlying cryptographic primitive, so it can also be modified
to provide unconditional privacy. Scratch&Vote [18] strongly
relies on homomorphic counters for the ballot layout, and thus
can provide computational privacy only.

In [19], Popoveniuc and Vora present a very interesting
comparison of various protocols, including PaV, PS and Scant-
egrity, but they do not address unconditional privacy.

E. Outline of the paper

In Section II we provide more details about commitment
schemes, and present the general model of voting. In Section
III we provide a detailed description of the differences in the
ballot layouts of Prêt-à-Voter and PunchScan, and demonstrate
that these differences are insignificant from a practical point of
view, despite the fact that the opposite has been argued ([16],
page 117).

In Section IV we present our protocol, by merging PaV
and PS as follows: we maintain PaV’s (simpler) ballot layout
but we borrow the underlying cryptography from PS. The final
result is superior to both because, compared to PaV, it disposes
of mixing, while, compared to PS, it results in a simpler ballot
layout.

In Section V we state our assumptions, and present the
properties of our protocol. Section VI presents variationsand
extensions of our protocol, whereas Section VII demonstrates
how the overall number of commitments used in the protocol
can be kept fairly small.

II. PRELIMINARIES

A. Commitment schemes

A commitment scheme is a cryptographic primitive that
implements the equivalent of the following functionality.In
the commit phase, a Sender writes a certain string,x, on a
piece of paper, which he puts in an opaque envelope; he then
seals the envelope and puts it on the table. In thedecommit
phase, which is optional, the Sender opens the envelope and
shows the text written to the Receiver(s).

Two security properties are required of commitment
schemes. Thebinding (or correctness) property asserts that
the Sender cannot change his mind by opening a different
string x′ 6= x, thus protecting the Receiver. Thehiding (or
privacy) property asserts that the Receiver cannot derive any
information related to the string before the envelope is opened,
thus protecting the Sender.

Commitment is a very important and well-studied crypto-
graphic primitive, see for instance [20] and references therein.
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It is a well-known fact that if the Sender and the Receiver
are connected through an error-free channel, then commitment
schemes come in two flavors: computationally hiding and
unconditionally binding, or unconditionally hiding and compu-
tationally binding. Since our goal is to obtain voting protocols
which are unconditionally private, we are only interested in
the latter.

In all known practical implementations, the Sender uses an
additional random stringr to produce the commitmentβ =
β(r, x). We callx the content of the commitmentβ, andr its
decommitment value. Butr is often dropped in the notation,
and in all remaining sections we denote a commitment tox

simply as⌈x⌉.
One implementation of unconditionally hiding commitment

schemes was suggested in [21]:β(r, x) := h(r||x), whereh is
a hash function such as SHA256,r is a sufficiently long ran-
dom string (256 bits, say), and|| denotes string concatenation.
Though the implementation is probably sound from a practical
perspective, it is not obvious how one may formally prove
the hiding property of this scheme. In this respect, the result
of [22] gives a much more rigorous treatment. The resulting
commitment scheme is very efficient and is statistically hiding,
meaning that an exponentially small amount of information is
leaked. This scheme is certainly good enough for our purposes,
though our claims would have to be restated since the resulting
protocol would be statistically private, not unconditionally.

However, another interesting candidate exists: commitments
of the formβ(r, x) := gr

0g
x
1 , whereg0 andg1 are arbitrarily

chosen elements of some finite groupG in which computing
the discrete logarithm is assumed to be difficult, an assumption
which is the basis for many cryptographic protocols. It is easy
to see that these commitments (sometimes known as Peder-
sen commitments but introduced in [23]) are unconditionally
hiding, and that they are binding, provided the Sender cannot
calculate the discrete log ofg1 with respect tog0 in G. In fact,
these commitments have many interesting properties which
make them very suitable for voting (see [8][14]), but this is
not the focus of the current paper.

B. Entities involved in voting

For simplicity of exposition, we assume there exists one
Election Authority (EA) which is responsible for running
the election. Our protocol makes it very hard for it to alter
the outcome of the election, but it can leak the privacy of
individual votes. To mitigate this threat, we will occasionally
describe how certain responsibilities can be shared among
several authorities, all of which need to be corrupt in order
to leak votes.

The EA runs anAudit Table, which can be implemented
as a database whose contents are replicated on a public web
site. This Audit Table only accumulates data, meaning that
data, once published, cannot be withdrawn. This property
can be ensured by using standard techniques, such as the
creation of dependencies between successive alterations using
cryptographic hash functions.

Voters, besides casting their votes, should make sure that
somebody (either the voter herself, or some helper organiza-
tion) verifies that the ballot receipt received correspondsto the

image published by the Election Authority on its web site; if
not, voters must complain.

The election result is certified byAuditors, whose role is
to verify the correctness of the procedures executed by the
EA. The Auditors’ burden is light: they must ensure that the
challenge bits used in the pre- and post election audits are
unpredictable from the EA’s point of view, and then perform
all the checks to verify that the EA executed its tasks honestly.

An observeris any diligent entity with computational re-
sources, who also verifies the election process. In fact, the
tasks performed by Auditors and Observers are quite similar,
except that the latter are not officially recognized by the
EA and thus have no role in generating the random audit
challenges.

III. C OMPARING THE BALLOT LAYOUTS OF PAV AND PS

A. The Pr̂et-à-Voter ballot

The ballots used in PaV are described in detail in [5], section
4. A canonical ordering of candidates must be defined. In this
section it is 0: Alice; 1: Bob; 2: Charles; 3: Diane. An example
ballot looks like this:

The left part contains a permutation of the candidates. The
right part is empty except for the last row, and the voter votes
by putting an✗ in one of its first four cells. The magic string
z4fqkr3c (in reality probably longer) is an encryption of the
permutation used to shuffle the candidate order on the ballot,
encrypted with the public keys of the mixes.

The process of ballot casting consists of separating the left
and the right column, destroying the left column and scanning
the right one. Either manually, or through OCR, the row
containing the✗ and the encryption of the permutation are
associated with the ballot image. The voter can take the right
column home as a receipt.

B. The PunchScan ballot

The top and bottom layers of a typical PS ballot are depicted
below. In its original form, the typical PS ballot employs
auxiliary symbols, such as X, Y, Z and T, which make the
connection between the option chosen on the top and bottom
layers, and which are different for each ballot. We could
have used any set of four different symbols, or four colors
etc. Observe that on both layers these auxiliary symbols are
permuted. In the example ballot below, a vote for Diane
corresponds to the auxiliary symbol X.
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When the two layers are superimposed, a vote is cast
by using a dauber that affects both layers simultaneously,
leaving a mark on both layers. The voter chooses one of the
two layers to take with her as a receipt, the other layer is
destroyed.

C. Differences between PaV and PS Ballots

With respect to ballot layout, the differences between
Prêt-à-Voter and PunchScan can be illustrated explicitly
using a ballot with two layers and using arrows. In this
representation, the equivalent of the Prêt-à-Voter ballot
presented above then has a top layer (the former left side)
with a transparent window, and a bottom layer (the former
right side):

A vote for Diane is a mark on the top layer; the bottom
layer will be destroyed:

Likewise we can use arrows for the PunchScan ballot; now
we need arrows on both layers. We show a ballot which already
contains a vote for Diane and for which the two layers have
been separated. Note that both layers contain a part of the
mark, that the voter can choose which layer she wishes to
keep, and that neither layer reveals information about the vote.

In summary, the arrow representation makes it explicit that
the auxiliary symbols in PS (X, Y, Z, T in our example)
allow the use oftwo permutations, whereas PaV uses only
onepermutation.

We now list the differences between Prêt-à-Voter and Punch-
Scan.

1) As just explained, PaV and PS have a different ballot
layout: PaV uses one layer that will be cut into a left and
a right side, whereas PS uses two different layers on top
of each other. However, PaV can be changed to resemble
the PS layout.

2) In PaV only the voter options on the left are permuted,
while in PS both the voter options and the place to mark
the option are permuted.

3) In PaV the mark is placed on the right side which will act
as a receipt and the left side will be destroyed whereas in
PS a mark is placed on both layers and the voter gets to
choose which layer he keeps and which gets destroyed.

4) PaV has the encryption of the permutation printed on
the ballot, whereas PS only has a serial number for each
ballot which functions as a pointer to other information
that goes through an auditing process.

5) PaV uses decryption mixing as the underlying crypto-
graphic primitive, whereas PS uses a bit commitment
scheme.

D. Similarities between PaV and PS Ballots

The purpose of the former subsection was to stress the
differences between PaV and PS because of the corresponding
cryptographic implications. Now we will do the opposite, and
stress the similarities. In particular, it might seem that cutting
the vote in two, as in PaV, severely limits its ballot layout (as
argued in [16], page 117), but we demonstrate a simple trick
to get around this apparent limitation. We also demonstrate
how multiple races may be placed on the ballot, and how to
enter a number several digits long.

The following ballot layout illustrates the mean idea; once
this is clear, generalizations are straightforward.

Race 1 Race 2 Race 1 Race 2
3: Diane 1: Einstein ✗

0: Alice 2: Newton

1: Bob 0: Bohr ✗

2: Charles

(Offsetx = 1) (Offsetx = 2) Qqkr3c bkuryt

This ballot shows two different, unrelated races: one in the
first and third column, and one in the second and fourth. Note
that there are two encryptions in the bottom row of the third
and fourth column. This allows that the right part of the ballot
be split again between the third and fourth column, thus hiding
any correlations between the two different races. If this isnot
necessary, then one encryption containing the two offset values
would be sufficient.

There are many layout options based on this idea, hence
another important issue is to design ballot layouts that do
not leave the voter confused. We outline one option for
concreteness. Suppose that all the four columns have the same
width. Imagine now a mask that shows only the first column.
In addition, imagine a horizontal ruler which highlights one
cell in the first column, and has a hole at the same height in
the third column, through which the voter can write an✗ or
perforate a hole. By shifting the mask one column to the right
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(or the ballot to the left), the second and fourth column are
similarly serviced.

Alternatively, we can put the left part on top of the right part.
So instead of a left and a right part, we suppose two equal-
sized pieces of paper. What was the left now goes on top,
while the right part constitutes the bottom, and we suppose
that the voter casts her vote by perforating a hole through
both layers simultaneously. As before, the top layer contains
a permuted version of the candidate list and will be destroyed
afterwards, while the bottom layer contains an encryption of
this permutation and will be retained. The idea is outlined
in the following diagram, which shows the upper and lower
layer of a vote for candidate 35423. (This is the way voting is
done in Brazil: each candidate gets a number assigned for the
election. Numbers are between 2 and 5 digits long, depending
on the race.)

4 2 3 6 9
5 3 4 7 0•

6 4 5 8 1
7 5 6 9 2•

8 6 7 0 3•
9 7 8 1 4
0 8 9 2 5•

1 9 0 3 6
2 0 1 4 7
3 1 2 5 8•

•

•

•

•

•

Qqkr3c

Note that the result is very similar to PunchScan, except that
there is no permutation on the bottom part. In other words,
here the bottom sheets are identical for all voters.

E. Oblivious Vote Capture

The fact that the bottom sheets are identical for all voters
(except for the ballot id, see below) points to another solution:
the bottom sheet could be generated by a voting machine, thus
helping to reduce voter mistakes. The top sheet, now made of
transparent material, is put on top of the screen of the voting
machine. The voter is guided by the voting machine in making
her selections; the voting machine enforces, for example, the
requirement that each column bear at most one mark. The
machine does not get to know the vote, however, as it also
depends on the top sheet. Once the voter is done, the screen
image is printed and the voter puts the transparent sheet over
the printout for a final verification. If confirmed, the top sheet
is destroyed while the bottom sheet is kept by the voter as a
receipt. The voting machine stores the information about the
cells chosen, which it forwards to the bulletin board.

A small detail here has to do with the ballot id, which the
voting machine must learn. One possibility is to have a barcode
sticker on the (top) sheet, which will be read by the voting
machine before the voter begins, and which is printed on the
receipt. As one of the last steps, the sticker is peeled off the
sheet and stuck just above its image printed on the printout,
allowing for quick visual verification to make sure that the
voting machine copied the barcode faithfully.

IV. T HE NEW PROTOCOL

A. Ballot layout and casting a vote

We will be using the Prêt-à-Voter ballot layout, but for
simplicity of exposition we restrict ourselves tocyclic permu-
tations. We stress, though, that our protocol can be generalized
to arbitrary permutations.

3: Diane ✗

0: Alice

1: Bob

2: Charles

(Offsetx = 1) #0000012345

As we see, the left part contains a cyclic permutation
(shift) of the candidates; in this example the offset isx = 1.
Obviously,x must be chosen differently and randomly for each
ballot. As before, a voter marks a vote by putting a✗ on the
right part of the ballot.

B. The audit table

Since Punchscan uses two permutations, on the top and the
bottom layer, a straightforward idea is to break the offset value
x in two, i.e. to choosex′ and x′′ random such thatx =
x′ +x′′ (mod m). The Election Authority(EA) commits tox,
x′ and x′′ publicly, and uses a unique ballot id numberi to
establish the link between the commitments published and the
printed ballot.

We introduce the following notation:x is the offset;y is
the number of the row on the ballot marked by the voter,
counting from 0 tom−1; v is the actual vote, that is, the row
chosen with respect to the canonical representation. Obviously,
y = x + v (mod m), where the modulusm is the number of
candidates on the ballot; in the examplem = 4.

Let us now describe the audit table to be created by the
Election Authority (EA) before the election. This table is very
similar to that of PunchScan. Note that there are2S rows,
whereS is an upper bound on the number of voters. Note also
the commitment notation on the symbols for some columns.
The columns labelledy, y−x′ andv will remain empty until
the counting of the votes, as we will see later. At that time all
the voter ids,n, and the scanned image of the ballot receipts,
r, will be published as well.

i ⌈x⌉ n r y ⌈π−1

1
⌉ ⌈x′⌉ y−x′ ⌈x′′⌉ ⌈π2⌉ v

1
...

2S

Observe that the table is divided into left, middle and right
parts. Rows corresponding to the same ballot in the left and
middle part are permuted according toπ1, in the middle and
the right part according toπ2. This is necessary to hide the
link between the voter on the left and his vote on the right.
To stress this point we use different indexesi, j and k to
refer to the different rows of the three parts, and often we
will implicitly assume thatj = π1(i) and k = π2(j). For
instance when we writey(i) = x(i) + v(k) (mod m) we are
talking about the values corresponding to thesameballot. The
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columns labeled⌈π−1

1
⌉ and⌈π2⌉ are used as commitments for

these two permutations. During the audits, commitments are
opened to verify that the EA did not cheat, as will be explained
below.

In fact, as will become clear when we discuss the post-
election audit, it is necessary to createL copies of the audit
table. More precisely, we need copies of the middle and the
right part of the audit table, each with the same values forx,
but with different values forπ−1

1l , x′

t, x′′

t and π2l. HereL is
a security parameter andl a subscript between 1 andL.

C. Protocol description

Phase 1: System set-up, ballot creation, pre-election audit

The general idea is as follows: since a ballot must be used
either for auditing or during the election, we create and print
twice the number of ballots needed and audit half of them.
Then the other half will be used in the election.

1.1 The EA defines election constants such as the names
and the number of candidates,m and the names and
the total number of voters,S.

1.2 For eachl ∈ {1, . . . , L}, the EA chooses2 random
permutationsπ1l and π2l on the set{1, . . . , 2S}.
Also, for eachi ∈ {1, . . . , 2S}, jl = π1l(i) the EA
choosesx(i), x′

l(jl) and x′′

l (jl) random such that
x(i) = x′

l(jl) + x′′

l (jl) (mod m).
1.3 For eachi ∈ {1, . . . , 2S}, l ∈ {1, . . . , L}, the EA

commits tox(i), π−1

1l (jl), x′

l(jl), x′′

l (jl) andπ2l(jl).
For eachi and l these commitments represent one
ballot, which is printed (wherejl = π1l(i)).

1.4 The Auditors partition the set of2S ballots randomly
into an audit setA and election setE, both of size
S.

1.5 The EA now opens all bit commitments related toA:
it must open all rowsi in the left part of the table if
i ∈ A and all rows with indexjl in the middle part
of the table ifjl = π1l(i) and i ∈ A.

1.6 The Auditors check that the ballots and the entries
in the audit table were created honestly, i.e. that
π−1

1l (jl) andπ2l(jl) are consistent with permutations
(no two-to-one mappings), and thatx(i) = x′

l(jl) +
x′′

l (jl) (mod m) holds for each row opened, and that
the serial numberi and the offsetx(i) printed on the
ballot correspond to the entries in the table.

1.7 All ballots from the audit setA are discarded; only
ballots with serial numbers inE are used for the
election.

Phase 2: The election

The voter acts as follows:

2.1 The voter identifies herself using existing mecha-
nisms.

2.2 The voter chooses a balloti ∈ E, enters the booth
and marks her choice by putting an✗, as already
described in Section IV-A. She separates the two
parts of her ballot and ensures that the left part is
physically destroyed.

2.3 The voter leaves the booth; her receipt, the right side,
is scanned. Then the row number of her mark,y(i),
is interpreted (by OCR or manually) which super-
imposes an arrow or other symbol on the scanned
image. The voter confirms this interpretation, hence
casting her vote. The scanned image is stored in order
to be published on the Audit Table, as described in
Step 3.1. The voter takes the print-out of the scanned
image with arrow with her as a receipt.

Phase 3: Publishing the results

3.1 After the election, the EA publishes the voter’s id
n(i), the scanned receiptr(i) andy(i) for eachi ∈
E, [y − x′]l(jl) for eachjl ∈ π1l(E), andvl(kl) for
eachkl ∈ π2l(π1l(E)).

3.2 From the column labelledv the EA calculates the
tally. The tally should be equal for all theL copies
of the Audit Table.

Phase 4: The post-election audit

The EA could try to cheat by changing the values in column
v, so an audit is necessary. We runL versions of the audit
protocol in parallel, each with a different Left/Right choice.
Then the probability of EA getting away is2−L. This is a
well-known technique also used by Punchscan ([7], section
5.4).

4.1 The Auditors createL random bitsb1 . . . bL: Left or
Right.

4.2 For l ∈ {1, . . . , L}:
If bl = Left, then for eachj the EA opensi :=
⌈π−1

1l (j)⌉ and ⌈x′

l(j)⌉, and it is verified whether
yi − x′

l(j) = [y − x′]l(j) holds.
If bl = Right, then for eachj the EA opens
k := ⌈x′′

l (j)⌉ and it is verified whether[y −
x′]l(j) = x′′

l (j) + vl(k) holds. Observe that this
equation should be satisfied because for the same
ballot y = x + v = x′ + x′′ + v, soy − x′ = x′′ + v.

4.3 After the last audit procedure is completed, all the
decommitment values of unopened bit commitment
values are destroyed.

V. PROPERTIES OF OUR PROTOCOL

A. Assumptions

We now state the assumptions needed to obtain a secure
protocol.

A1 The Election Authority uses a commitment scheme
that is unconditionally hiding and computationally
binding.

A2 The computational assumption of the computation-
ally binding commitment scheme is valid until the
election ends. In particular, the Election Authority
cannot break the commitment schemes used.

A3 The ballot receipts given to voters are unforgeable
and undeniable.This can be satisfied using special
paper (with watermarks etc) to print the ballot re-
ceipts.
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A4 Except for the ballot image and the information
committed to in the audit table, no other copies of
(the information on) the ballots exist.In practice, this
assumption may be the hardest to fulfill. It can be
satisfied by putting the ballots in opaque envelopes,
for instance.

A5 The challenge bits of the Auditors are unpredictable
from the EA’s point of view.This assumption can
be provably assured by using standard techniques
such as a beacon, or applying a cryptographic hash
function to data that the EA does not control, etc.

A6 Though the Election Authority may try to cheat in
other ways, we assume that it is in its interest to
collaborate until the protocol has completed.This is
reasonable in view of the fact that in many situations
even corrupt EAs have an interest inappearinghon-
est, and not completing the protocol is too obvious
to get away with.

B. Claims

We now formulate the two principal properties of our
protocol.

CLAIM 1 (PRIVACY OF THE BALLOT)
If Assumptions A1, A3 and A4 are satisfied, then the protocol
presented in Section IV-C has the following property:
a) When the voter leaves the booth, the receipt that the voter
retains leaks no information (in the Shannon sense) about her
vote.
b) The information that the Election Authority publishes inthe
Audit Table leaks no information about any individual vote.
c) The additional data revealed during the post-election audit
reveals no information about any individual vote.
This implies that our protocol guarantees the privacy of the
voter unconditionally.

PROOF: (a): When voteri leaves the booth, her receipt
contains a mark in rowy(i) and the serial number of the
ballot, i. Since y(i) = x(i) + v(k) (mod m) and x(i) is
chosen at random, no information is revealed as long as no
information aboutx(i) is revealed. In (a) no other information
which depends onx(i) is available.
(b) In addition to the image of the receipt, the Audit Table
contains a commitment ofx(i). But since an unconditional
bit commitment scheme is used, no information aboutx(i)
leaks this way.
(c) During the post-election audit, for eachl eitherx′

l andπ−1

1l ,
or x′′

l andπ2l are opened,. Since these values are chosen ran-
domly to satisfy the equationx(i) = x′

l(j)+x′′

l (j) (mod m),
knowing only one of them does not give information about
x(i). And since eitherπ−1

1l or π2l is opened, butneverboth,
none of the permutationsπl that directly link the left and the
right part of the audit table is ever revealed.

CLAIM 2 (CORRECTNESS VOTE COUNT)
If Assumption A2 and A5 are satisfied, then the protocol
presented in Section IV-C has the following property:
a) For each ballot that was constructed and printed dishonestly

during Phase 1, the Election Authority has a probability of at
least 1

2
of being caught.

b) If the Election Authority did not cheat during Phase 1 but
did during Phase 3, it will be caught with probability at least
1 − 2−L.

PROOF: (a) This follows from the fact that a total of2S

ballots are being printed, and that half of them are audited as
described in Steps 1.4, 1.5 and 1.6.
(b) In order to rig the vote count without being detected, the
EA must cheat onx′

l andπ−1

1l , or onx′′

l andπ2l, for eachof
theL copies of the audit table. So the EA only gets away with
cheating if it successfully predictsall the coin flips in Step 4.1
which, under assumption A5, only happens withp = 2−L.

Note that the last claim is true independent of whether the
EA is actually honest or not, or whether the election software
is correct or not. As long as Assumptions A2 and A5 are
satisfied, and if the EA passes the pre- and post-election audits
successfully, then, with overwhelming probability, the result
published by the EA is the correct one.

C. Other requirements for fair elections

Though the previous subsection captures the essential prop-
erties of our protocol, we want to make sure that we have
not overlooked any requirement for a fair voting protocol. We
therefore check the list of requirements from [24], to which
we refer for discussion and justification.

REQUIREMENT A (ONLY VALID VOTERS) Only persons on
the valid voter list, called voters, can create a ballot and
deposit it in the ballot box.

REQUIREMENT B (ONE MAN ONE VOTE) A voter can cast at
most one vote.

Our protocol does not address these issues; we assume that
existing procedures are used.

REQUIREMENT C (PRIVACY INDIVIDUAL BALLOT ) Filling
in the ballot and putting it in the ballot box is a confidential
act, and under no circumstance, not even with the cooperation
of the voter, should an outsider be able to deduce for whom
or for what the voter casted her vote.

This requirement follows from Theorem 1.

REQUIREMENT D (INDIVIDUAL VERIFIABILITY ) The voter
(i) can verify that she created a valid vote, (ii) can revise her
vote before casting it, and (iii) obtains an undeniable proof
that her vote is included in the set of votes tallied.

Subrequirement D(ii) is fulfilled by stipulating that a voter
unsatisfied with her vote can discard her ballot and ask for a
new one.

Subrequirement D(i) is fulfilled provided that the voter can
trust that the offset printed on the ballot,x(i), corresponds
to the value in the audit table. But this follows, with high
probability, from Theorem 2 part (a).
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Assumption A3 implies that if a voter does not find her
receipt published in the audit table, she has an undeniable
proof that the EA is trying to cheat. So if we assume that
the EA publishes all receipts, the voter can check her valuey

on the web site of the EA showing the audit table. The fact
that with high probability her encoded votey on the left is
transformed into the correct valuev on the right follows from
Theorem 2 part (b). This shows that subrequirement D(iii) is
fullfilled as well.

REQUIREMENT E (BALLOT BOX SECURITY) During the vot-
ing session it should not be possible (i) to see the vote on any
ballot deposited in the ballot box; (ii) to modify a ballot; (iii)
to remove a ballot from the ballot box; (iv) to add ballots not
coming from voters.

Subrequirement (i) follows from part (a) of Property 1.
Subrequirements (ii) and (iii) are satisfied since each voter
gets a receipt and can complain if a ballot has been modified
or removed. Subrequirement (iv) is satisfied since each vote
in the table has a voter idn(i) associated to it.

REQUIREMENT F (COUNT INTEGRITY) All valid votes en-
countered in the ballot box, and only those, will be included
in the count.

This follows from the proofs of the previous requirement,
E, given that a bulletin board is used.

REQUIREMENT G (PUBLIC VERIFIABILITY ) The tallying of
the votes happens in a manner such that anyone can verify
that Requirements C, E and F hold.

This is ensured by the use of the ballot receipts which need
not be kept secret, and by the use of the audit table, which is
public.

REQUIREMENT H (ROBUSTNESS) The election process is ro-
bust against malicious and random faults, and has a very high
probability to terminate successfully.

The only way the process does not terminate successfully
is if the EA cannot open the necessary bit commitments, or if
it refuses to do so. The latter contradicts Assumption A6. In
any case, the impact of both types of faults can be mitigated
by the use of secret sharing, as explained in the next section.

D. Secret sharing of decommitment values

Probably the most serious drawback of the protocol pre-
sented in this paper is the fact that the decommitment valuesof
the bit commitments are in the hand of one entity: the Election
Authority. Moreover, these values have to be stored until after
the election, since they are needed to determine the outcome
of the election, as well as to complete the post-election audit.
If the EA reveals these decommitment values, then the privacy
of the corresponding vote is completely compromised, so this
could be used to coerce the voter. On the other hand, the EA
could refuse to open them, thus preventing the tallying of the
votes.

One obvious solution is to split the decommitment values
over a number of different authorities, of which a certain
quorum is necessary in order to reconstruct the original
decommitment values. A verifiable secret sharing scheme such
as the one proposed by Pedersen [25] is suitable for this task.
This alleviates the problem of concentrating power in one
entity, and also adds redundancy in the case of random faults.

The use of verifiable secret sharing also solves another
problem. After the protocol has been completed, all the
decommitment values of unopened commitments, as specified
in Step 4.3, must be destroyed permanently. If a verifiable
secret sharing scheme is used, then this property holds if the
owners of the shares act honestly byrefusingto further open
decommitment values and destroying permanently any data
related to their shares.

VI. PROTOCOL VARIATIONS

A. Alternative audit procedures

The audit procedures described in Section 4 are among
the simplest so that the protocol properties hold, but some
additional comments are appropriate.

In the first place, all unused ballots and corresponding
commitments can and should be opened and audited after the
election. There is no benefit to not doing so, and the audit
increases the chances of catching a dishonest EA.

In addition, other auditing protocols could be used. Apart
from the approach used here, PunchScan presents another
(standard) approach ([6] section 7.6, [7] section 5). It is the
equivalent of one round of randomized partial checking as
presented in [21]. Unlike the mechanism presented in Step
4, there is only one copy of the table, and for eachj in the
middle part of the table a random challenge bit is created:Left
or Right, which has the following semantics:

Left: The EA opensi := ⌈π−1

1
(j)⌉ and⌈x′(j)⌉, and it is

verified whethery(i) − x′(j) = [y − x′](j) holds.
Right: The EA opensk := ⌈x′′(j)⌉ and it is verified whether

[y − x′](j) = x′′(j) + v(k) holds.

Using this approach we catch a cheating EA with probability
1

2
for each votev(k) he modifies. However, information is

revealed about the overall permutationπ = π2 ◦ π1 between
the left and the right part of the table. In particular, the size
of the privacy set is reduced by about a factor of two (exactly
two if we require that the number ofLeft and Right bits are
equal), which can be problematic when the number of voters
is small.

One variation to avoid this is the following: instead of using
two permutations, we use four. We also splitx into four parts:
x = x1 + x2 + x3 + x4 (mod m) and use two rounds of
randomized partial checking. The audit table now has five parts
and essentially looks like this:

⌈x⌉ y ⌈x1⌉ y−x1 ⌈x2⌉ y−x1−x2 ⌈x3⌉ x4+v ⌈x4⌉ v

Observe thaty − x1 − x2 = x3 + x4 + v (mod m). It is
obvious how this solution generalizes to an arbitrary number
of permutations.
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Alternatively, we could use Chaum’s improvement [2] of
the mixing protocol proposed in [21], which used four per-
mutations. See [3] for a detailed description. However, for
both methods — the original randomized partial checking
and Chaum’s improvement — a rigorous quantification of the
amount of information revealed about the overall permutation
π is still lacking. In [26] it is proven that a constant number
C of auxiliary permutations is sufficient to get it below anyǫ,
but an explicit estimate of which value forC should be used
in practice is not given. This is subject of current research.

B. A brief description of Punchscan

The header of the table used by Punchscan is as follows:

i ⌈x1⌉ ⌈x2⌉ y ⌈j⌉ ⌈t1⌉ y − t1 ⌈t2⌉ ⌈π2(j)⌉ v

P.1 P.2 P.3 D.1 D.2 D.3 D.4 D.5 R.1

The first row shows the notation introduced in this paper,
whereas the second row shows the notation of [7] and [6].
Observe that where they usex, y, z as the indices of the left
(P), middle (D) and right (R) part of the table, we usei, j, k,
so that when they we write(x, P3) we would writeyi, etc.
Also, the description of Punchscan usesm = 2, so that adding
1 (mod 2) is called “flipping” or “inverting” the bit.

Simplifying this table by definingx1 = t1; x2 = t2 is
tempting but leads to aninsecureprotocol because of the
following difference between PaV and PS. In PaV the offset
(or offsets, in the new protocol) is (are) kept secret: the left
side of the ballot is destroyed, and the value on the right side
is protected by a bit commitment. But in Punchscan the offset
from the top (x1) or bottom (x2) layer can be deduced from
the printed ballot. One layer gets destroyed but the other has
its scanned image published, so this information, combined
with the information about the destroyed layer revealed during
the post-election audit, compromises the ballot security,which
happens withp = 1

2
. Thereforex1, x2, t1 and t2 are chosen

randomly satisfyingx1 + x2 = t1 + t2 (mod m).

C. A simpler but less efficient protocol

We can obtain a less efficient, but a conceptually simpler
protocol by using a commitment scheme that allows the Sender
to show linear relations between two or more commitments
modulo an integerm. For instance, suppose the Sender would
like to show that⌈x1⌉+⌈x2⌉ ≡ 0 (mod m). That is, he wants
to show that the equalityx1 +x2 ≡ 0 (mod m) holds without
revealing any other information aboutx1 or x2.

For m = 2 there exists a general construction to accomplish
this property forany kind of bit commitment, at the expense
of a factor 2L, whereL is a security parameter. The idea,
attributed to Bennett and Rudich, is described in Section 2.2 of
[27], where it is called “Bit Commitment with XOR”, denoted
as−→x . The idea is to represent each commitment as a vector
of pairs of simple bit commitments, such that each pair xors
to the committed bit value. See [27] and [13] for more details.
It is easy to see that this scheme generalizes to proving linear
relations between many commitments, and that xor operations
on bits can be generalized to addition on integers modulom.

Let −→w be a copy of−→x , i.e. w = x. The audit table of our
variant consists of four parts, which are related through three
permutations,π1, π2 andπ3.

−→x y −→w −→y −→v v

We now apply the customary cut-and-choose approach: the
EA has two choices, depending on the challenge. Either it
opensπ1 andπ3 and shows that〈−→x , y〉 corresponds to〈−→w ,−→y 〉
according toπ1 and that−→v corresponds tov according to
π3. Or the EA opensπ2 and proves that−→w + −→y modulom

corresponds to−→v according toπ2, using the Bennett-Rudich
techniques explained above.

VII. E FFICIENCY CONSIDERATIONS

A concern about our protocol might be that it involves a
large number of commitments, and since each commitment
requires a decommitment value of at least 200 bits, it might
seem that the sheer amount of data becomes too large to make
the protocol work in practice. Instead of analyzing exactly
how many commitments would be needed, we show that our
protocol has a special property, which allows us to replace any
number ofbit commitments to a constant number ofstring
commitments, where this constant is linear in the security
parameter,L.

More precisely, in [28] the following is shown. Suppose
that we have a three-step protocol with the following struc-
ture. In Step 1, the prover commits to a large collection
of bit commitments. In Step 2, the verifier issues a random
challenge. Finally, in Step 3, based on the commitments and
the challenge, the Sender opens a certain subset of the bit
commitments. Then this protocol can be converted into a
protocol that used two string commitments in each round, and
which reduces the probability to catch a cheating Sender in
each round by a factor of two. This technique applies, except
that we have a pre-election and post-election audit, meaning
that we have an additional Step 4, in which the Receiver issues
another challenge, and Step 5, in which the Sender opens a
second subset.

Let us describe how to adapt this technique to our sit-
uation, i.e. how to convert an arbitrary large collection of
commitments into string commitments: the sequence of bit
commitmentsb1, . . . bi is split into B1 := b11, . . . b1i, B2 :=
b21, . . . b2i, andB3 := b31, . . . b3i such thatbj = b1j⊕b2j⊕b3j

holds, and two of the three values are chosen at random.
Then the Sender commits toB1, B2 and B3, using string
commitment.

In order to open the first subset, the parties proceed as fol-
lows: for eachbj that must be opened in the original protocol,
the Sender announces the valueb1j, b2j and b3j . The verifier
then issues a random challenge, telling the Sender either to
open B1, B2 or B3, and, after receiving the decommitment
values, verifies whether the Sender opened honestly. In order
to open the second subset in the post-election audit, the same
procedure is repeated, except that the challenge now refersto
the two remaining unopened strings.

Using this technique decreases the probability to catch a
cheating Sender in one round by a factor of three. This means
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that if initially we had a1

2
probability of catching a cheating

authority, this probability has now reduced to1

6
. So in order to

catch a cheating authority with probability1− 10−9, we need
at least 114 (the smallest integern such that(5

6
)n < 10−9)

rounds, and three times the number of string commitments. In
other words,3× 114 = 342 string commitments are sufficient
to commit to the whole Audit Table. So we can conclude that
storage and communication requirements for our protocol are
truly modest.

VIII. C ONCLUSION

This research began as a comparison of Prêt-à-Voter and
PunchScan. Surprisingly, we found a third variation which is
an improvement on both: the simpler ballot layout of Prêt-
à-Voter with the simpler cryptography of PunchScan. As our
analysis shows, the three protocols are very similar and can
be considered variations on the same theme.

We believe that the two most important properties of the
protocol presented here are the fact that it provides uncondi-
tional privacy, and that it is very simple. The latter property
is important in election systems in order to convince a wider
audience of protocol soundness. An additional advantage is
that the protocol’s security, which is already quite intuitive,
should be relatively easy to model and prove more rigorously,
for instance in the universally composable model. This is the
subject of current research.

Another open question is how to design a voting system
if the number of candidates is too large to fit on the ballot,
as is the case in Brazil. Though we have indicated a possible
solution, we believe more study is necessary.
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[27] C. Crépeau, J. van de Graaf, and A. Tapp, “Committed Oblivious
Transfer and Private Multi-Party Computation,” inCRYPTO ’95, LNCS
963, pp. 110–123, 1995.

[28] J. Kilian, S. Micali, and R. Ostrovsky, “Minimum resource zero-
knowledge proofs (extended abstract),” inCRYPTO ’89, LNCS 435,
pp. 545–546, 1989.

Jeroen van de Graaf was born in Amsterdam,
the Netherlands in 1960. He received a Master
Degree in Mathematics from the Universiteit van
Amsterdam in 1985. Subsequently he worked in
the Cryptography Group at the CWI in Amsterdam.
After working for six years in industry, he started
a Ph.D. on quantum cryptography at the Université
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