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Abstract. In this paper we present a theoretical construction of Rota-
tion Symmetric Boolean Functions (RSBFs) on odd number of variables
with maximum possible AI and further these functions are not symmet-
ric. Our RSBFs are of better nonlinearity than the existing theoretical
constructions with maximum possible AI . To get very good nonlinear-
ity, which is important for practical cryptographic design, we generalize
our construction to a construction cum search technique in the RSBF
class. We find 7, 9, 11 variable RSBFs with maximum possible AI having
nonlinearities 56, 240, 984 respectively with very small amount of search
after our basic construction.
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1 Introduction

Algebraic attack has received a lot of attention recently in studying the security
of Stream ciphers as well as Block ciphers [1, 3, 4, 6, 7, 11, 10, 8, 23, 2, 18, 9]. One
necessary condition to resist this attack is that the Boolean function used in the
cipher should have good algebraic immunity (AI ). It is known [10, 33] that for
any n-variable Boolean function, maximum possible AI is dn

2 e.
So far a few theoretical constructions of Boolean functions with optimal

AI have been presented in the literature. In [14], the first ever construction of
Boolean functions with maximum AI was proposed. Later, the construction of
Symmetric Boolean functions with maximum AI was given in [17, 5]. For odd
number of input variables, majority functions are the examples of symmetric
functions with maximum AI . Recently in [25], the idea of modifying symmet-
ric functions to get other functions with maximum AI is proposed using the
technique of [16].

An n-variable Boolean function which is invariant under the action of the
cyclic group Cn on the set {0, 1}n is called Rotation Symmetric Boolean func-
tions (RSBFs). We denote the class of all n-variable RSBFs as S(Cn). On the



other hand, an n-variable Symmetric Boolean function is one which is invariant
under the action of the Symmetric group Sn on the set {0, 1}n and we denote the
class of all n-variable Symmetric Boolean functions as S(Sn). The class S(Cn)
has been shown to be extremely rich as the class contains Boolean functions
with excellent cryptographic as well as combinatorial significance [12, 15, 19, 21,
20, 22, 30, 31, 34, 36, 37]. As for example, in [21, 22], 9-variable Boolean functions
with nonlinearity 241 have been discovered in S(C9) which had been open for
a long period. Also an RSBF has a short representation which is interesting for
the design purpose of ciphers. Since Cn ⊂ Sn, we have S(Sn) ⊂ S(Cn). There-
fore all the Symmetric functions with maximum AI are also examples of RSBFs
with maximum AI . The class S(Cn) \ S(Sn) becomes quite huge for larger n.
However, so far there has been no known construction method available which
gives n-variable RSBFs belonging to S(Cn) \ S(Sn), having the maximum AI .
It has been proved in [26, 35], that the majority function is the only possible
symmetric Boolean function on odd number of variables which has maximum AI
. Hence, there is a need to get a theoretical construction method which provides
new class of RSBFs with maximum AI , which are not symmetric.

In this paper we present a construction method (Construction 1) that gener-
ates RSBFs on odd variables (≥ 5) with maximum AI , which are not symmetric.
Note that up to 3 variables, RSBFs are all symmetric, and that is the reason
we concentrate on n ≥ 5. In this construction, n-variable majority function is
considered and its outputs are toggled at the inputs of the orbits of size bn

2 c and
dn

2 e respectively. These orbits are chosen in such a manner that a sub matrix as-
sociated to these points is nonsingular. This idea follows the work of [16], where
the sub matrix was introduced to reduce the complexity for determining AI of a
Boolean function. We also show that the functions of this class have nonlinearity
2n−1 −

(
n−1
bn

2 c
)

+ 2 which is better than 2n−1 −
(
n−1
bn

2 c
)
, the lower bound [27] on

nonlinearity of any n (odd) variable function with maximum AI ; further the
general theoretical constructions [14, 17, 5] could only achieve this lower bound
so far.

We present a generalization of the Construction 1 in Construction 2 which
is further generalized in Construction 3. In each of the generalizations we re-
lease the restrictions on choosing orbits and achieve better nonlinearity of the
constructed RSBFs with maximum AI . We present instances of RSBFs having
nonlinearities equal to or slightly less than 2n−1 − 2

n−1
2 for odd n, 5 ≤ n ≤ 15.

2 Basics of Boolean functions

Let us denote Vn = {0, 1}n. An n-variable Boolean function f can be seen as a
mapping f : Vn → V1. By truth table of a Boolean function on n input variables
(x1, . . . , xn), we mean the 2n length binary string

f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), . . . , f(1, 1, · · · , 1)].

We denote the set of all n-variable Boolean functions as Bn. Obviously |Bn| =
22n

. The Hamming weight of a binary string T is the number of 1’s in T , denoted



by wt(T ). An n-variable Boolean function f is said to be balanced if its truth table
contains an equal number of 0’s and 1’s, i.e., wt(f) = 2n−1. Also, the Hamming
distance between two equidimensional binary strings T1 and T2 is defined by
d(T1, T2) = wt(T1 ⊕ T2), where ⊕ denotes the addition over GF (2). Support of
f denoted by supp(f) is the set of inputs x ∈ Vn such that f(x) = 1.

An n-variable Boolean function f(x1, . . . , xn) can be considered to be a mul-
tivariate polynomial over GF (2). This polynomial can be expressed as a sum of
products representation of all distinct k-th order products (0 ≤ k ≤ n) of the
variables. More precisely, f(x1, . . . , xn) can be written as

a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

aijxixj ⊕ . . .⊕ a12...nx1x2 . . . xn,

where the coefficients a0, ai, aij , . . . , a12...n ∈ {0, 1}. This representation of f is
called the algebraic normal form (ANF) of f . The number of variables in the
highest order product term with nonzero coefficient is called the algebraic degree,
or simply the degree of f and denoted by deg(f).

Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belonging to Vn and x · ω =
x1ω1 ⊕ . . . ⊕ xnωn. Let f(x) be a Boolean function on n variables. Then the
Walsh transform of f(x) is an integer valued function over Vn which is defined
as

Wf (ω) =
∑

x∈Vn

(−1)f(x)⊕x·ω.

The Walsh spectrum of f is the multiset {Wf (ω)|ω ∈ Vn}. In terms of Walsh
spectrum, the nonlinearity of f is given by

nl(f) = 2n−1 − 1
2

max
ω∈Vn

|Wf (ω)|.

Symmetric Boolean functions n-variable are the ones which are invariant
under the action of the Symmetric group Sn on Vn, i.e., for µ, ν ∈ Vn, if
wt(µ) = wt(ν) then f(µ) = f(ν). In [17], analysis of the Walsh spectra of
the Symmetric functions has been done in terms of Krawtchouk polynomial.
Krawtchouk polynomial [28, Page 151, Part I] of degree i is given by Ki(k, n) =∑i

j=0(−1)j
(
k
j

)(
n−k
i−j

)
, i = 0, 1, . . . , n. It is known that for a fixed ω ∈ Vn,

such that wt(ω) = k,
∑

wt(x)=i(−1)ω·x = Ki(k, n). Thus it can be checked
that if f is an n-variable Symmetric function, then for wt(ω) = k, Wf (ω) =∑n

i=0(−1)ref (i)Ki(k, n), where ref (i) is the value of f at an input of weight i.
It is also known that for a symmetric function f on n variables and µ, ν ∈ Vn,
Wf (µ) = Wf (ν), if wt(µ) = wt(ν). Note that Ki(k, n) is the (i, k)-th element of
the Krawtchouk matrix (KRM ) of order (n+1)× (n+1). Thus Walsh spectrum
of f can be determined as (ref [0], . . . , ref [n])× (KRM [0], . . . ,KRM [n]), where
each KRM [k], (0 ≤ k ≤ n) is a column vector of KRM .

A nonzero n-variable Boolean function g is called an annihilator of an n-
variable Boolean function f if f ∗ g = 0. We denote the set of all annihilators of
f by AN(f). Then algebraic immunity of f , denoted by AIn(f), is defined [33]



as the degree of the minimum degree annihilator among all the annihilators of
f or 1 ⊕ f , i.e., AIn(f) = min{deg(g) : g 6= 0, g ∈ AN(f) ∪ AN(1 ⊕ f)}. We
repeat that the maximum possible algebraic immunity of f is dn

2 e.

2.1 Rotation Symmetric Boolean Functions

We consider the action of the Cyclic group Cn on the set Vn. Let x = (x1, . . . , xn)
be an element of Vn and ρi

n ∈ Cn, where i ≥ 0. Then Cn acts on Vn as follows,

ρi
n(x1, x2, . . . , xn−1, xn) = (x1+i, x2+i, . . . , xn−1+i, xn+i),

where k + i (1 ≤ k ≤ n) takes the value k + i mod n with the only excep-
tion that when k + i ≡ 0 mod n, then we will assign k + i mod n by n instead
of 0. This is to cope up with the input variable indices 1, . . . , n for x1, . . . , xn.
An n-variable Boolean function f is called Rotation Symmetric Boolean function
(RSBF) if it is invariant under the action of Cn, i.e., for each input (x1, . . . , xn) ∈
Vn, f(ρi

n(x1, . . . , xn)) = f(x1, . . . , xn) for 1 ≤ i ≤ n − 1. We denote the or-
bit generated by x = (x1, . . . , xn) under this action as Ox, therefore, Ox =
{ρi

n(x1, . . . , xn)|1 ≤ i ≤ n} and the number of such orbits is denoted by gn. Thus
the number of n-variable RSBFs is 2gn . Let φ be Euler’s phi -function, then it
can be shown by Burnside’s lemma that (see also [36]) gn = 1

n

∑
k|n φ(k) 2

n
k .

An orbit is completely determined by its representative element Λn,i, which
is the lexicographically first element belonging to the orbit [37] and we define
the weight of the orbit is exactly the same as weight of the representative el-
ement. These representative elements are again arranged lexicographically as
Λn,0, . . . , Λn,gn−1. Note that for any n, Λn,0 = (0, 0, . . . , 0) (the all zero input),
Λn,1 = (0, 0, . . . , 1) (the input of weight 1) and Λn,gn−1 = (1, 1, . . . , 1) (the all 1
input). Thus an n-variable RSBF f can be represented by the gn length string
f(Λn,0), . . . , f(Λn,gn−1) which we call RSTT of f and denote it by RSTTf .

In [37] it was shown that the Walsh spectrum of an RSBF f takes the same
value for all elements belonging to the same orbit, i.e., Wf (µ) = Wf (ν) if µ ∈
Oν . Therefore the Walsh spectrum of f can be represented by the gn length
vector (waf [0], . . . , waf [gn]) where waf [j] = Wf (Λn,j). In analyzing the Walsh
spectrum of an RSBF, the nA matrix has been introduced [37]. The matrix
nA = (nAi,j)gn×gn is defined as nAi,j =

∑
x∈OΛn,i

(−1)x·Λn,j , for an n-variable
RSBF. Using this gn × gn matrix, the Walsh spectrum for an RSBF can be
calculated as Wf (Λn,j) =

∑gn−1
i=0 (−1)f(Λn,i)

nAi,j .

Let’s have an example.

Example 1. Take n = 5. Then gn = 8. The orbit representative elements are re-
spectively {(0, 0, 0, 0, 0), (0, 0, 0, 0, 1), (0, 0, 0, 1, 1), (0, 0, 1, 0, 1), (0, 0, 1, 1, 1), (0, 1, 0, 1,
1), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1)}. Then the matrix nA is as follows



266666666664

1 1 1 1 1 1 1 1
5 3 1 1 −1 −1 −3 −5
5 1 1 −3 1 −3 1 5
5 1 −3 1 −3 1 1 5
5 −1 1 −3 −1 3 1 −5
5 −1 −3 1 3 −1 1 −5
5 −3 1 1 1 1 −3 5
1 −1 1 1 −1 −1 1 −1

377777777775

3 Existing results related to annihilators

We take the degree graded lexicographic order “<dgl” on the set of all mono-
mials on n-variables {xm1 . . . xmk

: 1 ≤ k ≤ n, 1 ≤ m1, . . . ,mk ≤ n}, i.e.,
xm1xm2 . . . xmk

< xr1xr2 . . . xrl
if either k < l or k = l and there is 1 ≤ p ≤ k

such that mk = rk, mk−1 = rk−1, . . . ,mp+1 = rp+1 and mp < rp. For example,
for n = 7, x1x3x6 <dgl x1x2x4x5 and x1x3x6 <dgl x1x4x6.

Let vn,d(x) = (m1(x),m2(x), . . . ,mPd
i=0 (n

i)(x)), where mi(x) is the i-th

monomial as in the order (<dgl) evaluated at the point x = (x1, x2, . . . , xn).

Definition 1. Given a Boolean function f on n-variables, let Mn,d(f) be the
wt(f)×

∑d
i=0

(
n
i

)
matrix defined as

Mn,d(f) =


vn,d(P1)
vn,d(P2)

...
vn,d(Pwt(f))


where 0 ≤ d ≤ n, Pi ∈ supp(f), 1 ≤ i ≤ wt(f) and P1 <dgl P2 <dgl · · · <dgl

Pwt(f).

Let f be an n-variable Boolean function. Let a nonzero n-variable function g
be an annihilator of f , i.e., f(x1, . . . , xn)∗g(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈
Vn. That means,

g(x1, . . . , xn) = 0 if f(x1, . . . , xn) = 1. (1)

If the degree of the function g is less than equal to d, then the ANF of g is of
the form

g(x1, . . . , xn) = a0 +
n∑

i=0

aixi + · · ·+
∑

1≤i1<i2···<id≤n

ai1,...,id
xi1 · · ·xid

,

where a0, a1, . . . , a12, . . . an−d+1,...,n are from {0, 1} not all zero. Then the rela-
tion 1 gives a homogeneous linear equation

a0 +
n∑

i=0

aixi + · · ·+
∑

1≤i1<i2···<id≤n

ai1,...,id
xi1 · · ·xid

= 0, (2)



with a0, a1, . . . , a12, . . . an−d+1,...,n as variables for each input (x1, . . . , xn) ∈
supp(f) and thus wt(f) homogeneous linear equations in total. If this system of
equations has a nonzero solution, then g having the coefficients in its ANF which
is the solution of this system of equations is an annihilator of f of degree less
than or equal to d. Note that in this system of equations Mn,d(f) is the coeffi-
cient matrix. Then it is clear that if the rank of Mn,d(f) is equal to

∑d
i=0

(
n
i

)
, f

does not posses any annihilator. If for d = bn
2 c, both of f and 1⊕ f do not have

any annihilator of degree less than or equal to d, then f has maximum algebraic,
i.e., dn

2 e.

Theorem 1. [16] Let g be an n-variable Boolean function defined as g(x) = 1 if
and only if wt(x) ≤ d for 0 ≤ d ≤ n. Then Mn,d(g)−1 = Mn,d(g), i.e., Mn,d(g)
is a self inverse matrix.

3.1 Existence of RSBFs with maximum AI on odd variables

Let us start with a few available results on n-variable Boolean functions with
maximum AI . Henceforth we will consider the <dgl ordering of the inputs of Vn

unless stated.

Proposition 1. [13] An odd variable Boolean function with maximum AI must
be balanced.

Proposition 2. [24] Let f be an n (odd) variable Boolean function. Then AI of
f is dn

2 e if and only if f is balanced and Mn,dn
2 e−1(f) has full rank.

Definition 2. The n (odd) variable Boolean function f with

f(X) =

{
a if wt(X) ≤ dn

2 e − 1,

a⊕ 1 if wt(X) ≥ dn
2 e.

is called the Majority function.
Note that the Majority function is a Symmetric Boolean function and it has

been proved [5, 17] that this function has maximum algebraic immunity, i.e., dn
2 e.

We take a = 1 and call the corresponding n-variable Majority function as Gn.
Weight of this function is 2n−1. Then both of the matrices Mn,dn

2 e−1(Gn) and
Mn,dn

2 e−1(1⊕Gn) are of the order 2n−1 × 2n−1 and nonsingular. Now we take
a look at a construction of an n-variable Boolean function having maximum AI
by modifying some outputs of the Majority function Gn.

Let {X1, . . . , X2n−1} and {Y1, . . . , Y2n−1} be the support of Gn and 1 ⊕ Gn

respectively. Suppose Xj = {Xj1 , . . . , Xjk
} and Y i = {Yi1 , . . . , Yik

}. Construct
the function Fn as

Fn(X) =

{
1⊕Gn(X), if X ⊂ Xj ∪ Y i,

Gn(X), elsewhere.

In rest of the paper, we denote an n-variable Boolean function constructed as
above by Fn.



Proposition 3. The function Fn has maximum AI if and only if the two k-sets
Xj and Y i be such that Mn,dn

2 e−1(Fn) is nonsingular.

Proof. It follows from Proposition 2. ut

This idea was first proposed in [16] and using this idea, a few classes of
Boolean functions on odd variables with maximum AI have been demonstrated
in [25].

Let’s have a quick look at a result from linear algebra.

Theorem 2. Let V be a vector space over the field F of dimension τ and
{α1, . . . , ατ} and {β1, . . . , βτ} are two bases of V . Then for any k (1 ≤ k ≤ τ),
there will be a pair of k-sets {βa1 , . . . , βak

} and {αb1 , . . . , αbk
} such that the set

{α1, . . . , ατ} ∪ {βa1 , . . . , βak
} \ {αb1 , . . . , αbk

} will be a basis of V .

The row vectors vn,bn
2 c(X1), . . . , vn,bn

2 c(X2n−1) of Mn,bn
2 c(Gn) form a basis

of the vector space Vn−1. Similarly the row vectors vn,bn
2 c(Y1), . . . , vn,bn

2 c(Y2n−1)
of Mn,bn

2 c(1 ⊕ Gn) also form a basis of the vector space Vn−1. By finding two
k-sets (which always exist by Theorem 2) {vn,bn

2 c(Xj1), . . . , vn,bn
2 c(Xjk

)} and
{vn,bn

2 c(Yi1), . . . , vn,bn
2 c(Yik

)}, one can construct an n-variable Boolean function
Fn with maximum algebraic immunity if and only if the corresponding matrix
Mn,bn

2 c(Fn) is nonsingular. Complexity of checking the nonsingularity of the

matrix Mn,bn
2 c(Fn) is O((

∑bn
2 c

t=0

(
n
t

)
)3), i,e., this construction will take huge time

for larger n. But this task can be done with lesser effort by forming a matrix,
W = Mn,bn

2 c(1⊕Gn)× (Mn,bn
2 c(Gn))−1 and checking a sub matrix of it. Since

(Mn,bn
2 c(Gn))−1 = Mn,bn

2 c(Gn), then W = Mn,bn
2 c(1⊕Gn)×Mn,bn

2 c(Gn). We
have the following proposition.

Proposition 4. [16] Let A be a nonsingular m × m binary matrix where the
row vectors are denoted as v1, . . . , vm. Let U be a k ×m matrix, k ≤ m, where
the vectors are denoted as u1, . . . , uk. Let Z = UA−1, be a k×m binary matrix.
Consider that a matrix A′ is formed from A by replacing the rows vi1 , . . . , vik

of
A by the vectors u1, . . . , uk. Further consider the k × k matrix Z ′ is formed by
taking the j1-th, j2-th, . . ., jk-th columns of Z. Then A′ is nonsingular if and
only if Z ′ is nonsingular.

From the construction of Fn it is clear that it is balanced. Now construct
the matrix W = Mn,bn

2 c(1 ⊕ Gn) × Mn,bn
2 c(Gn). Consider A to be the ma-

trix Mn,bn
2 c(Gn) and let U be the matrix formed by i1-th, . . . , ik-th rows of

Mn,bn
2 c(1 ⊕ Gn) which are the row vectors vn,bn

2 c(Yi1), . . . , vn,bn
2 c(Yik

) respec-
tively. Now replace the j1-th, . . ., jk-th rows of Mn,bn

2 c(Gn) which are respec-
tively the row vectors vn,bn

2 c(Xj1), . . . , vn,bn
2 c(Xjk

) by the rows of U and form the
new matrix A′. Note that A′ is exactly the Mn,bn

2 c(Fn) matrix. Let W|Y i|×|Xj | be
the matrix formed by taking i1-th, . . . , ik-th rows and j1-th, . . ., jk-th columns
of W . Then Mn,bn

2 c(Fn) is nonsingular if and only if W|Y i|×|Xj | is nonsingular.
Thus we have the following theorem.

Theorem 3. The function Fn has maximum algebraic immunity if and only if
the sub matrix W|Y i|×|Xj | is nonsingular.



The following proposition characterizes W .

Proposition 5. [16] The (q, p)-th element of the matrix W is given by

W(q,p) =


0, if WS(Xp) 6⊆ WS(Yq),
bn

2 c−wt(Xp)∑
t=0

(
wt(Yq)− wt(Xp)

t

)
mod 2, else ;

where WS((x1, . . . , xn)) = {i : xi = 1} ⊆ {1, . . . , n}.

4 New class of RSBFs with maximum AI

Since up to 3 variables all the RSBFs are symmetric, we consider n ≥ 5.

Proposition 6. Given odd n, all the orbits Oµ generated by µ = (µ1, . . . , µn) ∈
Vn of weight bn

2 c or dn
2 e have n elements.

Proof. From [36], it is known that if gcd(n, wt(µ)) = 1, then the orbit Oµ con-
tains n elements. Since gcd(n, bn

2 c) = gcd(n, dn
2 e) = 1, the result follows. ut

Now we present the construction.

Construction 1

1. Take odd n ≥ 5.
2. Take an element x ∈ Vn of weight bn

2 c and generate the orbit Ox.
3. Choose an orbit Oy by an element y ∈ Vn of weight dn

2 e such that

for each x′ ∈ Ox there is a unique y′ ∈ Oy where WS(x′) ⊂ WS(y′).

4. Construct

Rn(X) =

{
Gn(X)⊕ 1, if X ∈ Ox ∪Oy,

Gn(X), elsewhere .

Henceforth, we will consider Rn as the function on n (≥ 5 and odd) variables
obtained from Construction 1. We have the following theorem.

Theorem 4. The function Rn is an n-variable RSBF with maximum AI .

Proof. Rn is obtained by toggling all outputs of Gn corresponding to the inputs
belonging to the two orbits Ox and Oy. Therefore Rn is an RSBF on n variables.
By Proposition 6, we have |Ox| = |Oy|. Also it is clear that Gn(X) = 1 for all
X ∈ Ox and Gn(X) = 0 for all X ∈ Oy. So wt(Rn) = 2n−1−|Ox|+ |Oy| = 2n−1.
Thus Rn is a balanced RSBF on n-variables.

Let us now investigate the matrix W|Oy|×|Ox|. We reorder the elements in Ox

and Oy as x(1), . . . , x(|Ox|) and y(1), . . . , y(|Oy|) respectively where WS(x(p)) ⊂
WS(y(p)), for all 1 ≤ p ≤ |Ox| = |Oy|. As WS(x(p)) 6⊆ WS(y(q)) for all q ∈
{1, . . . , |Oy|} \ {p}, then by Proposition 5, the value of W(q,p) = 0, for all q ∈



{1, . . . , |Oy|}\{p}. Again by Proposition 5, the value of W(p,p) can be determined
as

W(p,p) =
bn

2 c−wt(x(p))∑
t=0

(
wt(y(p))− wt(x(p))

t

)
=

bn
2 c−b

n
2 c∑

t=0

(
dn

2 e − bn
2 c

t

)
= 1.

Thus the matrix W|Oy|×|Ox| is a diagonal matrix where all the diagonal elements
are all equal to 1. Hence W|Oy|×|Ox| is nonsingular. Therefore Theorem 3 implies
that Rn has maximum AI . ut

Example 2. Take n = 5. Consider x = (1, 0, 0, 1, 0) and y = (1, 0, 0, 1, 1) and
generate the orbits

Ox = {(1, 0, 0, 1, 0), (0, 1, 0, 0, 1), (1, 0, 1, 0, 0), (0, 1, 0, 1, 0), (0, 0, 1, 0, 1)} and
Oy = {(1, 0, 0, 1, 1), (1, 1, 0, 0, 1), (1, 1, 1, 0, 0), (0, 1, 1, 1, 0), (0, 0, 1, 1, 1)}.

Here, for each x′ ∈ Ox, there is a unique y′ ∈ Oy such that WS(x′) ⊂ WS(y′).
Precisely,

WS((1, 0, 0, 1, 0)) ⊂ WS((1, 0, 0, 1, 1)), WS((0, 1, 0, 0, 1)) ⊂ WS((1, 1, 0, 0, 1)),
WS((1, 0, 1, 0, 0)) ⊂ WS((1, 1, 1, 0, 0)), WS((0, 1, 0, 1, 0)) ⊂ WS((0, 1, 1, 1, 0)),
WS((0, 0, 1, 0, 1)) ⊂ WS((0, 0, 1, 1, 1)).

Therefore by Theorem 4, the function

Rn(X) =

{
Gn(X)⊕ 1, if X ∈ Ox ∪Oy,

Gn(X), elsewhere ,

is a 5-variable RSBF with maximum AI , i.e., 3.

It is known [27] that for an n (odd) variable Boolean function f with maxi-
mum AI , we have nl(f) ≥ 2n−1 −

(
n−1
bn

2 c
)
. Therefore nonlinearity of the function

Rn will be at least 2n−1 −
(
n−1
bn

2 c
)
. Let us now examine the exact nonlinearity of

Rn.

Theorem 5. The nonlinearity of the function Rn is 2n−1 −
(
n−1
bn

2 c
)

+ 2.

Proof. As per the assumptions of Construction 1, n ≥ 5 and it is odd; and
weights of the orbits Ox and Oy are respectively bn

2 c and dn
2 e. Now Gn being a

symmetric function, it is also RSBF. So Rn can be viewed as a function, which is
obtained by toggling the outputs of the RSBF Gn corresponding to the orbit Ox

and Oy. From [17], we know that nl(Gn) = 2n−1 −
(
n−1
bn

2 c
)
. Also it is known that

the maximum absolute Walsh spectrum value of Gn, i.e., 2
(
n−1
bn

2 c
)

occurs at the
inputs corresponding to the orbits of weight 1 and n. We denote an element of Vn

by Λn. Note that when, wt(Λn) = n, the value of WGn(Λn) is −2
(
n−1
bn

2 c
)

or 2
(
n−1
bn

2 c
)

according as bn
2 c is even or odd, and for (wt(Λn) = 1), WGn(Λn) = −2

(
n−1
bn

2 c
)
.



Let us first find the relation between the values of WRn
(Λn) and WGn

(Λn).

WRn(Λn) =
X

ζ∈Vn\{Ox∪Oy}

(−1)Rn(ζ)(−1)ζ·Λn

+
X

ζ∈Ox

(−1)Rn(ζ)(−1)ζ·Λn

+
X

ζ∈Oy

(−1)Rn(ζ)(−1)ζ·Λn

=
X

ζ∈Vn\{Ox∪Oy}

(−1)Gn(ζ)(−1)ζ·Λn

+
X

ζ∈Ox

(−1)1⊕Gn(ζ)(−1)ζ·Λn

+
X

ζ∈Oy

(−1)1⊕Gn(ζ)(−1)ζ·Λn

=
X

ζ∈Vn\{Ox∪Oy}

(−1)Gn(ζ)(−1)ζ·Λn

−
X

ζ∈Ox

(−1)Gn(ζ)(−1)ζ·Λn

−
X

ζ∈Oy

(−1)Gn(ζ)(−1)ζ·Λn

=
X

ζ∈Vn

(−1)Gn(ζ)(−1)ζ·Λn

− 2
X

ζ∈Ox

(−1)1(−1)ζ·Λn

− 2
X

ζ∈Oy

(−1)0(−1)ζ·Λn

= WGn(Λn) + 2
X

ζ∈Ox

(−1)ζ·Λn

− 2
X

ζ∈Oy

(−1)ζ·Λn

(3)

Consider that wt(Λn) = 1. It can be proved that for any two orbits Oµ and
Oν of weight bn

2 c and dn
2 e respectively,

∑
ζ∈Oµ

(−1)ζ·Λ = 1 and
∑

ζ∈Oν
(−1)ζ·Λ =

−1. Thus
∑

ζ∈Ox
(−1)ζ·Λ = 1 and

∑
ζ∈Oy

(−1)ζ·Λ = −1. Therefore from Equation
3 we get, WRn

(Λn) = −2
(
n−1
bn

2 c
)

+ 4.
Let us now check the Walsh spectrum value WRn

(Λn) for wt(Λn) = n. We
do it in the following two cases.

CASE I : bn
2 c is even.

We have,
∑

ζ∈Ox
(−1)ζ·Λn

= |Ox| = n, since ζ ·Λn is bn
2 c which is even. Again

for ζ ∈ Oy, we have, ζ ·Λn = dn
2 e which is odd, so

∑
ζ∈Oy

(−1)ζ·Λn

= |Oy| = −n.
Therefore from Equation 3, we get WRn(Λn) = −2

(
n−1
bn

2 c
)
+2n+2n = −2

(
n−1
bn

2 c
)
+

4n.
CASE II : bn

2 c is odd.
Using the similar argument as applied in the previous case, we can show that∑

ζ∈Ox
(−1)ζ·Λn

= −n and
∑

ζ∈Oy
(−1)ζ·Λn

= n. Therefore from Equation 3, we
get WRn(Λn) = 2

(
n−1
bn

2 c
)
− 2n− 2n = 2

(
n−1
bn

2 c
)
− 4n.

Note that 2
(
n−1
bn

2 c
)

> 4n, except for the case n = 5. Therefore for both of the

cases and for n ≥ 7, |WRn
(Λn)| = 2

(
n−1
bn

2 c
)
−4n. Also 2

(
n−1
bn

2 c
)
−4n < 2

(
n−1
bn

2 c
)
−4, for

n ≥ 7. This implies that |WRn
(Λn)| ≤ |WRn

(∆n)| for n ≥ 7, where ∆n ∈ Vn is an
input of weight 1. For n = 5, 2

(
n−1
bn

2 c
)

= 12 and thus, WRn(Λn) = −8 = WRn(∆n).
Therefore, |WRn

(Λn)| ≤ |WRn
(∆n)| for all n ≥ 5.

Let us check the Walsh spectrum values of Rn at the other inputs, i.e., except
inputs of weight 1 and n. For n ≥ 7, the second maximum absolute value in the
Walsh spectrum of Gn occurs at the inputs of weight 3 and n − 2. The exact



value at weight 3 input is C = [
(n−3

n−1
2

)
−2

( n−3
n−1

2 −1

)
+

( n−3
n−1

2 −2

)
], whereas at the input

of weight n− 2, the exact value is C when bn
2 c is even and it is −C when bn

2 c is
odd. Equation 3 implies that when wt(Λn) = 3 or n− 2, |WRn

(Λn)| can attain
value maximum up to |WGn

(Λn)| + 4n, i.e.,
(n−3

n−1
2

)
− 2

( n−3
n−1

2 −1

)
+

( n−3
n−1

2 −2

)
+ 4n.

But it is clear that,
(n−3

n−1
2

)
−2

( n−3
n−1

2 −1

)
+

( n−3
n−1

2 −2

)
+4n ≤ 2

(
n−1
bn

2 c
)
−4 = |WRn

(∆n)|.
Now looking at the Matrix nA for n = 5, (Given in Example 1) we can

verify that for any choice of two orbits Ox and Oy assumed in Construction 1,
the absolute Walsh spectrum value of Rn, for all the inputs Λn of weight 3 is 8
which is equal to |WRn

(∆n)|.
Therefor for all n ≥ 5, maximum absolute Walsh Spectrum value of Rn is

2
(
n−1
bn

2 c
)
− 4. Hence, nl(Rn) = 2n−1 −

(
n−1
bn

2 c
)

+ 2. ut

5 Generalization of Construction 1

The idea of the Construction 1 can be generalized as follows.

Construction 2 Take orbits Oz1 , . . . , Ozk
with Gn(zi) = 1, for zi ∈ Vn, 1 ≤ i ≤

k and Ow1 , . . . , Owl
with Gn(wi) = 0 for wi ∈ Vn, 1 ≤ i ≤ l. Assume that,

1.
∑k

t=0 |Ozt
| =

∑l
t=0 |Owt

|.
2. for each x′ ∈ ∪k

t=0Ozt
there is a unique y′ ∈ ∪l

t=0Owt
such that WS(x′) ⊂

WS(y′).
3.

∑bn
2 c−wt(x′)

t=0

(
wt(y′)−wt(x′)

t

)
is odd, for any x′ ∈ ∪k

t=0Ozt
and corresponding

y′ ∪l
t=0 Owt such that WS(x′) ⊂ WS(y′).

Then construct,

R′
n(X) =

{
Gn(X)⊕ 1, if X ∈ {∪k

t=0Ozt
}

⋃
{∪l

t=0Owt
}

Gn(X), elsewhere .

Then we have the following theorem.

Theorem 6. The function R′
n is an n-variable RSBF with maximum AI .

Proof. Following the same argument as used in Theorem 4 we can prove that
W|∪k

t=0Ozt |×|∪l
t=0Owt |

is a diagonal matrix whose diagonal elements are all equal
to 1, i.e., it is nonsingular. Hence the proof. ut

Following is an example of an RSBF of this class.

Example 3. Take n = 7. Consider z1 = (0, 0, 0, 1, 1, 0, 1), z2 = (0, 0, 1, 0, 1, 0, 1)
and w1 = (0, 0, 0, 1, 1, 1, 1), w2 = (0, 0, 1, 0, 1, 1, 1) and generate the orbits

Oz1 = {(0, 0, 0, 1, 1, 0, 1), (0, 0, 1, 1, 0, 1, 0), (0, 1, 1, 0, 1, 0, 0), (1, 1, 0, 1, 0, 0, 0),
(1, 0, 1, 0, 0, 0, 1), (0, 1, 0, 0, 0, 1, 1), (1, 0, 0, 0, 1, 1, 0)};

Oz2 = {(0, 0, 1, 0, 1, 0, 1), (0, 1, 0, 1, 0, 1, 0), (1, 0, 1, 0, 1, 0, 0), (0, 1, 0, 1, 0, 0, 1),
(1, 0, 1, 0, 0, 1, 0), (0, 1, 0, 0, 1, 0, 1), (1, 0, 0, 1, 0, 1, 0)};



Ow1 = {(0, 0, 0, 1, 1, 1, 1), (0, 0, 1, 1, 1, 1, 0), (0, 1, 1, 1, 1, 0, 0), (1, 1, 1, 1, 0, 0, 0),
(1, 1, 1, 0, 0, 0, 1), (1, 1, 0, 0, 0, 1, 1), (1, 0, 0, 0, 1, 1, 1)};

Ow2 = {(0, 0, 1, 0, 1, 1, 1), (0, 1, 0, 1, 1, 1, 0), (1, 0, 1, 1, 1, 0, 0), (0, 1, 1, 1, 0, 0, 1),
(1, 1, 1, 0, 0, 1, 0), (1, 1, 0, 0, 1, 0, 1), (1, 0, 0, 1, 0, 1, 1)}.

Here for each x′ ∈ Oz1 ∪ Oz2 , there exists a unique y′ ∈ Ow1 ∪ Ow2 such that
WS(x′) ⊂ WS(y′) and

∑bn
2 c−wt(x′)

t=0

(
wt(y′)−wt(x′)

t

)
is odd. Then construct,

R′
n(X) =

{
Gn(X)⊕ 1, if X ∈ {Oz1 ∪Oz2}

⋃
{Ow1 ∪Ow2}

Gn(X), elsewhere .

Then by Theorem 6, R′
n is an 7-variable RSBF with maximum AI , i.e., 4.

As in Construction 2, outputs of Gn are toggled at more inputs, one can expect
better nonlinearity than the Construction 1.

For 7-variable functions with maximum AI 3, the lower bound on nonlinearity
is 44 [27] and that is exactly achieved in the existing theoretical construction [14,
17, 5]. Our Construction 1 provides the nonlinearity 46. Further we used Con-
struction 2 to get all possible functions R′

n and they provide the nonlinearity
48.

5.1 Further generalization

We further release the restrictions in Construction 2 in choosing the orbits
Oz1 , . . . , Oz2 and Ow1 , . . . , Owk

such that for each x′ ∈ ∪k
t=0Ozt

there is a unique
y′ ∈ ∪l

t=0Owt
such that WS(x′) ⊂ WS(y′). The construction is as follows

Construction 3 Take n ≥ 5 and odd. Consider the orbits Oz1 , . . . , Ozk
and

Ow1 , . . . , Owk
such that the sub matrix W|∪k

t=0Ozt |×|∪l
t=0Owt |

is nonsingular. Then
construct,

R′′
n(X) =

{
Gn(X)⊕ 1, if X ∈ {∪k

t=0Ozt
}

⋃
{∪l

t=0Owt
}

Gn(X), elsewhere .

Then we have the following theorem.

Theorem 7. The function R′′
n is an n-variable RSBF with maximum AI .

Construction 3 will provide all the RSBFs with maximum AI . In this case we
need a heuristic to search through the space of RSBFs with maximum AI as the
exhaustive search may not be possible as number of input variables n increases.

One may note that it is possible to use these techniques to search through
the space of general Boolean functions, but that space is much larger (22n

)
compared to the space of RSBFs (≈ 2

2n

n ) and getting high nonlinearity after a
small amount of search using a heuristic is not expected.

We present a simple form of heusristic as follows that we run for several
iterations.



1. Start with a RSBF n having maximum AI using Construction 1.
2. We choose two orbits of same sizes having different output values and toggle

the outputs corresponding to both the orbits (this is to keep the function
balanced).

3. If the modified function is of maximum AI and having better nonlinearity
than the previous ones, then we store that as the best function.

By this heuristic, we achieve 7, 9, 11 variable RSBFs with maximum possible
AI having nonlinearities 56, 240, 984 respectively with very small amount of
search. Note that these nonlinearities are either equal or close to 2n−1 − 2

n−1
2 .

We are currently working on better search heuristics.

6 Conclusion

In this paper, we present the construction (Construction 1) of Rotation Symmet-
ric Boolean functions on n ≥ 5 (odd) variables with maximum possible algebraic
immunity. Then we generalize this construction idea. We determine the nonlin-
earity of the RSBFs constructed in Construction 1 and find that the nonlinearity
is 2 more than the lower bound of nonlinearity of n (odd) variable Boolean func-
tions with maximum algebraic immunity. Prior to our construction, the existing
theoretical constructions could achieve only the lower bound. We also included
little amount of search with the construction method to get RSBFs having max-
imum possible AI and very high nonlinearity. With minor modifications, our
method will work for RSBFs on even number of variables. This will be available
in the full version of this paper.
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