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Abstract. Since Bellare and Ristenpart showed a multi-property preserving domain extension transform,
the problem of the construction for multi-property hash functions has been reduced to that of the con-
struction for multi-property compression functions. However, the Davies-Meyer compression function that
is widely used for standard hash functions is not a multi-property compression function. That is, in the
ideal cipher model, the Davies-Meyer compression function is collision resistant, but it is not indifferentiable
from a random oracle. In this paper, we show that the compression function proposed by Lai and Massey is
a multi-property compression function. In addition, we show that the simplified version of the Lai-Massey
compression function is also a multi-property compression function. The use of these compression functions
enables us to construct multi-property hash functions by the multi-property preserving domain extension
transform.

1 Introduction

Cryptographic hash functions play a fundamental role in modern cryptographic protocols. Hash func-
tions are used for data integrity in conjunction with digital signatures and message authentication
codes. These applications require that hash functions satisfy the following properties: preimage resis-
tance, second-preimage resistance, and collision resistance. Another application of hash functions is
an alternative to a random oracle. For example, hash functions are used to instantiate random oracles
in public-key schemes such as RSA-OAEP [2] and RSA-PSS [3]. This application requires that hash
functions are indistinguishable from random oracles.

Coron, Dodis, Malinaud, and Puniya [8] have formally discussed the indifferentiability of hash
functions. The notion of indifferentiability was first introduced by Maurer, Renner, and Holenstein
[12], and is a stronger notion than just indistinguishability. Coron et al. have shown that the Merkle-
Damg̊ard construction [9][13] is not indifferentiable from the random oracle, and have proposed hash-
function constructions that are indifferentiable from the random oracle. Chang, Lee, Nandi, and Yung
[7] have given the formal proof of indifferentiability to the constructions of Coron et al. In [7] and [8],
the collision resistance of the indifferentiable constructions were not explicitly studied.

Bellare and Ristenpart [1] have shown that the indifferentiability from the random oracle does
not guarantee the collision resistance, and have proposed a multi-property preserving domain ex-
tension transform (called an MPP transform) where “multi-property” means indifferentiability and
collision resistance. The MPP transform enables a constructed hash function to inherit these proper-
ties of an underlying compression function. Due to their works, the problem of the construction for
multi-property hash functions was reduced to that of the construction for multi-property compression
functions.

However, the Davies-Meyer compression function, which is used for popular hash functions, is not a
multi-property compression function in the ideal cipher model. Namely, the Davies-Meyer compression
function is collision resistant [6], but it is not indifferentiable from a random oracle [7][8][10]. Therefore,
it is important to construct a multi-property compression function.

In this paper, we show that the compression function proposed by Lai and Massey (called an
LM compression function) [11] is a multi-property compression function. We first quantify the in-
differentiability between the LM compression function and the random oracle. There are two proof
methodologies for quantifying the indifferentiability. One is a methodology by Bellare and Rogaway
(a game-playing proof) [4], the other is a methodology by Chang, Lee, Nandi, and Yung [7]. To see the
difference between the two methodologies, let us consider the indifferentiability of two oracles. In the
methodology by Chang et al., an event must be carefully defined so that the adversary views of two
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oracles are identically distributed when the event does not occur. However, how to define the event is
not necessarily obvious. On the other hand, the game-playing proof provides how to define an event for
distinguishing the two oracles, which is called identical-until-bad. Since the notion of identical-until-
bad is easy to use, we quantitatively evaluate the indifferentiability using the game-playing framework.
We next quantify the collision resistance of the LM compression function because Lai and Massey did
not give the formal proof of collision resistance.

We also propose the simplified version of the LM compression function, called a CP compression
function where “CP” is an abbreviation of “Constant Plaintext.” Although we do not think that
the CP compression function is novel, the CP compression function have not been studied in terms
of indifferentiability and collision resistance. We show that the CP compression function as well as
the LM compression function is a multi-property compression function. Therefore, these compression
functions are promising primitives for building multi-property hash functions.

Related Works Since the Merkle-Damg̊ard construction is a collision-resistant preserving domain ex-
tension transform, the construction of collision-resistant compression functions have attracted interest.
Since the advent of Coron et al.’s paper [8], the indifferentiability has been focused. We here sum-
marize related works from the viewpoint of the construction for rate-1 and single-length compression
functions.

Lai and Massey [11] proposed a compression function, which is studied in this paper because they
did not provide any security observation. The LM compression function is based on the block cipher
such that the key length is longer than the block length. Since the LM compression function requires
one invocation of the block cipher and the output length is equal to the block length of the block cipher,
the LM compression function is a rate-1 and single-length compression function. Parenthetically, they
also proposed the different type of compression functions in [11], but the different type of compression
functions are out of scope of this paper.

Preneel, Govaerts, and Vandewalle [15] analyzed the security of 64 compression functions (PGV
compression functions) in context of attacks, but did not provide any formal proof. The PGV compres-
sion functions include popular compression functions such as the Davies-Meyer compression function,
the Matyas-Meyer-Oseas compression function, and the Miyaguchi-Preneel compression function. No-
tice that the PGV compression functions do not include the LM compression function.

Black, Rogaway, and Shrimpton [6] provided a formal and quantitative treatment of all the PGV
compression functions. Their proof is based on the ideal cipher model. They studied the collision
resistance and the inversion resistance of the PGV compression functions, but did not study indiffer-
entiability from a random oracle.

In [8], the Davies-Meyer compression function is not indifferentiable from a random oracle in the
ideal cipher model. In [7][10], the PGV compression functions are not indifferentiable from a random
oracle in the ideal cipher model. In [10], a compression function such that many block ciphers are used
selectively was proposed, and it was stated that the proposed compression function was implemented
by the LM compression function. However, the difference between the proposed compression function
and the LM compression function was not discussed.

The above related works as well as this paper are based on the ideal-cipher model. Black [5] pointed
out suspicion as to the wisdom of blindly using the ideal-cipher model in proofs of security. Black
showed that, given a collision-resistant hash function in the ideal cipher model, there exists a block
cipher that makes the hash function collision-easy. However, as described in [5], a pseudo-random
permutation that is a weaker assumption than the ideal cipher model is insufficient for building a
collision-resistant hash function. In fact, it is easy to prove that the LM compression function is not
collision resistant under the pseudo-random-permutation assumption. Therefore, we employ the ideal
cipher model in this paper.

Organization In Section 2, we describe notation, primitives, and definitions of the LM compression
function and the CP compression function. Our discussion is based on the ideal cipher model. In
Section 3, we first quantitatively argue the indifferentiability between the LM compression function
and a random oracle. We next discuss the collision resistance of the LM compression function in a
similar way to that of Black et al.[6] In Section 4, we quantify the indifferentiability and the collision
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resistance of the CP compression function in a similar way to Section 3. In Section 5, we summarize
remarks.

2 Preliminaries

2.1 Notation and Primitives

We will write a←b to mean that a is to be set to the result of evaluating expression b, and write a
$← A

to mean that a is uniformly chosen at random from a finite set A. For algorithms A and B, AB means
that A uses B as an oracle. We denote by Pr [A⇒a] the probability that an algorithm A outputs a. In
addition, we denote by Pr [a : b] the probability that a predicate b is true after a was performed. We
denote by Pr [b | a] the probability that b is true when a occurred. We let ‖ denote the concatenation
operator on strings.

Let R be a function from a finite set X to a finite set Y. The function R is said to be a random
oracle1 if R satisfies the following equation for x 6∈ {x1, x2, . . . , xq} and y ∈ Y.

Pr [R(x) = y | x 6= xi ∧ R(xi) = yi for i = 1, 2, . . . , q] =
1
|Y|

where |Y| is the number of elements in Y. Notice that R returns the same string for the same query.
When Y = {0, 1}n, the random oracle R can be emulated by the algorithm of Fig. 1. In Fig. 1, the

table R[x] is initialized to the special symbol ⊥, and is used for storing responses to previous queries.
As queries are made, each R[x] is filled with an n-bit random string.

A block cipher is a function E′ from {0, 1}` ×{0, 1}n to {0, 1}n where, for each k ∈ {0, 1}`, E′(k, ·)
is a permutation on {0, 1}n. When E′ is a block cipher, E′−1 denotes its inverse, i.e., E′−1(k, y) gives
the string x such that E′(k, x) = y. Let Bloc(`, n) be the set of all block ciphers from {0, 1}`×{0, 1}n to
{0, 1}n. Choosing a random element of Bloc(`, n) means that for each k ∈ {0, 1}` one chooses a random
permutation E′(k, ·) [6]. An ideal cipher is defined as a random element of Bloc(`, n). Accordingly, the
ideal cipher E′ satisfies the following equation for each k.

Pr
[
E′(k, x) = y | E′(k, xi) = yi for i = 1, 2, . . . , q

]
=

1
|Y | − q

,

where each xi is distinct, x 6∈ {x1, x2, . . . , xq}, and y 6∈ {y1, y2, . . . , yq}. Since the ideal cipher model
allows an adversary to have access to both of E′ and E′−1, combining them simplifies description of
discussion. We will use E(1, ·, ·) and E(−1, ·, ·) instead of E′ and E′−1 here.

The ideal cipher E of Bloc(`, n) can be emulated by the algorithm of Fig. 2. In Fig. 2, E takes three
inputs; α ∈ {1,−1} specifies encryption or decryption, k is an `-bit key, and if α = 1 w is an n-bit
plaintext, otherwise w is an n-bit ciphertext. The double dash, //, begins a comment that extends to
the end of the line. The table E[k][x] is initialized with the special symbol ⊥, and stores a ciphertext
y obtained by encrypting the plaintext x with the key k. The symbol Y(E[k]) denotes a current set
of all ciphertexts y defined with the key k, and Y(E[k]) denotes the complement of Y(E[k]) relative
to {0, 1}n. Similarly, X (E[k]) denotes a current set of all plaintexts x defined with the key k, and
X (E[k]) denotes its complement set. As queries are made, each E[k][x] is filled with an n-bit random
string.

2.2 Definition of Compression Functions

In this paper, we first analyze security of the compression function that was proposed by Lai and
Massey [11] (called an LM compression function). Although they proposed it, they did not discuss
its security. Our purpose is to show that the LM compression function has good properties (exactly,
indifferentiability and collision resistance). If the LM compression function has the good properties,
then the MPP transform [1] allows us to construct a hash function with the good properties.
1 In [1], this is the definition of a random function, and a random oracle is defined as a public random function. In this

paper we treat only a public random function.
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Random oracle R(x)
100 if R[x] =⊥ then

101 R[x]
$← {0, 1}n

102 return R[x]

Fig. 1. Random oracle R.

Ideal cipher E(α, k, w)
200 if α = 1 then // encryption
201 x←w
202 if E[k][x] =⊥ then

203 E[k][x]
$← Y(E[k])

204 return E[k][x]
205 if α = −1 then // decryption
206 y←w
207 Find x s.t. E[k][x] = y.
208 if no such an x then

209 x
$← X (E[k])

210 E[k][x]←y
211 return x

Fig. 2. Ideal cipher E.

Let E be an ideal cipher in Bloc(`, n) where ` > n. For z ∈ {0, 1}`−n and x ∈ {0, 1}n, the LM
compression function is defined as

HLM (z, x) = E(1, x ‖ z, x). (1)

In addition, we call the following function a CP compression function where CP stands for a Constant
Plaintext.

HCP (z, x) = E(1, x ‖ z, c), (2)

where c is an n-bit public constant string, say 0n. Although we do not think that the CP compression
function is novel, the security of the CP compression function have not been studied formally. Our
purpose is to show that the CP compression function has good properties.

Compression functions are usually classified as rate and length. A compression function H is called
a rate-1/r compression function if r invocations of block cipher E(1, ·, ·) is necessary to compute H. A
compression function H is called a single-length compression function if the output length of H is equal
to the block length of E. Accordingly, the LM compression function and the CP compression function
are rate-1 and single-length. Although Black et al. [6] cyclopaedically analyzed collision resistance of
rate-1 and single-length compression functions, the LM compression function and the CP compression
function were not included in them because Black et al. analyzed compression functions based on the
block cipher such that the key length was equal to the block length.

3 The LM Compression Function

Let E be the ideal cipher of Fig. 2, i.e., a function from {1,−1} × {0, 1}` × {0, 1}n to {0, 1}n where
an element of {1,−1} stands for encryption or decryption, ` is key length, and n is block length. The
LM compression function is defined as

H(z, x) = E(1, x ‖ z, x), (3)

which is a function from {0, 1}`−n × {0, 1}n to {0, 1}n. In this section, we omit the subscription LM
of Eq. (1) for simplification. In hash-function contractions such as the MPP transform, z is a message
block to be compressed and x is output of the preceding compression function.

3.1 Indifferentiability

To evaluate the indifferentiability from a random oracle, we introduce the advantage of an adversary
against the LM compression function, which is called a pro-advantage. The pro-advantage indicates how
much the LM compression function behaves like a random oracle. The pro-advantage of an adversary
A is defined as

Advpro
H,S(A) = Pr

[
AHE ,E⇒1

]
− Pr

[
AR,SR⇒1

]
, (4)
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The LM compression function H0(z, x)
100 return E0(1, x ‖ z, x)

Ideal cipher E0(α, k, w)
200 if α = 1 then
201 x←w; Parse k into a ‖ z.
202 if E0[k][x] =⊥ then
203 if a = x then

204 y
$← {0, 1}n

205 else

206 y
$← {0, 1}n

207 if y ∈ Y(E0[k]) then
208 bad←true // bade

209 y
$← Y(E0[k])

210 E0[k][x]←y
211 return E0[k][x]

212 if α = −1 then
213 y←w; Parse k into a ‖ z.
214 Find x s.t. E0[k][x] = y.
215 if no such an x then

216 x
$← X (E0[k])

217 if a = x then
218 bad←true // badd

219 E0[k][x]←y
220 return x

Fig. 3. Game G0 = (H0, E0).

where H is the LM compression function, E is the ideal cipher, R is the random oracle, and S
is a simulator. The random oracle R exposes the same interface as H, i.e., R is a function from
{0, 1}`−n ×{0, 1}n to {0, 1}n. It is easy to implement R using a random oracle from {0, 1}` to {0, 1}n.
The simulator S exposes the same interface as E, and emulates E as possible. If the value of Advpro

H,S(A)
is negligibly small, then it means that the adversary A cannot distinguish between the LM compression
function H and the random oracle R.

We quantify the indifferentiability of the LM compression function using the game-playing frame-
work [4]. We assume that A is an infinitely powerful adversary and A makes no pointless query such
as the same query to oracles.

We start with a game G0 as shown in Fig. 3. In Fig. 3, H0 is a function from {0, 1}`−n × {0, 1}n

to {0, 1}n, and E0 is a function from {1,−1} × {0, 1}` × {0, 1}n to {0, 1}n. In line 201 and line 213,
k is parsed into an (` − n)-bit string a and an n-bit string z. The flag bad in line 208 and line 218,
which will be used for later discussion, does not any effect on the output of E0. It is easy to verify
that H0 and E0 exactly emulate the LM compression function of Eq. (3) and the ideal cipher of Fig. 2,
respectively. Hence, we have, for any adversary A,

Pr
[
AHE ,E⇒1

]
= Pr

[
AG0⇒1

]
.

Note that the description of E0 is of redundancy (e.g., line 203–206), which is helpful to compare other
games. We next consider a game G1 as shown in Fig. 4. In Fig. 4, R1 exposes the same interface as H0,
but R1 is algorithmically equivalent to the random oracle R of Fig. 1. The function S1 is a simulator
that we here study, and is designed to emulate the ideal cipher as possible. It follows that

Pr
[
AR,SR⇒1

]
= Pr

[
AG1⇒1

]
for any adversary A. Therefore, the pro-advantage of Eq. (4) is rewritten as

Advpro
H,S(A) = Pr

[
AG0⇒1

]
− Pr

[
AG1⇒1

]
. (5)

We compare the game G1 and a game G2 of Fig. 5. The function R2 exposes the same interface
as R1, but the algorithm of R2 differs from that of R1. However, if a query is fresh, then R2 returns
an n-bit random string due to line 204, line 209, and line 220 in Fig. 5. Hence, R2 as well as R1 is
the random oracle. Comparing S1 and S2, we see that the difference is line 204 and line 220, i.e.,
y←R1(z, x) in S1 and y←{0, 1}n in S2. Both of them return a random string if a query is fresh. It
follows that S1 and S2 are functionally equivalent. Hence, we have

Pr
[
AG1⇒1

]
= Pr

[
AG2⇒1

]
(6)
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Random oracle R1(z, x)
100 if R1[x ‖ z] =⊥ then

101 R1[x ‖ z]
$← {0, 1}n

102 return R1[x ‖ z]

Simulator S1(α, k, w)
200 if α = 1 then
201 x←w; Parse k into a ‖ z.
202 if S1[k][x] =⊥ then
203 if a = x then
204 y←R1(z, x)
205 else

206 y
$← {0, 1}n

207 if y ∈ Y(S1[k]) then
208 bad←true

209 if a 6= x then

210 y
$← Y(S1[k])

211 S1[k][x]←y
212 return S1[k][x]

213 if α = −1 then
214 y←w; Parse k into a ‖ z.
215 Find x s.t. S1[k][x] = y.
216 if no such an x then

217 x
$← X (S1[k])

218 if a = x then
219 bad←true

220 S1[k][x]←R1(z, x)

221 x
$← X (S1[k])

222 S1[k][x]←y
223 return x

Fig. 4. Game G1 = (R1, S1).

Function R2(z, x)
100 return S2(1, x ‖ z, x)

Simulator S2(α, k, w)
200 if α = 1 then
201 x←w; Parse k into a ‖ z.
202 if S2[k][x] =⊥ then
203 if a = x then

204 y
$← {0, 1}n

205 else

206 y
$← {0, 1}n

207 if y ∈ Y(S2[k]) then
208 bad←true

209 if a 6= x then

210 y
$← Y(S2[k])

211 S2[k][x]←y
212 return S2[k][x]

213 if α = −1 then
214 y←w; Parse k into a ‖ z.
215 Find x s.t. S2[k][x] = y.
216 if no such an x then

217 x
$← X (S2[k])

218 if a = x then
219 bad←true

220 S2[k][x]←{0, 1}n

221 x
$← X (S2[k])

222 S2[k][x]←y
223 return x

Fig. 5. Game G2 = (R2, S2).

for any adversary A. Substituting Eq. (6) into Eq. (5) yields the following equation.

Advpro
H,S(A) = Pr

[
AG0⇒1

]
− Pr

[
AG2⇒1

]
. (7)

We compare the game G0 with the game G2. Since H0 and R2 are algorithmically the same, we
focus on the difference between E0 and S2. We easily see that the difference appears after the statement
bad←true. Namely, E0 and S2 are identical until the flag bad sets. Using the fundamental lemma [4],
we obtain

Advpro
H,S(A) = Pr

[
AG0⇒1

]
− Pr

[
AG2⇒1

]
≤ Pr [G0 sets bad] ,

where Pr [G0 sets bad] denotes the probability that the flag bad in Fig. 3 is set to true in the execution
of A with the game G0. We calculate the probability Pr [G0 sets bad]. Since the query to H0 turns out
to be the query to E0, we consider only the query to E0. Since the flag bad appears in line 208 and
line 218, we have

Pr [G0 sets bad] ≤ Pr [G0 sets bade] + Pr [G0 sets badd] , (8)
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where Pr [G0 sets bade] and Pr [G0 sets badd] are probabilities that bad is set to true in line 208 and
line 218, respectively. These probabilities are calculated as follows. At the i-the query to E0, the
number of defined elements in the table E0[k][x] is at most i − 1, namely, |X (E0[k])| and |Y(E0[k])|
are at most i − 1. The probability that bade is set at the i-the query is not greater than (i − 1)/2n,
and the probability that badd is set at the i-the query is not greater than 1/(2n − (i − 1)). Assuming
that q queries are made in the execution of A with the game G0, we have

Pr [G0 sets bade] ≤
1
2n

+
2
2n

+ . . . +
q − 1
2n

=
q(q − 1)

2n+1
,

Pr [G0 sets badd] ≤
1
2n

+
1

2n − 1
+ . . . +

1
2n − (q − 1)

≤ q

2n−1
,

where we assumed that q ≤ 2n−1 + 1. Substituting the above inequalities into Eq. (8), we obtain

Advpro
H,S(A) ≤ Pr [G0 sets bad]

≤ q(q + 3)
2n+1

. (9)

3.2 Collision Resistance

In this section, we analyze the collision resistance of the LM compression function. Although Lai and
Massey proposed this function, they did not evaluate its collision resistance. To quantify the difficulty
of finding a collision in H, we consider the following probability, called a col-advantage of adversary
B [6].

Advcol
H (B) = Pr

[
BHE ,E⇒((z, x), (z′, x′)) : Outputs collide.

]
, (10)

where “Outputs collide” means that one of the following events occurs.

– (z, x) 6= (z′, x′) ∧ H(z, x) = H(z′, x′)
– For a constant y0 given in advance, H(z, x) = y0.

Since the game G0 (= (H0, E0)) in Fig. 3 exactly emulates H and E, the col-advantage is given by

Advcol
H (B) = Pr

[
BG0⇒((z, x), (z′, x′)) : Outputs collide.

]
.

Let Ci be the event that there exists j ∈ {1, 2, . . . , i − 1} such that (zi, xi) 6= (zj , xj) ∧ H0(zi, xi) =
H0(zj , xj) or H0(zi, xi) = y0. In the game G0, an oracle’s answer is randomly selected from a set of
at least 2n − (i − 1) because the adversary makes no pointless query. Noticing that y0 was given in
advance, we have Pr [Ci] ≤ i/(2n − (i − 1)). Hence, we obtain

Advcol
H (B) ≤ Pr [C1 ∨ C2 ∨ . . . ∨ Cq]

≤
q∑

i=1

Pr [Ci]

≤ q(q + 1)
2n

, (11)

where we assumed that q ≤ 2n−1.
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4 The CP Compression Function

Let E be an ideal cipher from {1,−1}×{0, 1}`×{0, 1}n to {0, 1}n as shown in Fig. 2. For z ∈ {0, 1}`−n

and x ∈ {0, 1}n, the CP compression function is defined as

H(z, x) = E(1, x ‖ z, c), (12)

where c is a public constant string, say 0n. In this section, we omit the subscription CP of Eq. (2).
In hash-function contractions, z is a message block to be compressed and x is output of the preceding
compression function.

In this section, we quantify the indifferentiability and the collision resistance of the CP compression
function. We will observe that these properties of the CP compression function and those of the
LM compression function are the same level in terms of adversary’s advantage. In other words, the
encryption of variable x in the LM compression function does not contribute to improving adversary’s
advantage.

4.1 Indifferentiability

We quantify the indifferentiability of the CP compression function in a similar way to Section 3.1. We
define the pro-advantage of an adversary A as

Advpro
H,S(A) = Pr

[
AHE ,E⇒1

]
− Pr

[
AR,SR⇒1

]
, (13)

where H is the CP compression function, E is the ideal cipher, R is the random oracle, and S is a
simulator that we study here. We assume that A is an infinitely powerful adversary and A makes no
pointless query.

We start with a game G3 as shown in Fig. 6. In Fig. 6, H3 and E3 exactly emulate the CP
compression function of Eq. (12) and the ideal cipher of Fig. 2, respectively. Thus, for any adversary
A, we have

Pr
[
AHE ,E⇒1

]
= Pr

[
AG3⇒1

]
.

Note that the redundant description of E3 is helpful to compare other games. We next consider a
game G4 as shown in Fig. 7. In Fig. 4, R4 exposes the same interface as H3, but R4 is algorithmically
equivalent to the random oracle R of Fig. 1. The function S4 is a simulator that we here study. It
follows that

Pr
[
AR,SR⇒1

]
= Pr

[
AG4⇒1

]
for any adversary A. Therefore, the pro-advantage of Eq. (13) is rewritten as

Advpro
H,S(A) = Pr

[
AG3⇒1

]
− Pr

[
AG4⇒1

]
. (14)

We compare the game G4 and a game G5 of Fig. 8. The function R5 exposes the same interface as
R4, and R5 always returns an n-bit random string due to line 204, line 209, and line 220 in Fig. 7.
Hence, R4 as well as R3 is the random oracle. Comparing S4 and S5, we see that line 204 and line
220 are different, but both of them return a random string if the query is fresh. Hence, S4 and S5 are
functionally equivalent. Since G4 and G5 are the same for the adversary, Eq. (14) is rewritten as

Advpro
H,S(A) = Pr

[
AG3⇒1

]
− Pr

[
AG5⇒1

]
≤ Pr [G3 sets bad] .

The above inequality is based on the fact that E3 and S5 are identical until the flag bad sets. We can
calculate the probability Pr [G3 sets bad] in a similar way to Section 3.1.

Pr [G3 sets bad] ≤ Pr [G3 sets bade] + Pr [G3 sets badd]

≤ q(q + 3)
2n+1

.

The above bound is the same as Eq. (9). Comparing Eq. (3) and Eq. (12), we observe that encrypting
variable x does not improve the upper bound of the advantage.
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The CP compression function H3(z, x)
100 return E3(1, x ‖ z, c)

Ideal cipher E3(α, k, w)
200 if α = 1 then
201 x←w
202 if E3[k][x] =⊥ then
203 if x = c then

204 y
$← {0, 1}n

205 else

206 y
$← {0, 1}n

207 if y ∈ Y(E3[k]) then
208 bad←true // bade

209 y
$← Y(E3[k])

210 E3[k][x]←y
211 return E3[k][x]

212 if α = −1 then
213 y←w
214 Find x s.t. E3[k][x] = y.
215 if no such an x then

216 x
$← X (E3[k])

217 if x = c then
218 bad←true // badd

219 E3[k][x]←y
220 return x

Fig. 6. Game G3 = (H3, E3).

Random oracle R4(z, x)
100 if R4[x ‖ z] =⊥ then

101 R4[x ‖ z]
$← {0, 1}n

102 return R4[x ‖ z]

Simulator S4(α, k, w)
200 if α = 1 then
201 x←w
202 if S4[k][x] =⊥ then
203 if x = c then
204 y←R4(z, x)
205 else

206 y
$← {0, 1}n

207 if y ∈ Y(S4[k]) then
208 bad←true

209 if x 6= c then

210 y
$← Y(S4[k])

211 S4[k][x]←y
212 return S4[k][x]

213 if α = −1 then
214 y←w
215 Find x s.t. S4[k][x] = y.
216 if no such an x then

217 x
$← X (S4[k])

218 if x = c then
219 bad←true

220 S4[k][x]←R4(z, x)

221 x
$← X (S4[k])

222 S4[k][x]←y
223 return x

Fig. 7. Game G4 = (R4, S4).

4.2 Collision Resistance

To quantify the difficulty of finding a collision in the CP compression function H, we define the
col-advantage of adversary B as

Advcol
H (B) = Pr

[
BHE ,E⇒((z, x), (z′, x′)) : Outputs collide.

]
. (15)

In a similar way to Section 3.2, we obtain the following bound on Advcol
H (B).

Advcol
H (B) = Pr

[
BG3⇒((z, x), (z′, x′)) : Outputs collide.

]
≤ q(q + 1)

2n
, (16)

where we assumed that q ≤ 2n−1. The above bound is the same as Eq. (11).

9



Function R5(z, x)
100 return S5(1, x ‖ z, c)

Simulator S5(α, k, w)
200 if α = 1 then
201 x←w
202 if S5[k][x] =⊥ then
203 if x = c then

204 y
$← {0, 1}n

205 else

206 y
$← {0, 1}n

207 if y ∈ Y(S5[k]) then
208 bad←true

209 if x 6= c then

210 y
$← Y(S5[k])

211 S5[k][x]←y
212 return S5[k][x]

213 if α = −1 then
214 y←w
215 Find x s.t. S5[k][x] = y.
216 if no such an x then

217 x
$← X (S5[k])

218 if x = c then
219 bad←true

220 S5[k][x]←{0, 1}n

221 x
$← X (S5[k])

222 S5[k][x]←y
223 return x

Fig. 8. Game G5 = (R5, S5).

5 Concluding Remarks

Due to [1], the problem of building a multi-property hash function was reduced to that of building
a multi-property compression function. Hence, it is significant to build a multi-property compression
function from primitives. In this paper, we employed the ideal cipher as the primitive.

We have first quantified the indifferentiability and the collision resistance of the LM compression
function in the ideal cipher model. In order to distinguish between the LM compression function and the
random oracle, or in order to find a collision in the LM compression function, an adversary needs about√

2n queries to oracles where n is output length. Next, we have analyzed the indifferentiability and the
collision resistance of the CP compression function, which is a variant of the LM compression function.
We have shown that the CP compression function has the same properties as the LM compression
function in terms of adversary’s advantage.

Although the Davies-Meyer compression function is widely used for popular hash functions such
as the SHA family [14], the Davies-Meyer compression function is not a multi-property compression
function, that is, it is distinguishable from the random oracle in the ideal cipher model. In contrast, the
LM compression function and the CP compression function are multi-property compression functions.
Therefore, the use of these compression functions enables us to build hash functions with the same
properties by the MPP transform.
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