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Abstract 
 
In this short paper we propose a pseudorandom number generator over EC based on Pollard-
like method. In contrast to the well known Elliptic Curve Random Number Generator (see e.g. 
ANSI and NIST draft standards) the generator is based on a random walk over the group of 
EC-points like in the original Pollard’s rho algorithm and only resembles a little bit the linear 
congruential generator over elliptic curve. Compared to other approaches, the method allows 
to decrease the cost of generating pseudorandom numbers. This generator could be used in 
resource constrained devices like smart cards which have already been equipped with EC-
based tools for other cryptographic purposes.  
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Introduction 
 
Use of elliptic curves for generating pseudorandom numbers has been studied for a few years. 
A good example of this usage can be ECRGN which we will use as the reference generator 
against the proposed one. 
 

ECRGN logically can be divided into two parts: one that generates a point sequence 
and one that extracts a bit string from the point sequence. The bit extraction based on 
a truncation is a separate non-trivial problem but is out of the scope of this paper. Our 
concern is a way of generating the point sequence. We propose to use a Polllard-like method 
to generate the point sequence as a source of pseudorandom numbers of uniform distribution. 
An advantage of this method is a low cost of generating pseudorandom bits comparing to 
ECRGN. The method makes use of Teske’s findings [1] to make the generator more random. 
 

Actually the method resembles the linear congruential generator (LCG). Nevertheless, 
being more a set of these generators it doesn’t suffer from weakness typical to LCGs over 
elliptic curve [7].  
 

Organization of the paper: we shortly recall some basis facts about elliptic curves and 
existing ECRNG and then present the idea of the method. For sake of simplicity we propose 
to call the method proposed Pollard-ECRNG due to the fact of using Pollard’s rho-like 
iterating function. 
 
Elliptic curves 
 
Let E be an elliptic curve defined over a prime field F.  (Note: We use the curve for 
convenience; the same idea applies to curves over other finite fields.) 
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where Fba , , whose characteristic is p. 



 

 

 
Let 
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where n is prime and  
 h = # E(F) / n is a very small number. 

 
Q, P – any points on E 
Q  P  - where P  is the group of points generated by P of prime order n 
 
 
Elliptic Curve Random Number Generator  (following [2]) 
 
Let 
 

QsR ii  , where: 

- Q is an initialization parameter, actually a point chosen at random 
- si an integer obtained by taking the bit representation of x-coordinate of P  

 
)(1 Psxs ii   where )(x stands for the transformation of bit representation of x-coordinate of 

P into an integer. 
 
The final output of ECRNG is a sequence of ))(( ii Rxtr  , where )(t  is a function that 
truncates certain bits from the bit string representation of an elliptic curve point. 
 
As seen above, the most costly for ECRNG is calculating iR  which requires on average 
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 EC-group operations, [11]. 

 
 
Pollard’s method 
 
Pollard’s method is based on birthday paradox. Its complexity is )( nO  and allows to find a 

solution (e.g. a useful collision when solving discrete logarithm problem on EC) in 2/n  
steps. 
 
Original Pollard’s rho method adapted to ECDLP (elliptic curve discrete logarithm problem) is 
as follows: 
 
Let: 
 
d – an integer: dPQ  , d=? 
T1, T2, T3 – disjoint subsets of P  
 
The iterating function has the following formula: 
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So, each step of Pollard’s rho algorithm requires only one group operation (addition or 
doubling of a point). The more random the iterating function is the less number of steps must 
be performed in Pollard’s rho method.  
 
Teske presented in [1] that on randomness of Pollard’s rho algorithm impact: number of 
subsets Ti and kind of “walks” (group operations in the iterating function). Teske searched for 
formulae as close as possible to random mappings.  In conclusions Teske suggests to divide 

P  into about 20 disjoint subsets (at least 6) and to use mixed walks (both additions and 
doublings).  
 
Following Teske we get:  
 
v : P  {1, ..., r + q}, where r, q  N 
T1, ...., Tr and V1, ... Vq – pairwise disjoint subsets of similar number of points  
m, n  {1,2, ..., |P|} 
 
As = msP + nsQ 
ms, ns  {1,2, ..., |P|},    1  s  r 
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Teske recommends that an average ratio between number of additions and doublings should 
be between ¼ and ½.  
 
 
Pollard-ECRNG 
 
Having in mind Teske’s studies one can assume that there is some very random mapping of 
Pollard type. The mapping allows to generate at random pseudorandom numbers of uniform 
distribution. This generator doesn’t suffer from weakness typical to the linear congruetial 
generators due to being a set of LCGs.  
 
Comparing to ECRNG, Pollard-ECRNG can also be divided into two parts: generating 
randomly points and extracting pseudorandom bit sequences. So, the final output of Pollard-
ECRNG is also a sequence of ))(( ii Rxtr   and the truncating function )(t  remains 

unchanged. The only difference is that Ri comes from the Pollard-like algorithm instead of the 
formula QsR ii  . The most crucial advantage of the method is that it costs only one group 
operation to generate next pseudorandom sequence. 
 
 
Sketch of the Pollard-ECRNG algorithm 
 

1. choose at random PQ  and generate si like in ECRGN 
 
2. find iR  from Teske’s formula (as above in the paper) 
 
3. find ))(( ii Rxtr     where )(x and )(t like in ECRNG 
 
4. repeat recursively steps 2 and 3 
 



 

 

 
 
Summary 
 
This short paper presents, according to the author’s knowledge, the new concept of using 
elliptic curves for generating pseudorandom numbers.  In comparison to the standard ECRNG 
only point generation function is changed so all studies concerning ECRNG’s security aspects 
applies to the method in a straightforward way. As the new method is almost cost free it 
seems to be very suitable for constrained systems like smart cards or mobile phones. 
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