
Fully Resilient Traitor Tracing Scheme
using Key Update

Eun Sun Yoo1, Koutarou Suzuki2 and Myung-Hwan Kim1

1 Department of Mathematical Science, Seoul National University
San56-1 Shinrim-dong, Gwanak-gu, Seoul, 151-747, Korea

eunsun@math.snu.ac.kr
2 NTT Laboratories, Nippon Telegraph and Telephone Corporation

3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585, Japan
suzuki.koutarou@lab.ntt.co.jp

Abstract. This paper proposes fully resilient traitor tracing schemes which have no
restriction about the number of traitors. By using the concept of key update, the
schemes can make the pirate decoders useless within some time-period, which will be
called life-time of the decoder. There is a trade-off between the size of ciphertext and
life-time of pirate decoders.

1 Introduction

A traitor tracing scheme is a encryption scheme that can trace the traitors who create
a pirate decoder. Some traitor tracing schemes, called trace-and-revoke schemes,
have the property of broadcast encryption [1, 9]. Since Chor, Fiat and Naor [7]
introduced the notion of traitor tracing, many traitor tracing schemes are proposed
[12, 17, 2, 19, 18, 16, 13, 10, 14, 15, 8, 20, 23, 11, 6, 3–5].

In these schemes, the CS (Complete Subset) and SD (Subset Difference) schemes
[16] are practically important broadcast encryption schemes, and adopted for the
copyright management system of next generation DVD, i.e., Blu-ray Disc. These
schemes depend on no computational assumption, while achieving good efficiency
and fully resiliency. However, these schemes have drawbacks from the viewpoint
of traitor tracing. In these scheme, some keys are shared among plural users, so
if the traitor makes a pirate decoder using the shared keys, the traitor cannot be
determined from the keys stored in the pirate decoder.

In this paper, we propose a fully resilient traitor tracing scheme using key update
that provides partial solution of this problem. In our scheme, the keys shared among
several users are updated and re-distributed to relevant users. After the shared keys
are updated, the pirate decoders created using the shared keys, from which the
traitor cannot be traced, becomes useless. For re-distribution of updated keys, we
encrypt updated keys for all relevant users. The period of updating, called life time
of pirate decoder, can be variable, and there is a trade-off between life time and
costs of re-distribution of updated keys.

To reduce the costs of re-distribution of updated keys, we also propose a scheme
using polynomial secret sharing and bilinear map. In the scheme, each user’s key is
a secret-share of the secret keys, and a message is encrypted with the secret key and
randomization factor. By using the bilinear map, user can decrypt the ciphertext.
By combining these two schemes, we can achieve efficient key re-distribution.

All previous traitor tracing provide only traceability of a traitor when a pirate
decoder is captured. In our schemes, it is possible to make all pirate keys in the
decoder useless as well as to detect a traitor. So in the case that a pirate decoder
contains only shared keys of users, we can also make the decoder useless. Although
we cannot catch any pirate decoder, we may extinguish all decoders containing same
pirate keys. It is the first work in the sense of incapacitating traitors’ pirate keys.

Our traitor tracing scheme, Improved Scheme, satisfies this properties with just
O(
√

n) size ciphertexts, where n is the number of users. Also Basic and Improved
Scheme can achieve revocation property by using encryption of CS method after
updating keys.

In section 2, we provide security definitions. In section 3, we propose a scheme
using key update to make pirate decoder useless. In section 4, we propose a scheme
using bilinear map, and we combine these schemes to reduce the length of ciphertext.
In section 5, we conclude paper.

Related Works. The concept of traitor tracing was first introduced by Chor, Fiat
and Naor [7] in 1994, and later in 1998 the threshold tracing scheme and public
key traitor tracing scheme for practical purpose were suggested by Naor and Pinkas
[17] and Kurosawa and Desmedt [12], respectivley. These schemes are k-resilient
tracing schemes which allow the detection at least one traitor even if at most k
traitors collude when a pirate decoder is captured. In 1999, Boneh and Franklin [2]
proposed a k-resilient public key tracing scheme with 2k size ciphertexts. Kiayias and
Yung [14] in 2002 described a black box tracing scheme with constant transmission
rate for sufficiently long messages, where the transmission rate expresses the ratio of
ciphertext size over plaintext size. This scheme was improved by Chabnne et al. [6]
in 2005 to allow the public traceability. However in the schemes, for fully resilient
tracing the cipher-size should be O(n), where n is the number of total users. In
2006, Boneh et al. [4] proposed a fully resilient public key tracing scheme with 2

√
n

size public key, 6
√

n size ciphertexts and constant size private keys. This scheme
achieves 1 transmission rate for long messages.

The tracing mechanism can be combined with broadcast encryption to obtain
trace and revoke schemes. Naor and Pinkas [18] in 2000 suggested a trace and
revoke scheme using the polynomial interpolation method. The first practical trace
and revoke scheme was proposed by Naor et al. [16] in 2001, called the Complete
Subtree (CS) and Subset Difference (SD) methods. The CS and SD methods with

short ciphertext size are fully resilient, but threshold tracing schemes. Boneh and
Waters [5] described a fully resilient public key trace and revoke scheme achieving
public traceability based on [3] and [4]. This scheme has roughly 9

√
n size public

key, 6
√

n size ciphertexts, and
√

n size private keys.

2 Definition of Traitor Tracing Scheme using Key Update

In this section, we provide the security definition of traitor tracing scheme using
key update. In the scheme, each user has two types of keys, long-term key and
short-term key. The short-term keys can be shared among plural decoders, and used
for efficient broadcast encryption, e.g., shared keys realize good efficiency in CS
broadcast encryption scheme. The long-term keys are used for secure short-term
key update, and are distinct for each decoder so can be used for traitor tracing. The
short-term keys can be updated securely by the key update process. In this time,
pirate decoders that do not have any long-term key are made useless by the key
update process. The long-term keys are non-incriminating, i.e., one cannot obtain
the other long-term key from several long-term keys. Thus, the traitor who create
a pirate decoder can be traced via the long-term key inside the pirate decoder. By
using the framework, we can combine efficient broadcast encryption using the shared
short-term keys and fully resilient trator tracing using the long-term keys.

Syntax. A traitor tracing scheme using key update is the tuple of algorithms, Π =
(Gen,Update, Enc, Dec) described as follows.

1. Gen, the key generation algorithm, is a probabilistic polynomial-time algorithm
that takes security parameter l and the number of users n which is polynomial in
k, and outputs long-term keys {Ki}i=0,...,n−1 and short-term keys {ki}i=0,...,n−1

for n users.
{Ki, ki}i=0,...,n−1 ← Gen(1l, n).

2. Update, the key update algorithm, is a probabilistic polynomial-time algorithm
that takes long-term and short-term keys {Ki, ki}i=0,...,n−1 and index i of user
whose short-term key is updated, and outputs updated short-term keys {k′i}i=0,...,n−1

{k′i}i=0,...,n−1 ← Update({Ki, ki}i=0,...,n−1, i).

3. Enc, the encryption algorithm, is a probabilistic polynomial-time algorithm that
takes updated short-term keys {k′i}i=0,...,n−1, long-term and short-term keys
{Ki, ki}i=0,...,n−1, and index i of user whose short-term key is updated, and
outputs ciphertext c

c ← Enc({k′i}i=0,...,n−1, {Ki, ki}i=0,...,n−1, i).

4. Dec, the decryption algorithm, is a polynomial-time algorithm that takes cipher-
text c, long-term and short-term keys Kj , kj of user j, and index j of the user,
and outputs updated short-term key k′j of user j

k′j ← Dec(c,Kj , kj , j).

Correctness. A traitor tracing scheme using key update Π must satisfy the fol-
lowing conditions. For every l, n, i and j, if {Ki, ki}i=0,...,n−1 ← Gen(1l, n) and
{k′i}i=0,...,n−1 ← Update({Ki, ki}i=0,...,n−1, i), then

k′j = Dec(Enc({k′i}i=0,...,n−1, {Ki, ki}i=0,...,n−1, i), Kj , kj , j).

Indistinguishability. We consider the following game of adversary A, that models a
pirate decoder that does not have long-term key, against a traitor tracing scheme
using key update Π.

At the beginning of the game, long-term and short-term keys {Ki, ki}i=0,...,n−1 ←
Gen(1l, n) are generated, and A is given n, i, and ki. A may ask query {k0

i , k
1
i }i=0,...,n−1

only once to challenger C. The challenger C flips coin b ∈ {0, 1} and answers
c = Enc({kb

i}i=0,...,n−1, {Ki, ki}i=0,...,n−1, i). Finally, A outputs bit b′. When the
game is defined in the random oracle model, A may access the random oracle poly-
nomial number of times at any moment.

We define the advantage Advind
Π (A) of adversary A against scheme Π as

∣∣∣∣Pr
[{Ki, ki}i=0,...,n−1 ← Gen(1l, n),
b′ ← AC(n, i, ki)

: b = b′
]
− 1

2

∣∣∣∣

where the probability is taken over the choice of hidden bit b and the coin tosses of
Gen, Enc and A.

Definition 1. We say that a traitor tracing scheme using key update Π is indis-
tinguishable if, for every probabilistic polynomial-time adversary A, the advantage
Advind

Π (A) is negligible.

Fully resilient Non-incrimination. We consider the following game of adversary A,
that models collusive n − 1 users who try to create the long-term key of the rest
user, against a traitor tracing scheme using key update Π.

At the beginning of the game, long-term and short-term keys {Ki, ki}i=0,...,n−1 ←
Gen(1l, n) are generated, and A is given n and n− 1 long-term keys {Ki}i=1,...,n−1.
Finally, A outputs long-term key K ′

0. When the game is defined in the random oracle
model, A may access the random oracle polynomial number of times at any moment.

We define the advantage Advnon−incr
Π (A) of adversary A against scheme Π as

Pr
[{Ki, ki}i=0,...,n−1 ← Gen(1l, n),
K ′

0 ← A(n, {Ki}i=1,...,n−1)
: K0 = K ′

0

]

where the probability is taken over the choice of hidden bit b and the coin tosses of
Gen and A.

Definition 2. We say that a traitor tracing scheme using key update Π has fully
resilient non-incriminating if, for every probabilistic polynomial-time adversary A,
the advantage Advnon−incr

Π (A) is negligible.

3 Proposed Traitor Tracing Scheme using Key Update

In this section, we propose our first traitor tracing scheme called Basic Scheme based
on CS scheme [16]. This scheme is a new traitor tracing scheme without any number
theoretic computational assumption. This scheme is a fully resilient scheme based
on a tree structure which has no restriction about the number of traitors. By using
the concept of updating keys, this method gives a partial solution about a problem
of threshold traitor tracing schemes like CS and SD. These threshold traitor tracing
schemes have a serious problem if a pirate decoder contains only partial keys of
traitors. Moreover, even if any pirate decoder is not captured, our scheme can make
the pirate decoders useless within some time-period, which will be called life-time
of the decoder. In this case, there is a trade-off between the size of ciphertext and
life-time of pirate decoders. The proposed Basic Scheme is as follows.

Structure. Let n be the number of total users and N = {u0, u1, . . . , un−1} be the
set of users. For convenience, we assume n = 2d for some positive integer d.

The center generates a binary tree with n leaves, assign empty label φ ∈ {0, 1}0

to root node, assign label s||0 ∈ {0, 1}j+1 and s||1 ∈ {0, 1}j+1 for left and right child
of node with label s ∈ {0, 1}j , respectively. Each user ui is assigned to leaf with
label i ∈ {0, 1}d, e.g., user u0 is assigned to the leftmost leaf and un−1 is located to
the rightmost leaf.

Key Generation. The center randomly selects the long-term keys {Ki ∈ {0, 1}l}i=0,...,n−1

for all leaves and distributes long-term key Ki to user ui via secure channel.
The center randomly selects the short-term keys {ks ∈ {0, 1}l}s for all nodes

(including leaves) and distributes short-term key set {ksd,i
, ..., ks1,i , ks0,i} to user ui

via secure channel, where sd,i = i, ..., s1,i, s0,i = φ are the labels of nodes on the path
from leaf i to the root.

The Fig 1. (a) represents a example of the key tree for n = 4.

Key Update and Encryption. In each session, the center updates some short-term
keys of a randomly chosen user, and broadcasts necessary messages for each user to
update his/her short-term keys.

For key updating, the center chooses a user ui randomly. The center randomly
selects updated short-term key set {k′sd,i

, ..., k′s1,i
, k′s0,i

} for user ui where sd,i =

1
k

k

0
k

00
k

01
k

10
k

11
k

(a)

1
k

'k

0
k

00
k

01
k

10
k

11
k

'

'

(b)

Fig. 1. (a) Key tree for n = 4. (b) Updated key tree after u0 was chosen.

i, ..., s1,i, s0,i = φ are the nodes on the path from leaf i to the root. The center
broadcasts the ciphertext

c = 〈EKi(k
′
sd,i

, ..., k′s0,i
), Eksd,i

(k′sd−1,i
, ..., k′s0,i

), ..., Eks1,i
(k′s0,i

)〉

where EK is a symmetric encryption by the secret key K and sj,i = sj,i⊕ 1, i.e., sj,i

is the label of sibling node of the node with label sj,i.
The Fig 1. (b) represents a example of the updated key tree after u0 was chosen

for n = 4, where k′00, k
′
0, k

′
φ are updated, and c = 〈EK00(k

′
00, k

′
0, k

′
φ), Ek01(k

′
0, k

′
φ), Ek1(k

′
φ)〉

is broadcast.

Decryption and Key Update. The user ui, who has long-term key Ki, can obtain
updated short-term keys k′sd,i

, ..., k′s0,i
by decrypting the corresponding ciphertext in

c.
The users in the subtree spanned by node sj,i, who has short-term key ksj,i ,

can obtain updated short-term keys k′sj−1,i
, ..., k′s0,i

by decrypting the corresponding
ciphertext in c.

Traitor Tracing. If the long-term key Ki is stored in a pirate decoder, user ui is
identified as the traitor who creates the pirate decoder.

If there are pirate decoders constructing from shared keys, although any pirate
decoder cannot be captured we can make the decoders useless by key updating
within some time-period. We call this time-period the life-time of a pirate decoder.
In this scheme, the maximum life-time of the decoders is n sessions.

3.1 Security

The scheme is indistinguishable and fully resilient non-incriminating.

Theorem 1. Assuming that symmetric key encryption E is indistinguishable, the
proposed scheme is indistinguishable.

Theorem 2. The proposed scheme is fully resilient non-incriminating.

From the indistinguishability, only the decoder that have the long-term key can
obtain updated short-term key via the key update process. Thus, pirate decoders
that do not have the long-term key are made useless by the key update process.

From the fully resilient non-incrimination, one cannot obtain the other long-term
key from several long-term keys. Thus, the traitor who create a pirate decoder can
be traced via the long-term key inside the pirate decoder.

3.2 Extensions

Using Hash Tree. In the above scheme, the length of ciphertext c is O(log2(n)). We
can reduce the length of ciphertext c to 1 + log(n) by generating short-term keys
using hash tree as follows:

For key generation, the center randomly selects the short-term keys {ksd,i
∈

{0, 1}l}i=0,...,n−1 for all leaves, generates short-term keys ks = H(ks||0) ⊕ H(ks||1)
where H : {0, 1}l → {0, 1}l is a hash function. Then it sends the short-term key set
{H(ksd,i

), ..., H(ks1,i), ks0,i} to user ui via secure channel, where s = s ⊕ 1, that is,
sd,i, ..., s1,i are the labels of sibling nodes of nodes on the path from leaf i to root.

For key updating, the center chooses a user ui randomly. The center randomly
selects updated short-term key k′sd,i

and updates {k′sd−1,i
, ..., k′s1,i

, k′s0,i
} for user ui

using relation ks = H(ks||0)⊕H(ks||1), where sd,i = i, ..., s1,i, s0,i = φ are the nodes
on the path from leaf i to the root. The center broadcasts the ciphertext

c = 〈EKi(k
′
sd,i

), Eksd,i
(H(k′sd,i

)), ..., Eks1,i
(H(k′s1,i

))〉
where EK is a symmetric encryption by the secret key K and sj,i = sj,i⊕ 1, i.e., sj,i

is the label of sibling node of the node with label sj,i.

Batch Updating. To reduce the life-time of pirate decoders, we use the batch up-
dating as follows: For key updating, the center can choose t users randomly, and
can update short-term keys for these t users simultaneously. For the t users batch
updating, when we use the hash tree technique, we need the ciphertext c of length
(2t− 2) + t log(n/t), that is shorter than the length of all ciphertexts t(1 + log(n))
for t times 1 user updating. In this case, there is a trade-off between t, the number
of randomly chosen users, and life-time of pirate decoders. The Table 1. represents
the relation.

Table 1. Trade-off between efficiency and life-time

t ciphertext Size Maximum Life-Time

1 log N N/2√
N 2

√
N + (

√
N/2) log N

√
N/2

N/2 N + (N/2) log 2 1

Combination with CS Broadcast Encryption. To broadcast a message to only the
non-revoked users, we combine the CS broadcast encryption scheme and our scheme.
It is because that all node keys in our scheme can be used as subset keys in CS broad-
cast encryption scheme. In order to encrypt a message, we use node keys covering all
non-revoked users. The length of the ciphertext for revocation is r log(n/r), where
r is the number of revoked users.

3.3 Efficiency

Ciphertext Size. When the center chooses t random users, the ciphertext size is
(2t− 2) + t log(n/t). We can reduce the size of ciphertext at a cost of the life-time
of pirate decoders by adopting small t.

Note that to make the life-time one session, the center should choose n/2 users
with label s||0 for each label s ∈ {0, 1}d−1, so the ciphertext size becomes O(n).

Storage Size. Each user ui stores the long-term key Ki and the key set K(ui). So
the storage size is 3 + log(n).

Computation Cost. Each user needs log(n) hash computations for decryption.

4 Proposed Scheme using Polynomials and Bilinear Map

In this section, we describe our second traitor tracing scheme called Scheme 2 based
on bilinear map using partitions and polynomials. This scheme is fully resilient
unlike other traitor tracing schemes based on bilinear map.

Structure. Let n be the number of total users and N = {u0, u1, . . . , un−1} be the set
of users. The center first chooses a system parameter k and divides N into partitions
N0, N1, . . . , Nm−1 of same size k by adding some virtual users to Nm−1, where m =
dn

k e. For convenience, we re-index users in Ni as Ni = {ui,0, ui,1, . . . , ui,k−1} for all
0 ≤ i ≤ m− 1.

Key Generation. The center generates two cyclic groups G1, G2 of prime order
q and bilinear map ê : G1 × G1 → G2. Then it chooses random P, Q ∈ G1, a
random polynomial f(x) ∈ Zq[x] of degree 2k− 1 and random r0, r1, . . . , rm−1 ∈ Zq.
After letting fi = rif for 0 ≤ i ≤ m − 1, the center keeps P, Q, f , ri’s and fi’s
(0 ≤ i ≤ m− 1) secret.

Let a1, a2, . . . , a2k−1 ∈ Zq be distinct nonzero constants and Ii,j be the unique
identifier of user ui,j in Ni which is different from a1, a2, . . . , a2k−1. The center gener-
ates the long-term keys {Ki,j = fi(Ii,j)Q}i=0,...,m−1;j=0,...,k−1 and sends {riQ,Ki,j}
to user ui,j via secure channel. Note that k user in Ni share riQ and have distinct
partial information of fi.

Encryption. Let g = ê(P, Q). For each session, the center chooses a random r ∈ Zq

and encrypts a session key SK as follows:

c = 〈 rP, rf(a1)P, . . . , rf(a2k−1)P ; Egrf0(0)(SK), . . . , E
grfm−1(0)(SK) 〉,

where EK is a symmetric encryption by the secret key K.

Decryption. Given the ciphertext c, all users in Ni can compute grfi(0) for each i as
follows: Let ui,j be a user in Ni. From the ciphertext and riQ, user ui,j computes

ê(rf(aµ)P, riQ) = ê(P,Q)rrif(aµ) = ê(P, Q)rfi(aµ) = grfi(aµ)

for µ = 1, . . . , 2k − 1. Moreover, using Ki,j = fi(Ii,j)Q, user ui,j can compute

ê(rP, fi(Ii,j)Q) = ê(P, Q)rfi(Ii,j) = grfi(Ii,j).

So, ui,j obtains grfi(a1), . . . , grfi(a2k−1) and grfi(Ii,j). Remark that ui,j knows distinct
2k values of the polynomial fi of degree 2k−1. Therefore he/she can compute grfi(0)

by the Lagrange interpolation method, and obtain the session key SK.

Traitor Tracing. Because the long-term key of each user is different from other users’
keys, the center can trace a traitor when a pirate decoder is captured, in the sense
of non-black box tracing.

4.1 Security

The scheme is indistinguishable and fully resilient non-incriminating.

Theorem 3. Assuming that symmetric key encryption E is indistinguishable, the
proposed scheme is indistinguishable.

Theorem 4. Under the CDH assumption in G1, the proposed scheme is fully re-
silient non-incriminating.

4.2 Combination of the Proposed Schemes

In the Basic scheme, we introduce the notion of life time of a decoder constructing
by shared key to reduce the ciphertext size. We know that for shorter life-time, the
number of chosen users must be larger, therefore the ciphertext size becomes larger.

If we want to make surely the decoder useless in the next session without life-
time, the key tree should be totally changed. For this, Basic scheme should broadcast
O(n) size ciphertext, where n is the number of total users.

In this section, we propose a fully resilient traitor tracing scheme, Improved
scheme, obtained by combining of Basic scheme and Scheme 2. This scheme can
make pirate decoders with only shared keys useless without life-time using only
O(
√

n) size ciphertexts. We can also reduce the ciphertext size at the cost of life-
time like Basic scheme.

Structure. Let n be the number of total users and N = {u0, u1, . . . , un−1} be the set
of users. Given a system parameter k, we assume n = k2d for some positive integer
d.

The center generates a special tree with n leaves as follows: Assign level 0 to the
root and level j + 1 to children of a node with level j for 0 ≤ j ≤ d. Construct a
tree such that each node with level j for 0 ≤ j ≤ d has 2 children and each node
with level d has k children.

The center assigns empty label φ ∈ {0, 1}0 to root and assigns label s||0 ∈
{0, 1}l+1 and s||1 ∈ {0, 1}l+1 for left and right child of node with label s ∈ {0, 1}l

for 1 ≤ l ≤ d − 1. And it gives label (s, 0), (s, 1), . . . , (s, k − 1) for all k children of
node with label s ∈ {0, 1}d, respectively. Each user ui is assigned to leaf node with
label (b i

kc, i − b i
kc), where b i

kc ∈ {0, 1}d. We can consider the set of k users with
label (s, 0), (s, 1), . . . , (s, k − 1) for s ∈ {0, 1}d as one partition.

Key Generation. The center generates two cyclic groups G1 and G2 of prime order
q and bilinear map ê : G1×G1 → G2. Then it chooses random P,Q ∈ G1, a random
polynomial f(x) ∈ Zq[x] of degree 2k − 1 and random r0, r1, . . . , rm−1 ∈ Zq, where
m = n/k = 2d. Let fj = rjf for 0 ≤ j ≤ 2d − 1. The center keeps P, Q, f , rj ’s and
fj ’s (0 ≤ j ≤ 2d − 1) secret.

Let a1, a2, . . . , a2k−1 ∈ Zq be distinct nonzero constants and Ii be the unique
identifier of user ui which is different from a1, a2, . . . , a2k−1. The center generates
the long-term keys {Ki = fj(Ii)Q}i=0,...,n−1 and gives {rjQ,Ki} to user ui, where
j = b i

kc, via secure channel.
The center generates a random r ∈ Zq, computes keys {kj = ê(P, Q)rfj(0)}j=0,...,2d−1

for all nodes with label j ∈ {0, 1}d, and computes key tree ks = H(ks||0)⊕H(ks||1),
where H : {0, 1}l → {0, 1}l is a hash function. Remark that all node keys with level
d are generated by random number and polynomial, and all node keys with level j

1
k

k

0
k

0
K

1
K

2
K

3
K

4
K

5
K

6
K

7
K

(a)

1
k

k

0
k

0
K

1
K

2
K

3
K

4
K

5
K

6
K

7
K

'

' '

(b)

Fig. 2. (a) Key tree for n = 8, k = 4. (b) Updated key tree after u0, u4 were chosen.

for 0 ≤ j ≤ 2d−1 are computed by their 2 children’s keys. The Fig.2. (a) represents
the key tree of n = 8 and k = 4 with k0 = ê(P, Q)rf0(0), k1 = ê(P, Q)rf1(0), and
kφ = H(k0)⊕H(k1).

Let sj,i ∈ {0, 1}j be the label of ancestor of leaf i with level j. That is, sd,i =
b i

kc, . . . , s0,i = φ are the labels of the nodes on the path from leaf i to root. The
center sends the user ui’s key set {H(ksd,i

), ...,H(ks1,i), ks0,i} to user ui via secure
channel, where sj,i = sj,i ⊕ 1.

Encryption. Let g = ê(P, Q). In each session, the center chooses a session random
r′ ∈ Zq and computes

〈r′P, r′f(a1)P, . . . , r′f(a2k−1)P 〉.

For key updating, the center chooses t users randomly so that each chosen user
belongs to different partition, and updates key tree as follows: If ui1 , ui2 , . . . , uit

are randomly chosen from t partitions, the center updates the key kj1 , . . . , kjt to
k′j1 = gr′fj1(0) , . . . , k′jt

= gr′fjt(0) , where j1 = b i1
k c, . . . , jt = b it

k c. Note that j1, . . . , jt ∈
{0, 1}d are the indices of parent nodes of ui1 , . . . , uit , respectively. For example, in
Fig.2. (b), k′0 = ê(P,Q)r′f0(0), k′1 = ê(P, Q)r′f1(0), and k′φ = H(k′0)⊕H(k′1).

After updating key tree, the center broadcasts the following:

c = 〈i1, . . . , it; r′P, r′f(a1)P, . . . , r′f(a2k−1)P ; Eksd,i1
(H(k′sd,i1

)), . . . ,

Eks1,i1
(H(k′s1,i1

)), . . . , Eksd,it
(H(k′sd,it

)), . . . , Eks1,it
(H(k′s1,it

))〉,

where k′sd,ih
, . . . , k′s1,ih

are ancestors of k′ih and sj,h = sj,h ⊕ 1.
Note that if the center chooses at least 1 user from each partition, then all node

keys in the key tree are changed.

Decryption. Let j = b i
kc ∈ {0, 1}d. All k users with index (j, 0), (j, 1), . . . , (j, k − 1)

can compute k′j = gr′fj(0) using the following method: We know that for each 0 ≤
b ≤ k − 1, uj+b has label (j, b). Using rjQ, uj+b computes gr′fj(a1), . . . , gr′fj(a2k−1)

by same method to Scheme 2. Also uj+b uses Kj+b = fj(Ij+b)Q to obtain gr′fj(Ij+b).
Therefore uj+b can calculate gr′fj(0) by the Lagrange interpolation method and
update kj to k′j = gr′fj(0). Then uj+b computes new root key k′φ using k′j and keys
in K(uj+b) and sets SK = k′φ.

In the case of s 6= j, for each 0 ≤ b ≤ k − 1, user us+b with index (s, b) can
obtain necessary hashed values among H(k′sd,i

),H(k′sd−1,i
), . . . ,H(k′s1,i

) to compute
the updated root key. Then us+b updates his/her key set K(us+b), computes new
root key k′φ and evaluate SK = k′φ.

Traitor Tracing. The tracing procedure is almost same to the Basic scheme in the
case of a captured pirate decoder. Even if any pirate decoder is not found, we can
make pirate decoders useless in the next session with O(

√
n) size ciphertext: Set

k =
√

n. If the center chooses d√ne users such that each chosen user is contained in
distinct partition, then all node keys in the key tree are changed. Therefore, even
the case that a pirate decoder has only partial keys of user keys, the decoder will
not be of use in the next session.

4.3 Efficiency of Scheme 2

Ciphertext Size. The ciphertext size consists 2k elements in G1 and m elements in
G2, where m = dn/ke. Setting k =

√
n, the ciphertext contains 2

√
n elements in G1

and
√

n elements in G2.

Storage Size. Each user stores 2 elements in G1.

Computation Cost. The decryption time is 2k pairing computations, and O(k2)
multiplications for Lagrange interpolation. Setting k =

√
n, the decryption requires

2
√

n pairing computations and O(n) multiplications.

4.4 Efficiency of Improved Scheme

Ciphertext Size. When the center randomly chooses one user, that is t = 1, the
ciphertext size is 2k + log(n/k), where 2k elements are in G1 and log(n/k) elements
are in G2. When the center chooses t random users, the ciphertext size is 2k +(2t−
2)+ t log(n/kt) elements. By selecting t = dn/ke users from different partitions, the
center can update all keys in the key tree.

When k =
√

n, the ciphertext size becomes 2
√

n+(2t−2)+t log(
√

n/t) = O(
√

n)
and t =

√
n is enough for one life-time. Therefore the ciphertext size is O(

√
n)

regardless of the life-time.

Storage Size. Each user stores the 2 long-term keys in G1 and the key set containing
1 + log(n/k) elements in G2.

Computation Cost. The decryption time is 2k pairing computations, O(k2) multi-
plications, and log(n/k) hash computations.

5 Conclusion

This paper proposed a fully resilient traitor tracing scheme that is based on tree-
structured keys which has no restriction about the number of traitors. By using the
concept of updating keys, the scheme can make the pirate decoders useless within
some time-period.

References

1. S. Berkovits, How to broadcast a secret, In Proc. Advances in Cryptology - Eurocrypt 1991,
LNCS 547, pp. 536-541, 1991.

2. D. Boneh and M. Franklin, An efficient public key traitor tracing scheme, In Proc. Advances
in Cryptology - Crypto 1999, LNCS 1666, pp. 338-353, 1999.

3. D. Boneh, C. Gentry and B. Waters, Collusion resistant broadcast encryption with short ci-
phertexts and private keys, In Proc. Advances in Cryptology - Crypto 2005, LNCS 3621, pp.
258-275, 2005.

4. D. Boneh, A. Sahai and B. Waters, Fully collusion resistant traitor tracing with short cipher-
texts and private keys, In Proc. Advances in Cryptology - Eurocrypt 2006, LNCS 4004, pp.
573-592, 2006.

5. D. Boneh and B. Waters, A fully collusion resistant broacast, trace, and revoke system, In Proc.
ACM Computer and Communications Security (CCS), 2006.

6. H. Chabanne, D. H. Phan and D. Pointcheval, Public traceability in traitor tracing schemes,
In Proc. Advances in Cryptology - Eurocrypt 2005, LNCS 3494, pp. 542-558, 2005.

7. B. Chor, A. Fiat and M. Naor, Tracing traitors, In Proc. Advances in Cryptology - Crypto 1994,
LNCS 839, pp. 257-270, 1994.

8. Y. Dodis and N. Fazio, Public key trace and revoke scheme secure against adaptive chosen
ciphertext attack, In Proc. Public Key Cryptography - PKC 2003, LNCS 2567, pp. 100-115,
2003.

9. A. Fiat and M. Naor, Broadcast encryption, In Proc. Advances in Cryptology - Crypto 1993,
LNCS 773, pp. 480-491, 1993.

10. D. Halevi and A. Shamir, The LSD broadcast encryption scheme, In Proc. Advances in Cry-
tology - Crypto 2002, LNCS 2442, pp.47-60, 2002.

11. N.-S. Jho, J.Y. Hwang, J.H. Cheon, M.-H. Kim, D.H. Lee and E.S. Yoo, One-way chain based
broadcast encryption schemes, In Proc. Advances in Crytology - Eurocrypt 2005, LNCS 3494,
pp. 559-574, 2005.

12. K. Kurosawa and Y. Desmedt, Optimum traitor tracing and asymmetric schemes, In Proc.
Advances in Cryptology - Eurocrypt 1998, LNCS 1403, pp. 145-157, 1998.

13. A. Kiayias and M. Yung, On crafty pirates and foxy tracers, In Proc. ACM Workshop on Digital
Rights Management - DRM 2001, pp. 22-39, 2001.

14. A. Kiayias and M. Yung, Traitor tracing with constant transmission rate, In Proc. Advances
in Cryptology - Eurocrypt 2002, LNCS 2332, pp. 450-465, 2002.

15. S. Mitsunari, R. Sakai and M.Kasahara, A new traitor tracing scheme, IEICE Transactions on
Fundamentals, E85-A(2):481-484, 2002.

16. D. Naor, M. Naor and J. Lotspiech, Revocation and tracing schemes for stateless receivers, In
Proc. Advances in Cryptology - Crypto 2001, LNCS 2139, pp.41-62, 2001.

17. M. Naor and B. Pinkas, Threshold traitor tracing, In Proc. Advances in Cryptology - Crypto
1998, LNCS 1462, pp. 502-517, 1998.

18. M. Naor and B. Pinkas, Efficient trace and revoke schemes, In Proc. Financial Cryptography -
FC 2000, LNCS 1692, pp. 1-20, 2000.

19. D. Stinson and R. Wei, Combinatorial properties and constructions of traceability schemes and
frameproof codes, SIAM Journal on Discrete Math, 11(1):41-53, 1998.

20. V. D. To and R. Safavi-Naini and F. Zhang, New traitor tracing schemes using bilinear map,
In Proc. ACM Workshop on Digital Rights Management - DRM 2003, pp. 67-76, 2003.

21. D. Wallner, E. Harder and R. Agee, Key Management for Multicast: Issues and Architectures,
Internet Draft, draft-wallner-key-arch-01.txt, Internet Engineering Task Force, 1998.

22. C.K. Wong, M. Gouda and S.S. Lam, Secure group communication using key graphs, In Proc.
ACM SIGGCOM 1998, pp. 68-79, 1998.

23. E.S. Yoo, N.-S. Jho, J.H. Cheon and M.-H. Kim, Efficient Broadcast Encryption using Multiple
Interpolation Methods, In Proc. Information Security and Cryptology - ICISC 2004, LNCS
3506, pp.87-104, 2005.

A Proof of Theorem 1

Assuming an adversary A against indistinguishability of the scheme, we construct
an adversary AE against indistinguishability of E.

At the beginning of simulation, the simulator randomly selects user i and keys
ksj,i or Ki, and generates all short-term keys {ks ∈ {0, 1}l}s and all long-term keys
{Ki ∈ {0, 1}l}i=0,...,n−1 except the selected key ksj,i or Ki. The simulator starts A
with input (n, i, ki).

When A outputs {k0
s}s and {k1

s}s, the simulator obtains m0 = (k0
sj−1,i

, ..., k0
s0,i

)
and m1 = (k1

sj−1,i
, ..., k1

s0,i
), passes m0 and m1 to encryption oracle, and receives

the challenge ciphertext C = EK(mb) form the oracle. The simulator embeds C =
EK(mb) into the ciphertext c instead of Eksj,i

(mb) or EKi(mb). The simulator guesses
a bit b′′, and creates other ciphertexts in c using mb′′ and short-term and long-term
keys.

Finally, A outputs b′, the simulator outputs b′.
If b = b′′, the simulation is perfect, since ksj,i is not provided to A. Thus, we

construct adversary AE with advantage ε/2 from adversary A with advantage ε.

B Proof of Theorem 2

Since long-term keys Ki are selected independently randomly, it is infeasible to
compute K0 from K1, ..., Kn−1 with non-negligible probability. Thus, the proposed
scheme is fully resilient non-incriminating.

C Proof of Theorem 3

Assuming an adversary A against indistinguishability of the scheme, we construct
an adversary AE against indistinguishability of E.

At the beginning of simulation, the simulator randomly selects user ui,j and keys
grfi(0), and generates r0, ..., rm−1, a1, ..., a2k−1, and f(a1), ..., f(a2k−1). Notice that
f is not determined, thus we can take f(0) freely. The simulator starts A with input
(n, i).

When A outputs SK0 and SK1, the simulator passes m0 = SK0 and m1 =
SK1 to encryption oracle, and receives the challenge ciphertext C = EK(mb) from
the oracle. The simulator embeds C = EK(mb) into the ciphertext c instead of
Egrfi(0)(mb). The simulator guesses a bit b′′, and creates other ciphertexts in c using
mb′′ , random r and keys.

Finally, A outputs b′, the simulator outputs b′.
If b = b′′, f is not determined, so grfi(0) is not determined from c. Therefore

the view of A is compatible with hidden key K in encryption oracle of E, so the
simulation is perfect.

Thus, we construct adversary AE with advantage ε/2 from adversary A with
advantage ε.

D Proof of Theorem 4

Assuming an adversary A against fully resilient non-incrimination of the scheme, we
construct an adversary ACDH against CDH problem in G1.

At the beginning of simulation, the simulator is given CDH instance (R, aR, bR),
and sets Q = R, r0Q = aR, and rif(Ii,0)Q = ri(bR) with randoms ri, and randomly
generates other keys {riQ, rif(Ii,j)Q}i,j except (r0Q, r0f(I0,0)Q).

The simulator starts A with all long-term keys {riQ, rif(Ii,j)Q}i,j except (r0Q, r0f(I0,0)Q).
Finally, A outputs (r0Q, r0f(I0,0)Q), the simulator outputs r0f(I0,0)Q = abR.
Thus, we construct adversary ACDH with advantage ε from adversary A with

advantage ε.

