
Cryptanalysis of a Hash Function Proposed at

ICISC 2006

Willi Geiselmann1 and Rainer Steinwandt2

1 Institut für Algorithmen und Kognitive Systeme, Fakultät für Informatik,
Universität Karlsruhe (TH), Am Fasanengarten 5, 76128 Karlsruhe, Germany,

geiselma@ira.uka.de
2 Department of Mathematical Sciences, Florida Atlantic University,
777 Glades Road, Boca Raton, FL 33431, USA, rsteinwa@fau.edu

Abstract. A simple method for constructing collisions for Shpilrain’s
polynomial-based hash function from ICISC 2006 is presented. The at-
tack relies on elementary linear algebra and can be considered as practi-
cal: For the parameters suggested, we give a specific collision, computed
by means of a computer algebra system.

Keywords: cryptanalysis, hash function

1 Introduction

In [Shp06] Shpilrain proposes a hash function H which builds on the
Merkle-Damg̊ard construction [Dam90,Mer90] and relies on computations
in the quotient of a polynomial ring. In [Cha06] Chang reports that the
underlying compression function is easy to invert and that a meet-in-the-
middle attack enables a preimage attack on H. According to Chang’s
complexity estimate, for the specific parameters proposed in [Shp06] the
computational effort for mounting such a preimage attack appears to be
in the magnitude of 280 operations.

The collision attack we describe below can be considered as practical—
for the specific parameters proposed in [Shp06] we give a collision of two
equal length bitstrings with about 10.2 KByte each. Shpilrain’s proposed
hash function H does not involve padding, but the collision given below
remains valid if the usual Merkle-Damg̊ard strengthening is applied to H.

2 The proposal from ICISC 2006

Let p(x) ∈ F2[x] be a univariate polynomial of degree n over the finite
field with two elements. Moreover, let α be the residue class of x in the
quotient R := F2[x]/(p(x)), thus p(α) = 0. We remark that [Shp06] writes
“R = F2n = F2[x]/(p(x))” which suggests p(x) to be irreducible, but the
specific polynomial p(x) proposed is reducible.

2.1 General construction

To define the hash function H, two elements h0, h1 ∈ R are fixed, and the
hash value of an individual bit is defined as

H(0) := h0

H(1) := h1
(1)

Next, a triple (u0, u1, u2) ∈ R3 is used to fix a binary operation ◦ on R:

◦ : R2 −→ R
(r1, r2) 7−→ r1 ◦ r2 := u0 + r1 · r2 + r2

1 · u1 + r2
2 · u2

(2)

To hash a bitstring M , the following procedure is used:

1. Going from left to right, the bitstring M is split into 32-bit blocks
M = B1 ‖ B2 · · · ‖ Bℓ, where the last block Bℓ has less than 32 bit, if
the length of M is not a multiple of 32. There is no padding.

2. The hash value of each single 32-bit block Bi = Bi,0 ‖ · · · ‖ Bi,31 is
computed by applying the above operation ◦ one bit at a time, going
from left to right:

H(Bi) := (. . . ((H(Bi,0) ◦ H(Bi,1)) ◦ H(Bi,2)) . . .) ◦ H(Bi,31)

(where the hash value H(Bi,j) of a single bit Bi,j is given by (1)).
3. The hash value H(M) of M is computed by applying the operation ◦

one block at a time, going from left to right:

H(M) := (. . . ((H(B0) ◦ H(B1)) ◦ H(B2)) . . .) ◦ H(Bℓ)

The value H(M) is the output of the hash function for input M .

2.2 Suggested parameters

As specific parameter choice, [Shp06] suggests the following:

p(x) := x163 + x7 + x6 + x5 + x4 + x + 1

h0 := α7 + 1

h1 := α8 + 1

(u0, u1, u2) := (1, α2, α)

To demonstrate the practicality of the attack proposed below, in Sec-
tion 3.3 we construct a specific collision for this parameter choice.

2

3 Finding collisions

As already indicated above, the notation “R = F2n = F2[x]/(p(x))” in
[Shp06] suggests the considered polynomial p(x) to be irreducible. How-
ever, with a computer algebra system like Magma [BCP97] one easily
checks that the proposed polynomial splits into four irreducible factors
from F2[x]. Namely, for p(x) = x163 + x7 + x6 + x5 + x4 + x + 1 we have
p(x) = q1(x) · q2(x) · q3(x) · q4(x), where

q1(x) := x9 + x7 + x5 + x + 1

q2(x) := x18 + x14 + x12 + x11 + x6 + x4 + 1

q3(x) := x38 + x36 + x33 + x31 + x30 + x28 + x24 + x22 + x21 + x20 + x19

+x17 + x16 + x12 + x10 + x8 + x7 + x4 + x3 + x2 + 1

q4(x) := x98 + x94 + x93 + x91 + x90 + x88 + x87 + x84 + x82 + x73 + x69

+x68 + x67 + x65 + x64 + x61 + x58 + x55 + x54 + x53 + x46

+x45 + x44 + x43 + x42 + x41 + x39 + x37 + x31 + x29 + x28

+x26 + x25 + x24 + x20 + x18 + x17 + x14 + x13 + x9 + x8 + x7

+x6 + x5 + x3 + x2 + 1

Thus, before discussing the core part of our attack, it is worth discussing
briefly how to exploit such a factorization for a collision search.

3.1 Using the Chinese Remainder Theorem

According to the Chinese Remainder Theorem, any factorization of the
polynomial p(x) into coprime factors q1(x) . . . , qs(x) yields a decompo-
sition of the ring R = F2[x]/(p(x)) into a direct product of rings Ri :=
F2[x]/(qi(x)):

R ≃ R1 × · · · × Rs

As the hash function H composes the hash values of the individual
32-bit blocks with simple ring operations, it looks tempting to exploit
this isomorphism of rings to perform the collision search “one Ri at a
time”. Suppose we have found two bitstrings M1,M2 whose lengths are
multiples of 32 and which satisfy

H(M1) ≡ H(M2) (mod qs(x)) ,

i. e., we have a collision in the Rs-component. Owing to the Merkle-
Damg̊ard structure of H, we then have

H(M1 ‖ T) ≡ H(M2 ‖ T) (mod qs(x))

3

for arbitrary bitstrings T appended to M1 and M2. Thus, if we heuris-
tically (though actually incorrectly) take the values H(M1 ‖ T) and
H(M2 ‖ T) as being uniformly and independently distributed modulo
qs−1(x), we would expect that within O(2deg(qs−1(x))) random attempts
for T , we encounter a pair of messages M1 ‖ Ts−1, M2 ‖ Ts−1 whose hash
values coincide in the Rs−1 ×Rs-component of R. If the degree of qs−1 is
small, this approach can be efficient enough. In our experiments we used
the linear algebra technique described in the next section to reduce the
computational effort for finding a matching Ts−1.

Now assume we have found a matching “tail” Ts−1 and that the length
of Ts−1 is a multiple of 32. Then we can apply the same reasoning as before
to extend the collision

H(M1 ‖ Ts−1) ≡ H(M2 ‖ Ts−1) (mod qs−1(x) · qs(x))

from Rs−1 ×Rs to Rs−2 ×Rs−1 ×Rs: Analogously as before, now we test
bitstrings Ts−2 until

H(M1 ‖ Ts−1 ‖ Ts−2) ≡ H(M2 ‖ Ts−1 ‖ Ts−2) (mod qs−2 · qs−1 · qs)

holds. In this way, we can process the components Rs, Rs−1, . . . , R1 one
by one, starting from a collision in a single component.

Example 1. For the specific parameters from Section 2.2 we have s = 4,
and the degrees of q1(x), q2(x) and q3(x) are rather small—namely 9, 18
and 38. Thus, once we know a pair of messages colliding in the larger R4-
component (of size 298), deriving a full collision that is valid in R should
be straightforward. Indeed, in our actual computations this worked as
expected.

3.2 Using linear algebra

In view of the above discussion, the parameter choice in [Shp06] does not
seem to offer an adequate security level, and constructing a collision in
the component R4 (of size 298) seems to be the most time-consuming task
for mounting such an attack. In this section we show that such a collision
can be found easily, without implementing a full birthday attack in R4.

Remark 1. We describe the attack for an irreducible polynomial p(x) of
degree n, i. e., for R ≃ F2n . For the specific parameter set from Sec-
tion 2.2, this linear algebra based part is exploited for R4 and R3 only,
but the attack technique as such does not rely on the described short-
cut via the Chinese Remainder Theorem. In particular, simply imposing

4

p(x) to be irreducible of degree 163 does not appear to be an adequate
countermeasure to rule out the attack.

Let R′ ⊆ R be the image of H when being restricted to messages whose
length is a multiple of 32 (i. e., we have no incomplete last blocks). To
each 32-bit block B, we can assign the following map φB , which captures
the update of H’s internal state when appending B to a message whose
length is a multiple of 32.

φB : R′ −→ R′

h 7−→ h ◦ H(B)

The map φB , is affine in the sense that it splits into the sum of the F2-
linear map h 7→ h ·H(B) + h2 · u1 and the constant shift H(B)2 · u2 + u0.
If we consider a sequence of blocks B1, . . . , Bt, then the composition

φB1‖B2‖···‖Bt
:= φBt

(φBt−1
(. . . φB1

(h)) . . .)

computes the hash value obtained by appending B1 ‖ B2 ‖ · · · ‖ Bt to
a preimage of h ∈ R′. As each of the φBi

is affine in the sense just de-
scribed, the same holds for φB1‖B2‖···‖Bt

—with the constant shift depend-
ing on B1, . . . , Bt. The linear part of φB1‖B2‖···‖Bt

is just the functional
composition of the linear parts of the φBi

s.
Once we know a sequence of 32-bit blocks B1, . . . , Bt and two different

values h1, h2 ∈ R′ with

φB1‖B2‖···‖Bt
(h1) = φB1‖B2‖···‖Bt

(h2) ,

or equivalently

φB1‖B2‖···‖Bt
(h1) + φB1‖B2‖···‖Bt

(h2) = 0 , (3)

we have a collision for H—provided we know preimages of h1 and h2. As
the left-hand side of Equation (3) is F2-linear in h1 + h2—the constant
shifts cancel out in the summation—we can rewrite (3) in the form

(h1 + h2) · MB1‖B2‖···‖Bt
= 0 .

Here MB1‖B2‖···‖Bt
is an n × n matrix over F2, and (h1 + h2) ∈ F

n
2 is

comprised of the coefficients of h1 + h2 when being expressed in the ap-
propriate F2-vector space basis. Now, if we can find B1, . . . Bt such that
MB1‖B2‖···‖Bt

is of low rank (i. e., has a large kernel) we can simply try
to choose messages M1 6= M2 at random until the sum of their hash val-
ues (H(M1)+ H(M2)) yields a vector (H(M1) + H(M2)) in the kernel of
MB1‖B2‖···‖Bt

.

5

Remark 2. It is worth noting that there is no particular requirement on
the messages M1, M2. This seems a useful feature when aiming at mean-
ingful collisions: Suppose we have a message/file format of interest, where
it is possible to append “garbage” at the end of a valid message (up to
some fixed end-of-message delimiter).

Then we could fix two meaningful messages M ′
1,M

′
2 which we want

to collide and choose our candidates as M1 := M ′
1 ‖ N1, M2 := M ′

2 ‖ N2

with random bitstrings N1, N2. The final colliding messages then had the
form

M1 = M ′
1 ‖ N1 ‖ B1 ‖ · · · ‖ Bt ‖ E

M2 = M ′
2 ‖ N2 ‖ B1 ‖ · · · ‖ Bt ‖ E

where E can be a message-independent (possibly empty) end-of-message
delimiter.

Expediting the computation of a kernel element In our experi-
ments with the parameters from Section 2.2, finding a small, say ≈16,
number t of blocks B1, . . . , Bt such that MB1‖B2‖···‖Bt

has a rank de-
fect of ≈ t required no particular effort. Already a trivial enumeration
of some 32-bit blocks B1 quickly yields a candidate where choosing all
t blocks equal to B1 results in a matrix MB1‖B1‖···‖B1

with rank de-
fect t. For larger rank defects, however, the heuristics we used required
a significantly larger number of blocks (see below). Aiming at collisions
of moderate length, it seems worthwhile to improve the simple guessing
strategy for finding kernel elements:

Suppose our n × n matrix MB1‖B2‖···‖Bt
over F2 has rank defect d.

Taking the candidate vectors (H(M1) + H(M2)) for independently and
uniformly at random chosen elements from F

n
2 , we could expect that after

O(2n−d) attempts a kernel vector is found. If we do not mandate M1 and
M2 to have a particular form, we can easily improve on this as follows:

1. Using a computer algebra system, we can easily find a vector space ba-
sis of the (d-dimensional) kernel ker(MB1‖B2‖···‖Bt

) of MB1‖B2‖···‖Bt
.

2. Using a birthday attack we search for messages M1, M2 such that the
projections of (H(M1)), (H(M2)) on ker(MB1‖B2‖···‖Bt

) coincide. In

other words we want (H(M1)) and (H(M2)) to be in the same residue
class of F

n
2/ ker(MB1‖B2‖···‖Bt

). Then

(H(M1)) + (H(M2)) = (H(M1) + H(M2)) ∈ ker(MB1‖B2‖···‖Bt
)

as desired.

6

Taking the (H(Mi)) for independently and uniformly at random chosen
elements from F

n
2 , we expect to find the desired messages M1 and M2

after O(2(n−d)/2) attempts.

Example 2. For Shpilrain’s specific parameter proposal (see Section 2.2),
in the largest component obtained from the Chinese Remainder Theorem,
we have n = 98. Here we used a matrix with a rank defect of d = 42,
constructed from t = 2882 blocks Bi.

Finding a low rank matrix By construction, we have

MB1‖B2‖···‖Bt
= MB1

·MB2
· · · · · MBt−1

·MBt
,

with MBi
being the n × n matrix over F2 representing the linear part

of φBi
. Thus, the task of finding a matrix MB1‖B2‖···‖Bt

of low rank re-
duces to finding 32-bit blocks Bi such that we can form products of the
respective matrices MBi

with the product having low rank. Also, from a
practical perspective it seems desirable that the number t of blocks is not
too large, so that the resulting collision fits into, say, a few KByte.

In our experiments with the parameter set from Section 2.2, simple
heuristics turned out to yield adequate blocks B1, . . . , Bt, and we did not
attempt a thorough theoretical analysis or optimization of the task:

– For small values of t, say t ≈ 16, already by just enumerating some
32-bit blocks Bi we quickly obtain candidates such that t identical
blocks Bi yield a matrix MBi‖Bi‖···‖Bi

with rank defect t.
– Knowing a product MB1

· · · · · MBt′
of low rank, one can try to

exhaust 32-bit blocks Bt′+1 until multiplying MB1
· · · · · MBt′

with
MBt′+1

reduces the rank further. Experimentally, this worked nicely
for up to around t′ ≈ 20 blocks.

– If we have found a small number of matrix products P1, . . . ,Pv with
a certain rank defect, we can try to form short products of these Pis
and hope that the multiplication reduces the rank.
This procedure can be applied repeatedly and in our experiments
worked quite nicely. The main drawback is that each Pi can already
be derived from a number of 32-bit blocks Bj: if we form a product

P ′ := P1 · · · · · Pn1

of n1 matrices Pi where each Pi is a product of n2 matrices MBj
,

then P ′ corresponds to n1 · n2 32-bit blocks Bj.

The next section shows that the above attack can be considered as
practical: We use it to derive a collision for the parameter choice proposed
in [Shp06] (see Section 2.2).

7

3.3 A collision for the proposed parameters

As already mentioned, the specific polynomial p(x) suggested by Shpilrain
in [Shp06] splits into a product p(x) = q1(x)·q2(x)·q3(x)·q4(x) as specified
in Section 3. Therefore we made use of the Chinese Remainder Theorem
as discussed in Section 3.1.

A collision in F298 To construct a collision in F2[x]/(q4(x)) ≃ F298 we
applied the techniques from the previous section: Using a sequence

T ′
4 := B1 ‖ · · · ‖ B2882

of 2882 suitably chosen 32-bit blocks, we derived a matrix MB1‖···‖B2882

of rank 56, i. e., with rank defect d = 98 − 56 = 42. To specify T ′
4, we

define the following bitstrings (to be read from left to right, line by line):

A1 := ‘003FF003 06B80000 06B20000 06B20000 06BA0000 06B0C000

06BA6800 06B4F400 06B6F400 06B52A00 06BB9600 06B9DC80

06BD1180 06B6AB20 06BEF3B0 06B2B470 06BDCAF0 06B11ACC

06B90F3C 06B3B432 06B49CCA 06BB6E03’ (22 · 32 bit)

A2 := ‘003FF003 06A80000 06AA0000 06A50000 06A84000 06A24000

06A22000 06A16800 06AE8400 06AE1C00 06ADAE00 06A9D500

06A3B780 06AC29C0 06AD93C0 06A7E260 06A874C2 06A85DCA

06A7A3B9 06ABAF95 06A84DFD’ (21 · 32 bit)

A3 := ‘003FF003 06CC0000 06C20000 06CA8000 06CF8000 06C84000

06C64000 06C17000 06CF4800 06C98400 06CB2900 06CE8080

06C79080 06C95080 06C2A948 06CBCE28 06C00214 06CC572C

06C70021’ (19 · 32 bit)

A4 := ‘003FF003 06F80000 06F80000 06F80000 06F88000 06F98000

06FBA000 06F13000 06F04800 06FE9C00 06F32E00 06FEEE00

06FA9180 06F4CDC0 06F88EB0 06F0BEF0 06FE26A8 06FB3B78’

(18 · 32 bit)

A5 := ‘003FF003 00000000 00010000 00038000 0009C000 000CE000

00065000 0007D000 00033000 000D1400 00033C00 000D0900

00008080 000CD020 000A9FA0 0009EEF0 000BDE0C 000A944C

00031A4A 0007A5FE 001F97E7 004081C9 006AC9DC 008039BD

01C1E775 031A68F0 0E217B84’ (27 · 32 bit)

8

At this each hexadecimal digit represents a sequence of 4 bits (‘0’ −
‘0000’, ‘1’−‘0001’,. . . , ‘E’−‘1110’, ‘F’−‘1111’). Using A1, . . . , A5

as building blocks, we define eight more bitstrings:

A6 := A5 ‖ A5 ‖ A4 ‖ A5 ‖ A5 ‖ A5 ‖ A5 ‖ A3 ‖ A5 (226 blocks)

A7 := A5 ‖ A5 ‖ A4 ‖ A5 ‖ A5 ‖ A5 ‖ A3 ‖ A5 (199 blocks)

A8 := A5 ‖ A5 ‖ A4 ‖ A5 ‖ A5 ‖ A5 ‖ A3 ‖ A5 ‖ A5 (226 blocks)

A9 := A5 ‖ A5 ‖ A4 ‖ A5 ‖ A2 ‖ A1 ‖ A5 ‖ A5 (196 blocks)

A10 := A5 ‖ A5 ‖ A5 ‖ A5 ‖ A3 ‖ A5 ‖ A3 ‖ A3 ‖ A5 ‖ A5 (246 blocks)

A11 := A5 ‖ A3 ‖ A3 ‖ A5 ‖ A5 ‖ A5 ‖ A5 ‖ A3 ‖ A3 ‖ A5 ‖ A5

(265 blocks)

A12 := A5 ‖ A5 ‖ A5 ‖ A5 ‖ A3 ‖ A3 ‖ A2 ‖ A5 ‖ A5 ‖ A5 ‖ A5

(275 blocks)

A13 := A5 ‖ A4 ‖ A5 ‖ A5 ‖ A5 ‖ A3 ‖ A3 ‖ A5 ‖ A5 (218 blocks)

In terms of A6, . . . , A13, the bitstring T ′
4 can be described as follows:

T ′
4 := A11 ‖ A12 ‖ A7 ‖ A11 ‖ A13 ‖ A10 ‖ A9 ‖ A6 ‖ A11 ‖ A12 ‖ A8 ‖ A6

Next, with a birthday attack as described we found two 32-bit blocks

M1 := ‘2B99EF46’ and M2 := ‘02B6CF84’

with (H(M1) + H(M2)) being in the kernel of MB1‖···‖B2882
. Conse-

quently we obtain

H(M1 ‖ T ′
4) ≡ H(M2 ‖ T ′

4) (mod q4(x)) . (4)

Pruning T
′

4
Inspecting M1 ‖ T ′

4 and M2 ‖ T ′
4 more closely, it turns out

that (4) remains valid, if we remove the last 300 blocks from T ′
4. We write

T4 for the bitstring of length 2582 · 32 = 2882 · 32− 300 · 32 resulting from
pruning T ′

4 accordingly. In particular, we have

H(M1 ‖ T4) ≡ H(M2 ‖ T4) (mod q4(x)) . (5)

Applying the Chinese Remainder Theorem Next, we want to iden-
tify bitstrings T3, T2, T1 such that

H(M1 ‖ T4 ‖ · · · ‖ Ti) ≡ H(M2 ‖ T4 ‖ · · · ‖ Ti) (mod q1(x) · · · · · qi(x))

holds for 1 ≤ i ≤ 4.

9

The polynomial q3(x) is of degree 38. To extend the “F298-collision”
in (5) accordingly, the linear algebra approach from before can be reused:
First, we identify a short bitstring

T ′
3 := ‘003FF003 06300000 06320000 063E8000 06394000 0638C000

0639A000 063C6000 0633D000 063A3400 063DBA00 0633BC80

06395B80 0637AC40 0635AF10 0636CB38 063CF824 063EEE8C’

(18 blocks)

which, when “hashing modulo q3(x)”, corresponds to a matrix MT ′

3
of

low rank. Then we enumerate short bitstrings, until a candidate

T ′′
3 := ‘00171999’

is found such that H(M1 ‖ T4 ‖ T ′′
3) + H(M2 ‖ T4 ‖ T ′′

3) (mod q3(x))
yields a vector in the kernel of MT ′

3
. Defining T3 as T3 := T ′′

3 ‖ T ′
3, we

have

H(M1 ‖ T4 ‖ T3) ≡ H(M2 ‖ T4 ‖ T3) (mod q4(x) · q3(x)) (6)

as desired. Extending the collision in (6) to the complete quotient ring
F2[x]/(q1(x) · q2(x) · q3(x) · q4(x)) turns out to be straightforward: Ap-
pending one more 32-bit block

T2 := ‘0008D718’

already yields the desired collision

H(M1 ‖ T4 ‖ T3 ‖ T2) = H(M2 ‖ T4 ‖ T3 ‖ T2) .

Thus, we have found two different bitstrings of size 2603 · 32 bit (i. e.,
≈10.2 KByte), both of which hash to the same value.

For computing this collision we used the computer algebra system
Magma [BCP97] on a number of different hardware platforms. We esti-
mate our computational effort to be in the magnitude of one CPU day
on a standard PC with about 8 GByte RAM.

4 Conclusion

As explained in the above discussion and demonstrated through a specific
collision, the hash function proposed in [Shp06] does not offer strong
collision resistance. Consequently, for applications that rely on collision
resistance, the use of this hash function does not seem to be advisable.

10

Acknowledgments

We would like to thank Markus Grassl, Viktória Ildikó Villányi and Ken-
neth Matheis for interesting discussions.

References

[BCP97] Wieb Bosma, John J. Cannon, and Catherine Playoust. The Magma Algebra
System I: The User Language. Journal of Symbolic Computation, 24:235–265,
1997.

[Cha06] Donghoon Chang. Preimage Attack on Hashing with Polynomials proposed
at ICISC’06. Cryptology ePrint Archive: Report 2006/411, 2006. Available
at http://eprint.iacr.org/2006/411.

[Dam90] Ivan B. Damg̊ard. A Design Principle for Hash Functions. In G. Brassard,
editor, Advances in Cryptology – CRYPTO ’89, volume 435 of Lecture Notes

in Computer Science, pages 416–427. Springer, 1990.
[Mer90] Ralph C. Merkle. A Certified Digital Signature. In G. Brassard, editor, Ad-

vances in Cryptology – CRYPTO ’89, volume 435 of Lecture Notes in Com-

puter Science, pages 218–238. Springer, 1990.
[Shp06] Vladimir Shpilrain. Hashing with Polynomials. In M.S. Rhee and B. Lee,

editors, Proceedings of ICISC 2006, volume 4296 of Lecture Notes in Computer

Science, pages 22–28. Springer, 2006.

11

