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Abstract

We extend the notion of perfect secret sharing scheme for access structures with infinitely
many participants. In particular we investigate cases when the participants are the vertices of
an (infinite) graph, and the minimal qualified sets are the edges. The (worst case) information
ratio of an access structure is the largest lower bound on the amount of information some
participant must remember for each bit in the secret — just the inverse of the information rate.
We determine this value for several infinite graphs: infinite path, two-dimensional square and
honeycomb lattices; and give upper and lower bounds on the ratio for the triangular lattice.

It is also shown that the information ratio is not necessarily local, i.e. all finite spanned
subgraphs have strictly smaller ratio than the whole graph. We conclude the paper by posing
several open problems.
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1 Introduction

Secret sharing scheme is a method of distributing a secret data among a set of participants so that
only qualified subsets are able to recover the secret. If, in addition, unqualified subsets have no
extra information, i.e. their joint shares is statistically independent of the secret, then the scheme
is called perfect. The description of the qualified subsets among all possible subsets of participants
is the access structure. In this paper only perfect secret sharing schemes are considered; when we
speak about a secret sharing scheme, it is assumed to be perfect.

The most frequently investigated property is the efficiency of the system: how many bits of
information the participants must remember for each bit of the secret in the worst case. This
amount is the (worst case) information ratio of the system, which is just the inverse of the most
commonly used information rate. (The name comes from the analogy to noisy channels.) Next to
the the worst case, the average is also a good measure of the efficiency; in this paper by information
ratio we mean the worst case one.

Determining the (worst case or average) information ratio, even in special cases, turned out to
be extremely hard, both theoretically and technically. Several particular classes of access structures
were investigated separately: access structures on four or five element sets [15, 19], access structures
with three or four minimal sets [16], but most importantly access structures where the minimal
qualified subsets are of size two — the so-called graph access structures [2, 3, 4, 7, 11, 12, 20].

Here we start the research in a new direction: we consider access structures with infinitely many
participants. In the exposition we restrict ourselves to graph access structures. Our definitions,
and some of the results, generalize easily for arbitrary access structures. [5] investigated secret
sharing systems on infinite domain with finite access structures.

We determine the exact value of the (worst case) information ratio for a couple of infinite
graphs. This part uses a new result on the exact information ratio for a particular family of
graphs (Theorem 4.2). We also show that the information ratio is not necessarily local, i.e. there
are cases when this number for the whole graph is larger than that of any of its finite subgraph
(Corollary 4.6).
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The paper is organized as follows. In the next session we recall the definition of a perfect secret
sharing system, define the worst case and average information ratio, and introduce the so-called
entropy method [3, 4, 6, 19]. Section 3 defines secret sharing systems on infinite structures. We
introduce a generalizations of the decomposition technique for the infinite case (Theorem 3.6),
and show that Stinson’s celebrated bound works in the infinite case as well (Corollary 3.9). In
section 4 we determine the exact information ratio of a particular family of graphs. It is used to
prove the optimality of several constructions in section 5. Finally section 6 concludes the paper,
and list some problems. For undefined notions and for an introduction to secret sharing schemes
see [2] or [7]; for those in information theory consult [10].

All logarithms in this paper are of base 2.

2 Definitions

This section defines some of the most important notions which are used in the paper. First we
recall some graph properties, then give a formal definition of a (finite) perfect secret sharing
scheme based on graphs. Finally we connect perfect secret sharing schemes to certain submodular
functions.

Let G = (V, E) be a (finite or infinite) graph with vertex set V' and edge set E. A subset
A of V is independent if there is no edge between vertices in A. A covering of the graph G is
a collection of subgraphs of G such that every edge is contained on one of the (not necessarily
spanned) subgraphs in the collection. The collection is k-covering if every edge of G is covered
exactly k times. For subsets of vertices we usually omit the U sign, and write AB for AU B. Also,
it v € V is a vertex then Av denotes AU {v}.

A perfect secret sharing scheme S for a finite graph G is a collection of random variables &,
for each v € V and a & (the secret) with a joint distribution so that

(i) if vw is an edge in G, then &, and &, together determine the value of s;

(i) if A is an independent set, then & and the collection {¢, : v € A} are statistically indepen-

dent.

The size of the discrete random variable ¢ is measured by its entropy, or information content,
and is denoted by H(E), see [10]. This amount has to be well defined and finite, consequently
all random variables in this paper are assumed to be finite, i.e. they can take only finitely many
different values with positive probability. This is the main obstacle one has to overcome when
defining a secret scheme on infinite domain.

The information ratio for a vertex (or participant) v € G is H(,)/ H(&,). This value tells how
many bits of information v must remember for each bit in the secret. The worst case (or average)
information ratio of S is the highest (resp. average) information ratio among all participants.

Given a graph @ its information ratio is the infimum of the corresponding value for all perfect
secret sharing schemes S defined on G.

Definition 2.1 The information ratio of the (finite) graph G, denoted as R(G), is defined as

. H(&)
R(G) = inf max 75

The widely used information rate is the inverse of this value. While the “information rate”
is the customary measure in the literature, we found its inverse, the ratio, to be more intuitive,
furthermore certain expressions are easier to write and understand using the ratio.

As it has been pointed out in [1], it is not evident that the “infimum” in Definition 2.1 should
actually be taken by some scheme S, i.e. whether the infimum is always a minimum. [1] presents
a general access structure where the infimum is not taken by any scheme. For access structures
based on graphs the question whether inf = min is an open problem.

Let S be a perfect secret sharing scheme based on the (finite) graph G with the random variable
acting & as secret, and &, for v € V acting as shares. For each subset A of the vertices one can



define the real-valued function f as

def H{&y = v € A})
B H(¢)

Clearly, the information ratio of S is the maximal value in {f(v) : v € V}, while the average
information ratio is the average of these values. Using standard properties of the entropy function,
cf. [10], following inequalities hold for all subsets A, B of the participants:

(a) f(P) =0, and in general f(A4) > 0 (positivity);

(b) if AC B CV then f(A) < f(B) (monotonicity);

(¢) f(A)+ f(B) > f(ANB) + f(AU B) (submodularity).
It is well known that for two (finite) random variables n and £, the value of 7 determines the value
of ¢ iff H(n&) = H(n), moreover n and ¢ are (statistically) independent iff H(n¢) = H(n) + H(¢).
Using these facts and the definition of the perfect secret sharing scheme, we also have

(d) if A C B, A is an independent set and B is not, then f(A4)+1 < f(B) (strong monotonicity);

(e) if neither A nor B is independent but ANB is so, then f(A)+ f(B) > 1+ f(ANB)+ f(AUB)

(strong submodularity).

The celebrated entropy method, see, e.g., [2], can be rephrased as follows. Prove that for any
real-valued function f satisfying properties (a)—(e), for some vertex v € G, f(v) > r. Then, as
functions coming from secret sharing schemes also satisfies these properties, conclude, that the
(worst case) information ratio of G is also at least r.

Note that this method is not necessarily universal, as properties (a)—(e) are too weak to capture
exactly the functions coming from entropy see [17]. However, for graphs all existing lower bound
proofs use the entropy method, and no example is known where the entropy method would not
work.

f(4) : (1)

3 The case of infinite graphs

Trying to define secret sharing on an infinite object one faces several problems. As there are
infinitely many participants, one has to define infinitely many random variables with a joint
distribution. But infinitely many pairwise random bits (probably needed for any construction)
require huge event space, where the standard entropy function does not exist. We used entropy as
a tool to define the relative size of a share compared to the secret, but even finding such a weaker
notion is problematic; see Problem 6.1

Rather than defining the information ratio directly, we choose an indirect way. In case of graphs
the set of participant might be infinite, but the minimal qualified subsets are finite, namely pairs.
Thus it seems quite natural to consider finite restrictions. Our starting point is the following easy,
but very useful fact about secret sharing schemes on finite graphs. The fact generalizes easily to
other access structures as well.

Fact 3.1 Suppose G' is a spanned subgraph of G. The information ratio of G' is at most as large
as the information ratio of G, i.e. R(G') < R(QG). |

In general, this claim is not true for arbitrary subgraphs. By Shamir’s result in [18], R(K,) =1
where K, is the complete graph on n vertices, while by [7], there is a graph G' C K,, where
R(G") > 0.251ogn.

Looking at an infinite graph as the “limit” of its finite spanned subgraphs, Fact 3.1 suggests
the following definition:

Definition 3.2 The information ratio R(G) for the infinite graph G is

R(G) = sup{R(G") : G is a finite, spanned subgraph of G }.



By fact 3.1 this is a sound definition, and applying to a finite G gives back the original value.

If the (finite) graph @G is the disjoint union of G; and G, i.e. there are no cross edges between
(1 and (G4, then any secret sharing scheme on G is simply a composition of a secret sharing scheme
on (71, and another one on Gs.
Claim 3.3 If G has several connected components, then

R(G) =sup{R(G") : G' is a connected component of G }. 1

Consequently, in definition 3.2 it is enough to consider connected finite subgraphs of G only.
We have defined the information ratio of an infinite graph as a supremum. It is a natural
question whether this value is actually taken, or is it a proper one.

Definition 3.4 The graph G is local if there is a finite spanned subgraph G’ of G such that
R(G) = R(G"). Otherwise G is not local. |

Of course, when R(G) is infinite then G cannot be local as no finite graph has infinite infor-
mation ratio. Locality is interesting only when R(G) is finite.

When constructing secret sharing schemes the most frequently used tool is Stinson’s decom-
position technique from [20]. For our case it can be worded as

Theorem 3.5 (Stinson) Let G; C G be arbitrary subgraphs of G, and assume that each edge of
G is in at least k of the subgraphs. Let S; be a perfect secret sharing scheme on G; such that S;
assigns S;(v) bits to v € G for each bit in the secret (S;(v) =0 if v ¢ G;). Then there is a scheme
S on G which assigns

1
Sw) =4 > Si(v)
bits to v for each bit in the secret. |

This theorem is meaningful for finite graphs only. The following generalization, however, holds
for infinite graphs as well.

Theorem 3.6 Let G; C G be arbitrary (finite or infinite) subgraphs of G, and assume that each
edge of G is in at least k of the subgraphs. For a vertex v € G define r;(v) = 0 if v ¢ G;, and
r;(v) = R(G};), i.e. the information ratio of G; otherwise. Then

R(G) < sup M
veG k

Proof Let us denote the value of the sup on the right hand side by r; we may assume that r
is finite otherwise there is nothing to prove. Let G' C G be a finite spanned subgraph of G.
According to Definition 3.2, we need to check that there is a perfect secret sharing scheme S on
G’ which assigns at most r bits to each vertex of G’ for each bit in the secret.

As @G has finitely many edges, we can choose a finite set I of the indices of the subgraphs G;
such that each edge of G' is in at least k of the subgraphs in the family {G; : i € I}. Fori e I
let G4 be the spanned subgraph of G; restricted to the vertices of G’. As R(G;) = r; and G} is a
spanned subgraph of G;, by Fact 3.1 there is a secret sharing scheme S; on G which assigns at
most r; bits to all v € G} for each bit in the secret. By Theorem 3.5 then there is a scheme S

which assigns
° 1 1 > ri(v)
S(v) = T E Si(v) < T E ri(v) < 2
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bits to v € G’, which was wanted. |

We close this section by a generalization of Stinson’s celebrated result [20]. For the proof we
need some well-known facts. The first statement is a folklore, the proof is an easy application of
the entropy method, see, e.g. [2], or the results in section 4.
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Figure 1: Secret sharing on a star

Claim 3.7 If G is empty (independent), then R(G) = 0. Otherwise R(G) > 1. |

The complete graph on (countably) infinitely many points is denoted by K., and the (infinite)
graph where one point is connected to an infinite independent set is denoted as Stary.

Claim 3.8 R(K) = R(Stary,) = 1.

Proof All finite spanned subgraph of K, is the complete graph. By Shamir’s result in [18] all of
them have ratio 1, thus their sup is also 1.

As for the other graph, R(Stary,) > 1 by Claim 3.7. We show that this value is also < 1.
Each finite, connected spanned subgraph of Star, is a (finite) star. Let the secret be the random
bit s € {0,1}, and let r € {0,1} be selected randomly and independently from s. The center of
the star will get s ® r, and all other vertices get r. This is a perfect secret sharing scheme; all
participants get 1 bit, and the secret is 1 bit as well (see figure 1). Thus the ratio in this case is 1
as well. |

Corollary 3.9 If the mazimal degree of G is d, then R(G) < (d+1)/2.

Proof For each vertex v in G consider the star GG, with center v and all edges outgoing from v
as rays. These subgraphs G, cover all edges twice, and each vertex is in at most d + 1 of these
subgraphs (once as center, and d times as endpoint of a ray). Now R(G,) = 1 by Claim 3.8, and
apply Theorem 3.6. |

4 Lower bounds: the comb

Almost all lower bounds use the celebrated entropy method, see [3, 4, 6, 19] which has been
outlined at the end of section 2. We shall use this method for a particular family of graphs, which
will then be used to determine the exact ratio of several infinite graphs as well.

Figure 2: The graphs Comby, and Combs

Definition 4.1 For k£ > 2 Comby, is the graph on 2k vertices as indicated on figure 2, in particular
Combs is the path of length 3. Comb, is the infinite comb with no 2-degree vertex. |

The main result of this section is
Theorem 4.2 For k > 2, R(Comby) =2 —1/k.

Proof By using Stinson’s decomposition method we show that the ratio is < 2 — 1/k. Figure 3
indicates the first two of the k different covers of Comby; each component in a cover is a star on
two, three or four vertices, thus has information ratio 1. The numbers below the vertices indicate
how many bits that vertex receives. Putting together all k covers, each edge is covered k times,
the bottom vertices receive a total of 2k — 1 bits, while the top vertices receive k bits. Using
Theorem 3.5 we conclude that R(Comby) < (2k — 1)/k.
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Figure 3: Two out of k£ covering of Comby, with stars

< bits received

For the other direction we use the entropy method. Label the bottom vertices of Comby, from
left to right as A1, As, ..., A, the top vertices as ay, ..., aj so that a; is connected to A; only.
Let f be any real valued function which satisfies properties (a)—(e) from section 2 for the particular
access structure which is defined by the edges of Comby. Then

k
> f(A) > 2%k -1 (2)

i=1

If we can show this, then we are done. The sum of k terms is at least 2k — 1, thus at least one of
them is > (2k —1)/k. Given any secret sharing scheme on Comby, the particular choice in (1) for
the function f satisfies (a)—(e), consequently for at least one A; we have

_ H(é.Az) > 2k -1

4D = Jes 2 5

i.e. someone must remember at least 2 — 1/k bits for each bit in the secret.
To finish the proof, we state and prove two lemmas, 4.3 and 4.4. Inequality (2) is just the sum
of the claims in the lemmas. |

Lemma 4.3 YF f(4) > f(A41 4y Ay) +k —2.

Proof In general for any 2 < ¢ < k, Zle f(A4;) > f(A1 Az ... Ap) + £ — 2 which we will prove by
induction on £. When ¢ = 2 the claim is f(A41)+ f(A43) > f(A; Ay), which is just the submodularity

().
Now suppose we know the claim to be true for £ — 1; to conclude it for £ it is enough to check
that whenever ¢ > 3 then

f(ALAs o Apa) + f(Ag) > f(Ar.. A + 1 (3)

As ¢ >3,both Ay ... Ay 1 and Ay 1 Ay contain edge, i.e. they are a qualified sets. Then property
(e) says that
f(ALAz o Apg) + f(Ap1Ae) 2 f(Ar-. Ay + f(Ap) + 1

as the singleton A;_; is not qualified. By the submodularity (c) we have
f(Ae—1) + f(Ar) > f(A—14e).
Adding up the last two inequalities we get (3), as required. |
Lemma 4.4 f(A1As.. . Ap) > k+1.
Proof Let X ={A;A45... A}, and consider the differences
d; = f(Xay...a;) — flag ... a;).

As f(0) = 0, the value we are interested in is dg. The trick is to consider these differences in
reverse order. As {Xa;...ax} is qualified, while {a; ...a;} is not, condition (d) gives 1 < dy.
Furthermore, for all 1 < i <k, d; + 1 < d;—; which implies k£ + 1 < dj as the lemma states.
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Figure 4: Paths, honeycomb, and 2-lattice

Now both {A;a; ...a;} and {Xa; ...a;_1} are qualified, their intersection, which is
{4;a; ...a;_1}, is not, thus (e) gives

flAjay...a;) + f(Xay...a;—1) > f(Asar...a;-1) + f(Xay...qa;) + 1.
Furthermore the submodularity (c) tells
flay...a;) + f(Asar...a;-1) > f(Asar...a;) + flar...a;—1)
Adding these up and rearranging we get d; + 1 < d;_1, as needed. |

Theorem 4.5 The information ratio of Comb, is 2.

Proof Each connected component of Comb,, is a spanned subgraph of Comb;, for some k, con-
sequently, by Theorem 4.2, its information ratio is < 2.

On the other hand, for each natural number &k, Comby, is a spanned subgraph of Comb,,, thus
R(Comby) is at least sup, {2 — 1/k} = 2.

Corollary 4.6 Comb,, is not local, i.e. all of its finite spanned subgraphs have smaller informa-
tion ratio. |

5 Examples

The path of length n (with n + 1 vertices) is denoted as P,, and P, is the infinite path, or
the 1-dimensional lattice. The honeycomb is the two-dimensional tiling of the plane with regular
hexagons. The two-dimensional (square) lattice is the usual checkered paper like tiling (see fig 4),
and the triagonal tiling is the tiling with regular triangles (fig 7).

Example 5.1 R(P) = 3/2.

Proof We have seen that Combs is the same graph as the path of length 3, thus by Theorem
4.2 R(Comby) = R(P;) = 3/2. (For other proofs see, e.g. [2, 3, 6], or the Appendix.) As P;
is a spanned subgraph of P.,), we have R(P;) = 3/2 < R(Ps). For the other direction we use

:

Theorem 3.6 for the 2-cover indicated on figure 5. All subgraphs in the cover are stars having
ratio 1; each edge is covered twice and each vertex gets 3 bits. Thus R(Px) < 3/2. |
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Figure 5: Covering P,, by stars

Example 5.2 R(honeycomb) = 2.
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Figure 6: The comb as spanned subgraph

Proof As each vertex has degree 3, Corollary 3.9 says that the ratio is at most 2. On the other
hand the, honeycomb contains the infinite comb as a spanned subgraph (left picture on figure 6).
Consequently 2 = R(Comb,,) < R(honeycomb).

Example 5.3 R(2-lattice) = 2.

Proof Here each vertex has degree 4, thus Corollary 3.9 gives only 5/2. We could, however, apply
Theorem 3.6 directly for the four-cycles Cy indicated on figure 4. Each edge is covered once, and
each vertex is in two cycles. As Cy has information ratio 1 we proved that the information ratio for
the 2-lattice is < 2. The statement on C4 can be shown as follows: let the random bit s € {0,1}
be the secret, and pick r € {0,1} randomly and independently from s. Give r to the first and
third node in Cy4, and 7 & s to the two other nodes.

The lower bound follows from the fact that the infinite comb can be embedded to the 2-lattice
as a spanned subgraph, see Figure 6. |

The proof given here does not tell whether the 2-lattice is local or not. In the Appendix we
show that a particular graph on 8 vertices has information ratio 2. That graph is a spanned
subgraph of the 2-lattice, thus the 2-lattice is not local.

Example 5.4 2 < R(triangle lattice) < 12/5.

Proof The lower bound follows again from the fact that the comb can be embedded into this
lattice as well, see figure 7.

s+r

Figure 7: The triangle lattice

The construction which gives the upper bound 12/5 is due to Péter Gergely [13]. Consider the
diamond-shaped graph on four vertices at the right hand side of figure 7. This graph has ratio
1, which can be shown as follows: pick the secret s from {0, 1,2} uniformly, and pick a random
r from the same set. Give r to nodes on the left and on the right, give s + r mod 3 to the top
vertex, and s — r mod 3 to the bottom vertex. Any two connected vertices can recover the secret
s, moreover each assigned number is independent of s. The two unconnected vertices receive the
same share, thus their joint information is independent of the secret as well. Both the secret and
the shares have entropy log 3, thus the ratio is 1.

The cover consists of all spanned subgraphs of the triangle lattice isomorphic to this graph.
It is easy to check that this is a 5-cover (each edge is in 5 of such subgraphs), and each vertex is
covered 12 times. By Theorem 3.6 this gives 12/5 as an upper bound. |

The countable universal or random graph is the unique (up to isomorphism) graph on countable
many vertices which has the property that picking finitely many vertices v; and numbers ; € {0, 1},
there exists a vertex in the graph which is connected to v; just in case ; = 1.

Example 5.5 The information ratio for the universal graph is oc.



Figure 8: The ladder and a cover

Proof As we have remarked, there is a graph of n vertices with information ratio > 0.25logn,
see [7]. As all finite graphs can be embedded into the universal graph as spanned subgraphs, its
information ratio is at least 0.25logn, i.e. not bounded.

Example 5.6 The information ratio for the infinite binary tree is 2.

Proof Lower bound: for each k the graph Comb;, can be embedded into this graph, consequently
R > 2.

Upper bound: we show that each tree has information ratio < 2 by using the Theorem 3.6.
We may assume that the tree is connected. Pick any vertex and consider it as “root.” Direct
the edges recursively away from the root. When all edges has been directed, each node has one
invertex except for the root which has none. Consider the stars with center at a vertex consisting
of all outgoing edges. Each edge is covered exactly once, and each vertex gets one or two bits (one
bit for the root and leaves, and two bits for all other vertices).

In [9] it has been proved that all finite trees have information ratio 2 — 1/k for some integer
k > 1. Therefore the information ratio of an infinite tree is the sup of numbers of this form. If
T is an infinite tree, then either R(T) = 2, and then T is not local (as, e.g., is the case for the
complete binary tree in Example 5.6), or R(T) = 2 — 1/k for some integer k¥ > 1, and then T is
local.

Example 5.7 There is an infinite graph with information ratio 5/3.

Proof Consider the (rooted) complete binary tree from example 5.6, and insert a new vertex at
the midpoint of every edge. This will be our graph T'.

As three-tooth comb can be embedded into T, its information ratio is R(T) > R(Combs)
=2 —1/3. The upper bound comes from Theorem 3.6: we define a 3-cover by stars so that each
vertex gets 5 bits; this gives R(T') < 5/3. First take the stars with center at the inserted new
vertices and both edges as rays. Second take stars at the old vertices with all incident edges as
rays, but take them twice. That way an old vertex gets 2 -1+ 3 bits (two from the double star,
and one from each new neighbor), while a new vertex gets 2 - 2 4+ 1 bits, as required. |

Example 5.8 The infinite ladder L on figure 8 has information ratio 10/6 < R(L) < 11/6.

Proof The upper bound comes from the following construction (see figure 8). The 1-cover on the
right has period 6. It uses stars and C4, both assigns a single bit for each bit in the secret. In a
period all vertices get 2 bits, except for one in the top, and one in the bottom which get only 1
bit. Shifting this cover by 1, ..., 5 we get a 6-cover, and each vertex gets a total of 11 bits. By
Theorem 3.6 the upper bound follows.

For the lower bound one can observe that the infinite path is a spanned subgraph. Unfortu-
nately this gives only 9/6. For the missing 1/6 we prove in the Appendix that the graph G; on
figure 9 has information ratio 10/6. As this is a spanned subgraph of the ladder, we are done.

We remark that the ladder of width 2 has information ratio 2. It is a spanned subgraph of the
2-lattice (< 2), and contains Combs, as a spanned subgraph (> 2).

6 Conclusion and further problems

Determining the exact amount of information a participant must remember in a perfect secret
sharing scheme is an important problem both from theoretical and practical point of view. Access



structures based on graphs pose special challenges. They are easier to define, have a transparent,
and sometimes trivial, structure.

In this paper we extended the definition of secret sharing for infinitely many participants,
and gave a definition for its information ratio. We consider this extension to be an important
contribution, and hope to see further, interesting applications.

We have used a compactness-type definition to overcome the difficulty of infinite entropy: the
information ratio is defined as the sup of the ratio for the finite embedded structures. The first
problem is to find an appropriate definition of the “relative information content” for arbitrary
random variables.

Problem 6.1 Given two random variables £ and 7, define their relative size, which is the analog
of H(¢)/ H(n) when both ¢ and 7 are finite.

In [5] the authors show that the secret and shares, as random variables, cannot be based on
a countable domain, even if the number of participants is finite. The paper also contains the
following using reals numbers: let the secret & be uniform in [0,1), then choose the shares &; of
the first £ — 1 of the participants uniformly and independently in [0,1), and choose & € [0,1) so
that
=&+ +&-1+& (mod1)

It is easy to check that &, is independent of any set of £k — 1 shares, and, of course, all shares
determine the secret uniquely. Just as in the finite case, this scheme can be used as a building
block to create a perfect secret sharing when all qualified subsets are finite: simply distribute &
for each qualified subset independently. In this case each participant will receive as many shares
as many minimal qualified sets it is in. In particular, if the scheme is based on a graph, then this
number will be the degree of the vertex.

In case of finite complete graphs the above construction has extremely high information ratio.
Shamir’s construction from [18] is more efficient, it has the lowest possible information ratio 1. Can
Shamir’s construction be generalized for the infinite case? The beginning is easy. Pick elements
x; of a field for each participant, and pick the point zs for the secret (these values are public).
Choose a secret linear function p(z) = ax + b according to a certain distribution. The value of
the secret is & = p(zs); and the shares are & = p(x;). Clearly all pair of shares determine the
function p, thus the value £;. What is not clear why &, and ; should be independent.

Problem 6.2 Do there exists a distribution for which &, and &; are always independent when the
linear functions are taken (a) over reals, (b) over some appropriately chosen field?

By the result of [5] the field cannot be countable. Here and in all problems “determines” can (and
should) mean that & is determined uniquely with probability 1.

Existence of an “infinite” threshold scheme seems to be a pure probability theoretical question.
Problem 6.3 Do there exists a perfect scheme where the secret is independent of finitely many
of the shares, but is determined by infinitely many of them? Or at least do there exist a rump
scheme where the secret is independent of any finite collection of the shares, but is determined by
any cofinite collection (i.e. all but finitely many) of shares?

We return to schemes based on graphs. In almost all examples we have used Theorem 3.6, the
generalization of Stinson’s decomposition theorem. Does it generalize for infinite sharing schemes
as well?

Problem 6.4 Suppose that G; is (an arbitrary) subgraph of G, and S; is a perfect secret sharing
scheme on G;. Assume moreover that all edges of G is contained in at least ¢ of the subgraphs.
Does it follow that there is perfect secret sharing scheme on G?

The problem is that the secret in S; might have arbitrary distribution, and it is not clear how to
combine them.

In the Examples section we have computed the information ratio for several infinite graphs.
In two cases: the triangle lattice (Example 5.4) for the ladder (Example 5.8) we could only give
estimates.

Problem 6.5 Determine the exact information ratio of the triangle lattice and that of the ladder.
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We conjecture that for the triangle the upper bound, for the ladder the lower bound is the right
value.

We have seen two examples for non-local graphs: the comb, and the complete binary tree.

Both of them have information ratio 2, but every finite spanned subgraph has smaller information
ratio.

Problem 6.6 Is there any non-local graph with information ratio strictly below 27

In fact is the following stronger conjecture true:
Problem 6.7 Is it true that if R(G) < 2 then R(G) = 2 — 1/k for some integer k?
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Appendix

We determine the exact information ratio for the graphs G; and G» of figure 9. GG; is a spanned
subgraph of the infinite ladder in Example 5.8 while G5 is a spanned subgraph of the 2-lattice
(but not of the ladder).

Claim 6.8 The information ratio of Gy is 5/3.

Proof For the upper bound consider the following 3 covers of G;. The first cover consists of the
cycle BbcC B (assigning 1 bit for each secret bit), plus the two edges ab and cd. Using this cover
nodes b and ¢ get two bits, all other nodes get one bit. The second cover contains the star with
rays ba, bB, bc; the path Ccd and the edge BC. Here a, b, and d get one bit, all other nodes get
two bits. The third cover is the mirror image of the second one: the star ¢b, ¢C ¢D, the path abB,
and the edge BC'. Using all three covers all edges are covered three times, and every node gets
either three (a and d), or five bits (all the rest).

For the lower bound we use the entropy method. Assume f satisfies properties (a)—(e) listed
at the end of section 2. We claim that

f0) + fe) + £(C) 2 5, (4)

i.e. at least one of b, ¢ and C gets 5/3 bits for each bit in the secret.

First we give a strengthening of the usual proof that the information ratio of the path of length
3 is at least 3/2. That proof goes by showing that f(bc) > f(abed) — f(ad) +2. As abed is qualified
and ad is not, f(abed) — f(ad) > 1. That is, f(b) + f(c) > f(bc) > 3, therefore either f(b) or f(c)
is > 3/2. Here we show that in this inequality f(abed) can be replaced by f(acd):

fla) + 7(b) = f(ab)

> f(
f(ab) + f(bc) = f(b) + f(abC)
flabe) > f(ac) +
= f(

flac) + f(ad) a)+f(acd)
f(be) + f(ad) > flacd) +
Second, we take into account the vertices B and C' as well:
fle) + f(C) = f(cC)
fled) + f(cC) > f(c) + f(cdC) +1
flaed) + f(cdC) > f(ed) + f(acdC)
flacdC) > f(adC) +1
f(adC) + f(adB) > f(ad) + f(adBC)
f(adBC) > f(adB) +1
f(C) + flacd) > f(ad) +3
As f(b) + f(c) > f(bc), the sum of the two inequalities gives (4). |

Claim 6.9 G, has information ratio 2.
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Proof R(G2) < 2 as G- is a spanned subgraph of the 2-lattice, and the 2-lattice has information
ratio 2. On the other hand, let f be again any function satisfying (a)—(e); we claim that

fbe) + F(BC) = 8. ()

As f(b) + b(c) + f(B) + f(C) > f(bc) + f(BC) > 8, the lower bound 2 follows.
Each of the inequalities below are instances of one of the properties (a)—(e) of the function f:

f(a) + f(b) = f(ab)

f(ab) + f(be) > 1+ f(b) + f(abe)

f(acAC) — f(acA) > f(acACD) — f(acAD) > 1
flacABC) — f(acAC) > 1
flac) = f(a) = f(acB) — f(aB)

flacB) — f(aB) > 1+ f(acABC) — f(aABC)

f(abe) — f(ac) > f(abcA) — f(acA)

f(be) > 4+ f(abcA) — f(aABC)

Swapping lower case and upper case letters leaves the graph unchanged, thus we also have the
“swapped” instance:

f(BC) >4+ f(aABC) — f(abcA).
Adding these latter two inequalities we get (5), as required. |

13



