
Improved Privacy of the Tree-Based Hash protocols

using Physically Unclonable Function

Julien Bringer1, Hervé Chabanne1 and Thomas Icart1,2

1Sagem Sécurité
2Université du Luxembourg
firstname.name@sagem.com

Abstract. In 2004, Molnar and Wagner introduced a very appealing scheme
dedicated to the identification of RFID tags. Their protocol relies on a binary
tree of secrets which are shared – for all nodes except the leaves – amongst
the tags. Hence the compromise of one tag also has implications on the other
tags with whom it shares keys. We describe a new man-in-the-middle attack
against this protocol which allows to break privacy even without opening
tags. Moreover, it can be applied to some other RFID protocols which use
correlated keys as the one described recently by Damg̊ard and Pedersen at
CT-RSA 2008.
We introduce a modification of the initial scheme to allow us to thwart this and
to strengthen RFID tags by implementing secrets with Physical Obfuscated
Keys (POKs). This doing, we augment tags and scheme privacy, particularly
general resistance against physical threats.
Keywords. RFID tags, Tree-Based Hash Protocol, POK, PUF, Privacy.

1 Introduction

Radio Frequency Identification (RFID) tags are made of a small chip con-
taining a unique identification number. They communicate in the air with
the system via a reader. One of their main applications is to track objects on
which they are attached.

RFID systems have to deal with the scarcity of tags resources as well as
the privacy needed for tag identification. In [10,11], a protocol which seems
well suited to handle these two constraints has been introduced. Indeed, the
identification protocol of Molnar et al. requires only limited cryptographic
functionality and has some useful properties such as the delegation of some
identifications from a Trusted Center to readers. This protocol relies on a
binary tree of secrets. The secret corresponding to a leaf is uniquely associated
to one tag, but all the other secrets in the tree are shared with different tags.
Thus, as it is studied in [4,12,13], the compromise of the keying material of
some tag leads to learn the shared keys with some other tags. If many tags are
compromised, this could allow to track some non-compromised tags. This can
be considered as a main threat to the privacy of the system. This problem has

already been addressed in [2], the compromise of tags still leaks information
about the keying material of the system.

To thwart this, we want to increase the resistance of tags against physical
threats. Physical Obfuscated Keys (POKs) have been introduced by Gassend [6]
as a mean to securely store a secret inside a chip. They are strongly related
to Physical Unclonable Functions (PUFs). Indeed, POKs were introduced as
a proposition to implement keys in a more secure manner. They are built
such that their observations by an adversary corrupt the chip and then de-
stroy them. Note that the use of PUFs inside RFID tags has already been
considered in [3,15].

The main achievement of this paper is to describe how to replace each
secret by two POKs during the Tree-Based Hash protocol. They are activated
alternately and each one taken separately does not reveal anything on the
secret. Cryptographic computations are carried out with two steps, where
during a step, only one POK is activated. Moreover an adversary can gain
access only to one POK by sacrificing the chip. By construction the underlying
key is thus safe from this compromise of one POK.

Our paper is as follows. In Sect. 2, we recall the principles of the Tree-
Based Hash protocol [11] and those of POKs. In Sect. 3 and 4, we describe
our privacy model. In Sect. 5, we explain why some private informations leak
with a Tree-Based Hash protocol. In fact, we show a new attack against [11]
and [5] where an adversary is able to track tags even without compromising
any tags. In Sect. 6, we describe our modification of the protocol. Section 7
examines the security of our proposition and Section 8 examines the privacy
of our scheme to formally prove them in the random oracle model. Section
9 concludes. Security proofs and practical implementations are sketched in
appendices A and B.

2 Preliminaries

2.1 The protocol [11] in a nutshell

In the following, we describe the general principles of the Tree-Based Hash
protocol and invite the readers to go through [11] to get full details.

During system initialization, a Trusted Center generates a tree of secrets
(keys), for instance a binary one. Each leaf is associated to a tag. A tag knows
all keys K1, . . . ,Kd along the path from the root to its leaf. Let F denotes
an appropriate public pseudo-random function. When a tag is challenged by
a reader which sends to it a random value r, it responds by generating a new
value each time – FK1

(r, r′), FK2
(r, r′), . . ., FKd

(r, r′) – where r′ is another

random value generated and transmitted by the tag. The Trusted Center can
easily check to which key corresponds the received value in its tree of secrets
by verifying for a given (r, r′):

1. to which node corresponds FK1
(r, r′),

2. between the 2 children of this node, which one is associated with FK2
(r, r′),

3. repeat this verification, level after level from the root to the leaves,

4. and then identify which leaf (tag) comes with FKd
(r, r′).

A practical example. To get a better idea of the involved figures, we take
back the example given in [11]. They have 220 tags. The binary tree is replaced
by a tree with a branching factor Q = 210 and is made of two levels. Each tag
stores two 64-bit secrets. Using a Tree-Based identification protocol enables
to reduce the number of tests a Trusted Center needs to do. In this example,
a Trusted Center has to compute only 2 × 210 times the function F, 210 for
each round, instead of 220 without this protocol. This improvement is very
interesting, because if the system’s size is S, the number of computation for
the Trusted Center is always in O(logQ(S)Q) computation.

It should be noted that this protocol is very similar to a popular RFIDs
singulation algorithm: the tree walking algorithm [1]. Using this protocol leads
to an optimized singulation.

2.2 Physical Unclonable Function and Physically Obfuscated Key

Gassend in [6] introduces the concept of PUF. A Physical Unclonable Func-
tion (PUF) is a function that maps challenges (stimuli) to responses, that is
embodied by a physical device, and that has the following properties:

1. easy to evaluate,

2. hard to characterize, from physical observation or from chosen challenge-
response pairs,

3. hard to reproduce.

For a given challenge, a PUF always gives the same answer. The hardness of
characterization and the reproduction is hard; i.e. it is impossible to reproduce
or to characterize the PUF thanks to a reasonable amount of resources (time,
money, . . .). PUF can thus be viewed as pseudo-random function1 where the
randomness is insured thanks to physical properties. In the rest of this paper,

1 Note however that they can be limited in the number of possible challenge-response pairs
as explained in [8].

PUFs are formalized as perfect random functions, i.e. functions with maximal
output’s entropy.

We also write GenPUF(12k
) for a generator of random, independent PUFs.

One kind of PUF, as mentioned in [15] as I-PUF for Integrated Physical
Unclonable Function, has other interesting properties:

1. The I-PUF is inseparably bound to a chip. This means that any attempt
to remove the PUF from the chip leads to the destruction of the PUF and
of the chip.

2. It is impossible to tamper with the communication (measurement data)
between the chip and the PUF.

3. The output of the PUF is inaccessible to an attacker.

These properties insure the impossibility to analyze physically a PUF without
changing its output. Hence, physical attacks corrupt the PUF and the chip
leaving the attacker without any information about the PUF. Silicon PUF

have been already described in [7] and can be taken as relevant examples of
I-PUF, they are based on delay comparison among signals running through
random wires. Moreover, they only require a few resources to be implemented.
A practical example of implementation is described in [14].

In [6], it is shown how to implement a key with a PUF, this implementation
is called a Physically Obfuscated Key (POK), by applying a fixed hard-wired
challenge to the PUF. In fact, using different challenges, several POKs can be
obtained from one PUF. In the sequel, we refer to a POK as a value, stored
in a tag, which is accessible only when the underlying PUF is stimulated.

2.3 How we use POKs

The key has to be stored digitally when involved in some computations, what-
ever the use of the tag is. Consequently, it could be possible to get a dump
of the volatile memory and then to obtain the value of the key. This type
of attack has been considered in [2] with a general line of defense for POKs:
split the computations with the key in two steps. Of course, the difficulty we
encounter is to cope with cryptographic computations and to find a way to
split them.

A key K of the tree would be hard-wired thanks to two POKs K ′ and K ′′

such that K = K ′⊕K ′′where the two parts K ′ and K ′′ are different for each
tag.

Note that challenges used to stimulate the PUF to generate keys are stored
in the tag. Because the equality K = K ′⊕K ′′ stands for all tags in the same
branch, neither K ′ and K ′′ need to be known from the outside, nor pairs of
input/output from the PUF do.

3 Security Model

Here we propose to apply to RFID systems the following security model for
completeness and soundness. This is a simplification of [16].

3.1 Adversary Model

We sketch the possible actions of an adversary over a system. The system
contains a Trusted Center TC which wants to communicate with N tags. We
assume that the protocol is a challenge-response protocol: to authenticate a
tag, the Trusted Center sends a challenge and then waits for a response from
the tag.

– SendTC: this function enables the adversary to interact with the TC.
Using this function, he gets a challenge a0 and he possibly tries to answer
by playing the role of a tag, in order to gain information over the key
material. Nevertheless, he does not receive the result of the identification.

– SendTag: this function enables an adversary to communicate with a tag.
SendTag(T , a0) means the adversary sends a0 to the tag T . This leads
to the complete output from the tag.

– Result: this function allows an adversary to determine whether a bit
string, taken as input by the function, is a valid communication transcript
of the protocol. Result gives the authentication result the TC would have
produced for a sent challenge and a response from a tag which are read in
the input bit string.

– Corrupt: this function enables the adversary to open a tag to get all the
memory, volatile and non-volatile. Corrupt enables an adversary to get
keys – if any – inside a tag and to get the volatile memory at any moment
of the tag computation.

We also suppose that an adversary has access to any random oracle which
may be used in the protocol.

3.2 Completeness

Definition 1. The scheme is complete when the probability of a genuine

tag to fail during the identification process is negligible. I.e. for all tags T ,

Pr
(

Result

(

aTC
0 ,SendTag

(

T , aTC
0

))

= false | aTC
0 = SendTC ()

)

is negligible.

3.3 Soundness

Definition 2. The scheme is sound, if any polynomially bounded adversary

A cannot produce a valid communication transcript CA, except with a negli-

gible probability. Furthermore, CA must neither lead to the identification of a

corrupted tag nor be an eavesdropped communication. I.e.

Pr (Result (CA) = true)

is negligible.

These definitions are the adaptation of the usual correctness and sound-
ness in the model. Correctness ensures a legitimate tag identifies itself with
an overwhelming probability. Soundness ensures that no adversary can im-
personate a tag. Nevertheless, in the definition of soundness, we assume that
adversaries are active. For instance, they can impersonate a TC or eaves-
dropped communications or even corrupt tags to get information on secrets
of the system.

4 Privacy Model

We present here our model of privacy. To define privacy, we define a game.
An adversary relevant against privacy is able to win this game with a non
negligible probability.

Thanks to the experiment described in Fig. 1, A is an adversary who

wants to find a privacy leakage in the protocol (where
R
← denotes an element

taken at random). The privacy is defined as the advantage of the adversary
over two tags amongst two systems of tags he had chosen. If the advantage of
A is negligible, this means he is not able to link any tag inside S1 and S2. If
A is relevant for this game, he is able to construct subsystems with a special
property: given a tag, he can determine in which subsystem it belongs. This
definition is more general than anonymity and untraceability. If tags can be
identified from an adversary or can be traced, it is easy for an adversary to
construct subsystems in order to succeed at our game.

Definition 3. A protocol in a RFID system is private if for a polynomially

bounded adversary A following the experiment Exp
priv
A,S , then

∣

∣Pr[b′ = b]− Pr[b′ 6= b]
∣

∣

is negligible.

Experiment Exp
priv
A,S :

Setup:

1. Initialize one system S.

Phase 1 (learning):
1. A may do the following in any interleaved order:

(a) make arbitrary SendTag queries to any tag in S,
(b) make arbitrary SendTC queries,
(c) make arbitrary Result queries,
(d) make arbitrary Corrupt queries to any tag in S,
(e) make arbitrary calls to the random oracle.

Phase 2 (challenge):
1. A selects two subset of S: S1 and S2,
2. A selects two non corrupted tags T1 ∈ S1 and T2 ∈ S2.
3. Remove T1 and T2 from S1 and S2.

4. Let b
R
← {1, 2} to select Tb one of these tags.

5. A may do the following in any interleaved order:

(a) make arbitrary SendTag queries to any tag in S1\T1, S2\T2 and Tb,
(b) make arbitrary SendTC queries,
(c) make arbitrary Result queries,
(d) make arbitrary Corrupt queries to any tag in S1\T1, S2\T2,
(e) make arbitrary calls to the random oracle.

6. A outputs a guess index b′

Exp
priv
A,S succeeds if b = b′.

Fig. 1. Privacy experiment

In each step, A is allowed to use the random oracle, but we omit it to simplify.

This privacy definition is more general than the privacy definition of Juels
and Weis in [9]. This is a consequence of the possibility to consider shared keys
inside tags whereas it is not taken in account in their model. Indeed in their
model, they suppose keys inside tags are all independent. In this case, it is
unnecessary to consider the whole system to determine whether an adversary
has advantages on distinguishing two tags, whereas it is an important threat
to consider in Tree-Based protocols. Furthermore, the original Tree-Based
Hash protocol is private in their model although it is not in ours (cf. Sect. 5).

Vaudenay in [16] defines a new model of privacy. Privacy is defined as
a leakage of information of the whole system. In the Vaudenay’s model, a
system of tags is private if it is possible to perfectly simulate the system.
An adversary should not be able to distinguish whether he is attacking a
legitimate system or a simulated one. From now on, this seems to be the most
general model as it is clear that a privacy leakage is a gain of information on
the system. Nevertheless, a system could not be perfectly simulated – as it is
the case for our scheme introduced in Sect. 6 when we allow the adversary to
use the Result oracle – without implying that there exists a way to obtain

information over tags inside the system. That is why we introduce our privacy
definition which can be seen as a kind of trade-off between [9] and [16].

5 A new privacy leakage against Tree-Based Hash protocols

The original Tree-Based Hash protocol proposed in [11] had been proved to
have some privacy leakage in [4,12,13]. Opening a tag, while keys are not
protected, leads to the knowledge of shared keys in the system. Note that
in one version of the protocol in [11](the one described in section 2.1), there
are cases where it is possible to determine whether two tags share keys even
without getting physically the keys.

Let us denote CT
1 (r) = FK1

(r, r′), . . . , CT
d (r) = FKd

(r, r′) the outputs
of the tag T for the challenge r. CT

i (r) = FKi
(r, r′) is the output needed

to authenticate at the depth i in the tree of keys. Suppose the C T
i (r) are

independent from each other. As a consequence, CT
i (r) can be computed

without the knowledge of CT
1 (r), . . . , CT

i−1
(r), CT

i+1
(r), . . . , CT

d (r). In this case,
using one Result query and two SendTag queries, it is possible to determine
whether two tags share one key.

Getting a random challenge r from SendTC, the adversary can use Send-

Tag(T , r) and SendTag(T ′, r). He is then in possession of two communica-
tions CT

1 (r), . . . , CT
d (r) and CT ′

1 (r), . . . , CT ′

d (r). For instance, to test whether
the two tags have the same first key, the adversary uses the Result query on

the communication
(

r, CT ′

1 (r), CT
2 (r), . . . , CT

d (r)
)

. If this communication is

an admissible one, this means T and T ′ share the same first key. Otherwise,
they do not. Of course, it is possible to do the same for a key at a different
position.

This attack is practically feasible as the adversary only needs to interact
with two tags and a reader. In fact, it is a general privacy threat that concerns
RFID systems using correlated keys inside tags. As soon as the different com-
ponents of a response (the Ci above) are not linked together, an adversary
can mix the answers of several tags to learn if they share keys.

For instance it is the case of the new protocol recently introduced in [5]:
It is a protocol with correlated keys, but unlike [11] it does not rely on a tree
of secrets in order to increase the possible choices of tuples of keys associated
to tags, which allows to increase the resistance against corruption. However
messages answered by a tag are still independent and the technique above
still attacks the privacy of the scheme. In the next section, our protocol is
constructed to avoid also this kind of vulnerability.

6 Our Proposition

6.1 System Parameters

Because of PUF and use of different random values for each key inside a tag,
our protocol strengthens tags against the privacy leakage described in the
previous section (see section 8 for this result).

We now give the parameters of our scheme. Our RFID system is made of
N tags, the tree of key has a branching factor Q and a depth d. We use a
pseudo-random function H implemented by a hash function.

The length of the random challenge a0 sent by the TC is lr, the length of
keys is lK and the length of the output of the hash function is lH . The number
of tags N is usually smaller than 240. A probability is considered negligible as
soon as it is negligible in at least one of the following parameters: N, lr, lK , lH .
These systems is denoted S(N,Q, d, lr , lH , lK).

Setup. To create our system of tags, we need a generator function: Gen(1k)
outputs a random element of size k. To create our system of tags, we first use
Q+Q2 + . . . +Qd times the function Gen to create our tree of keys. Each key
is an output of Gen(1lK). During the creation of a new tag, a set of keys is
given, which enabled it to identify itself. The set of keys is made thanks to
our tree of keys, which means it represents a path from the root to a leaf. All
the tags have of course different sets of keys, with possibly d− 1 keys shared.
For one tag T , it is denoted as KT

1 , . . . ,KT
d . A tag is created with a new PUF

obtained from GenPUF(12lK). As shown before, each key is implemented inside
a tag via two POKs. To generate the value of these POKs, we once more use
Gen. For each KT

i , Gen(1lc) outputs a challenge c. This challenge is hard-wired
with the PUF and outputs PUF(c) = K ′T

i . The couple of POKs associated to
the key KT

i is (K ′T
i ,K ′′T

i = K ′T
i ⊕ KT

i). As the PUF is considered to be a
perfect random-function, K ′T

i and K ′′T
i are considered to be random values

of entropy lK .

6.2 The Protocol

In Fig. 2 is the description of our new protocol, where K̂
j
i denotes the key at

the depth i on the jth branch of the tree. The TC sends to the tag a challenge
a0, which is a random value. The tag T computes a random value rT1 and
sends a1 = H(a0, r

T
1). The tag switches on the first POK to get K ′T

1 and
computes A′ = rT1 ⊕K ′T

1 . This operation erases in volatile memory rT1 . The
second POK is switched on to get K ′′T

1 , and this erases K ′T
1 . Finally the tag

computes A′′ = A′ ⊕K ′′T
1 and sends rT1 ⊕KT

1 . The tag picks a random value

Tag T TC

pick rT1
a0←−−−−− pick a0

a1 = H(a0, r
T
1)

The first POK is
switched on to get K ′T

1

A′ = rT1 ⊕K′T
1

The second POK is
switched on to get K ′′T

1

A′′ = A′ ⊕K′′T
1

= rT1 ⊕KT
1

a1, rT
1

⊕KT
1−−−−−−−−−→

...
...

pick rTd
ad = H(ad−1, r

T
d)

...
ad, rT

d
⊕KT

d−−−−−−−−−→
for i = 1 to d

for j = 1 to Q

r
j′
i = K̂

j
i ⊕ rTi ⊕KT

i

check if ai = H(ai−1, r
j′
i)

then go to the next stage
associated to the found key

if no match, fails
end for

end for

Fig. 2. The identification protocol

rT2 and computes a2 = H(a1, r
T
2) and sends it to the TC. It computes rT2 ⊕KT

2

using the same tricks as before. It repeats these operations d− 1 times.

Then the Trusted Center (TC) tries amongst all the key K̂
j
1

in the tree’s

first level whether it gets the equality H(a0, r
T
1 ⊕KT

1 ⊕ K̂
j
1
) = a1. If it finds

one correct key, it searches the next key amongst the possible keys in the tree.
If the operation is successful for the d levels then the tag is authenticated.

This protocol has all the advantages of the Tree-Based Hash protocols: it
allows delegation and to have less computation for the TC than the exhaustive
search but with an increased time of computation for the tag.

7 Security Analysis

In our protocol, SendTag outputs (a1, r
T
1 ⊕KT

1 , . . . , ad, r
T
d ⊕KT

d) and Result

returns whether the 2d+1-tuple (a0, a1, r
T
1 ⊕KT

1 . . . , ad, r
T
d ⊕KT

d) is correct.

7.1 Restriction on the Corrupt query due to POKs

In our case, we make the hypothesis that corrupting a tag T leads an adversary
to the knowledge of only one of the three possible type of sets:

1. ai−1, rTi and ai = H(ai−1, r
T
i),

2. ai−1, rTi , ai = H(ai−1, r
T
i) and rTi ⊕K ′T

i ,

3. ai−1, ai = H(ai−1, r
T
i), rTi ⊕K ′′T

i and rTi ⊕KT
i .

Note that in the two first cases, an adversary does not learn the final
output. Thanks to the possible actions of the adversary as defined in Sect.
3.1, we can prove:

Theorem 1. Corrupt queries leak at most as many information on the key

material as SendTag queries.

Proof. Getting ai−1, rTi and ai is trivially of no interest. Getting ai−1, rTi , ai

and rTi ⊕K ′T
i is equivalent as getting ai−1, rTi and K ′T

i . As ai−1, rTi , and K ′T
i

are random, this leaks no information about KT
i . Finally, getting ai−1, ai,

rTi ⊕K ′′T
i and rTi ⊕KT

i is equivalent as getting ai−1, ai, K ′′T
i and rTi ⊕KT

i .
Because K ′′T

i is random, this is equivalent as getting ai−1, ai, and rTi ⊕KT
i

which is exactly a part of an output of a SendTag query. 2

In the sequel, we do not distinguish Corrupt from SendTag in proofs.

Remark 1. Formalizing Corrupt this way is convenient for our model and
our proofs. The reality behind this formalization is still an open implementa-
tion issue. More concretely, the ability of an adversary to obtain a key from
a POK without destroying the tag has to be evaluated precisely. This topic is
however outside the scope of this paper.

7.2 Completeness and Soundness

Theorem 2. Our scheme is complete. If H is a random oracle, then our

scheme is sound.

The proofs are available in Appendix A.

8 Privacy Analysis

As shown before in Sect. 5, this is an important point to determine whether
an adversary gains any advantage using different outputs from different tags
while he is using Result queries. In this paper, the protocol described has the
property that an adversary cannot use different outputs from tags to make a
new one which has a good probability of being admissible. This is shown in
the following.

Proposition 1. An adversary, by mixing different outputs from different tags

in a Result query gets a positive answer only with a negligible probability.

Proof.A uses the SendTag query on tags in S. Then he uses the Result

query. His query is of the form a0, . . . , a
T 1

i−1, r
T 2

i−1 ⊕KT 2

i−1, a
T 3

i , rT
4

i ⊕KT 4

i , . . .

To be a valid communication, it has to exist a key K̂ such that aT
3

i =

H(aT
1

i−1
, rT

4

i ⊕ KT 4

i ⊕ K̂). We also have the equality aT 3

i = H(aT
3

i−1
, rT

3

i).
If the first equality occurs, while T 1, T 3 and T 4 represent different tags, this
leads to a collision on the output of the random oracle as rT

3

i and rT
4

i are

generated randomly and aT 1

i−1
and aT

3

i−1
are outputs from the random oracle.

So this proves this communication is valid with a negligible probability. 2

Hence, in the sequel, we suppose an adversary never uses different SendTag

outputs in one Result query.

Remark 2. Furthermore, if A tries some Result queries on a randomly mod-
ified communication from one tag, he gets a positive answer with a negligible
probability. Consequently, Result query can just be used to verify whether
a communication from one tag is valid or not.

As above, the random oracle H represents the hash function used in our
protocol and we assume that the random generator in each tag is perfect.

Theorem 3. Our protocol, in the random oracle model, is private.

Proof. We denote M the maximum number of computation made by A. Let
L

i,lp
C be the list of all the communications of A with tags in Si during the

learning phase and L
i,cp
C during the challenge phase except Tb. Let Lb

C be

the communication with Tb. Let L
lp
R

and L
cp
R

the Result (or SendTC or

Corrupt) queries used in the experiment. Let Llp = L
1,lp
C ∪ L

2,lp
C ∪ L

lp
R

and

Lcp = L
1,cp
C ∪ L

2,cp
C ∪ L

cp
R

. Let L1 be L
1,lp
C ∪ L

1,cp
C and L2 be L

2,lp
C ∪ L

2,cp
C .

To determine whether Tb is in S1 or S2, A has to determine whether Tb

shares keys with tags in S1 or in S2. To achieve this, either he made some
queries to the random oracle or not.

– Case 1: A did not make any random oracle query. So A can obtain a clue
that Tb is in Si just by looking at Llp, Lcp and Lb

C . We already proved in
Sect. 8 that use of Result only helps to verify whether a communication
from one tag is valid or not. To get a useful information, A has to compare
the communications in L1, L2 and Lb

C . Amongst triplets (aT
i−1, a

T
i , rTi ⊕

KT
i), A has to find one triplet of Lb

C and one of L1 ∪ L2 such that they
have two elements equal. In this case, if the third elements are equal then
the two tags share one key, otherwise they have different keys. Because
there are only polynomially many triplets, and because the probability to
get such a collision is negligible, the overall probability to find a collision
is negligible, as the advantage of A in this case is.

– Case 2: A made some random oracle queries but none of the form
H(aTi , rTi ⊕ KT

i ⊕ K̂) where K̂ is a key in S1 or S2 and aTi , rTi ⊕ KT
i

is a part of an output from a tag. In this case, A has no more information
than in the previous case, and the conclusion is the same

– Case 3: A made some random oracle queries and one of them is of the
form H(aTi , rTi ⊕KT

i ⊕ K̂). This means A got a key of this system. As we
already proved in a previous remark, this event has a negligible probability
to happen.

The overall advantage of A is negligible in the security parameters for a
polynomially bounded adversary. 2

9 Conclusion

Following a general trend in inserting PUFs inside RFIDs, we modify the
Tree-Based Hash protocols to allow the integration of POKs. Because of the
fact that keys inside a tag are now physically obfuscated, we show that an
adversary is not able to impersonate a tag. Moreover, we prove our tag system
has no privacy leakage. We thus believe that our work helps to strengthen the
security of the overall protocol.

References

1. Auto-ID Center. Draft protocol specification for a 900 MHz Class 0 Radio Frequency

Identification Tag, 2003.
2. G. Avoine, L. Buttyán, T. Holczer, and I. Vajda. Group-based private authentica-

tion. In Proceedings of the International Workshop on Trust, Security, and Privacy for
Ubiquitous Computing (TSPUC 2007), IEEE., 2007.

3. Leonid Bolotnyy and Gabriel Robins. Physically Unclonable Function-based security
and privacy in RFID systems. In International Conference on Pervasive Computing

and Communications – PerCom 2007, pages 211–220, New York, USA, March 2007.
IEEE Computer Society Press.

4. Levente Buttyán, Tamás Holczer, and István Vajda. Optimal key-trees for tree-based
private authentication. In Privacy Enhancing Technologies, pages 332–350, 2006.

5. Ivan Damg̊ard and Michael Østergaard Pedersen. RFID security: Tradeoffs between
security and efficiency. In CT-RSA 2008, 2008.

6. Blaise Gassend. Physical random functions. Master’s thesis, Computation Structures
Group, Computer Science and Artificial Intelligence Laboratory, MIT, 2003.

7. Blaise Gassend, Dwaine E. Clarke, Marten van Dijk, and Srinivas Devadas. Silicon phys-
ical random functions. In Vijayalakshmi Atluri, editor, ACM Conference on Computer

and Communications Security, pages 148–160. ACM, 2002.
8. Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and Pim Tuyls. FPGA Intrinsic

PUFs and Their Use for IP Protection. In Pascal Paillier and Ingrid Verbauwhede, edi-
tors, CHES, volume 4727 of Lecture Notes in Computer Science, pages 63–80. Springer,
2007.

9. Ari Juels and Stephen A. Weis. Defining strong privacy for RFID. In PERCOMW’07,
pages 342–347, Washington, DC, USA, 2007. IEEE Computer Society.

10. D. Molnar and D. Wagner. Privacy and security in library RFID: issues, practices, and
architectures. In Proceedings of the ACMConference on Computer and Communications

Security, pages 210–219, 2004.
11. David Molnar, Andrea Soppera, and David Wagner. A scalable, delegatable pseudonym

protocol enabling ownership transfer of RFID tags. In Selected Areas in Cryptography,
pages 276–290, 2005.

12. Yasunobu Nohara, Sozo Inoue, Kensube Baba, and Hiroto Yasuura. Quantitative eval-
uation of unlinkable id matching systems. In Workshop on Privacy in the Electronic

Society, 2006.
13. Karsten Nohl and David Evans. Quantifying information leakage in tree-based hash

protocols (short paper). In ICICS, pages 228–237, 2006.
14. G. Edward Suh and Srinivas Devadas. Physical unclonable functions for device authen-

tication and secret key generation. In DAC, pages 9–14. IEEE, 2007.
15. Pim Tuyls and Lejla Batina. RFID-tags for anti-counterfeiting. In David Pointcheval,

editor, CT-RSA, volume 3860 of Lecture Notes in Computer Science, pages 115–131.
Springer, 2006.

16. Serge Vaudenay. On privacy models for rfid. In Kaoru Kurosawa, editor, ASIACRYPT,
volume 4833 of Lecture Notes in Computer Science, pages 68–87. Springer, 2007.

A Security Proofs

Completeness

In our scheme, errors could occur because of collisions in the output of the hash
function. For instance, a part of a communication (ai−1,H(ai−1, r

T
i), rTi ⊕KT

i)
could lead to an error when for a tag T ′, we get the equality H(ai−1, r

T
i) =

H(ai−1, r
T
i ⊕KT

i ⊕KT ′

i). This could appear with a probability at most Q

2lH
.

Because there are d stages, the overall probability to fail in the identification
is O(dQ

2lH
) which is negligible in the parameters.

Soundness.

We first remark the following. Let us define a family of functions Ha,b derived
from the random oracle H. b is a bit string of size lb. Ha,b is a function

from {0, 1}lb to {0, 1}lH such that Ha,b(x) = H(a, b ⊕ x). As H is a random
oracle, we can consider that an adversary has a negligible probability to find
a preimage of Ha,b(x) whatever a and b are. If there are polynomially many
ai and bj , an adversary has a negligible probability to find x even if he knows
Hai,bj

(x) for all ai and bj .

Now, we denote L1 the list of all the communications produced via the
SendTag queries, L2 the communications sent to the TC either with the
SendTC query or the Result query.

To simplify the notation, we prove that the scheme is sound with d = 1.
This is a sufficient condition, as the difficulty to authenticate increases with
d. We denote M , the maximum number of operations made by A.

Assume A has received the challenge aTC
0 and outputs the couple (a1, x1).

We overestimate the probability of success of A. There are two cases:

– Case 1: A did not use the random oracle to output a1. This means:

• either aTC
0 had been tested by A thanks to the SendTag query, this

could arise with a probability less than M
2lr

,
• or he tried a random answer. In this sub-case, he has a probability of

success less than M.Q

2lH
.

– Case 2: A used the random oracle to output a1. So we denote a1 =
H(aTC

0 , x′
1). This means

• either there is no key K̂ like x′
1 = x1 ⊕ K̂. The probability of success

is thus less than M.Q

2lH
,

• or there is a key K̂ in the key material such that x′
1 = x1 ⊕ K̂.

Consequently A possesses one key. He could achieve this only using
the information from L1 and L2. A only knows triplets of the form
(

a0,H(a0, r
T), rT ⊕KT

)

for some tags T . A change of variable leads
to: a0,Ha0,rT (KT), rT . Thanks to the previous remark, we can con-
clude that the probability A got one key is negligible.

We can conclude that our scheme is sound as the overall probability of any
adversary is negligible.

B Practical example

We propose for our protocol, as an example, the following parameters:

– the size of the reader challenge lr is 64,
– the size of any POK lK is 100
– the size of the output of H lH is 64. For instance, the first 64 bits of

AESai−1,1..28 ||ri
(ai−1||ri,1..64).

They have been chosen to minimize the non-volatile memory inside the tag
and the communication between tags and readers, but they should lead to a
sufficient security to insure the secrecy of the keys and the impossibility to
authenticate without the knowledge of the keys. We use AES as it is possible
to implement it with not too many gates and because the problem to find a
preimage or any collision is usually believed intractable.

Security can be improved by increasing the parameters:

– the size of the reader challenge lr is 64,
– the size of any POK lK is 116
– the size of the output of H lH is 64. For instance, the first 64 bits of

AESai−1,1..12 ||ri
(ai−1||ri,1..64).

The two tables Tab. 1 and Tab. 2 summarize the concrete resources used in
our scheme in the two previous cases for some example parameters. We use a
branching factor of 210 in all cases.

Tag Tag → TC TC

numbers non-volatile computation communication computation
memory

220 200 bits 2 AES and 2 random 328 bits 2× 210

230 300 bits 3 AES and 3 random 492 bits 3× 210

Table 1. Resources needed in the first case

Tag Tag → TC TC

numbers non-volatile computation communication computation
memory

220 232 bits 2 AES and 2 random 360 bits 2× 210

230 348 bits 3 AES and 3 random 540 bits 3× 210

Table 2. Resources needed in the second case

