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Abstract.
In this paper we study the ratio θ(n) = λ2(n)

ψ2(n)
, where λ2(n) is the number

of primitive polynomials and ψ2(n) is the number of irreducible polyno-
mials in GF (2)[x] of degree n. Let n =

Q`
i=1 p

ri
i be the prime factoriza-

tion of n, where pi are odd primes. We show that θ(n) tends to 1 and
θ(2n) is asymptotically not less than 2/3 when ri are fixed and pi tend to
infinity. We also, describe an infinite series of values ns such that θ(ns)
is strictly less than 1

2
.

1 Introduction

One of the most fascinating areas of research in the theory of finite fields is the
problem of finding irreducible and primitive polynomials (or elements), and even
the problem of the existence of such kind of polynomials with specified properties
has attracted a great deal of attention. Many authors have published works on
this subject (see [5] –[8], [11] – [12], [17] – [22] and [25] – [26]) and the list might
not be complete. Motivated by the recent proposals in design of stream ciphers
([1], [2] and [10]), in this paper we consider and investigate to some extent the
problem of the existence of primitive polynomials in GF (2)[x] of degree powers
of prime numbers, for which the substitution x 7→ x+1 leads again to primitive
polynomial. Our results can be interpreted probabilistically: to estimate the
probability of a randomly chosen irreducible polynomial in GF (2)[x] of given
degree to be primitive.

The paper is organized as follows. In the first section we recall basic defini-
tions, facts and useful properties. In the next two sections we present our main
results. The paper ends with some conclusions.



2 Background

In this paper we consider polynomials of one variable x over a finite field. Here,
for the sake of completeness, we briefly recall some basic definitions and facts
about polynomials in GF (q)[x], where GF (q) is the Galois field of q elements
(see e.g., [14],[24]).

Definition 1. A polynomial f(x) is irreducible in GF (q)[x] if f(x) cannot be
factored into a product of lower-degree polynomials in GF (q)[x].

It can be shown that any irreducible nth-degree polynomial in GF (q)[x] divides
xqn−1 − 1.

Definition 2. An irreducible polynomial f(x) ∈ GF(q)[x] of degree n is said
to be primitive if the smallest positive integer m for which f(x) divides xm − 1
is m = qn − 1.

By definition a primitive polynomial f(x) ∈ GF (q)[x] is always irreducible in
GF (q)[x], but the opposite not always holds i.e. there exist irreducible polyno-
mials which are not primitive. As a simple example, consider the polynomial
x4 + x3 + x2 + x + 1, which is irreducible in GF (2)[x], but as a factor of x5 + 1,
it is not primitive.

Let denote by Mn = 2n − 1 the n−th Mersenne number. From now on, we
will consider only the binary polynomials, i.e., over GF (2).

Definition 3. The dual of an irreducible polynomial f(x) ∈ GF (2)[x], denoted
by f⊥(x), is the polynomial f(x + 1).

It is easy to prove that f(x) is a binary irreducible polynomial if and only if
its dual f⊥(x) is irreducible. However, the duality operator does not necessarily
preserve being primitive. As a simple example, consider the primitive polynomial
x4 + x3 + 1 whose dual polynomial is x4 + x3 + x2 + x + 1, but the latter is not
primitive as already mentioned.

The number of irreducible polynomials in GF (2)[x] of degree n is given by
(see e.g., [3, 13]):

ψ2(n) =
1
n

∑
d|n

2dµ(
n

d
), (1)

where µ is the well-known Möbius function (i.e., if N is a positive integer, the
Möbius function µ(N), is 0 if p2 divides N for some prime p; 1 if N is square free
and contains an even number of prime factors; and −1 if N is square free and
contains an odd number of prime factors; a literal interpretation gives µ(1) = 1).

While the number of binary primitive polynomials of degree n is given by:

λ2(n) =
Φ(2n − 1)

n
, (2)

where Φ is the Euler function (i.e., Φ(N) is the number of positive integers
smaller than N and relatively prime to N).

We shall also make use of the following lemma:



Lemma 1. For any n the number of binary irreducible polynomials ψ2(n) does
not exceed (2n − 2)/n, where the equality holds when n is a prime.

Proof. The statement of Lemma 1 follows from the fact that the greatest two
powers of 2 in formula (1) are obtained when we take as divisors, n itself, and its
second largest divisor d in which case the quotient n/d is a prime number. ut

Note that if n = pr (for p a prime number), we obtain ψ2(pr) = 2pr − 2pr−1
.

In this paper we study the ratios

θ(n) =
λ2(n)
ψ2(n)

and τ(n) =
Φ(2n − 1)

2n − 1
. (3)

Since ψ2(n) ≤ (2n − 2)/n < Mn/n, we have θ(n) > τ(n) for any n > 1. On the
other hand since every primitive polynomial is irreducible, clearly we have that
λ2(n) ≤ ψ2(n), i.e., θ(n) ≤ 1. Hence the following relations hold

1 ≥ θ(n) > τ(n) > 0. (4)

In [4] the following proposition has been proven, using a simple form of the
principle of inclusion-exclusion from elementary combinatorics:

Proposition 1. If θ(n) > 1
2 then there exist at least 2λ2(n) − ψ2(n) primitive

polynomials of degree n such that their duals are primitive too.

According to the table with the values of λ2 and ψ2 for n = 2 . . . 24 in [13, p.40],
the only values of n for which the assumptions of Proposition 1 are not satisfied
are n = 12 and n = 20. By computer simulations we obtained the results given
in Table 1. In this table σ2(n) denotes the number of primitive polynomials of
degree n, the duals of which are primitive too. Note that when Mp is Mersenne
prime number, any irreducible polynomial of degree p is primitive and therefore
σ2(p) = λ2(p) when p = 2, 3, 5, 7 and 13. In [4], based on Proposition 1 some
estimates on the number of the above mentioned primitive polynomials of an
arbitrary prime degree and of degree, which is a product of two distinct primes
were proven.

Proposition 2. [4] For any odd primes p ≥ p0 and q ≥ q0, we have:

θ(p) ≥ E(p0), τ(2p) >
2
3
E2(p0) and τ(pq) > E(p0)E(q0)E(p0q0), (5)

where E(y) = e−
1

2 lg (2y+1) for a positive integer y and e is the base of the natural
logarithm.

Since E(2) and 2
3E

2(7) are greater than 1
2 and since limp0→∞E(p0) = 1 the

following Corollary holds.

Corollary 1. [4] For any prime number p there exist primitive polynomials of
degree n = p and primitive polynomial of degree n = 2p such that their duals are
primitive too.
For sufficiently large primes p and q almost all irreducible polynomials of degree
n = p and n = pq are primitive.



n σ2 λ2 ψ2

2 1 1 1
3 2 2 2
4 1 2 3
5 6 6 6
6 3 6 9
7 18 18 18
8 9 16 30
9 42 48 56
10 35 60 99
11 166 176 186
12 55 144 335
13 630 630 630
14 486 756 1161
15 1486 1800 2182
16 1011 2048 4080

Table 1. Values of σ2, λ2, ψ2

3 Estimations on τ (
∏`

i=1 pri
i ) and τ (2r0

∏`
i=1 pri

i )

First of all we will recall some facts from elementary Number Theory [23]. Let
GCD(a,m) = 1. By the Euler theorem we have aφ(m) ≡ 1(mod m). Based on
this it is defined the index to which a belongs modulo m to be the smallest δ > 0
such that aδ ≡ 1(mod m). It is easy to prove that a belongs to δ modulo m if
and only if δ divides any γ for which aγ ≡ 1(mod m). In particular the index δ
divides φ(m).

Theorem 1. Let ri (i = 1, . . . , `) be some positive integers. Then for any odd
primes pi ≥ p̃i (i = 1, . . . , `), we have:

τ(
∏̀
i=1

pri
i ) > exp

−1
2

∑
(j1,...,j`)�(r1,...,r`)

1

lg(2
∏`

i=1 p̃i
ji + 1)

 . (6)

Proof. Let us denote by Q(k1,...,k`) the set of prime factors of MQ`
i=1 p

ki
i

, where
(k1, . . . , k`) is a `−tuple of integers such that (k1, . . . , k`) � (r1, . . . , r`). Let q
be an arbitrary element from Q(r1,...,r`), (i.e., q is a prime such that 2

Q`
i=1 p

ri
i ≡

1( mod q)) and δ be the index to which 2 belongs modulo q. By the above general
considerations it follows that δ is a divisor of both

∏`
i=1 p

ri
i and φ(q) = q − 1,

i.e., there exists a tuple of integers (j1, . . . , j`) � (r1, . . . , r`), such that δ =∏`
i=1 p

ji

i and q = 2mδ+1 for some positive m. It is easy to see that q belongs to
Q(j1,...,j`) \∪(k1,...,k`)≺(j1,...,j`)Q(k1,...,k`). We will denote the last set by N(j1,...,j`)

and let n(j1,...,j`) be its cardinality.
First, let us give an upper bound on n(j1,...,j`). Although more precise esti-

mations of n(j1,...,j`) might be possible, for our goals it is sufficient the following.



Since for any q ∈ N(j1,...,j`), q ≥ 2
∏`

i=1 p
ji

i + 1 holds, then

2
Q`

i=1 p
ji
i > MQ`

i=1 p
ji
i
>

∏
q∈N(j1,...,j`)

q ≥

(
2
∏̀
i=1

pji

i + 1

)n(j1,...,j`)

.

Taking logarithm base 2, we get:
∏`

i=1 p
ji

i > n(j1,...,j`) lg(2
∏`

i=1 p
ji

i + 1) or

n(j1,...,j`) <
Q`

i=1 p
ji
i

lg(2
Q`

i=1 p
ji
i +1)

<
Q`

i=1 p
ji
i

lg(2
Q`

i=1 p̃i
ji+1)

. Let us denote by L(j1,...,j`) =
1

lg(2
Q`

i=1 p̃i
ji+1)

, so we have:

n(j1,...,j`) < L(j1,...,j`)

∏̀
i=1

pji

i , (7)

where L(j1,...,j`) does not depend on pi.
Let π(j1,...,j`) =

∏
q∈N(j1,...,j`)

(1 − 1
q ). Replacing every q by the lower bound

2
∏`

i=1 p
ji

i + 1 and taking into account (7), we get:

π(j1,...,j`) > (1− 1

2
∏`

i=1 p
ji

i + 1
)L(j1,...,j`)

Q`
i=1 p

ji
i

= (1 +
1

2
∏`

i=1 p
ji

i

)−L(j1,...,j`)
Q`

i=1 p
ji
i

=

[
(1 +

1

2
∏`

i=1 p
ji

i

)2
Q`

i=1 p
ji
i

]− 1
2 L(j1,...,j`)

Since the inequality (1+ 1
n )n < e, where e is the base of natural logarithm holds

for every positive integer n, it follows that:

π(j1,...,j`) > e−
1
2 L(j1,...,j`) (8)

The following computations are straightforward:

τ(
∏̀
i=1

pri
i ) =

Φ(MQ`
i=1 p

ri
i

)

MQ`
i=1 p

ri
i

=
∏

q∈Q(r1,...,r`)

(1− 1
q
) (9)

=
∏

(j1,...,j`)≺(r1,...,r`)

τ(
∏̀
i=1

pji

i )
∏

q∈N(r1,...,r`)

(1− 1
q
)

=
∏

(j1,...,j`)≺(r1,...,r`)

τ(
∏̀
i=1

pji

i )π(r1,...,r`)

=
∏

(j1,...,j`)�(r1,...,r`)

π(j1,...,j`).



Then from (8) we get the following lower bound on τ(
∏`

i=1 p
ri
i ):

τ(
∏̀
i=1

pri
i ) > e

− 1
2

P
(j1,...,j`)�(r1,...,r`)

1
lg(2

Q`
i=1 p̃i

ji+1) , (10)

which is the desired result. ut

Corollary 2. For any fixed positive integers ri (i = 1, . . . , `) and sufficiently
large primes pi, almost all irreducible polynomials of degree

∏`
i=1 p

ri
i are primi-

tive.

Proof. Since θ(n) > τ(n) for any n, in particular the ratio θ(
∏`

i=1 p
ri
i ) is greater

than τ(
∏`

i=1 p
ri
i ). But the latter becomes greater than any constant c < 1 when

pi are chosen sufficiently large according to the lower bound proved. ut

Remark 1. Note, that under the assumptions of Corollary 2 it follows by the
same reasoning that almost all elements of the multiplicative group of the finite
field GF (2

Q`
i=1 p

ri
i ) are primitive (i.e., of maximal possible order).

Now we will consider the case when the degree of the polynomial is 2r0n,
where n is an odd number with prime factorization n =

∏`
i=1 p

ri
i and r0 ≥ 1.

Theorem 2. Let r0 ≥ 0 and ri (i = 1, . . . , `) be some positive integers. Then
for any odd primes pi ≥ p̃i (i = 1, . . . , `), we have:

τ(2r0
∏̀
i=1

pri
i ) > τ(2r0) exp

−2r0−1
∑

(j1,...,j`)�(r1,...,r`)

1

lg(2
∏`

i=1 p̃i
ji + 1)

 .

(11)

Proof. The proof is by induction on r0. The case r0 = 0 is in fact statement of
Theorem 1 and gives the base of induction. The inductive step can be drawn by
the following arguments. Since:

22r+1n − 1 = (22rn − 1)(22rn + 1)

the prime factors of 22rn +1 are prime factors of 22r+1n−1. Thus, the index δ of
2 modulo such prime factor is either equal to 2r+1 or of the form 2r+1

∏`
i=1 p

ji

i

for some (j1, . . . , j`) � (r1, . . . , r`), where not all ji are equal to 0. The prime
factors of the first type contribute to τ(2r+1), while the contribution of those of
the second type can be estimated in the same way as the corresponding prime
factors of 22rn − 1, since they are of the form mδ + 1 = 2m 2r

∏`
i=1 p

ji

i + 1 for
some positive m. ut

To illustrate the consequences of Theorem 2 we formulate the following corol-
lary, which is derived from case r0 = 1.



Corollary 3. For any fixed positive integers ri (i = 1, . . . , `) and sufficiently
large primes pi, not less than 2/3 of all irreducible polynomials of degree 2

∏`
i=1 p

ri
i

are primitive.

Example 1. As it follows from Proposition 1 the interesting case is when τ(n) >
1
2 . Straightforward calculations show that in order to have inequality τ(pr) > 1

2 ,
for 1 ≤ r ≤ 4, it is sufficient to choose p̃ = 3. In other words for all prime
numbers p we have τ(pr) > 1

2 when 1 ≤ r ≤ 4. To add the case r = 5, we should
choose p̃ = 5 and the inequalities τ(25) > 1

2 and τ(35) > 1
2 can be checked

directly.

4 An infinite series of integers ns for which θ(ns) < 1
2

We will prove the following proposition.

Proposition 3. There exists an infinite series of integers ns = 2s, s ≥ 7 for
which the number of primitive polynomials of degree ns is strictly less than the
half of the number of irreducible polynomials of that degree.

Proof. The following computations are straightforward:

22s

− 1 = (22s−1
)2 − 1 = (22s−1

− 1)(22s−1
+ 1)

and since GCD(22s−1 − 1, 22s−1
+ 1) = 1 we have:

τ(2s) =
Φ(22s − 1)

22s − 1
=
Φ(22s−1 − 1)

22s−1 − 1
· Φ(22s−1

+ 1)
22s−1 + 1

<
Φ(22s−1 − 1)

22s−1 − 1
= τ(2s−1)

Direct calculations show that τ(64) < 1
2 and hence τ(2s) < 1

2 when s ≥ 6. So
for s > 6, it follows that:

Φ(22s

− 1) = Φ(22s−1
− 1) · Φ(22s−1

+ 1) <
1
2
(22s−1

− 1)22s−1
.

On the other hand we have that: ψ2(2s) =
∑

d|2s 2dµ( 2s

d ) = (22s−1 −1)22s−1
and

from the above inequality if s > 6 we get:

θ(2s) =
Φ(22s − 1)

(22s−1 − 1)22s−1 <
1
2
.

ut

Recently, in papers by Luka, Luka and Shparlinski and J. von zur Gathen
et.al., [9, 15, 16] similar ratios of multiplicative number-theoretical functions have
been studied from a more general point of view (the usage of groups in cryptog-
raphy). Their results show that the mean behavior of these functions is limited
by well determined constants and that there exist infinite series of integers for
which these ratios take the largest possible value as well as relatively small val-
ues. We believe our results complete in certain aspects the results of these papers
giving different and constructive examples of such series.



5 Conclusions

Based on number-theoretic considerations we present estimations on the ratio
between the number of primitive and irreducible polynomials of degrees n and
2n, for an arbitrary odd n. As a consequence we prove that when the powers
(in the prime factorization of n) are fixed and the primes are sufficiently large,
almost (2/3 of) all binary irreducible polynomials of these degrees are primitive,
respectively. Then we show that for any prime number p and 1 ≤ r ≤ 5, there
exists a primitive polynomial of degree pr such that its dual is primitive, too.

Finally, we describe infinite series of degrees (namely ns = 2s, s ≥ 7) for
which the number of primitive polynomials in GF (2)[x] is strictly less than 1

2 of
the number of corresponding irreducible polynomials.
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