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Abstract. The XCB mode of operation was outlined in 2004 as a con-
tribution to the IEEE Security in Storage effort, but no security analysis
was provided. In this paper, we provide a proof of security for XCB, and
show that it is a secure tweakable (super) pseudorandom permutation.
Our analysis makes several new contributions: it uses an algebraic prop-
erty of XCB’s internal universal hash function to simplify the proof, and
it defines a nonce mode in which XCB can be securely used even when the
plaintext is shorter than twice the width of the underlying block cipher.
We also show minor modifications that improve the performance of XCB
and make it easier to analyze. XCB is interesting because it is highly ef-
ficient in both hardware and software, it has no alignment restrictions
on input lengths, it can be used in nonce mode, and it uses the inter-
nal functions of the Galois/Counter Mode (GCM) of operation, which
facilitates design re-use and admits multi-purpose implementations.

1 Introduction

There are several scenarios in which length-preserving, deterministic encryption
is useful. An encryption method is length-preserving if the ciphertext has ex-
actly the same number of bits as does the plaintext. Such a method must be
deterministic, since it is impossible to accommodate random data (such as an
initialization vector) within the ciphertext. In some cases, deterministic length-
preserving encryption exactly matches the requirements. For example, in some
encrypted database applications, determinism is essential in order to ensure a
direct correspondence between plaintext values being looked up and previously
stored ciphertext values.

In some other cases, there is a length-preservation requirement that makes
it impossible to provide all of the security services that are desired. Length-
preserving algorithms cannot provide message authentication, since there is no
room for a message authentication code, and they cannot meet some strong
definitions of confidentiality [1]. Essentially, these algorithms implement a code-
book; repeated encryptions of the same plaintext value with the same key result
it identical ciphertext values. An adversary gains knowledge about the plaintext
by seeing which ciphertext values match, and which do not match. Despite these



limitations, in many scenarios it may be desirable to use length-preserving en-
cryption because other methods are unworkable. Length-preservation may allow
encryption to be introduced into data processing systems that have already been
implemented and deployed. Many network protocols have fixed-width fields, and
many network systems have hard limits on the amount of data expansion that
is possible. One important example is that of disk-block encryption, which is
currently being addressed in the IEEE Security in Storage Working Group [2].

Our goal is to provide the best security possible, given the length-preservation
limitation. We require our cipher to be a pseudorandom permutation; it is indis-
tinguishable from a uniformly chosen random permutation on the set of messages
to a computationally bounded adversary. Because we want our cipher to handle
plaintexts whose size may vary, we require the cipher to be a pseudorandom ar-
bitrary length permutation: for each of the possible plaintext lengths, the cipher
acts as a pseudorandom permutation. To provide as much flexibility as possible,
we allow the plaintext lengths to vary even for a single fixed key.

In some cases, some additional data can be associated with the plaintext. By
using this data as an input, we can provide better security, by letting each distinct
associated data value act as an index into a set of pseudorandom permutations.
That is, we require the cipher to be a pseudorandom arbitrary-length permutation
with associated data: for each plaintext length and each value of the associated
data, the cipher acts as a pseudorandom permutation. For maximum flexibility,
we allow the length of the associated data field to vary even for a single fixed
key. In the disk block example, we can use the block number as the associated
data value. This will prevent some attacks which rely on the codebook property,
since identical plaintext values encrypted with distinct associated data values
give unrelated ciphertext values.

The use of an associated data input to a pseudorandom permutation first
appeared in the innovative Hasty Pudding Cipher of Schroeppel [3], where it
was called a ‘spice’, and was given a rigorous mathematical treatment by Liskov,
Rivest, and Wagner [4], who called it a ‘tweak’. Our security goal follows that of
the latter work, with the distinction that we allow the associated data to have
an arbitrary length.

1.1 Comparison to existing work

Naor and Reingold [5] outlined an mode of operation implementing arbitrary
length permutation which used a hash-ECB-hash method in which the hash
stages are invertible. Other work used a Feistel approach [6]. These early designs
do not include a provision for associated data. More recently, block cipher modes
of operation that implement pseudorandom arbitrary-length permutations with
associated data have been defined. The first such algorithms to be proven secure
were the CMC [7] and EME [8] modes of Halevi and Rogaway. CMC cannot
be efficiently pipelined; EME can be pipelined, but lacks flexibility. EME∗ [9]
was designed to address that issue. All of those algorithms use an encrypt-mix-
encrypt approach, and do not use universal hashing. ABL4 [10] uses a four-round
unbalanced Feistel network. The original XCB version [11], HCTR [12], and



HCH [13], use a hash-CTR-hash approach. PEP [14] and TET [15] make use of
the hash-ECB-hash approach. Some of the modes have restrictions on the lengths
of their inputs (CMC, EME, PEP), or require length-specific precomputation
(TET). A detailed comparison of these modes is beyond the scope of this paper,
but we highlight some differences below.

XCB encrypts nw bits of data with only n + 1 block cipher invocations and
2n + 6 multiplications in GF (2w), where w is the number of bits in the block
cipher inputs and outputs. The relative efficiency of these modes of operation
depends on the relative efficiency of a block cipher invocation and a multipli-
cation in GF (2w). In software, XCB is faster than EME∗ if the time taken by
that multiply is less than half of the time taken by the block cipher; otherwise,
EME∗ is faster. Multiplication can be done efficiently using precomputed tables,
so that XCB outperforms EME∗, but in practice the size of such tables could be
undesirable, and the performance of the two modes should be considered roughly
equivalent. HCTR is faster than XCB by a single block cipher invocation. ABL4
and PEP are considerably less efficient. XCB uses only a single hash key, which
is a significant advantage for software implementations, because it reduces the
amount of memory needed to store and encryption or decryption context.

In hardware, XCB has the lowest latency of any of these modes; in this
context, latency measures the time between when encryption starts and when
the first bit of the ciphertext leaves the circuit. XCB also has the merit that a
single circuit can implement both encryption and decryption; the algorithms are
equivalent up to a reversal of their subkeys.

XCB is unique in that it has been shown to be secure in nonce mode, and
can securely accept plaintexts with lengths between w and 2w bits when the
associated data contains a nonce. This property allows XCB to protect short
plaintexts. An example of an application where that feature is useful is the use
of Secure RTP [16] to protect voice over IP with the widely used G.729 voice
codec, in which case the plaintext is 20 octets long.

The basic components of XCB are identical to those of the Galois/Counter
Mode (GCM) of operation [17], making XCB easy to implement given an imple-
mentation of GCM, and making compact GCM/XCB implementations possible.

2 XCB definition

This section contains the specification for XCB for use with w-bit block ci-
phers. A typical value is w = 128, as with the Advanced Encryption Standard
(AES) [21].

2.1 Interface

The encryption operation takes as input a secret key K, a plaintext P , and
associated data Z, and outputs a ciphertext C. This operation is denoted as
C = E(K, Z, P ). The values K, P, Z, and C are bit strings. The length of C is
identical to that of P .



The decryption operation takes as input a secret key K, a ciphertext C,
and associated data Z, and outputs a plaintext P . This operation is denoted as
P = D(K, Z, C). The identity D(K, Z, E(K, Z, P )) = P holds for all values of
K and Z.

There are two distinct ways in which XCB can be used. For any fixed value
of the key, if all of the values of the associated data Z in all of the encryption
operations are distinct, then the plaintext can have a length between w and 239

bits, inclusive. We call this nonce mode. Otherwise, if the associated data values
are not distinct, then the plaintext must have a length between 2w and 239 bits,
inclusive. We call this normal mode.

2.2 Notation

The two primitive functions used in XCB are block cipher encryption and mul-
tiplication over the field GF (2w). The block cipher encryption of the value X
with the key K is denoted as e(K, X), and the block cipher decryption is de-
noted as d(K, X). (Note that we reserve the symbols E and D to denote XCB
encryption and decryption, respectively.) The number of bits in the inputs and
outputs of the block cipher is denoted as w. The multiplication of two elements
X, Y ∈ GF (2w) is denoted as X · Y , and the addition of X and Y is denoted
as X ⊕ Y . Addition in this field is equivalent to the bitwise exclusive-or opera-
tion, and the multiplication operation is as defined in GCM [17]. We denote the
number of bits in a bit string X as #X.

The function len(S) returns a w/2-bit string containing the nonnegative inte-
ger describing the number of bits in its argument S, with the least significant bit
on the right. The expression 0l denotes a string of l zero bits, and A‖B denotes
the concatenation of two bit strings A and B. The function msbt(S) returns
the initial t bits of the string S. We consider bit strings to be indexed starting
on the left, so that bit zero of S is the leftmost bit. When S is a bit string and
0 ≤ a < b < #S, we denote as S[a; b] the length b − a subtring of S consisting
of bits a through b of S. The symbol {} denotes the bit string with zero length.

2.3 Definition

The XCB encryption operation is defined in Algorithms 1; the decryption op-
eration is similar and is left implicit. The values Ke,Kd, and Kc can be stored
between evaluations of these algorithms, in order to trade off some storage for a
decreased computational load.

The function c : {0, 1}k × {0, 1}w → {0, 1}l, where the output length l is is
bounded by 0 ≤ l ≤ 239, generates an arbitrary-length output by running the
block cipher e in counter mode, using its w-bit input as the initial counter value.
Its definition is

c(K, W, l) = e(K, W )‖e(K, incr(W )‖ . . . ‖msbt(e(K, incrs−1(W )), (1)

where we make the number of bits l in the output an explicit parameter for
clarity; s = dl/we is the number of w-bit blocks in the output and t = l mod w



Algorithm 1 The XCB encryption operation. Given a key K ∈ {0, 1}k, a
plaintext P ∈ {0, 1}m where m ∈ [w, 239], and associated data Z ∈ {0, 1}n
where n ∈ [0, 239], this operation returns a ciphertext C ∈ {0, 1}m.

H ← e(K, 0w)
Ke ←msbk(e(K, 0w−3‖001)‖e(K, 0w−3‖010))
Kd ←msbk(e(K, 0w−3‖011)‖e(K, 0w−3‖100))
Kc ←msbk(e(K, 0w−3‖101)‖e(K, 0w−3‖110))
A← P[#P− w;#P− 1]
B ← P[0;#P− w − 1]
C ← e(Ke, A)
D ← C ⊕ h1(H, Z, B)
E ← B ⊕ c(Kc, D, #B)
F ← D ⊕ h2(H, Z, E)
G← d(Kd, F )
return E‖G

is number of bits in the trailing block. Here the function incr : {0, 1}w → {0, 1}w
is the increment operation that is used to generate successive counter values.
This function treats the rightmost 32 bits of its argument as a nonnegative
integer with the least significant bit on the right, increments this value modulo
232. More formally,

incr(X) = X[0;w − 33] ‖ (X[w − 32;w − 1] + 1 mod 232), (2)

where we rely on the implicit conversion of bit strings to integers.
The functions h1 and h2 are defined in terms of the underlying hash function

h as

h1(H,Z,B) = h(H, 0w‖Z,B‖0#B mod w+w)

h2(H,Z,B) = h(H,Z‖0w, E‖0#B mod w‖len(Z‖L)‖len(B)). (3)

The function h : {0, 1}w × {0, 1}a × {0, 1}c → {0, 1}w, a ∈ [w, 239], c ∈ [0, 239]
is defined by h(H,A, C) = Xm+n+1, where the variables Xi ∈ {0, 1}w for i =
0, . . . ,m + n + 1 are defined as

Xi =



0 for i = 0
(Xi−1 ⊕Ai) ·H for i = 1, . . . ,m− 1
(Xm−1 ⊕ (A∗

m‖0w−v)) ·H for i = m

(Xi−1 ⊕ Ci−m) ·H for i = m + 1, . . . ,m + n− 1
(Xm+n−1 ⊕ (C∗

n‖0w−u)) ·H for i = m + n

(Xm+n ⊕ (len(A)‖len(C))) ·H for i = m + n + 1.

(4)

Here we let Ai denote the w-bit substring A[(i− 1)w; iw− 1], and let Ci denote
C[(i − 1)w; iw − i]. In other words, Ai and Ci are the ith blocks of A and C,
respectively, if those bit strings are decomposed into w-bit blocks. Here u and v



denote the number of bits in the trailing blocks of A and C, respectively. This
function is identical to GHASH, the universal hash that is used as a component
of the AES Galois/Counter Mode (GCM) of Operation [17] when w = 128.

2.4 Improvements in our version

The initial version of XCB appeared on the IACR eprint website in 2004 [11].
Our new definition of XCB incorporates changes that make its security properties
easier to analyze. First, only a single hash key is used, which enables algebraic
relations about the hash function to be brought to bear during the analysis. This
change also benefits software implementations by relieving them of the need to
store precomputed tables for an additional hash key. Second, the inputs to the
hash functions are slightly rearranged, in order to make use of the properties of
the hash function; this strategy is explained through the lemmas and theorems
of Section 3.1. Additionally, the new design reorders the operations in a way
that makes XCB more amenable to pipelined implementation, by changing the
way that plaintexts are mapped to internal variables.

3 Security Analysis

In this section, we analyze the security of XCB in the concrete security model
introduced by Bellare et. al. [18], and show that XCB is a secure pseudorandom
arbitrary-length permutation with associated data (ALPA), using only the as-
sumption that e is a secure w-bit pseudorandom permutation, as follows. We
review the properties of h and how they are used in XCB (Section 3.1), then
define our security model and analyze security under the assumption that e
is a random permutation (Section 3.2), then bound the security when e is a
pseudorandom permutation (Section 3.3).

3.1 Properties of h and XCB

In this section we describe several properties of the hash function h, and some
properties of XCB that follow from them. Foremost, h is an ε-almost xor uni-
versal function; loosely speaking, this means that the exclusive-or of any two
hash values has a low probability to take on any particular value. We provide a
precise definition below.

Definition 1. A function f : {0, 1}k × {0, 1}m → {0, 1}t is ε-almost xor uni-
versal if

P[f(K, M)⊕ f(K, M ′) = a | K R← {0, 1}k] ≤ ε (5)

for all M 6= M ′ ∈ {0, 1}m and all a ∈ {0, 1}t



Here the expression P[E | F] denotes the probability of the event E given that
the event F has occurred, and the expression K

R← {0, 1}k means that K is
chosen uniformly at random from the set {0, 1}k. We diverge slightly from the
usual definition for explicitness1. This definition extends naturally to the case
in which f has multiple arguments, as is the case below.

Lemma 1 (h is ε-AXU). The function h defined by Equation 4 is εh(l)-almost
xor universal where εh(l) = dl/w + 2e2−w whenever the inputs A and C are
restricted to so that the sum of their lengths is l or fewer bits.

The proof of this lemma appears in Appendix A.
Because the increment function incr() defined in Equation 2 that is used to

generate successive counters does not commute with addition in GF (2w), we
need to establish another property of h, which is related to but slightly different
from the ε-almost xor universal property.

Theorem 1 (h is unlikely to collide with incrs(h)). For any A,A′, C, C ′, E, E′

where either A′ 6= A or C ′ 6= C or both inequalities hold, and any index s,

P[h(H,A, C)⊕ E = incrs(h(H,A′, C ′)⊕ E′) | H R← GF (2w)] ≤ εh(l), (6)

whenever the inputs A and C are restricted to so that the sum of their lengths
is l or fewer bits.

This theorem is proved in Appendix A.
The function h(H,A, C) has the property that it is linear in terms of its

arguments A and C, and this fact is used in the XCB design. We next establish
the linear property in Theorem 2, then we use it to show a useful expression for
the XCB variables F and C in Theorem 3.

Theorem 2 (h is linear). For any H ∈ V w and any A,A′, C and C ′ such that
#A = #A′ and #C = #C ′,

h(H,A, C)⊕ h(H,A′, C ′) = h(H,A⊕A′, C ⊕ C ′)⊕ (len(A)‖len(C))) ·H.

The proof appears in Appendix A.
A simple relationship between F and C follows from this theorem, which is

captured in the next lemma. The proof is simple, so we include it in this section.

Theorem 3 (F and C have a simple relation).

F = C ⊕ g(H,V (Z), c(Kc, D, #B)), (7)

where g(H,A, C) = h(H,A, C) ·H and V (Z) = (Z‖0w)⊕ (0w‖Z).

1 In the standard definition, g would define a hash function family, and the selection
of a key K would choose a particular hash function from that family of functions.



Proof.

F = C ⊕ h(H,Z‖0w, E‖0#B mod w‖(len(Z‖0w)‖len(B)))

⊕ h(H, 0w‖Z,B‖0#B mod w+w) (8)
= C ⊕ h(H, (Z‖0w)⊕ (0w‖Z), c(Kc, D, len(D))) ·H.

Figure 1 illustrates these identities. The lowest term of the function h, considered
as a polynomial in H, cancels with the term (len(A)‖len(C))) · H. The presence
of len(Z‖0w)‖len(B) as the last block of the last argument to h makes the
coefficient of H2 in that polynomial match that of the usual coefficient of H in
h, and the other coefficients are similarly shifted by one. The presence of the
term 0#B mod w ensures the alignment of the final w bits. ut

During the evaluation of an XCB encryption or decryption operation, the
first argument of h, during both of its evaluations, has the value 0w prepended
or appended to it. If these 0w terms had not been incorporated into the design,
then the second argument to g in Theorem 3 would have been 0#Z , and the
variable F would have no dependancy on Z during an encryption operation.
This aspect of the XCB design utilizes the property captured in the following
simple lemma.

Lemma 2. The function V (Z) defined in Theorem 3 has the property that, for
any two distinct values Z and Z ′, the values V (Z) and V (Z ′) are distinct.

The validity of this lemma follows from the fact that V (Z) is an invertible
transformation of Z; it is easy to compute Z given V (Z) by considering successive
w-bit blocks of V .

evaluation H7 H6 H5 H4 H3 H2 H

first 0w Z1 Z2 E1 E∗
2‖0#B mod w 0w len(Z‖0w)‖len(B)

second Z1 Z2 0w E1 E∗
2‖0#B mod w len(Z‖0w)‖len(B) len(Z‖0w)‖len(B)

equivalent Z1 Z1 ⊕ Z2 Z2 S1 S∗2‖0#B mod w len(Z‖0w)‖len(B) 0w

Fig. 1. An example of the evaluation of h during an XCB encryption operation; the
table entries are the coefficients of the terms of H in the column headings. The third
row shows the equivalent hash operation as in Equation 8. Zi and Ei denote the ith

blocks of Z and E, respectively, and Si denotes the ith block of c(Kc, D, #B).

Lastly, the function g as defined in Theorem 3 is almost xor universal as well,
as shown by the following lemma; the proof is in Appendix A.

Lemma 3 (g is almost xor universal). The function g is (εh(l) + 2−w)-
almost xor universal when its second and third inputs are restricted so that their
lengths sum to l or fewer bits.



3.2 Security in the ideal model

In this section, we show that XCB is secure against adaptive chosen plain-
text/ciphertext attacks, by showing that it is a secure ALFA under the ’ideal’ as-
sumption that e is a random permutation. More specifically, we model e(Ke, X),
e(Kd, X), and e(Kc, X) as independent random permutations. We first establish
our security model.

We denote the set of all functions that map {0, 1}m to {0, 1}n as Fm,n.
A random function is a function chosen uniformly at random from Fm,n. We
denote as In the set of all uniquely invertible functions in Fn,n, and a random
permutation is a function chosen uniformly at random from In.

A keyed pseudorandom function (PRF) is a subset PRFm,n ⊆ Fm,n in which
the key selects a particular function from PRFm,n. Similarly, a keyed pseudo-
random permutation (PRP) is a subset PRPn ⊆ In in which the key selects a
particular function from PRPn. In the following, we assume that a key chosen
uniformly at random will choose a function from PRFm,n or PRPn uniformly
at random.

To measure the ‘pseudorandomness’ of a particular keyed pseudorandom
function F ⊆ Fm,n, we use the conventional indistinguishability experiment
in which an adversary is challenged to distinguish the PRF from a random func-
tion. The adversary is given access to an oracle that provides an interface to
a function f ∈ Fm,n. When the adversary provides an input x ∈ {0, 1}m to
the oracle, the oracle returns f(x). The adversary is free to choose the inputs
adaptively. At the outset of the experiment, the oracle makes a choice to either
select f from F or from Fm,n. This choice is made uniformly at random and kept
hidden from the adversary. At the conclusion of the experiment, the adversary
guesses from which set the function has been chosen. We view the adversary
as a probabilistic algorithm and consider the probability that it will correctly
distinguish a PRF from a random function. We let CF denote the event that the
function f was chosen from the PRF F at the outset of the experiment, and let
GF denote the event that the adversary guesses that the function f was chosen
from that PRF at the conclusion of the experiment. An adversary’s effectiveness
at distinguishing F from a random function is measured by the advantage APRF

F

defined as

APRF
F = P[GF | CF ]−P[GF | Cc

F ]. (9)

Here Ec denotes the complement of the event E, that is, the event that E does
not occur. An adversary’s advantage in distinguishing a PRP P from a random
permutation is defined similarly as

APRP
P = P[GP | CP ]−P[GP | Cc

P ] (10)

where the events CP and GP are the analogues of CF and GF . In the PRP
experiment, we give the attacker access to two oracles, one for P , and one for
the inverse function P−1. In this case, q counts the total number of queries.
Definition 2 encapsulates these ideas.



Definition 2. A PRF F is (q, a)-secure if any adversary making at most q
oracle queries has advantage APRF

F that is less than or equal to a. Similarly, a
PRP P is (q, a)-secure if any adversary making at most q oracle queries is has
advantage APRP

P that is less than or equal to a.

The definition of a secure ALPA is identical, taking into account the fact that
the adversary is presented with an ALPA oracle instead of a PRP oracle.

We label the XCB internal variables as {Ai, Bi, Ci, Di, Ei, Fi, Gi} for the
ith invocation. If the the ith query is to the XCB encryption oracle, then the
adversary determines the values of Ai and Bi, and is given Ei and Gi in return.
If the ith query is to the XCB decryption oracle, then the adversary determines
the values of Ei and Gi and is given Ai and Bi in return. We assume without
loss of generality that the adversary never repeats a query, and never asks for
the decryption of a ciphertext value returned by a previous encryption query,
and never asks for the encryption of a plaintext value returned by a previous
decryption query.

The basic idea behind our proof is that the each of the ciphertext values
B ⊕ c(Kc, D, #B))‖d(Kd, F ) returned from an encryption query are indistin-
guishable from random as long as the values D and F do not repeat across
different invocations of that function, and the functions c and e are indistinguish-
able from random. Similarly, the plaintext values E ⊕ c(Kc, D,#B))‖e(Ke, C)
returned from a decryption query are indistinguishable from random as long as
the values of D and C do not repeat. We handle our use of the PRP e as a PRF
in the standard way, using the PRP-PRF switching lemma [18].

Lemma 4 (e is a good PRF). If a function f is a (q, a)-secure w-bit PRP,
then it is a (q, a + q(q − 1)2−w−1)-secure PRF.

We also make use of the fact that the outputs of a PRP are unpredictable to
an adversary, as given by the following lemma.

Lemma 5 (e is unpredictable). If e is a random permutation, an adversary
with oracle access to e can cause the output e(X) of the ith query to be equal to
a particular value Y with probability no greater than (2w − i)−1, for any fixed
value of Y .

We next define an event Ω whose occurrence ensures the security of XCB
in the ideal model, as long as c and e are secure PRFs. The event Ω is the
conjunction of the events Ω1 ∩ Ω2 ∩ · · · ∩ Ωi, where Ωi is the event that the
following conditions hold during the ith query to the ALPA oracle:

1. Di 6= incrs(Dj) for each integer s such that −d#Pi/we+1 ≤ s ≤ d#Pj/we−
1, for all j < i, and

2. If the ith query is an encryption query, then Fi 6= Fj ; if it is a decryption
query, then Ci 6= Cj , for all j < i.

The first condition ensures that, during the invocation of the function c, all of
the inputs to e using the key Kc are distinct from all of the inputs that have
previously been made with that key.



We next assume that Ω1, Ω2, . . . , Ωi−1 have occurred and show that Ωi will
occur with probability close to one. We bound the total length of the data
processed during each query as l > #Pi + #Zi .

Lemma 6. For any of the previous queries j < i, and for any single value of s
such that −2w < s < 2w,

P[Di = incrs(Dj)] ≤ (2w − i)−1 + εh(l), and
P[Di = Dj ] ≤ εh(l),

given that the events Ω1, Ω2, . . . , Ωi−1 have occured. Here j is either an encryp-
tion or decryption query.

Proof. We first assume that the ith query is an encryption query, in which case
the condition that Di = incrs(Dj) can be expressed as

e(Ke, Ai)⊕ h1(H,Zi, Bi) = incrs(e(Ke, Aj)⊕ h1(H,Zj , Bj)). (11)

We first consider the case that the inputs to the first invocation of h1 are identical
during queries i and j; that is, Zi = Zj and Bi = Bj . In this case Ai 6= Aj

because the queries are required to be distinct. In this case, Di 6= Dj follows
from the invertibility of e. From Lemma 5, the probability that Di = incrs(Dj)
will occur for some value s 6= 0 is at most (2w − i)−1, for any particular values
of j and s. Otherwise, if Ai = Aj , then the inputs to h must be distinct, and
P[Di = incrs(Dj)] ≤ εh follows from Theorem 1; this bound holds for 0 ≤ j < i.

When the ith query is a decryption query, then similar arguments hold by
considering the functions h2 and d and the variable G instead of the functions
h1 and e and the variable A. Thus the probability that Di = incrs(Dj) is no
more than (2w − i)−1 + εh(l), for any values of j and s. ut

Lemma 7. P[Ωi | Ω1 ∩Ω2 ∩ · · · ∩Ωi−1] ≥ 1− (i− 1)dl/w + 2e21−w.

Proof. Since Lemma 6 holds for any value of s, the probability that it holds for
any value of s in the range under consideration is no more than ((2w − i)−1 +
εh(l))d(2l)/w − 2e.

We now assume that Di 6= Dj and consider the probability that Fi = Fj when
the ith query is an encryption query. From Theorem 3, that event is equivalent
to the condition that

g(H,V (Zi), c(Kc, Di,#Bi))⊕ g(H,V (Zj), c(Kc, Dj ,#Bj)) = Ci ⊕ Cj . (12)

If XCB is being used in normal mode (as defined in Section 2.1), then #Bi,#Bj ≥
w, and the initial w bits of c(Kc, Di,#Bi) and c(Kc, Dj ,#Bj) must be distinct,
because Di and Dj are distinct and e is an invertible function. If XCB is being
used in nonce mode (as defined in Section 2.1), then Zi 6= Zj , in which case
V (Zi) 6= V (Zj). In either mode, the inputs to the invocations of g are distinct,
and P[Fi = Fj | Di 6= Dj ] ≤ εh(l) + 2−w from Lemma 3. Thus, when the ith



query is an encryption query, and the events Ω1, Ω2, . . . , Ωi−1 have occurred,
then

P[Fi 6= Fj | Di 6= Dj ]P[Di 6= Dj ] ≥ (1− εh(l)− 2−w)(1− εh(l)

≥ 1− 2(εh(l) + 2−w). (13)

When the ith query is a decryption query, then similar arguments show that
P[Ci 6= Cj | Di 6= Dj ]P[Di 6= Dj ] is bounded by the same value.

Equation 13 holds for each value of j between 1 and i − 1, inclusive. Thus
P[Ωi | Ω1 ∩Ω2 . . . ∩Ωi−1] is at least

1−
∑

j=1,i−1

2(εh(l) + 2−w) + ((2w − i)−1 + εh(l))d(2l)/w − 2e

≥ 1− (i− 1)εΩ . (14)

where εΩ = dl/w + 2e222−w. ut

We can now bound the probability of the event Ω.

Lemma 8 (Ω is likely). The probability P[Ω] is at least 1− i2dl/w +2e222−w.

Proof. For any set of events A1, A2, . . . , An such that P[A1 ∩A2 ∩ . . . ∩An] > 0,

P[A1 ∩A2 ∩ . . . ∩An] = P[An | A1 ∩A2 ∩ . . . ∩An−1]×
P[An−1 | A1 ∩ . . . ∩An−2]×P[An−2 | A1 ∩ . . . ∩An−3]× · · · ×P[A1].

The probability P[Ω1 ∩Ω2 . . . ∩Ωi] is thus no less than

i∏
j=1,

(1− (j − 1)εΩ) ≥ (1− iεΩ)i ≥ 1− 2i2εΩ . (15)

Theorem 4 (XCB is secure in the ideal model). If e(Kc, ∗), e(Kd, ∗), e(Ke, ∗)
are independent random permutations and H is chosen uniformly at random,
then XCB is a (q, q2dl/w + 2e223−w)-secure arbitrary length PRP with associ-
ated data with input length between w and l bits in nonce mode, and with input
length between 2w and l bits otherwise.

Proof. If the event Ω occurs, then the adversaries advantage is no greater than
that due to our use of the PRP e as a PRF. No more than qdl/we) queries
are made to e in which it needs to be considered as a PRF. The result follows
directly from Lemmas 4 and 8.

3.3 Security as a block cipher mode

Up to this point, we have assumed that the function e is a random permutation,
while in fact it is a block cipher. Our next step is to assume that the advan-
tage with which any adversary can distinguish that function from a random
permutation is low, and then show that this assumption implies that XCB is an
ALPA.



Theorem 5. If e is a (q, a)-secure w-bit PRP, then XCB is a (q, a + q2dl/w +
2e223−w + 22 · 2−w)-secure l-bit arbitrary length PRP with associated data.

The proof is in the Appendix.

4 Conclusions

We have shown that our version of XCB is secure in the concrete reduction-based
security model, whenever it is used with a block cipher that can be regarded as
a secure PRP in that model. We also introduced the definition of nonce mode
for a pseudorandom permutation, and showed that XCB is secure when used in
this mode.

Acknowledgments

We thank the anonymous referees, whose careful reading and constructive com-
ments substantially improved this paper.

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. “A concrete security treat-
ment of symmetric encryption,” In Proceedings of the 38th FOCS, IEEE Com-
puter Society Press, 1997.

2. IEEE Security in Storage Working Group, Web page. http://siswg.org.
3. R. Schroeppel, Hasty Pudding Cipher Specification, First

AES Candidate Workshop, August, 1998. Available online at
http://www.cs.arizona.edu/people/rcs/hpc/hpc-spec.

4. M. Liskov, R. Rivest and D. Wagner. Tweakable Block Ciphers. CRYPTO
’02, LNCS, Springer, 2002.

5. M. Naor and O. Reingold. A pseudo-random encryption mode. Manuscript,
available from http://www.wisdom.weizmann.ac.il/naor, 1997.

6. R. Anderson, E. Biham. Two Practical and Provably Secure Block Ciphers:
BEAR and LION. Proceedings of the Third International Workshop on Fast
Software Encryption, Cambridge, UK, 1996, pp.113-120.

7. S. Halevi and P. Rogaway. A tweakable enciphering mode. Advances in Cryp-
tology - CRYPTO ’03, volume 2729 of LNCS, pages 482-499. Springer, 2003.

8. S. Halevi and P. Rogaway, A Parallelizable Enciphering Mode, 2004 RSA Con-
ference Cryptography Track, LNCS, Springer, 2004.

9. S. Halevi. EME∗: extending EME to handle arbitrary-length messages with
associated data. INDOCRYPT’04, volume 3348 of LNCS, pages 315-327.
Springer, 2004.

10. D. McGrew and J. Viega. Arbitrary block length
mode. Standards contribution, available on-line from
http://grouper.ieee.org/groups/1619/email/pdf00005.pdf, 2004.

11. D. McGrew and S. Fluhrer, The Extended Codebook (XCB) Mode of Op-
eration, Cryptology ePrint Archive: Report 2004/278, October 25, 2004.
http://eprint.iacr.org/2004/278



12. P. Wang, D. Feng, and W. Wu. HCTR: A variable-input-length enciphering
mode. Information Security and Cryptology - CISC ’05, volume 3822 of Lecture
Notes in Computer Science, pages 175-188. Springer, 2005.

13. D. Chakraborty and P. Sarkar. HCH: A new tweakable enciphering scheme
using the hash-encrypt-hash approach. INDOCRYPT ’06, volume 4329 of Lec-
ture Notes in Computer Science, pages 287-302. Springer, 2006.

14. Debrup Chakraborty and Palash Sarkar. A new mode of encryption providing
a tweakable strong pseudo-random permutation. The 13th International Work-
shop on Fast Software Encryption - FSE ’06, volume 4047 of Lecture Notes in
Computer Science, pages 293-309. Springer, 2006.

15. S. Halevi. Invertible Universal Hashing and the TET Encryption Mode. Ad-
vances in Cryptology - CRYPTO ’07, Springer, 2007.

16. M. Baugher , D. McGrew, M. Naslund, E. Carrara, K. Norrman. “The Secure
Real-time Transport Protocol,” IETF RFC 3711, March 2004.

17. D. McGrew and J. Viega, “The Galois/Counter Mode of Operation (GCM),”
Submission to NIST Modes of Operation Process, January, 2004. Available
online at http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/.

18. M. Bellare, J. Kilian, P. Rogaway, “The Security of the Cipher Block Chain-
ing Message Authentication Code,” J. Comput. Syst. Sci. 61(3). pg. 362-399
(2000).

19. D. McGrew and S. Fluhrer, The Extended Codebook (XCB)
Mode of Operation, Version 2, Submission to IEEE P1619.
grouper.ieee.org/groups/1619/email/pdf00019.pdf.

20. H. Krawczyk, “LFSR-based hashing and authentication,” In Y. Desmedt, edi-
tor, CRYPTO ’94, LNCS, Springer, Aug. 1994.

21. U.S. National Institute of Standards and Technology. The Advanced Encryp-
tion Standard. Federal Information Processing Standard (FIPS) 197, 2002.

22. N. Biggs. Discrete Mathematics, Revised Edition, Oxford Science Publications,
Oxford University Press. 1993.

A Proofs

In this appendix we provide proofs for some of the Lemmas and Theorems.

Proof (Lemma 1). We consider two distinct inputs (A,C) and (A′, C ′), then
analyze the probability of the event that

h(H,A, C)⊕ h(H,A′, C ′) = a, (16)

for some fixed value a ∈ {0, 1}w. We assume that these inputs are formatted
as described in Section 2, in which A,C,A′, and C ′ consist of m,n,m′, and n′

w-bit blocks, respectively, the final blocks of which have lengths v, u, v′, and u′,
respectively. We assume without essential loss of generality that m+n ≥ m′+n′,
and we define f = m + n−m′ − n′.



We define the blocks Di ∈ {0, 1}w for 1 ≤ i ≤ m + n + 1 as

Di =



Ai for i = 1, . . . ,m− 1
A∗

m‖0w−v for i = m

Ci−m for i = m + 1, . . . ,m + n− 1
C∗

n‖0w−u for i = m + n

len(A)‖len(C) for i = m + n + 1

(17)

D′
i =



0w for i = 1, . . . , f

Ai−f for i = f, . . . , f + m′ − 1
A∗

m′‖0w−v for i = f + m′

Ci−f+m′ for i = f + m + 1, . . . , f + m′ + n′ − 1
C∗

n′‖0w−u for i = f + m′ + n′

len(A)‖len(C) for i = f + m′ + n′ + 1

(18)

The condition that Equation 16 holds can be expressed as R(H) = 0, where the
polynomial R of degree at most m + n + 1 over GF (2w) is defined by

R(H) = a⊕
m+n+1⊕

i=1,

(Di ⊕D′
i) ·Hm+n−i+2. (19)

The polynomial R must be nonzero, that is, at least one of its coefficients must
be nonzero, because the pairs (A,C) and (A′, C ′) are distinct. There are at most
m+n+1 values of H ∈ GF (2w) for which R(H) = 0 holds. This follows from the
fact that an dth degree polynomial over GF (2w) has at most d distinct roots (this
is the fundamental theorem of algebra over a finite field; see, for example, [22,
Theorem 15.8.2]), and the fact that R is nonzero. The probability that R(H) = 0
holds, given that H is chosen at random from GF (2w), is (m + n + 1)/2w ≤
dl/w + 2e2−w, when the cumulative length of the inputs is restricted to l bits.

For each vector D, there is a unique pair (A,C) where both A and C are bit
strings as described in Section 1, and vice-versa. This is because the last element
of D unambiguously encodes the lengths of both A and C. Thus, the probability
that R(H) = 0 holds for any two given messages (A,C) and (A′, C ′), and a given
vector a, is equal to the probability that h(H,A, C)⊕h(H,A′, C ′) = a. Equation
16 holds with probability dl/w + 2e2−w for any given values of (A,C), (A′, C ′),
and a. ut

Proof (Theorem 1). We let Di and D′
i be the coefficients defined as in Equa-

tion 17, then we define the polynomials R1 and R2 as

R1(H) = E ⊕
m+n+1⊕

i=1,

Di ·Hm+n−i+2 (20)



and

R2(H) = E′ ⊕
m+n+1⊕

i=1,

D′
i ·Hm+n−i+2. (21)

The condition h(H,A, C)⊕ E = incrs(h(H,A′, C ′)⊕ E′) can be expressed as

R1(H) = incrs(R2(H)) = T (22)

for some value of T ∈ {0, 1}w. For any fixed value of T , there are at most m+n+1
values of H such that R1(H) = T , and at most m + n + 1 values of H such that
R2(H) = incr−s(T ). Thus the number of values of H that satisfy both equations
is at most m + n + 1. When H is drawn uniformly at random, the chance of
choosing one of these values is at most (m + n + 1)2−w = εh(l), where l is an
upper bound on the total number of bits in A and C. ut

Proof (Theorem 2). We consider the evaluation of h(H,A, C) and h(H,A′, C ′),
and let Xi be as defined in equation 4, and let X ′

i be defined similarly, but
with X ′

i, A
′
i, and C ′

i replacing Xi, Ai, and Ci, respectively. We define δXi to be
Xi ⊕X ′

i, δAi to be Ai ⊕A′
i, and δCi to be Ci ⊕ C ′

i. Then we note that

δXi =



0 for i = 0
(δXi−1 ⊕ δAi) ·H for i = 1, . . . ,m− 1
(δXm−1 ⊕ (δA∗

m‖0w−v)) ·H for i = m

(δXi−1 ⊕ δCi−m) ·H for i = m + 1, . . . ,m + n− 1
(δXm+n−1 ⊕ (δC∗

n‖0w−u)) ·H for i = m + n

δXm+n ·H for i = m + n + 1.

(23)

In the case ii=m+n+1 of the previous equation, the term (len(A)‖len(C))) does
not appear due to cancelation. Thus h(H,A, C) ⊕ h(H,A′, C ′) = δXm+n+1 =
h(H,A⊕A′, C ⊕ C ′)⊕ (len(A)‖len(C))) ·H. ut

Proof (Lemma 3). The condition that g(H,A, C) ⊕ g(H,A′, C ′) = a holds can
be expressed as S(H) = 0, where the polynomial S of degree at most m + n + 2
over GF (2w) is defined by

S(H) = a⊕
m+n+1⊕

i=1,

(Di ⊕D′
i) ·Hm+n−i+3. (24)

Here Di and D′
i are as defined in Equation 17. The result follows from arguments

similar to those made for Lemma 1. ut

Proof (Theorem 5). We build an e-distinguisher out of an XCB distinguisher
by implementing XCB by replacing each invocation of e and its inverse by a
call to the block cipher oracle, running the XCB distinguisher against that XCB
implementation. We denote as CXCB the event that the ALPA oracle is chosen



to be XCB. If the XCB-distinguisher indicates that it believes that the inputs
were created by XCB (that is, the event GXCB occurs), then our E-distinguisher
indicates that the block cipher oracle is E (that is, the event Ge occurs).

We proceed by first considering the case that Kc,Kd,Ke, and H are chosen
uniformly at random. We call this algorithm RXCB, and we define the events
CRXCB and GRXCB analogous to CXCB and GXCB, respectively. Our analysis
uses the following facts.

Fact 1 P[Ge | Ce] = P[GRXCB | CRXCB], because the events Ce and CRXCB

both provide equivalent inputs to the distinguisher, and the distinguishers are
identical.

Fact 2 For any three events A,B and C (with P[B] 6= 0),

P[A | B] = P[A | B ∩ C]P[C | B] + P[A | B ∩ Cc]P[Cc | B].

Fact 3 The events Bc
e ∩ Ω and Bc

RXCB provide equivalent inputs to the distin-
guishers.

The advantage with which our distinguisher works against e is

Ae = P[Ge | Ce]−P[Ge | Bc
e]

= P[GRXCB | CRXCB]−P[Ge | Bc
e]

= P[GRXCB | CRXCB]−P[Ge | Bc
e ∩Ω]P[Ω | Bc

e]−P[Ge | Bc
e ∩Ωc]P[Ωc | Bc

e]
≥ P[GRXCB | CRXCB]−P[GRXCB | Bc

RXCB]−P[Ge | Bc
e ∩Ωc]P[Ωc | Bc

e]
= ARXCB −P[Ge | Bc

e ∩Ωc]P[Ωc | Bc
e]

≥ ARXCB −P[Ωc | Bc
e], (25)

using the facts outlined above. Here ARXCB denotes the adversary’s advantage
at distinguishing RXCB from a randomly chosen ALPA.

We next consider the case in which XCB is used exactly as defined in Al-
gorithm 1, with Kc, Kd, Ke, and H being derived via seven invocations of e,
instead of being set to uniformly random values. Consider the experiment of
distinguishing XCB from RXCB; from Lemma 4, we know that

AXCB −ARXCB = 43 · 2−w−1.

Combining this result with Equation 25 gives the theorem. ut


