
Cryptanalysis of a class of cryptographic hash functions

Praveen Gauravaram1 and John Kelsey2

1 Technical University of Denmark, Denmark
Information Security Institute, Australia

p.gauravaram@gmail.com
2 National Institute of Standards and Technology, USA

john.kelsey@nist.gov

Abstract. We apply new cryptanalytical techniques to perform the generic multi-block multicollision,
second preimage and herding attacks on the Damg̊ard-Merkle hash functions with linear-XOR/additive
checksums. The computational work required to perform these attacks on the Damg̊ard-Merkle hash
functions with linear-XOR/additive checksum of message blocks (GOST), intermediate states (3C,
MAELSTROM-0, F-Hash) or both is only a little more than what is required on the Damg̊ard-Merkle
hash functions. Our generic attacks on GOST answers the open question of Hoch and Shamir at FSE
2006 on the security of the iterated hash functions with the linear mixing of message blocks.

Keywords: XOR-linear/additive checksums, 3C, GOST, multi-block collision, multicollision, multi-
block multicollision, 2nd preimage and herding attacks.

1 Introduction

The Damg̊ard-Merkle construction [7, 29] provides a blueprint for building a cryptographic hash
function, given a fixed-length input compression function; this blueprint is followed for nearly all
widely-used hash functions. However, the past few years have seen two kinds of surprising results
on hash functions, which have led to a flurry of research:

1. Generic attacks apply to the Damg̊ard-Merkle construction directly, and make few or no as-
sumptions about the compression function. These attacks involve attacking a t-bit hash function
with more than 2t/2 work, in order to violate some property other than collision resistance. Ex-
amples of generic attacks are Joux multicollisions [15], long-message 2nd preimage attacks [8,18],
and herding attacks [17].

2. Cryptanalytic attacks apply to the compression function of the hash function. However, turning
an attack on the compression function into an attack on the whole hash function involves
properties of the Damg̊ard-Merkle construction. Examples of cryptanalytic attacks that involve
the construction as well as the compression function include multi-block collisions on MD5 and
SHA-1 [45,46].

These results have stimulated interest in new constructions for hash functions, that prevent
the generic attacks, provide some additional protection against cryptanalytic attacks or both. The
recent call for submissions for a new hash function standard by NIST [33] has further stimulated
interest in alternatives to Damg̊ard-Merkle. Examples of recently-proposed alternative construc-
tions include the 3C construction [11–13], Haifa framework [4], Rivest’s proposal to use squarefree
sequences to prevent the long-message second preimage attack [40] and the RadioGatun hash pro-
posal [6].

In this paper, we consider a family of variants of Damg̊ard-Merkle, in which a linear-XOR/additive
checksum is computed over the message blocks, intermediate states of the hash function, or both.

In a Damg̊ard-Merkle hash with a linear-XOR checksum, each bit of the checksum is a XOR func-
tion of the bits of the message, intermediate states or both; the checksum is processed as a final
block after the padding and length encoding of the original message have been processed. The
3C construction [11–13] and the structure of the MAELSTROM-0 hash function [10] follow this
pattern. F-Hash [23,24] uses a XOR checksum of the outputs of the compression function alongside
a normal Damg̊ard-Merkle construction. Similarly, in a Damg̊ard-Merkle hash with linear-additive
checksums, an additive checksum computed using message blocks, intermediate states or both is
processed as a final block. The 256-bit GOST hash function specified in the Russian standard
GOST R 34.11 [35] uses an additive checksum mod 2256 computed using 256-bit message blocks.
GOST, as a one-way and collision resistant hash function, is always used in conjunction with the
Russian standard digital signature algorithms GOST R 34.10-94 and GOST R 34.10-2001 that are
used to sign certificates and CRLs [26]. In addition, GOST has been specified for use in the cryp-
tographic message syntax in [25] and with the HMAC algorithm [1,2] for the purposes of message
authentication and pseudorandom generation in [36].

The known cryptanalytical techniques of performing the generic attacks on the Damg̊ard-Merkle
hash functions are unsuccessful on these designs due to their much larger intermediate state in addi-
tion to the algebraic properties of the linear-XOR/additive operations used to compute checksums.
Similarly, these designs make many cryptanalytic attacks on the compression function difficult or
impossible to extend to attacks on the full hash function. For example, the inapplicability of the
known long message second preimage attacks [8,18] and herding attack [17] on the 3C construction
was shown in [11–13] and in [11] respectively. This applies to F-Hash, MAELSTROM-0, GOST and
any hash function with these checksums. The designers of 3C [11] and MAELSTROM-0 [10] claim
that it takes 2t computations of the hash function to find a (second) preimage on their designs
with a t-bit hash value. GOST has been used as a one-way and collision resistant hash function in
practice [25,26,36].

Unfortunately, all is not true. We first provide a general algorithm for attacking linear-XOR
checksums of various kinds. Next, we provide another novel algorithm to defeat additive checksums
in hash functions. Our attacks show that adding XOR/additive checksums to the Damg̊ard-Merkle
construction turns out to add almost no security against generic attacks. The linear-XOR/additive
checksum may sometimes make it more difficult to use a cryptanalytic attack on the compression
function to attack the full hash function, but this depends on the fine details of the linear checksum
and cryptanalytic attack.

To summarize our results:

1. All known generic attacks on the Damg̊ard-Merkle hash functions can be applied to linear-
XOR/additive checksum variants of Damg̊ard-Merkle at very little additional cost using our
attacks that defeat these checksums. Thus, Joux multicollisions over multiple blocks, long-
message second preimage attack, and herding attack all work just as well against the linear-
XOR/additive checksum constructions as against Damg̊ard-Merkle. Our attacks also work on
the hash functions with additive checksums computed using some prime modulus.

2. The generic attacks on GOST answer the open question of Hoch and Shamir (FSE’06) [14] on
the security of Damg̊ard-Merkle hash functions with the linear mixing of message blocks. Our
attacks also work on reasonably short CRCs computed over a message as shown in Section 5.4.

3. Many cryptanalytic collision attacks on the compression function, which the linear-XOR/additive
checksum appears to stop from becoming attacks on the full hash function, can be carried out
on the full hash function at relatively little additional cost.

2

4. From our techniques, it is possible to derive requirements on a checksum, if it is to improve
security over that of Damg̊ard-Merkle hashes.

1.1 Related Work

In unpublished work, Mironov and Narayan [30] developed a different technique to defeat linear-
XOR checksums in hash functions; this technique is less flexible than ours, and does not work
for long-message second preimage attacks. However, it is quite powerful, and can be combined
with our technique in attacking hash functions with complicated checksums. We compare our tech-
nique with theirs in Appendix 7. In [15], Joux provides a technique for finding 2k collisions for a
Damg̊ard-Merkle hash function for only about k times as much work as is required for a single
collision. Multi-block collisions are an example of a cryptanalytic attack on a compression function,
which must deal with the surrounding hash construction. Lucks [28] and Tuma and Joscak [42]
have independently found that if there is a multi-block collision for a hash function with struc-
tured differences, concatenation of such a collision will produce a collision on 3C, a specific hash
construction which computes checksum using XOR operation as the mixing function. 3C does not
prevent Joux multicollision attack over 1-block messages [11–13].

Nandi and Stinson [32] have shown the applicability of multicollision attacks to a variant of
Damg̊ard-Merkle in which each message block is processed multiple times; Hoch and Shamir [14]
extended the results of [32] showing that generalized sequential hash functions with any fixed
repetition of message blocks do not resist multicollision attacks. The MD2 hash function [16] which
uses a checksum computed using a XOR operation and non-linear S-box over the message was shown
to be insecure [20,31]. The technique to solve a system of linear equations used in the cryptanalysis
of hash functions with linear-XOR checksums presented in this paper have appeared in [3, 5, 43].
The approach of solving a system of linear equations has been employed to find collisions [37] and
second preimages [22] for the SMASH hash function [19].

1.2 Impact

The main impact of our result is that new hash function constructions that incorporate linear-
XOR/additive checksums as a defense against collision attacks and generic attacks do not provide
much additional security. Designers who wish to thwart these attacks need to look elsewhere for
techniques to do this. We can apply our techniques to specific hash functions and hashing construc-
tions that have been proposed in the literature or are in practical use. They include 3C, GOST,
MAELSTROM-0 and F-Hash1.

1.3 Guide to the Paper

This paper is organised as follows: First, we provide the descriptions of hash functions analysed in
this paper. Next, we demonstrate cryptanlytical techniques to defeat XOR-linear/additive check-
sums in these designs. We then provide a generic algorithm to perform the 2nd preimage and herding
attacks on the hash functions with linear checksums using the above cryptanalytical techniques with
some illustrations. Finally, we demonstrate cryptanalytic multi-block collision attacks on the hash
functions with linear checksums.

1 Because our techniques require the ability to find collisions for the compression function, they do not represent a
practical threat to applications using these systems at this time.

3

2 The Damg̊ard-Merkle construction and the Damg̊ard-Merkle hash with

checksums

The Damg̊ard-Merkle iterative structure [7, 29] shown in Figure 1 has been a popular framework
used in the design of standard hash functions MD5 [39], SHA-1, SHA-224/256 and SHA-384/512 [9].

M1 M2 M3 ML−1

H1 H2 H3 HL−1

ML

H(M) = Hv
ffff f

H0

Fig. 1. The Damg̊ard-Merkle construction

The message M , with |M | ≤ 2l −1 bits, to be processed using a Damg̊ard-Merkle hash function
H is always padded by appending it with a 1 bit followed by 0 bits until the padded message is l bits
short of a full block of b bits. The last l bits are filled in with the binary encoded representation of
the length of the unpadded message M to avoid some trivial attacks [21]. This compound message
is an integer multiple of b bits and is represented with b-bit data blocks as M = M1,M2, . . . ML.
Each block Mi is processed using a fixed-length input compression function f as given by Hi =
f(Hi−1,Mi) where Hi from i = 1 to L− 1 are the intermediate states and H0 is the initial state of
H. The final state Hv = f(HL−1,ML) is the hash value of M .

2.1 Linear-XOR/additive checksum variants of Damg̊ard-Merkle

A number of variant constructions have been proposed, that augment the Damg̊ard-Merkle con-
struction by computing some kind of XOR-linear/additive checksum on the message bits and/or
intermediate hash values, and providing the XOR-linear/additive checksum as a final block for the
hash function as shown in Figure 2.

CHECKSUM

M1 M2 ML−1

ffff f

ML

H0 Hv

Fig. 2. Hash function structure with a linear-XOR/additive checksum

2.2 3C hash function and its XOR-linear checksum variants

The 3C construction maintains twice the size of the hash value for its intermediate states using
iterative and accumulation chains as shown in Figure 3. In it’s iterative chain, the compression
function f is iterated in the Damg̊ard-Merkle mode. In it’s accumulation chain, the checksum Z is

4

computed by XORing all the intermediate states of the iterative chain. At any iteration i of f , the
checksum value is

⊕i
j=1 Hj. The hash value Hv is computed by processing the checksum Z padded

with 0 bits as the final data block Z using the last compression function f .

P
A
D

M1 M2 ML−1

ffff f

ML

H0

0
Z

Z

Hv

Fig. 3. The 3C-hash function

A 3-chain variant of 3C called 3CM is used as a chaining scheme in the MAELSTROM-0
hash function [10]. At every iteration of f in the iterative chain of 3CM, the t-bit value in the
third chain is updated using an LFSR. This result is then XORed with the data in the iterative
chain at that iteration. All the intermediate states in the iterative chain of 3CM are XORed in it’s
second chain. Finally, the hash value is obtained by concatenating the data in the second and third
chains and processing it using the last f function. F-Hash [23,24], another variant of 3C, computes
the hash value by XORing part of the output of the compression function at every iteration and
then processes it as a checksum block using the last compression function. See Appendix A for the
description of these variants of 3C.

2.3 GOST and its additive checksum variants

GOST is a 256-bit hash function specified in the Russian standard GOSR R 34.11 [35]. The func-
tionality of it’s compression function f is derived from the block cipher GOST specified in the
standard GOST R 34.10-89 [34]. The function f of GOST is iterated in the Damg̊ard-Merkle mode
and a mod 2256 additive checksum is computed by adding all the 256-bit message blocks in an
accumulation chain. We generalise our analysis of GOST by assuming that it’s f function has a
block length of b bits and hash value of t bits.

ffff fff

M1 M2 M3 ML−2 ML−1

H0

ML

Hv

Z

Fig. 4. GOST hash function

An arbitrary length message M to be processed using GOST is split into b-bit blocks M1, . . . ,ML−1.
If the last block ML−1 is incomplete, it is padded by prepending it with 0 bits to make it a b-bit
block. The binary encoded representation of the length of the true message M is processed in a
separate block ML as shown in Figure 4. At any iteration i, the intermediate state in the iterative
and accumulation chains is Hi = f(Hi−1,Mi) and M1 + M2 . . . + Mi mod 2b respectively where
1 ≤ i ≤ L. The hash value of M is Hv = f(Z,HL) where Z = M1 + M2 . . . + ML−1 mod 2b.
An additive checksum variant of GOST called 3CA which computes additive checksum using the
intermediate states is discussed in Appendix D.

5

3 New techniques to defeat linear-XOR checksums in hash functions

The linear-XOR/additive checksums in the Damg̊ard-Merkle hashes thwart the known techniques [8,
17,18] of performing long message second preimage and herding attacks [11]. These designs make it
difficult for the attacker to find an expandable message, an intermediate multicollision of different
length messages, for all the chains simultaneously using the techniques of [8, 18] to find a second
preimage. Even if the attacker is provided with an expandable message for free, he must still find a
linking message block to produce states in all the chains that match the corresponding intermediate
states of the long target message. This requires about 2t computations of f . Similarly, the attacker
must find a linking message block to map the state data in all the chains to the state somewhere
in the precomputed diamond structure to make the herding attack work [17]. This takes about
2t computations of f . While the Joux multicollision attack on 1-block messages work on these de-
signs [11], the linear checksums in these designs prevent the technique of Joux to find multicollisions
over multiple message blocks.

3.1 Extending Joux 1-block multicollision attack on DM to multiple blocks

Let C(s, n) be a collision finding algorithm for a Damg̊ard-Merkle hash function where s denotes
the state at which the collision attack is applied and n, the number of message blocks present
in each of the colliding messages. C(s, n) can be either a brute force or a cryptanalytic collision
finding algorithm. On a t-bit hash function, a brute force C(s, n) requires about 2t/2 hash function
computations to find a collision with 0.5 probability whereas a cryptanalytic C(s, n) requires less
effort than that. Joux multicollision attack [15] on a t-bit Damg̊ard-Merkle hash uses a single-block
brute force collision finder (n = 1) to find a 2k collision with a computational work of k × 2t/2

computations of the compression function. This attack can be extended to multiple blocks (n ≥ 2)
without any additional work by calling this algorithm with at least two random message blocks in
every call to it.

3.2 Checksum control sequences

We define checksum control sequence (CCS) as a chunk of data which lets an attacker to control
the checksum value in the hash functions with linear checksums. The attacker constructs the CCS
by building a Joux multicollision of the correct size using a random choice of message blocks. He
then uses the CCS to actually control the checksum using a checksum control algorithm without
changing any intermediate hash value on the iterative chain.

For example, a 2k 2-block collision on the underlying Damg̊ard-Merkle construction of 3C
(ignoring the linear-XOR checksum) using a brute-force collision finding algorithm gives the attacker
k independent choices of parts of the intermediate states that form the CCS. When the attacker
wants a particular k-bit checksum value, he can turn the problem of finding which choices to
make from the CCS into the problem of solving a system of k linear equations in k unknowns,
something the attacker can do very efficiently using existing tools such as Gaussian elimination [3,
Appendix A], [5,43]. This is schematically shown in Figure 5 for k = 2 where the attacker performs
a 22 collision using random 2-block messages to compute the CCS. Then he has a choice to choose
either H0

1 ⊕H2 or H1
1 ⊕H2 from the first 2-block collision and either H0

3 ⊕H4 or H1
3 ⊕H4 from the

second 2-block collision of the CCS to control 2 bits of the checksum without changing the hash
value after the CCS. An algorithm to defeat the linear XOR checksum on a t-bit 3C is given in the
following Section.

6

Checksum

multi−block multicollision, second preimage, herding
Message blocks where generic attack happens:

controls 2 bits of linear−xor checksum
Checksum control sequence

(M1, N1) (M2, N2) (M3, N3) (M4, N4) M5 M6 M7

(H0
1 , H1

1) H2 (H0
3 , H1

3) H4 H5

f fffffff

H6 H7

H0

0

Fig. 5. Using checksum control sequence to control 2 bits of the checksum

3.3 Defeating linear-XOR checksums in hash functions

ALGORITHM: Defeat linear-XOR checksum on 3C

Variables:

1. (e0
i ,e

1
i) = A pair of independent choices of random values after every 2-block collision in the 2t

2-block collision on 3C and e0
i 6= e1

i for i = 1, 2, . . . , t.

2. a = a[1], a[2], . . . , a[t] = Any t-bit string.

3. D = D[1],D[2], . . . ,D[t] = The desired t-bit checksum to be imposed.

4. i, j = Temporary variables.

Steps:

1. Build a CCS for 3C by constructing a 2t 2-block collision on the underlying Damg̊ard-Merkle of
3C using a brute force collision finding algorithm C(s, 2). Now the CCS contains t independent
choices of parts of the intermediate states where each choice imposes a random XOR difference
on the t-bit linear-XOR checksum at the end of the 2t 2-block collision.

2. Each of the parts of the CCS gives one choice e0
i or e1

i for i = 1, 2, . . . , t to determine some
random t-bit value that either is or is not XORed into the final checksum value at the end of
the 2t 2-block collision. Now e0

i = H0
2i−1 ⊕ H0

2i and e1
i = H1

2i−1 ⊕ H1
2i for i = 1, 2, . . . , t.

3. For any t-bit string a = a[1], a[2], . . . , a[t], let ea = ea
1, . . . , e

a
t .

4. Find a = a[1], a[2], . . . , a[t] such that e
a[1]
1 ⊕e

a[2]
2 ⊕ . . .⊕ . . . e

a[t]
t = D. We now solve the equation:⊕t

i=1 e0
i × a[i] ⊕ e1

i × (1 − a[i]) = D.

5. Each bit position of e
a[i]
i gives one equation and turn the above into t equations, one for each

bit. Let a[i] = 1 − a[i].

6. The resulting system is:
⊕t

i=1 e0
i [j] × a[i] ⊕ e1

i [j] × a[i] = D[j] (j = 1, . . . , t). Here there are t
linear equations in t unknowns that need to be solved for the solution a[1], a[2], . . . , a[t].

7. The solution a[1], a[2], . . . , a[t] lets us determine the blocks in the 2t 2-block collision that form
the prefix to give the desired checksum D.

Work: It requires about t× 2t/2 computations of the compression function to produce a 2t 2-block
collision to construct the CCS and at most t3 + t2 bit-XOR operations to solve a system of t × t
equations using Gaussian elimination to find a solution with 0.5 probability [3, Appendix A], [5,43].

7

3.4 Defeating XOR-linear checksums in other designs

A similar technique defeats the checksum in F-Hash. To defeat the checksum in 3CM, two sets of
equations due to the XOR checksum in the second and third chains need to be solved. The attack
algorithms on these designs have been placed in the Appendices B.1 and B.2 respectively. If a
linear-XOR checksum is computed using message blocks and intermediate states, linear equations
due to XOR of the intermediate states and message blocks need to be solved independently.

4 Techniques to defeat checksums in the designs with additive checksums

Consider an additive checksum mod 2k computed using messages. A 2(k/2)+1 Joux multicollision
does not allow complete control of the checksum, but it does allow an attacker to usually find a pair
of messages within the multicollision whose additive checksum differs by any desired value. This
can be done by generating all 2(k/2)+1 possible checksum values from the multicollision, and doing
a modified collision search for a pair of messages whose additive difference is the desired value.

Given this technique, a sequence of k successive 2(k/2)+1 Joux multicollisions can be used to
completely control an additive checksum mod 2k. The first 2(k/2)+1 multicollision is used to find
a pair of k/2 + 1 1-block messages whose checksum differs by 1, the next multicollision is used to
find a pair of (k/2 + 1) 1-block messages whose checksum differs by 2, and so on through the kth

2(k/2)+1 multicollision, which yields a pair of (k/2 + 1) 1-block messages whose checksum differs
by 2k−1. At this point, the attacker can easily choose a message to get any checksum he chooses,
without affecting the intermediate hash value after the CCS.

MULTICOLLISION MULTICOLLISIONMULTICOLLISION

H0

H0

M1
1

M1
1∗

H1
1

H1
1

M1
2

M1
2∗

H1
2

H1
2

M1
(k/2+1)

M1
(k/2+1)∗

H1
z

H1
z

x1

y1

1st

M2
1

M2
1∗

H2
1

H2
1

M2
2

M2
2∗

H2
2

H2
2

M2
(k/2+1)

M2
(k/2+1)∗

H2
z

H2
z

x2

y2

2nd

Mk
1

Mk
1∗

Hk
1

Hk
1

Mk
2

Mk
2∗

Hk
2

Hk
2

Mk
(k/2+1)

Mk
(k/2+1)∗

Hk
z

Hk
z

xk

yk

kth

f

f

f

f

f

f

f

f

fff f f

fffff

0

0

Fig. 6. Defeating additive checksum mod 2k computed using messages

This technique is schematically represented in Figure 6. In the first 2(k/2)+1 1-block multicolli-
sion, f(H1

i−1,M
1
i) = f(H1

i−1,M
1
i∗) = H1

i where i = 1 to k/2 + 1, H1
0 = H0 is the initial state, H1

i

are the intermediate states and M1
i ,M1

i∗ are the colliding blocks. The intermediate state at the end
of the first multicollision is H1

z where z = k/2 + 1. We then find a pair of collision paths from the
2k/2+1 different collision paths in this multicollision, such that their respective additive checksums
x1 and y1 satisfy the condition x1 ≡ y1 + 1 mod 2b. In the second 2(k/2)+1 1-block multicollision,
f(H2

i−1,M
2
i) = f(H2

i−1,M
2
i∗) = H2

i where i = 1 to k/2 + 1 and the intermediate hash value at the

end of second multicollision is H2
z . We then find a pair of collision paths from the 2k/2+1 different

8

collision paths in this multicollision, such that their respective additive checksums x2 and y2 satisfy
the condition x2 ≡ y2 + 2 mod 2b. This process is repeated for k times. In the kth 2(k/2)+1 1-block
multicollision, f(Hk

i−1,M
k
i) = f(Hk

i−1,M
k
i∗) = Hk

i for i = 1 to k/2 + 1 and the intermediate hash

value at the end of kth multicollision is Hk
z . We then find a pair of collision paths from the 2k/2+1

different collision paths in this multicollision, such that their respective additive checksums xk and
yk satisfy the condition xk ≡ yk + 2k−1 mod 2b. We now obtain the CCS by concatenating all these
individual collision paths and then we force the additive checksum to the desired one by choosing
either of the two available paths in each of the k 2k/2+1-collision paths. By now the attacker has
found a message that forces the checksum to the desired value, without affecting the intermediate
hash value after the CCS.

Below, we provide an algorithm to defeat the additive checksum in the GOST hash function.

ALGORITHM: Defeating checksum in GOST
Variables:

1. i, j, k = integers.
2. chunk[i] = a pair of (b/2) + 1-message block sequences denoted by (e0

i , e1
i).

3. H0 = initial state.
4. H i

j = the intermediate state on the iterative chain.

5. (M i
j , N

i
j) = a pair of message blocks each of b bits.

6. T = Table with three columns: a (b/2)+ 1-collision path, addition modulo 2b of message blocks
in that path and a value of 0 or 1.

Steps:

1. For i = 1 to b:

– For j = 1 to (b/2) + 1:

• Find M i
j and N i

j such that f(H i
j−1,M

i
j) = f(H i

j−1, N
i
j) = H i

j where H1
0 = H0. That is,

build a (b/2) + 1-block multicollision where each block yields a collision on the iterative
chain and there are 2(b/2)+1 different (b/2) + 1-block sequences of blocks all hashing to
the same intermediate state H i

(b/2)+1 on the iterative chain.

– Find a pair of paths from the different (b/2) + 1-block sequences whose additive checksum
differs by 2i−1. This is performed as follows:

• T = empty table.
• for j = 1 to 2(b/2)+1

∗ Ci
j ≡

∑(b/2)+1
k=1 Xi

k mod 2b where Xi
k can be either M i

k or N i
k.

∗ Add to T : (Ci
j , 0, Xi

1||X
i
2|| . . . X

i
(b/2)+1)

∗ Add to T : (Ci
j + 2i−1, 1, Xi

1||X
i
2|| . . . X

i
(b/2)+1).

• Search T to find colliding paths between the entries with 0 and 1 in the second column of
T . Let these paths of (b/2)+1 sequence of blocks be e1

i and e0
i where e1

i ≡ e0
i +2i−1 mod 2b.

– chunk[i] = (e0
i , e

1
i).

2. Construct CCS by concatenating individual chunks each containing a pair of (b/2)+1 blocks that
hash to the same intermediate state on the iterative chain. The CCS is chunk[1] || chunk[2] . . . || chunk[b].

3. The checksum at the end of the 2b (b/2)+1-block collision can be forced to the desired checksum
D by choosing either of the sequences e0

i or e1
i from the CCS which is practically free to use

and adding blocks in each sequence over modulo 2b.

9

Work: The work to defeat the additive checksum in GOST equals the work to construct b 2(b/2)+1

1-block collisions plus the work to find a chunk in each 2(b/2)+1 1-block collision. It requires about
b×((b/2)+1)×2t/2 computations of the compression function and a time and space of b×2b/2+1 for
a collision search to find b chunks. For GOST, it requires about 28×129×2128 ≈ 2143 computations
of the compression function and a time and space of about 256 × 2129 = 2137.

Remark 1. A more efficient attack is available if the attacker can exert direct control over the
message blocks, rather than simply using a large Joux multicollision. In this case, the attacker
constructs a Joux multicollision in such a way that each pair of colliding messages has a fixed
power of two difference in its low k bits, and a random difference in its high b− k bits. This allows
direct control over the low k bits of the checksum, while leaving the high b − k bits uncontrolled.
A second Joux multicollision is then constructed, in which each pair of messages differs only in the
high b − k bits. The second multicollision may then be used to control the high b − k bits of the
checksum by brute force.

Using this technique on GOST with k = 128 leads to a CCS of only 256 message blocks.
However, each attempt to control the checksum requires a 2128 brute force search in this case.
Alternatively, with k = 32 (and using multi-block collisions to construct the Joux multicollision),
the CCS is 1024 message blocks, and an attempt to control the checksum requires only a 232 brute
force search.

4.1 Defeating additive checksums in other designs

Similarly, we can defeat additive checksums for the variants of GOST that compute additive check-
sum mod 2k using intermediate hash values by building a 2k Joux multicollision where each collision
in it consists of 2(k/2)+1 multicollisions constructed using a sequence of (k/2 + 1) 2-block collisions
as shown for the 3CA design in Appendix E. We note that this trick can also be used to defeat
the additive checksum computed for a design using both the message blocks and intermediate hash
values. In this case, a 2(k/2)+1 Joux multicollision using 2-block messages is performed to allow
an attacker to find a pair of messages (resp. intermediate hash values) within the multicollision
whose additive checksum differs by any desired value. This can be done by generating all 2(k/2)+1

possible checksum values due to messages (resp. intermediate hash values) from the multicollision,
and doing a modified collision search for a pair of messages (resp. intermediate hash values) whose
additive difference is the desired value. We note that the efficient attack discussed in Remark 1 does
not work on the hash functions that compute additive checksum using intermediate hash values as
the attacker cannot exert control over the input to the checksum formed using intermediate hash
values.

5 Generic attacks on hash functions with linear checksums

The fundamental approach used to perform the generic attacks on all the hash functions with
linear checksums is similar. Because the approach is similar, we discuss it here only for 3C and
Appendices C and E discuss these generic attacks for other kinds of XOR-linear/additive checksums
respectively. Broadly, it consists of the following steps:

1. Construct a CCS.
2. Combine the CCS with whatever other structure (expandable message, multicollision over single

block or multiple blocks, diamond structure) is needed for the generic attack to work.

10

3. Carry out the generic attack, ignoring its impact on the linear checksum.
4. Use the CCS to control the linear checksum, forcing it to a value that permits the generic attack

to work on the full hash function.

5.1 Meaningful multi-block multicollisions

Constructing and using the CCS does not imply random gibberish in the messages produced; using
Yuval’s trick [47], a brute-force search for the multicollision used in the CCS can produce collision
pairs in which each possible message is a plausible-looking one. Here, the attacker can create two
documents where one is genuine and the other one a forgery and can vary their meaning in such
a way that at some point of variation they collide when processed using the same hash function.
For example, the attacker can use this trick to construct CCS for the hash functions that maintain
checksums using meaningful colliding messages based on the brute force collision finding techniques.
This is possible when the CCSs to defeat the checksums are constructed from individual collisions
that span over multiple message blocks as in (Dear Fred/Freddie,)(Enclosed please find/I have sent
you) (a check for $100.00/a little something) and so on, where the attacker can choose either side
of the slash for the next part of the sentence. In that case, any choice for the CCS used to defeat
the checksum will be a meaningful message. The impact of this attack is that one can construct not
only meaningful collisions but also second preimages and herded messages with genuine meaning
for these hash functions.

5.2 Long-message second preimage attack on 3C

Long message second preimage attack on a t-bit 3C hash function H is outlined below:
ALGORITHM: LongMessageAttack(Mtarget) on 3C
Find the second preimage for a message of 2d + d + 2t + 1 blocks.

Variables:

1. Mtarget = the target long message for which a second preimage is to be found.
2. Mlink = linking message block to connect the intermediate state on the iterative chain at the

end of the expandable message to some point in the sequence of the intermediate states on the
iterative chain of the target message.

3. Hexp = the intermediate state on the iterative chain at the end of the expandable message.
4. Ht = the result of the 2t 2-block collision on H starting from the initial state.
5. Mfinal = the second preimage for H of the same length as Mtarget.
6. Mpref = the checksum control prefix obtained from the CCS.

Steps:

1. Compute the intermediate hash values for Mtarget using H:

– H0 and h0 are the initial states of the iterative and accumulation chains respectively.
– Mi is the ith message block of Mtarget.
– Hi = f(Hi−1,Mi) and hi = Hi ⊕ hi−1 are the ith intermediate states on the iterative and

accumulation chains respectively.
– The intermediate states on the iterative and accumulation chains are organised in some

searchable structure for the attack, such as hash table. The hash values H1, . . . ,Hd and
those obtained in the processing of t 2-block messages are excluded from the hash table as
the expandable message cannot be made short enough to accommodate them in the attack.

11

2. Build a CCS for H by constructing a 2t 2-block collision starting from the initial state H0. Let
Ht be the multicollision value and ht be the corresponding checksum value which is random.

3. Construct a (d, d+2d−1)-expandable message Mexp with Ht as the starting state using generic-
expandable message algorithm from [18]. Append Mexp to the CCS and process it to obtain
Hexp.

4. Process message blocks from the end of Hexp to find Mlink such that f(Hexp,Mlink) collides with
one of the intermediate states on the iterative chain stored in the hash table while processing
Mtarget. Let this matching value of the target message be Hu and the corresponding state in
the accumulation chain be hu where d + 2t + 1 ≤ u ≤ 2d + d + 2t + 1.

5. Use the CCS built in step 2 to find the checksum control prefix Mpref by following the algorithm
in Section 3.3. The prefix Mpref adjusts the state in the accumulation chain at that point to the
desired value hu of the long target message Mtarget. This is equivalent to adjusting the checksum
value at the end of the 2t 2-block collision.

6. Expand the expandable message to produce a message M∗ of u − 1 blocks long.
7. Return the second preimage Mfinal = Mpref ||M

∗||Mlink||Mu+1 . . . M2d+d+1+2t of the same
length as Mtarget such that H(Mfinal) = H(Mtarget).

Work: The work required to find a second preimage on 3C is the work to construct a 2t 2-block
collision to build the CCS plus the work to solve a system of t× t linear equations plus the work to
find the expandable message plus the work to find the linking message block. So, the only additional
work required to perform the second preimage attack on 3C over Damg̊ard-Merkle is the work to
find a 2t 2-block collision and solve a system of t× t equations. Note that the work to produce the
multicollision to build the CCS and solve the equations is very fast compared to the rest of the
attack.
Illustration: The computational work required to find a second preimage for 3C-SHA-256 for a
target message of 254+54+512+1 blocks is 2136+54×2129+2203 compression function computations
and 224 + 216 bit-XOR operations assuming abundant memory.

Remark 2. We note that 2k second preimages can be constructed for hash functions with linear
checksums at negligible additional cost using a target message of length 2d+d+2t+k+1 blocks. We
first find a 2k collision over 1-block messages with a work of k×2t/2 computations of the compression
function and then perform our second preimage attack from the end of the 2k collision.

5.3 Herding attack on 3C

The herding attack on a t-bit 3C hash function H is outlined below:

1. Construct a 2d hash value wide diamond structure for H and output the hash value Hv as the
chosen target which is computed using any of the possible 2d−1 checksum values or some value
chosen arbitrarily. Let hc be that checksum value.

2. Build a CCS for H using a 2t collision over 2-block messages. Let Ht be the intermediate state
due to this multicollision on H.

3. When challenged with the prefix message P , process P using Ht. Let H(Ht, P) = Hp.
4. Find a linking message block Mlink such that H(Hp,Mlink) collides with one of the 2d outermost

intermediate states on the iterative chain in the diamond structure. If this collision is matched
against all of the 2d+1 − 2 intermediate states in the diamond structure then a (1, d + 1)-
expandable message must be produced at the end of the diamond structure to ensure that the
final herded message is always a fixed length.

12

5. Use the CCS computed in step 2 to force the checksum of the herded message P to hc using
the attack to defeat the checksum described in Section 3.3. Let Mpref be the checksum control
prefix obtained after solving the system of equations.

6. Finally, output the message M = Mpref ||P ||Mlink||Md where Md are the message blocks in the
diamond structure that connect H(Hp,Mlink) to the chosen target Hv

2. Now Hv = H(M).

Work: The computational work required to perform the herding attack on 3C is the work required
to build the CCS plus the work to solve the system of equations plus the work required to perform
the herding attack from [17]. This equals about t×2t/2+2t/2+d/2+2+d×2t/2+1+2t−d−1 computations
of the compression function and t3 + t2 bit-XOR operations assuming that all of the 2d+1 − 2
intermediate states are used for searching in the diamond structure. Note that the work required
to build the CCS using multicollision and to solve the system of equations is negligible compared
to the rest of the attack.

Illustration: The work to perform the herding attack on 3C-SHA-256 with d = 84 is 2136 +
2172 + 84 × 2129 + 2171 ≈ 2172 computations of SHA-256 compression function and 224 + 216 bit-
XOR operations.

Remark 3. We note that [12,13] shows only the application of Joux multicollision attack on 3C over
1-block messages. However, using our attack technique from Section 3.3, one can find multicollsions
for 3C over multiple blocks by defeating the XOR-linear checksum.

5.4 Extending the generic attacks on to CRCs

The techniques used to defeat the checksums described in Sections 3.3 and 3.4 can be extended to
any linear checksum which is reasonably short. Consider a 512-bit CRC computed over a message
and used as the final checksum block. Now we construct the CCS using a 2512 Joux multicollision and
then append whatever message at the end of the multicollision to perform the generic 2nd-preimage
and herding attacks. Each bit of the 512-bit CRC is a linear function of 512 binary variables
a[1], a[2], . . . , a[512] where a[i] selects a message block from one of the sides of the collision in the
CCS. One can perform the generic 2nd-preimage and herding attacks ignoring the checksum value,
then solve the resultant system of 512×512 equations to force the checksum to the value necessary
to make the attack work.

Remark 4. We note that for a hash function with XOR-linear/additive checksum of intermediate
hash values producing checksum as the hash value, one can find preimages for a given target hash
value cheaply by forcing the checksum to the target hash value. For example, assume that checksum
value is used as the final hash value in the 3C construction. The attacker performs the 2t 2-block
multicollision and then processes the block with the encoding of the length (2t blocks) of the
message used in the multicollision. Using the target hash value and output of the length encoded
block, the attacker finds the desired checksum he needs at the end of the 2t 2-block multicollision
so that he can force the hash value to the target hash value.

2 Note that when P is processed using the initial state H0 of H followed by a 2t 2-block multicollision from the state
H(H0, P), we can output message M with the format P ||Mpref ||Mlink||Md.

13

6 On the possibility of generic attacks using cryptanalytic collision attacks

We note that it is difficult to construct the CCSs using cryptanalytic collision finding algorithms
such as the ones built on MD5 and SHA-1 [45, 46] in order to defeat linear checksums in hash
functions to carry out generic attacks. For example, consider two 2-block colliding messages of
format (M2.i−1,M2.i),(N2.i−1, N2.i) for i = 1, . . . , t on the underlying MD of 3C based on near
collisions due to the first blocks in each pair of the messages. Usually, the XOR differences of the
nearly collided intermediate states are either fixed or very tightly constrained as in the collision
attacks on MD5 and SHA-1 [45,46]. It is difficult to construct a CCS due to the inability to control
these fixed or constrained bits. Similarly, it is also difficult to build the CCSs using collisions of
the messages of format (M2.i−1,M2.i),(N2.i−1,M2.i) for i = 1, . . . , t. We note that one may create
variants for the known cryptanalytic collision finding algorithms as in [41] that could be used to
construct the CCS. This is an open question now. It is not possible to control the checksum due
to 2-block collisions of the format (M2.i−1,M2.i), (M2.i−1, N2.i) for i = 1, . . . , t [44] as this format
produces a zero linear-XOR checksum difference after every 2-block collision.

Alternatively, assume that two random message blocks are processed initially using f to ob-
tain two different random intermediate states s1 and s2 and then a cryptanalytic collision finding
algorithm C(s1, s2, 1) is called with s1 and s2 as parameters which produces either the same or
different message blocks that collide. In effect, the XORed-together intermediate states after every
two blocks in the 2t 2-block collision are random and a CCS can be constructed to defeat the
checksum.

6.1 Multi-block collision attacks on hash functions with linear checksums

Though we cannot perform generic attacks on the hash functions with linear checksums using
structured collisions, we can still perform multi-block collision attacks. Consider a collision finding
algorithm C(s, 1) with s = H0 for the GOST hash function H. A call to C(s, 1) results in a pair of
b-bit message blocks (M1, N1) such that M1 ≡ N1 + ∆ mod 2b and f(H0,M1) = f(H0, N1) = H1.
Now call C(s, 1) with s = H1 which results in a pair of blocks (M2, N2) such that N2 ≡ M2 +
∆ mod 2b and f(H1,M2) = f(H1, N2) = H2. That is, H(H0,M1||M2) = H(H0, N1||N2). Consider
M1 + M2 mod 2b = ∆ + N1 + N2 − ∆ mod 2b = N1 + N2 mod 2b, a collision in the chain which
computes additive checksum. Hence, by just appending two structured collisions end to end, we get
a collision for the hash function with linear checksum. Similarly, structured collisions on Damg̊ard-
Merkle hash functions can be converted to multi-block collisions on other linear checksums as shown
in Appendix F.

7 Comparison of our attack with that of Mironov-Narayanan

Independent to our work, Mironov and Narayanan [30] have found an alternative technique to
defeat linear-XOR checksum computed using message blocks. We call this design GOST-x and is
shown in Figure 7.

While our approach to defeat the XOR checksum in GOST-x requires finding a 2b-collision
using b random 1-block messages (Mi, Ni) for i = 1 to b, their technique considers repetition of the
same message block twice for a collision. In contrast to the methods presented in this paper for
solving system of linear equations for the whole message, their approach solves the system of linear
equations once after processing every few message blocks. We note that this constrained choice of

14

ffff fff

M1 M2 M3 ML−2 ML−1

H0

ML

Hv

Z

Fig. 7. GOST-x hash function

messages would result in a zero checksum at the end of the 2b multicollision on this structure and
thwarts the attempts to perform the second preimage attack on GOST-x. The reason is that the
attacker loses the ability to control the checksum after finding the linking message block from the
end of the expandable message which matches some intermediate state obtained in the long target
message.

However, we note that their technique with a twist can be used to perform the herding attack
on GOST-x. In this variant, the attacker chooses the messages for the diamond structure that all
have the same effect on the linear-XOR checksum. These messages would result in a zero checksum
at every stage in the diamond structure. Once the attacker is forced with a prefix, processing the
prefix gives a zero checksum to start with and then solving a system of equations will find a set of
possible linking messages that will all combine with the prefix to give a zero checksum value.

When the approach of [30] is applied to defeat the checksums in 3C, 3CM and F-Hash, the
2t 2-block collision finding algorithm used to construct the CCS must output the same pair of
message blocks on the either side of the collision whenever it is called. The technique of [30] imposes
constraints not present in our technique, and is not quite as powerful. However, it could be quite
capable of defeating linear-XOR checksums in many generic attacks. Because it is so different from
our technique, some variant of this technique might be useful in cryptanalytic attacks for which
our techniques do not work.

8 Concluding remarks

Our results demonstrate that maintaining large internal state sizes using XOR-linear/additive
checksums is not good enough for the security of the hash function. In addition, widening the
compression functions [27] along with the XOR-linear/additive checksums provide very little ad-
ditional security against generic attacks compared to the wide-pipe hash. One question left open
by our research is what properties would ensure that a checksum would block generic attacks. It is
clear that it must be impossible for the attacker to build and use a CCS, but not clear that this is
a sufficient condition.

References

1. Mihir Bellare. New Proofs for NMAC and HMAC: Security Without Collision-Resistance. In Cynthia Dwork,
editor, Advances in Cryptology—CRYPTO ’06, volume 4117 of Lecture Notes in Computer Science. Springer-
Verlag, 20–24 August 2006. Full version of the paper is available at http://www-cse.ucsd.edu/users/mihir/

papers/hmac-new.html. Last access date: 7th of August 2007.

2. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authentication. In Neal
Koblitz, editor, Advances in Cryptology—CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science,
pages 1–15. Springer-Verlag, 18–22 August 1996. Full version of the paper is available at http://www-cse.ucsd.
edu/users/mihir/papers/hmac.html. Last access date: 16th of August 2007.

15

3. Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hashing: Incrementality at reduced cost.
In Walter Fumy, editor, Advances in Cryptology: Proceedings of EUROCRYPT’97, volume 1233 of Lecture Notes
in Computer Science, pages 163–192, 1997. The full version of the paper is available at http://www-cse.ucsd.

edu/~mihir/papers/incremental.html. Last access date: 29th of August 2007.
4. Eli Biham and Orr Dunkelman. A Framework for Iterative Hash Functions-HAIFA. Technical report, Au-

gust 2006. The paper and slides of this work are available at http://csrc.nist.gov/pki/HashWorkshop/2006/

program_2006.htm. Last access date: 15th of February 2007.
5. Don Coppersmith. Two Broken Hash Functions. Technical Report IBM Research Report RC-18397, IBM

Research Center, October 1992.
6. Joan Daemen, Michael Peeters, and Gilles Van Assche. RadioGatun, a Belt-and-Mill Hash Function. Tech-

nical report, August 2006. The paper and slides of this work are available at http://csrc.nist.gov/pki/

HashWorkshop/2006/program_2006.htm. Last access date: 15th of February 2007.
7. Ivan Damg̊ard. A Design Principle for Hash Functions. In Gilles Brassard, editor, Advances in Cryptology:

CRYPTO 89, volume 435 of Lecture Notes in Computer Science, pages 416–427. Springer-Verlag, 1989.
8. Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton University, 1999.
9. Federal Information Processing Standard (FIPS). Secure Hash Standard. National Institute for Standards

and Technology, August 2002. This document is available at http://csrc.nist.gov/publications/fips/

fips180-2/fips180-2.pdf. Last access date: 11th of March 2007.
10. Decio Gazzoni Filho, Paulo Barreto, and Vincent Rijmen. The Maelstrom-0 Hash Function. Published at 6th

Brazilian Symposium on Information and Computer System Security, 2006.
11. Praveen Gauravaram. Cryptographic Hash Functions: Cryptanalysis, Design and Applications. PhD thesis,

Information Security Institute, Queensland University of Technogy, June 2007.
12. Praveen Gauravaram, William Millan, Ed Dawson, Matt Henricksen, Juanma Gonzalez Nieto, and Kapali

Viswanathan. Constructing Secure Hash Functions by Enhancing Merkle-Damg̊ard Construction (full ver-
sion). Technical Report QUT-ISI-TR-2006-013, Information Security Institute (ISI), Queensland University
of Technology (QUT), July 2006. This technical report is available at http://www.isi.qut.edu.au/research/

publications/technical/qut-isi-tr-2006-013.pdf. Last access date: 12th of september 2007.
13. Praveen Gauravaram, William Millan, Ed Dawson, and Kapali Viswanathan. Constructing Secure Hash Functions

by Enhancing Merkle-Damg̊ard Construction. In Australasian Conference on Information Security and Privacy
(ACISP), volume 4058 of Lecture Notes in Computer Science, pages 407–420, 2006.

14. Jonathan Hoch and Adi Shamir. Breaking the ICE: Finding Multicollisions in Iterated Concatenated and Ex-
panded (ICE) Hash Functions. To appear in the Proceedings of 13th Annual Fast Software Encryption (FSE)
International Conference, 2006. A preliminary version of this paper is available at http://paginas.terra.com.
br/informatica/paulobarreto/hflounge.html#HS06. Last access date: 27th of January 2007.

15. Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In Matt
Franklin, editor, Advances in Cryptology-CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science,
pages 306–316, Santa Barbara, California, USA, August 15–19 2004. Springer.

16. Burt Kaliski. RFC 1319: The MD2 Message-Digest Algorithm. Internet Activities Board, April 1992. This RFC
is available at http://www.ietf.org/rfc/rfc1319.txt. Last access date: 23rd of May 2007.

17. John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nostradamus Attack. In Serge Vaudenay,
editor, Advanes in Cryptology-EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages
183–200. Springer, 2006.

18. John Kelsey and Bruce Schneier. Second Preimages on n-bit Hash Functions for Much Less than 2n̂ Work. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 474–490. Springer, 2005.

19. Lars Knudsen. SMASH – A cryptographic hash function. In Henri Gilbert and Helena Handschuh, editors,
IWFSE: International Workshop on Fast Software Encryption, volume 3557 of Lecture Notes in Computer Sci-
ence, pages 228–242. Springer, 2005.

20. Lars Knudsen and John Mathiassen. Preimage and Collision attacks on MD2. In Henri Gilbert and Helena
Handschuh, editors, Fast Software Encryption FSE: 12th International Workshop, volume 3557 of Lecture Notes
in Computer Science, pages 255–267. Springer, 2005.

21. Xuejia Lai and James L. Massey. Hash Functions Based on Block Ciphers. In R. A. Rueppel, editor, Advances in
Cryptology—EUROCRYPT 92, volume 658 of Lecture Notes in Computer Science, pages 55–70. Springer-Verlag,
24–28 May 1992.

22. Mario Lamberger, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Second preimages for
SMASH. In RSA Conference, volume 4377 of Lecture Notes in Computer Science, pages 101–111. Springer,
2007.

16

23. Duo Lei. F-HASH: Securing Hash Functions Using Feistel Chaining. Cryptology ePrint Archive, Report 2005/430,
2005. The paper is available at http://eprint.iacr.org/2005/430.pdf. Last access date: 11th of November
2006.

24. Duo Lei. New Integrated proof Method on Iterated Hash Structure and New Structures. Cryptology ePrint
Archive, Report 2006/147, 2006. The paper is available at http://eprint.iacr.org/2006/147.pdf. Last access
date: 5th of November 2006.

25. Serguei Leontiev and Grigorij Chudov. RFC:4357 Additional Cryptographic Algorithms for Use with GOST 28147-
89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 Algorithms. Internet Engineering Task Force,
January 2006. This Informational RFC 4490 is available at http://www.ietf.org/rfc/rfc4490.txt. Last access
date: 12th of September 2007.

26. Serguei Leontiev and Dennis Shefanovski. RFC:4491 Using the GOST R 34.10-94, GOST R 34.10-2001, and
GOST R 34.11-94 Algorithms with the Internet X.509 Public Key Infrastructure Certificate and CRL Profile.
Internet Engineering Task Force, May 2006. This standards track RFC 4491 is available at http://www.ietf.

org/rfc/rfc4491.txt. Last access date: 11th of September 2007.
27. Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In Bimal Roy, editor, Advances in

Cryptology - ASIACRYPT 2005, volume 3788 of Lecture Notes in Computer Science, pages 474–494. Springer-
Verlag, 2005.

28. Stefan Lucks. Hash Function Modes of Operation. Presented at ICE-EM RNSA 2006 Workshop on Recent
Advances in Stream Ciphers and Hash Functions at the Queensland University of Technology (QUT), Brisbane,
Australia., June 2006.

29. Ralph Merkle. One way Hash Functions and DES. In Gilles Brassard, editor, Advances in Cryptology:
CRYPTO 89, volume 435 of Lecture Notes in Computer Science, pages 428–446. Springer-Verlag, 1989.

30. Ilya Mironov and Arvind Narayanan. Personal communication during the rump session of Crypto’06, August
2006.

31. Frédéric Muller. The MD2 Hash Function Is Not One-Way. In Pil Joong Lee, editor, Advances in Cryptology -
ASIACRYPT 2004, 10th International Conference on the Theory and Application of Cryptology and Information
Security, volume 3329 of Lecture Notes in Computer Science, pages 214–229. Springer, 2004.

32. Mridul Nandi and Douglas Stinson. Multicollision attacks on some generalized sequential hash functions. Cryp-
tology ePrint Archive, Report 2006/055, 2006. The paper is available at http://eprint.iacr.org/2006/055.
Last access date: 19th of September 2006.

33. National Institute of Standards and Technology (NIST). Announcing the Development of New Hash Algorithms
for the Revision of Federal Information Processing Standard (FIPS) 180-2, Secure Hash Standard, January 2007.
This notice by NIST is available at http://www.csrc.nist.gov/pki/HashWorkshop/timeline.html with the
Docket No: 061213336-6336-01. Last access date: 16th of February 2007.

34. Government Committee of the Russia for Standards. GOST R 34.10-94, Gosudarstvennyi Standard of Rus-
sian Federation, Cryptographic Protection for Data Processing Systems Government Committee of USSR for
Standards, 1989 (in Russian)., 1989.

35. Government Committee of the Russia for Standards. GOST R 34.11-94, Gosudarstvennyi Standard of Russian
Federation, Information Technology, Cryptographic Data Security, Hashing function, 1994.

36. Vladimir Popov, Igor Kurepkin, and Serguei Leontiev. RFC:4357 Additional Cryptographic Algorithms for Use
with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 Algorithms. Internet
Engineering Task Force, January 2006. This Informational RFC 4357 is available at http://www.ietf.org/rfc/
rfc4357.txt. Last access date: 11th of September 2007.

37. Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Breaking a New Hash Function Design Strategy
Called SMASH. In Bart Preneel and Stafford E. Tavares, editors, Selected Areas in Cryptography, volume 3897
of Lecture Notes in Computer Science, pages 233–244. Springer, 2006.

38. Vincent Rijmen and Paulo S. L. M. Barreto. The WHIRLPOOL hash function. This hash function was adopted
as a standard by ISO/IEC 10118-3:2004, 2004. The specification is available at http://paginas.terra.com.br/
informatica/paulobarreto/WhirlpoolPage.html. Last access date: 27th of August 2007.

39. Ronald Rivest. The MD5 message-digest algorithm. Internet Request for Comment RFC 1321, Internet Engi-
neering Task Force, April 1992.

40. Ronald Rivest. Abelian Square-free Dithering and Recoding for Iterated Hash Functions. Technical report,
October 2005. The paper and slides of this work are available at http://csrc.nist.gov/pki/HashWorkshop/

2005/program.htm. Last access date: 15th of February 2007.

41. Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-Prefix Collisions for MD5 and Colliding X.509
Certificates for Different Identities. In Moni Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes in

17

Computer Science, pages 1–22. Springer, 2007. A version of this paper is available with a different title at
http://eprint.iacr.org/2006/360. Last access date: 1st of September,2007.

42. Jiri Tuma and Daniel Joscak. Multi-block Collisions in Hash Functions based on 3C and 3C+ Enhancements of
the Merkle-Damg̊ard Construction. In Min Surp Rhee and Byoungcheon Lee, editor, Information Security and
Cryptology ICISC, volume 4296 of Lecture Notes in Computer Science, pages 257–266, 2006.

43. David Wagner. A Generalized Birthday Problem. In Moti Yung, editor, Advances in Cryptology - CRYPTO
2002, volume 2442 of Lecture Notes in Computer Science, pages 288–303. Springer, 2002.

44. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Efficient collision search attacks on SHA-0. In Victor Shoup,
editor, Advances in Cryptology—CRYPTO ’05, volume 3621 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2005, 14–18 August 2005.

45. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1. In Victor Shoup, edi-
tor, Advances in Cryptology—CRYPTO ’05, volume 3621 of Lecture Notes in Computer Science, pages 17–36.
Springer, 2005, 14–18 August 2005.

46. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 19–35.
Springer, 2005.

47. Gideon Yuval. How to swindle Rabin. Cryptologia, 3(3):187–189, July 1979.

A Other proposals of hash functions with linear checksums

A.1 F-Hash hash function

M1 M2 ML−1

ffff g

ML

H0

0
Z0

H1 H2

h′

1 h′

L−1h′

2

HL−1 HL

h1 h2 hL−1 hL

Hv

Fig. 8. The F-Hash hash function

The initial state of a t-bit F-Hash hash function shown in Figure 8 is H0 and the compression
function f is a Feistel structure based on a round function F of r rounds [23,24]. The message M
to be processed using F-Hash is split into equal size blocks Mi for i = 1 to L including padding
which is similar to the padding of Damg̊ard-Merkle hash functions. The two intermediate hash
values hi and Hi) each of t bits for every iteration of the compression function f are given by
Hi = fr(Mi,Hi−1) and hi = fr−1(Mi,Hi−1) where i = 1, 2, . . . , L; fr is the r-round iteration of
F and fr−1 is the r-1-round iteration of F . The accumulation value at any iteration i is given by
h′

i =
⊕i

j=1 hj . The intermediate hash values (Hi, hi) together at any iteration i are considered as

iterative intermediate hash values. F-Hash computes checksum Z0 =
⊕L

i=1(hi) using part hi of the
iterative intermediate hash values. The hash value is Hv = g(HL, Z0) where g is the iteration of F
for r rounds.

A.2 3CM used in MAELSTROM-0

Inspired by 3C and its variants, Filho et al. [10] have proposed a variant of 3C called 3CM as a
replacement for the Merkle-Damg̊ard construction in the Whirlpool hash function [38] for better
protection against the multi-block collision attacks. This new construction is called MAELSTROM-
0. In the 3CM construction, for every iteration of f , the t-bit accumulation value in the third chain

18

is updated using a linear feedback shift register (LFSR) denoted by ζ in Figure A.2. The LFSR ζ is
an implementation of one-byte left shift of the t-bit accumulation chaining value and a conditional
one byte XOR applied to that by a constant. Then modulo 2 addition of this result with the
iterative chain data is performed. At every iteration i of the compression function in 3CM, the
iterative intermediate hash values are denoted by Hi, the checksum values in the second chain
by h′

i and the checksum values in the third chain by h′′

i . At any iteration i, the checksum value
of the second chain is h′

i = h′

i−1 ⊕ Hi or
⊕i

i=1 Hi. At any iteration i, the checksum value in
the third chain is h′′

i = ζ(h′′

i−1) ⊕ Hi. After processing all the message blocks including the last
block containing the Merkle-Damg̊ard strengthening, the checksum values of the second and third
chains are concatenated and padded with 0’s if necessary to obtain a b-bit data block. This block
is processed using the final compression function denoted by g in Figure A.2. For example, if the
compression function f is SHA-1, then the concatenated checksum values from both the chains
are padded with 192 0 bits to obtain a 512-bit block. For example, if the compression function is
SHA-256 then no padding is performed for the concatenated checksum block as it is already 512
bits.

C
P

A

D

0
M1 M2 M3 M4 ML

fffff g

H0

H0

ζζζζ

Fig. 9. The 3CM construction used in Maelstrom-0

B Techniques to defeat linear checksums in F-Hash and 3CM

B.1 Defeating linear checksum in F-Hash

The following algorithm is used to defeat the checksum in F-Hash.
ALGORITHM: Defeat linear checksum in F-Hash
Variables:

1. (e0
i ,e

1
i) = A pair of independent choices of random values after every 2-block collision in the 2t

2-block collision on F-Hash and e0
i 6= e1

i for i = 1, 2, . . . , t.
2. a = a[1], a[2], . . . , a[t] = Any t-bit string.
3. D = D[1],D[2], . . . ,D[t] = The desired t-bit checksum to be imposed.
4. i, j = Temporary variables.

Steps:

1. Build a CCS for F-Hash by building a 2t 2-block multicollision by calling a brute-force collision
finding algorithm C(s, 2) t times on the Damg̊ard-Merkle chain of F-Hash.

2. Each of the parts of the CCS gives us one choice (e0
i or e1

i) for i = 1, 2, . . . , t to determine some
random t-bit value that either is or is not XORed into the final checksum value at the end of 2t

multicollision. Note that e0
i = h0

2i−1 ⊕ h0
2i and e1

i = h1
2i−1 ⊕ h1

2i for i = 1, 2, . . . , t where e0
0 = 0

and e1
0 = 0.

19

3. For any t-bit string a = a[1], a[2], . . . , a[t], let ea = ea
1, . . . , e

a
t .

4. D is the desired checksum to be imposed at the end of the 2t 2-block multicollision.

5. Find a = a[1], a[2], . . . , a[t] such that e
a[1]
1 ⊕e

a[2]
2 ⊕. . .⊕. . . e

a[t]
t = D. By treating a[1], a[2], . . . , a[t]

as variables, solve the equation

⊕t
i=1 e0

i × a[i] ⊕ e1
i × (1 − a[i]) = D

6. Each bit position of e
a[i]
i gives us one equation and turn the above into t equations, one for each

bit. Let a[i] = 1 − a[i].
7. The resulting system is:

⊕t
i=1 e0

i [j] × a[i] ⊕ e1
i [j] × a[i] = D[j] (j = 1, . . . , t)

Here there are t equations in t unknowns over modulo 2 addition which can be solved for the
solution a[1], a[2], . . . , a[t].

8. The solution a[1], a[2], . . . , a[t] lets us determine the blocks in the 2t 2-block multicollision that
give the desired checksum D.

Work: It requires t×2t/2 computations of the compression function to find a 2t 2-block multicollision
to construct the CCS and at most t3 + t2 bit-XOR operations to solve the system of t× t equations
using Gaussian elimination to find a solution with a significant probability.

B.2 Defeating linear checksum in 3CM

The following algorithm is used to defeat the checksum in 3CM.
ALGORITHM: Defeat linear checksum in 3CM
Variables:

1. (e0
i ,e

1
i) = A pair of independent choices of random values on the second chain after every 2-block

collision in the 2t 2-block multicollision on 3CM and e0
i 6= e1

i for i = 1, 2, . . . , t.
2. (s0

i ,s
1
i) = A pair of independent choices of random values on the third chain after every 2-block

collision in the 2t 2-block multicollision on 3CM and s0
i 6= s1

i for i = 1, 2, . . . , t.
3. a = a[1], a[2], . . . , a[t] and c = c[1], c[2], . . . , c[t] are any two t-bit strings.
4. D1 = D1[1],D1[2], . . . ,D1[t] = The desired t-bit checksum to be imposed on the second chain.
5. D2 = D2[1],D2[2], . . . ,D2[t] = The desired t-bit checksum to be imposed on the third chain.
6. i, j = Temporary variables.

Steps:

1. Build a CCS for 3CM by building a 2t 2-block multicollision by calling a brute-force collision
finding algorithm C(s, 2) t times on the Damg̊ard-Merkle chain of 3CM.

2. Each of the parts of the CCS gives one choice (e0
i or e1

i) (resp. (s0
i or s1

i)) for i = 1, 2, . . . , t on
the second chain (resp. third chain) to determine some random t-bit value that either is or is
not XORed into the final checksum value in the second chain (resp. third chain) at the end of
the 2t 2-block multicollision. Note that ej

i = Hj
2i−1 ⊕ Hj

2i for i = 1, 2, . . . , t where j is either 0

or 1 and ej
0 = 0. In addition, sj

i = Hj
2i ⊕ ζ((h′′)j2i−1) for i = 1, 2, . . . , t where j is either 0 or 1

and (h′′)0 = H0. At any iteration i, the checksum value in the third chain is h′′

i = ζ(h′′

i−1)⊕Hi.

20

3. For any t-bit string a = a[1], a[2], . . . , a[t], let ea = ea
1, . . . , e

a
t .

4. Now D1 (resp. D2) is the desired checksum to be imposed on the second chain (resp. third
chain) at the end of the 2t 2-block multicollision.

5. Find a = a[1], a[2], . . . , a[t] such that e
a[1]
1 ⊕ e

a[2]
2 ⊕ . . . ⊕ . . . e

a[t]
t = D1. Similarly, find c =

c[1], c[2], . . . , c[t] such that s
c[1]
1 ⊕ s

c[2]
2 ⊕ . . . ⊕ . . . s

c[t]
t = D2.

By treating a[1], a[2], . . . , a[t] as variables, we solve the equation

⊕t
i=1 e0

i × a[i] ⊕ e1
i × (1 − a[i]) = D1.

Similarly, by treating c[1], c[2], . . . , c[t] as variables, we solve the equation

⊕t
i=1 s0

i × c[i] ⊕ s1
i × (1 − c[i]) = D2.

6. Let a[i] = 1 − a[i] and c[i] = 1 − c[i].
7. Now turn the above into two systems of t equations in t unknowns as below:

The resulting two system of equations are:

⊕t
i=1 e0

i [j] × a[i] ⊕ e1
i [j] × a[i] = D1[j] (j = 1, . . . , t)

⊕t
i=1 s0

i [j] × c[i] ⊕ s1
i [j] × c[i] = D2[j] (j = 1, . . . , t)

Here there are two sets of t equations in t unknowns which can be solved for two solutions
a[1], a[2], . . . , a[t] and c[1], c[2], . . . , c[t].

8. The solution a[1], a[2], . . . , a[t] (resp. c[1], c[2], . . . , c[t]) lets us determine the intermediate hash
values of the second chain (resp. third chain) in the 2t 2-block multicollision that gives the
desired checksum D1 (resp. D2). Using these intermediate hash values, the data blocks that
give the desired checksums can be found.

Work: It requires t × 2t/2 computations of the compression function to produce 2t 2-block mul-
ticollision to construct the CCS and at most 2 × (t3 + t2) work to solve the above two systems
of t × t equations using Gaussian elimination to find a solution with a probability of 0.5 [3, Ap-
pendix A] [5, 43].

C Generic attacks on F-Hash, 3CM and Maelstrom-0

C.1 Long message 2nd-preimage attack on F-Hash

The attacker starts with a long target message for which she aims to find the 2nd preimage. Then
he builds the CCS by constructing a 2t 2-block multicollision to control the checksum, builds
an expandable message and appends it to the CCS and then carries out the long message 2nd

preimage attack from the end of the expandable message. The attacker then uses the CCS to adjust
the accumulation chaining value at that point to match the desired value which is equivalent to
adjusting the checksum of the 2t 2-block multicollision. Finally, he expands the expandable message

to make up for all the message blocks skipped in the long message 2nd preimage attack resulting in
a new message which gives the same hash value as the long target message.
ALGORITHM: LongMessageAttack(Mtarget) on F-Hash
Find the 2nd preimage for a message of 2d + d + 2t + 1 blocks.

Variables:

21

1. Mtarget = The target long message for which a 2nd preimage is to be found.
2. Mlink = Linking message block used to connect the iterative intermediate hash values at the

end of the expandable message to some point in the sequence of the iterative intermediate hash
values of the target message.

3. Hexp = The intermediate iterative hash values at the end of the expandable message.
4. Ht = The result of the 2t 2-block multicollision on the iterative chain of H starting from the

initial state H0.
5. Mfinal = The 2nd preimage of the same length as Mtarget such that H(Mfinal) = H(Mtarget).
6. Mpref = The checksum control prefix obtained from the CCS to force the linear checksum to

the desired checksum.

Steps:

1. Compute the intermediate hash values for Mtarget using H:

– H0 and h0 are the initial states on the iterative and accumulation chains of H respectively.
– Mi is the ith message block of Mtarget.
– (Hi, hi) = f(Hi−1,Mi) and h′

i =
⊕i−1

j=1 hj are the ith intermediate hash values on the iterative
and accumulation chains respectively.

– The iterative and accumulation chaining states are organised in some searchable structure
for the attack, such as hash table. The elements H1, . . . ,Hd and the elements obtained in
the processing of t 2-block messages are excluded from the hash table as the expandable

messages cannot be made short enough to accommodate them in the attack.

2. Build a CCS by constructing a 2t 2-block multicollision on H as described in Section B.1 starting
from the initial state H0. Let Ht be the multicollision hash value. The corresponding checksum
value h′

t due to the 2t 2-block multicollision on H is random and its value depends on the choice
of the t 2-block messages from the CCS that give the collision Ht.

3. Construct a (d, d + 2d − 1) expandable message Mexp with Ht as the starting intermediate state
using the generic technique to find the expandable messages. Append the expandable message

Mexp to the CCS. Let Hexp be the iterative intermediate hash value at the end of the expandable

message Mexp.
4. Try different message blocks from the end of Hexp to find a linking message block Mlink such that

f(Hexp,Mlink) matches some iterative intermediate hash value Hu stored in the hash table while
processing Mtarget. Let this matching value of the target message be Hu and the corresponding
accumulation chaining value be h′

u where d + 2t + 1 ≤ u ≤ 2d + d + 2t + 1.
5. Use the CCS built in step 2 to find the checksum control prefix Mpref to adjust the accumulation

chaining value at that point to match the desired accumulation value h′

u in the target message
Mtarget. Using h′

u, the desired checksum value at the end of the 2t 2-block multicollision is
calculated and this value is adjusted in such a way that the desired checksum h′

u is obtained.
The prefix Mpref is obtained by solving a system of t× t linear equations following Section 3.3.

6. Expand the expandable message to produce a message M∗ which is u − 1 blocks long.
7. Return the 2nd preimage Mfinal = Mpref ||M

∗||Mlink||Mu+1 . . . M2d+d+1+2t of the same length
as Mtarget such that H(Mfinal) = H(Mtarget).

Work: The computational effort required to perform the 2nd preimage attack on F-Hash is the
same as the effort to find 2nd preimages for 3C. Using the generic expandable-message finding
algorithm, this effort equals t×2t/2 +d×2t/2+1 +2t−d+1 computations of the compression function
and t3 + t2 bit XOR-operations.

22

C.2 Long message 2nd-preimage attack on 3CM and Maelstrom-0

The attacker starts with a long target message for which he aims to find the 2nd preimage. Then he
builds the CCS by constructing a 2t 2-block multicollision to control the checksum in the second and
third chains of 3CM, builds an expandable message and appends it to the CCS and then carries out
the long message 2nd preimage attack from the end of the expandable message. The attacker then
uses the CCS to adjust the chaining values in the second and third chains at that point to match
the desired checksum values in the second and third chains. This is equivalent to adjusting the
checksum values of these two chains at the end of the 2t 2-block multicollision. Finally, he expands
the expandable message to make up for all the message blocks skipped in the long message 2nd

preimage attack producing a new message which produces the same hash value as the long target
message. Since Maelstrom-0 uses 3CM as the underlying module with a Davies-Meyer compression
function, the long message 2nd preimage attack on 3CM is also applicable to Maelstrom-0.

ALGORITHM: LongMessageAttack(Mtarget) on 3CM
Find the 2nd preimage for a message of 2d + d + 2t + 1 blocks.

Variables:

1. Mtarget = The target long message for which a 2nd preimage is to be found.

2. Mlink = Linking message block used to connect the iterative intermediate hash value at the
end of the expandable message to some point in the sequence of the iterative hash values of the
target message.

3. Hexp = The intermediate iterative hash value at the end of the expandable message.

4. Ht = The result of the 2t 2-block multicollision on the iterative chain of H starting from the
initial state H0.

5. Mfinal = The 2nd preimage of the same length as Mtarget such that H(Mfinal) = H(Mtarget).

6. Mpref = The checksum control prefix obtained from the CCS to force the linear checksum to
the desired checksum.

Steps:

1. Compute the intermediate hash values for Mtarget using H:

– H0, h′

0 and h′′

0 are the initial states on the iterative, second and third chains of H respectively.

– Mi is the ith message block of Mtarget.

– Hi = f(Hi−1,Mi), h′

i = h′

i−1 ⊕ Hi and h′′

i = ζ(h′′

i−1) ⊕ Hi are the intermediate chaining
values at any iteration i in the iterative, second and third chains of 3CM respectively.

– The iterative, second and third chaining states are organised in some searchable structure
for the attack, such as hash table. The elements H1, . . . ,Hd and the iterative intermediate
hash values obtained in the processing of t 2-block messages are excluded from the hash
table as the expandable messages cannot be made short enough to accommodate them in
the attack.

2. Build a CCS by constructing a 2t 2-block multicollision on H as described in Section B.2
starting from the initial state H0. Let Ht be the multicollision intermediate hash value. The
corresponding checksum values in the second and third chains denoted by h′

t and h′′

t respectively
due to the 2t 2-block multicollision on H are random. Their values depend on the choices of the
t 2-block messages from the CCS that produce the collision Ht.

23

3. Construct a (d, d + 2d − 1) expandable message Mexp with Ht as the starting state using either
of the methods to find the expandable messages from [8, 18]. Append the expandable message

Mexp to the CCS. Let Hexp be the iterative intermediate hash value at the end of the expandable

message Mexp.
4. Try different message blocks from the end of Hexp to find a linking message block Mlink such

that f(Hexp,Mlink) matches some iterative intermediate hash value Hu stored in the hash
table while processing Mtarget. Let this matching value of the target message be Hu and the
corresponding intermediate hash values in the second and third chains be h′

u and h′′

u where
d + 2t + 1 ≤ u ≤ 2d + d + 2t + 1.

5. Use the CCS built in step 2 to find the checksum control prefix Mpref to adjust the chaining
values in second and third chains at that point to match the desired checksum values h′

u and
h′′

u in the target message Mtarget. Using h′

u and h′′

u, the desired checksum values in the second
and third chains at the end of the 2t 2-block multicollision are calculated and these values are
adjusted in such a way that the desired checksums h′

u and h′′

u are obtained. The prefix Mpref is
obtained by solving a system of t × t linear equations as described in Section B.2.

6. Expand the expandable message to produce a message M∗ which is u − 1 blocks long.
7. Return the 2nd preimage Mfinal = Mpref ||M

∗||Mlink||Mu+1 . . . M2d+d+1+2t of the same length
as Mtarget such that H(Mfinal) = H(Mtarget).

Work: The effort required for the 2nd preimage attack on 3CM involves the effort in finding a
2t 2-block multicollision plus the effort in solving two sets of t × t system of linear equations plus
the effort in finding the expandable message plus the effort to find the linking message block. So,
the only additional effort in performing the 2nd preimage attack on 3CM over Damg̊ard-Merkle
hash function is the effort required to solve two systems of t × t equations and producing a 2t

2-block multicollision. Using the generic expandable-message finding algorithm, this effort equals
t × 2t/2 + d × 2t/2+1 + 2t−d+1 computations of the compression function and at most 2 × (t3 + t2)
bit-XOR operations.

C.3 Herding attack on F-Hash

The following steps outline the herding attack on a t-bit F-Hash hash function H:

1. A 2d hash value wide diamond structure is constructed for H with 2d different arbitrary states
H1,H2, . . . ,H2d as the starting iterative chain hash values. It is constructed by finding 1-block
collisions similar to the construction of the diamond structure for the Damg̊ard-Merkle hash
functions. The final hash value Hf , which is the output of the compression function g, is com-
puted using any of the possible 2d−1 checksum values or some value chosen arbitrarily. Let h′

c

be that checksum value.
2. Build the CCS for H using a 2t multicollision over 2-block messages as described in Section B.1.

Let Ht be the 2t 2-block multicollision value on the iterative chain of H.
3. When challenged with the prefix message P , process P using Ht as the starting intermediate

hash value on the iterative chain. Let H(Ht, P) = Hp.
4. Find the linking message Mlink such that the state H(Hp,Mlink) matches one of the 2d outer-

most intermediate hash values on the iterative chain in the diamond structure. If the match is
compared to all the 2d+1−2 intermediate hash values in the diamond structure then a (1, d+1)-
expandable message must be produced at the end of the diamond structure ensuring that the
final herded message is always a fixed length.

24

5. Use the CCS computed in step 2 to force the checksum of the herded message P to h′

c using
the techniques as described in Section B.1 to defeat the checksum in the 2t multicollision. Let
Mpref be the checksum control prefix obtained after solving the system of equations due to the
CCS.

6. Finally, output the message M = Mpref ||P ||Mlink||Md where Md are the message blocks which
contributes in the construction of the diamond structure. The value H(M) will be the same as
the chosen target Hf .

Work: The effort to perform the herding attack on F-Hash is the effort required to build the CCS
plus the effort to solve the system of equations due to the CCS plus the effort required to perform the
herding attack on the Damg̊ard-Merkle hash functions from [17]. This equals t×2t/2 +2t/2+d/2+2 +
2t−d computations of the compression function and t3 + t2 bit-XOR operations assuming that only
the outermost 2d hash values are used for searching in the diamond structure. If all the 2d+1 − 2
intermediate hash values are used for searching in the diamond structure then the effort required
equals t × 2t/2 + 2t/2+d/2+2 + d × 2t/2+1 + 2t−d−1 computations of the compression function and
t3 + t2 bit-XOR operations.

C.4 Herding attack on 3CM and Maelstrom-0

The following steps outline the herding attack on a t-bit 3CM hash function H. Since Maelstrom-0
uses 3CM as the underlying module, this herding attack applies to Maelstrom-0 as well.

1. A 2d hash value wide diamond structure is constructed for H with 2d different arbitrary states
H1,H2, . . . ,H2d as the starting iterative chain hash values. The final hash value Hf , which is
the output of the compression function g, is computed using any of the possible 2d−1 checksum
values from the second and third chains or some values chosen arbitrarily. Let h′

c and h′′

c be
those checksum values in the second and third chains respectively.

2. Build the CCS for H using a 2t multicollision over 2-block messages as described in Section B.2.
Let Ht be the 2t 2-block multicollision value on the iterative chain of H.

3. When challenged with the prefix message P , process P using Ht as the starting intermediate
hash value on the iterative chain. Let H(Ht, P) = Hp.

4. Find the linking message Mlink such that the state H(Hp,Mlink) matches one of the 2d outermost
hash values values on the iterative chain in the diamond structure. If the match is compared to
all the 2d+1 − 2 intermediate hash values in the diamond structure then a (1, d + 1)-expandable

message must be produced at the end of the diamond structure ensuring that the final herded
message is always a fixed length.

5. Use the CCS computed in step 2 to force the checksums of the herded message P in the second
and third chains to h′

c and h′′

c using the techniques described in Section B.1 to defeat the
checksum in the 2t multicollision. Let Mpref be the checksum control prefix obtained after
solving the system of equations due to the CCS.

6. Finally, output the message M = Mpref ||P ||Mlink||Md where Md are the message blocks that
contributed to the construction of the diamond structure. The value H(M) will be the same as
the chosen target Hf .

Work: The effort to perform the herding attack on 3CM is the effort required to build the CCS plus
the effort to solve the system of equations due to the CCS plus the effort required to perform the
herding attack on the Damg̊ard-Merkle hash functions from [17]. This equals t×2t/2 +2t/2+d/2+2 +

25

2t−d computations of the compression function and 2× (t3 + t2) bit-XOR operations assuming that
only the outermost 2d hash values are used for searching in the diamond structure. If all the 2d+1−2
intermediate hash values are used for searching in the diamond structure then the effort required
equals t × 2t/2 + 2t/2+d/2+2 + d × 2t/2+1 + 2t−d−1 computations of the compression function and
2 × (t3 + t2) bit-XOR operations.

D Additive checksum variant of GOST

D.1 3CA: A Variant of GOST hash function

We propose a variant for GOST called 3CA which computes additive checksum using modular
addition of intermediate hash values over 2t as shown in Figure 10.

fff fff

M1 M2 M3 ML−1

H0

ML

Hf

0
Z

Fig. 10. 3CA-hash function

E Generic attacks on the hash functions with additive checksums

E.1 Long message 2nd-preimage attack on GOST

Long message 2nd preimage attack on a b-bit block, t-bit hash vaue GOST hash function H is
outlined below.
ALGORITHM: LongMessageAttack(Mtarget) on GOST
Find the second preimage for a message of 2d + d + b × (b/2 + 1) + 1 blocks.

Variables:

1. Mtarget = the target long message for which a second preimage is to be found.
2. Mlink = the linking message block to connect the intermediate state at the end of the expandable

message to some point in the sequence of intermediate states of the long target message.
3. Hexp = the intermediate state at the end of the expandable message.
4. Ht = the intermediate state at the end of the CCS.
5. Mfinal = the 2nd preimage of the same length as Mtarget such that H(Mfinal) = H(Mtarget).
6. Mc = the desired checksum block.
7. Mpref = the checksum control prefix obtained to force the checksum to the desired checksum.

Steps:

1. Compute the intermediate states for Mtarget using H:

– H0 is the initial state of H.
– Mi is the ith message block of Mtarget.
– Hi = f(Hi−1,Mi) is the intermediate state on the iterative chain of H.

26

– The iterative and accumulation chaining states are organised in some searchable structure
for the attack, such as hash table. The elements H1, . . . ,Hd and those obtained in the
processing of b× ((b/2)+ 1) 1-block messages are excluded from the table as the expandable

messages cannot be made short enough to accommodate them in the attack.

2. Construct CCS for GOST following the method from Section 4 producing Ht as the multicol-
lision value on the iterative chain and let Mt be the corresponding checksum block which is
random.

3. Construct a (d, d+2d−1) expandable message Mexp from the end of Ht using generic-expandable
message algorithm from [18]. Now Hexp is the intermediate state at the end of Mexp.

4. Try message blocks from the end of Hexp to find a linking message block Mlink such that
f(Hexp,Mlink) collides with one of the intermediate states of Mtarget stored in the hash table.
Let this matching intermediate state of the target message be Hu and the checksum of data
blocks of Mtarget until that point be Mu where d+b×((b/2)+1)+1 ≤ u ≤ 2d+d+b×((b/2)+1)+1.

5. Using Mu, find the desired checksum Mc at the end of CCS by working backwards from the
point of match with the intermediate state of the target message.

6. Find the checksum control prefix Mpref which produces the desired checksum Mc at the end of
the CCS while still maintaining collisions on the iterative chain using the algorithm to defeat
the checksum in GOST as described in Section 4.

7. Expand the expandable message to produce a message M∗ which is u − 1 blocks long.
8. Return the second preimage Mfinal = Mpref ||M

∗||Mlink||Mu+1 . . .
M2d+d+b×(b/2)+1))+1 of the same length as Mtarget such that H(Mfinal) = H(Mtarget).

Work: The computational work required to find a second preimage on GOST is the work required
to defeat the checksum to the target checksum following the algorithm in Section 4 plus the work
to find the expandable message Mexp plus the work to find the linking message block Mlink. So,
the only additional work required to perform the second preimage attack on GOST over DM hash
functions is the work to construct the CCS which is practically free to use. The total work equals
(b/2 + 1)× b× 2t/2 + d× 2t/2+1 + 2t−d+1 computations of the compression function and a time and
space of b× 2b/2+1. Note that the work to produce the multicollision to build the CCS and perform
the modified collision search is very fast compared to the rest of the attack.
Illustration:

The computational work required to find a second preimage on GOST for a message of 254 +
54 + 256 × 129 + 1 blocks is 2143 + 54 × 2129 + 2203 computations of the compression function and
a time and space of 256 × 2129 = 2137.

E.2 Herding attack on GOST

The following steps outline the herding attack on a t-bit GOST hash function H:

1. Precompute a 2d hash value wide diamond structure and output the hash value Hv as the chosen
target. This value is computed using either any of the possible 2d−1 checksum values or some
value chosen arbitrarily. Let Mc be that checksum value.

2. Construct the CCS for H starting from the initial state of the hash function H and let Ht be
the intermediate state on the iterative chain at the end of CCS.

3. When challenged with the prefix message P , process P using Ht as the starting state on the
iterative chain3. Let H(Ht, P) = Hp.

3 We note that when the forced prefix message P is processed using the initial state H0 of H followed by constructing
CCS using the state H(H0, P), we can output message M with the format P ||Mpref ||Mlink ||Md.

27

4. Find the linking message block Mlink such that the state H(Hp,Mlink) collides with one of
the 2d outermost intermediate states on the iterative chain in the diamond structure. If this
collision is matched against all of the 2d+1 − 2 intermediate states then a (1, d + 1)-expandable

message must be produced at the end of the diamond structure to make sure that the final
herded message is always a fixed length.

5. Use the techniques from the algorithm in Section 4 to force the checksum of the herded message
P to Mc. Let Mpref be the checksum control prefix which produces the desired checksum Mc.

6. Finally, output the message Mpref ||P ||Mlink||Md where Md are the message blocks in the dia-
mond structure that connect the state H(Hp,Mlink) to the chosen target Hv. Now H(M) = Hv.

Work:
The computational work required to perform the herding attack on GOST is the work required

to construct the CCS plus the work to find the checksum control prefix plus the work required to
perform the herding attack from [17]. This equals b×((b/2)+1)×2t/2+2t/2+d/2+2+2t−d computations
of the compression function and a time and space of b × 2b/2+1 assuming that only the outermost
2d states are used for searching in the diamond structure. If all the 2d+1 − 2 intermediate states in
the diamond structure are used for searching then the work required equals b× ((b/2) + 1)× 2t/2 +
2t/2+d/2+2 + d × 2t/2+1 + 2t−d−1 computations of the compression function and a time and space
of b × 2b/2+1. Note that the work required to build the CCS using multicollision and perform the
modified collision search is negligible compared to the rest of the attack.
Illustration:

The computational work required to perform the herding attack on GOST with d = 84 is
2143 + 2172 + 2172 computations of the compression function assuming that only the outermost 284

states in the diamond structure are used for searching and time and space of 256 × 2129 = 2137.

E.3 Defeating the additive checksum in 3CA

We follow the steps below in order to defeat the additive checksum in 3CA shown in Figure 10:

1. We perform a 2t multicollision starting from the initial state H0 of the hash function where
each collision contains a 2(t/2)+1 multicollision performed over 2-block messages.

2. In every 2t/2+1 multicollision in the 2t multicollision from i = 1 to t, we then search for a pair
of 2 × ((t/2) + 1)-chaining sequences, which we call as chunk, giving the same hash chaining
output but checksum values that differ by 2i−1. We perform this task as follows:

– We initialize an empty table.
– For every collision path in the 2t/2+1 2-block multicollision:

• We add to the table: the additive checksum of chaining values of that path, the collision
path and an index of 0.

• We add to the table: 2i−1 added to the additive checksum of the chaining values computed
above, the collision path and an index of 1.

– We then search for a match between the entries with index 0 and the entries with index 1.

3. We then obtain a workable CCS by concatenating such individual chunks all hashing to the
same chaining state at the end of 2t 2(t/2)+1 2-block multicollision.

4. We then use this workable CCS to find the collision path which produces the checksum to the
desired checksum at the end of the 2t multicollision. The message blocks of this collision path
would form the checksum control prefix.

28

Work: The work required to defeat the additive checksum in 3CA is the work to construct the CCS
plus the work required to use the CCS to force the additive checksum to the required checksum.
This equals the work to find the 2t 2(t/2)+1 2-block multicollision plus the work to find the individual
chunks in every 2(t/2)+1 2-block multicollision. This equals about t×((t/2)+1))×2t/2 computations
of the compression function plus a time and space of t × 2t/2.
Illustration: On 3CA instantiated with the compression function of SHA-256, it requires about
28 × 129 × 2128 ≈ 2143 computations of SHA-256 compression function and a time and space of
28 × 2129 = 2137.

E.4 Generic attacks on 3CA

The generic algorithm given in Section 5 can be used to perform the 2nd preimage and herding
attacks on the 3CA hash function. These attacks are similar to those on GOST and hence are
left out from the discussion here. To find the 2nd preimage of a long target message of 254 + 54 +
2(256)(129) + 1 blocks processed using 3CA based on the compression function of SHA-256, it
requires 2143 + 54 × 2129 + 2203 computations of the compression function and a time and space of
256 × 2129 = 2137.

Similarly, the work to perform the herding attack on 3CA instantiated with the compression
function of SHA-256 using a 284 hash value wide diamond structure (i.e width of the diamond is
d = 84) is 2143 + 2172 + 2172 computations of the compression function assuming that only the
outermost 284 chaining values are used for searching in the diamond structure and time and space
of 256 × 2129 = 2137.

F Multi-block collision attacks on F-Hash and 3CA

F.1 Multi-block collision attack on F-Hash

Consider a collision finding algorithm C(s, n) with the state s = H0 for the F-Hash hash function
H. For F-Hash, we define a collision for the compression function f at iteration i as finding two
message blocks Mi and Ni such that Mi 6= Ni, f(Hi−1,Mi) = f(H ′

i−1, Ni) = (Hi, hi) where either
Hi−1 = H ′

i−1 or Hi−1 6= H ′

i−1.
Let n = 2 and a call to C(s, 2) results in a pair of messages (M,N) where M = M1||M2 and

N = N1||N2 such that H(H0,M1) = (H1, h1), H(H0, N1) = (H∗

1 , h∗

1), H1⊕H∗

1 = ∆H , h1⊕h∗

1 = ∆h

and H(M) = H(N) = (H2, h2). Now a second call to C(s, 2) with s = H2 results in two pairs of
blocks (M3,M4) and (N3, N4) such that H(H2,M3) = (H3, h3), H(H2, N3) = (H∗

3 , h∗

3), H3 ⊕H∗

3 =
∆H , h3 ⊕ h∗

3 = ∆h and H(H3,M4) = H(H∗

3 , N4) = (H4, h4). This is depicted in Figure 11.
Since, H1 ⊕ H∗

1 = ∆H and H3 ⊕ H∗

3 = ∆H , H1 ⊕ H2 ⊕ H3 ⊕ H4 = H∗

1 ⊕ H2 ⊕ H3 ⊕ H∗

4 , a
collision on the iterative chain of F-Hash. In addition, since, h1 ⊕ h∗

1 = ∆h and h3 ⊕ h∗

3 = ∆h,
h1 ⊕ h2 ⊕ h3 ⊕ h4 = h∗

1 ⊕ h2 ⊕ h3 ⊕ h∗

4, a collision on the accumulation chain of F-Hash.

F.2 Multi-block collision attack on 3CA

Consider a collision finding algorithm C(s, 2) which finds a collision on the iterative chain of 3CA
after processing every two blocks starting from s = H0. Let f(H0,M1) = H1, f(H0, N1) = H∗

1 ,
f(H1,M2) = f(H∗

1 , N2) = H2 be the intermediate hash values after processing single blocks from the
state H0. Let f(H2,M3) = H3, f(H2, N3) = H∗

3 , f(H3,M4) = f(H∗

3 , N4) = H4 be the intermediate

29

M1 M2 M3 M4

N1 N2 N3 N4

ffff

H0

H0

0

0

H1 H2 H3 H4

H∗

1 H∗

2 H∗

3 H∗

4

h1 h2 h3 h4

h∗

1 h∗

2 h∗

3 h∗

4

Fig. 11. Multi-block collision attack on F-Hash

ff f f

fff f

M1 M2 M3 M4

N1 N2 N3 N4

H1

H∗

1

H2

H2

H3

H∗

3

H4

H4

H0

H0

0

00

Fig. 12. Multi-block collision attack on the 3CA-hash function

hash values after processing single blocks from the state H2. Assume the additive differences of the
intermediate intermediate hash values as H∗

1 − H1 ≡ ∆ mod 2t and −H∗

3 + H3 ≡ ∆ mod 2t. Now
consider the checksum value H1 + H2 + H3 + H4 mod 2t = H∗

1 −∆ + H2 + H∗

3 + ∆ + H4 mod 2t =
H∗

1 + H2 + H∗

3 + H4. This is a collision for the checksum. Hence, concatenation of two structured
2-block collisions with the additive differences as described above would produce a multi-block
collision for the 3CA structure.

30

