Compression Functions Suitable for the Multi-Property-Preserving Transform

Hidenori Kuwakado and Masakatu Morii

Graduate School of Engineering, Kobe University 1-1 Rokkodai-cho Nada-ku Kobe 657-8501, Japan

Abstract. Since Bellare and Ristenpart showed a multi-property preserving domain extension transform, the problem of the construction for multi-property hash functions has been reduced to that of the construction for multi-property compression functions. However, the Davies-Meyer compression function that is widely used for standard hash functions is not a multi-property compression function. That is, in the ideal cipher model, the Davies-Meyer compression function is collision resistant, but it is not indifferentiable from a random oracle. In this paper, we show that the compression function proposed by Lai and Massey is a multi-property compression function. In addition, we show that the simplified version of the Lai-Massey compression function is also a multi-property compression function. The use of these compression functions enables us to construct multi-property hash functions by the multi-property preserving domain extension transform.

1 Introduction

Cryptographic hash functions play a fundamental role in modern cryptographic protocols. Hash functions are used for data integrity in conjunction with digital signatures and message authentication codes. These applications require that hash functions satisfy the following properties: preimage resistance, second-preimage resistance, and collision resistance. Another application of hash functions is an alternative to a random oracle. For example, hash functions are used to instantiate random oracles in public-key schemes such as RSA-OAEP [2] and RSA-PSS [3]. This application requires that hash functions are indistinguishable from random oracles.

Coron, Dodis, Malinaud, and Puniya [8] have formally discussed the *indifferentiability* of hash functions. The notion of indifferentiability was first introduced by Maurer, Renner, and Holenstein [12], and is a stronger notion than just indistinguishability. Coron et al. have shown that the Merkle-Damgård construction [9][13] is not indifferentiable from the random oracle, and have proposed hash-function constructions that are indifferentiable from the random oracle. Chang, Lee, Nandi, and Yung [7] have given the formal proof of indifferentiability to the constructions of Coron et al. In [7] and [8], the collision resistance of the indifferentiable constructions were not explicitly studied.

Bellare and Ristenpart [1] have shown that the indifferentiability from the random oracle does not guarantee the collision resistance, and have proposed a multi-property preserving domain extension transform (called an *MPP transform*) where "multi-property" means indifferentiability and collision resistance. The MPP transform enables a constructed hash function to inherit these properties of an underlying compression function. Due to their works, the problem of the construction for multi-property hash functions was reduced to that of the construction for multi-property compression functions.

However, the Davies-Meyer compression function, which is used for popular hash functions, is not a multi-property compression function in the ideal cipher model. Namely, the Davies-Meyer compression function is collision resistant [6], but it is not indifferentiable from a random oracle [7][8][10]. Therefore, it is important to construct a multi-property compression function.

In this paper, we show that the compression function proposed by Lai and Massey (called an LM compression function) [11] is a multi-property compression function. We first quantify the indifferentiability between the LM compression function and the random oracle. There are two proof methodologies for quantifying the indifferentiability. One is a methodology by Bellare and Rogaway (a game-playing proof) [4], the other is a methodology by Chang, Lee, Nandi, and Yung [7]. To see the difference between the two methodologies, let us consider the indifferentiability of two oracles. In the methodology by Chang et al., an event must be carefully defined so that the adversary views of two

oracles are identically distributed when the event does not occur. However, how to define the event is not necessarily obvious. On the other hand, the game-playing proof provides how to define an event for distinguishing the two oracles, which is called *identical-until-bad*. Since the notion of identical-until-bad is easy to use, we quantitatively evaluate the indifferentiability using the game-playing framework. We next quantify the collision resistance of the LM compression function because Lai and Massey did not give the formal proof of collision resistance.

We also propose the simplified version of the LM compression function, called a *CP compression function* where "CP" is an abbreviation of "Constant Plaintext." Although we do not think that the CP compression function is novel, the CP compression function have not been studied in terms of indifferentiability and collision resistance. We show that the CP compression function as well as the LM compression function is a multi-property compression function. Therefore, these compression functions are promising primitives for building multi-property hash functions.

Related Works Since the Merkle-Damgård construction is a collision-resistant preserving domain extension transform, the construction of collision-resistant compression functions have attracted interest. Since the advent of Coron et al.'s paper [8], the indifferentiability has been focused. We here summarize related works from the viewpoint of the construction for rate-1 and single-length compression functions.

Lai and Massey [11] proposed a compression function, which is studied in this paper because they did not provide any security observation. The LM compression function is based on the block cipher such that the key length is longer than the block length. Since the LM compression function requires one invocation of the block cipher and the output length is equal to the block length of the block cipher, the LM compression function is a rate-1 and single-length compression function. Parenthetically, they also proposed the different type of compression functions in [11], but the different type of compression functions are out of scope of this paper.

Preneel, Govaerts, and Vandewalle [15] analyzed the security of 64 compression functions (*PGV compression functions*) in context of attacks, but did not provide any formal proof. The PGV compression functions include popular compression functions such as the Davies-Meyer compression function, the Matyas-Meyer-Oseas compression function, and the Miyaguchi-Preneel compression function. Notice that the PGV compression functions do not include the LM compression function.

Black, Rogaway, and Shrimpton [6] provided a formal and quantitative treatment of all the PGV compression functions. Their proof is based on the ideal cipher model. They studied the collision resistance and the inversion resistance of the PGV compression functions, but did not study indifferentiability from a random oracle.

In [8], the Davies-Meyer compression function is not indifferentiable from a random oracle in the ideal cipher model. In [7][10], the PGV compression functions are not indifferentiable from a random oracle in the ideal cipher model. In [10], a compression function such that many block ciphers are used selectively was proposed, and it was stated that the proposed compression function was implemented by the LM compression function. However, the difference between the proposed compression function and the LM compression function was not discussed.

The above related works as well as this paper are based on the ideal-cipher model. Black [5] pointed out suspicion as to the wisdom of blindly using the ideal-cipher model in proofs of security. Black showed that, given a collision-resistant hash function in the ideal cipher model, there exists a block cipher that makes the hash function collision-easy. However, as described in [5], a pseudo-random permutation that is a weaker assumption than the ideal cipher model is insufficient for building a collision-resistant hash function. In fact, it is easy to prove that the LM compression function is not collision resistant under the pseudo-random-permutation assumption. Therefore, we employ the ideal cipher model in this paper.

Organization In Section 2, we describe notation, primitives, and definitions of the LM compression function and the CP compression function. Our discussion is based on the ideal cipher model. In Section 3, we first quantitatively argue the indifferentiability between the LM compression function and a random oracle. We next discuss the collision resistance of the LM compression function in a similar way to that of Black et al.[6] In Section 4, we quantify the indifferentiability and the collision

resistance of the CP compression function in a similar way to Section 3. In Section 5, we summarize remarks.

2 Preliminaries

2.1 Notation and Primitives

We will write $a \leftarrow b$ to mean that a is to be set to the result of evaluating expression b, and write $a \stackrel{\$}{\leftarrow} \mathcal{A}$ to mean that a is uniformly chosen at random from a finite set \mathcal{A} . For algorithms A and B, A^B means that A uses B as an oracle. We denote by $\Pr[A \Rightarrow a]$ the probability that an algorithm A outputs a. In addition, we denote by $\Pr[a:b]$ the probability that a predicate b is true after a was performed. We denote by $\Pr[b \mid a]$ the probability that b is true when a occurred. We let $\|$ denote the concatenation operator on strings.

Let R be a function from a finite set \mathcal{X} to a finite set \mathcal{Y} . The function R is said to be a random oracle¹ if R satisfies the following equation for $x \notin \{x_1, x_2, \ldots, x_q\}$ and $y \in \mathcal{Y}$.

$$\Pr[R(x) = y \mid x \neq x_i \land R(x_i) = y_i \text{ for } i = 1, 2, ..., q] = \frac{1}{|\mathcal{Y}|}$$

where $|\mathcal{Y}|$ is the number of elements in \mathcal{Y} . Notice that R returns the same string for the same query. When $\mathcal{Y} = \{0,1\}^n$, the random oracle R can be emulated by the algorithm of Fig. 1. In Fig. 1, the table R[x] is initialized to the special symbol \bot , and is used for storing responses to previous queries. As queries are made, each R[x] is filled with an n-bit random string.

A block cipher is a function E' from $\{0,1\}^{\ell} \times \{0,1\}^n$ to $\{0,1\}^n$ where, for each $k \in \{0,1\}^{\ell}$, $E'(k,\cdot)$ is a permutation on $\{0,1\}^n$. When E' is a block cipher, E'^{-1} denotes its inverse, i.e., $E'^{-1}(k,y)$ gives the string x such that E'(k,x) = y. Let $\mathsf{Bloc}(\ell,n)$ be the set of all block ciphers from $\{0,1\}^{\ell} \times \{0,1\}^n$ to $\{0,1\}^n$. Choosing a random element of $\mathsf{Bloc}(\ell,n)$ means that for each $k \in \{0,1\}^{\ell}$ one chooses a random permutation $E'(k,\cdot)$ [6]. An *ideal cipher* is defined as a random element of $\mathsf{Bloc}(\ell,n)$. Accordingly, the ideal cipher E' satisfies the following equation for each k.

$$\Pr\left[E'(k,x) = y \mid E'(k,x_i) = y_i \text{ for } i = 1, 2, \dots, q\right] = \frac{1}{|Y| - q},$$

where each x_i is distinct, $x \notin \{x_1, x_2, \dots, x_q\}$, and $y \notin \{y_1, y_2, \dots, y_q\}$. Since the ideal cipher model allows an adversary to have access to both of E' and E'^{-1} , combining them simplifies description of discussion. We will use $E(1, \cdot, \cdot)$ and $E(-1, \cdot, \cdot)$ instead of E' and E'^{-1} here.

The ideal cipher E of $\mathsf{Bloc}(\ell,n)$ can be emulated by the algorithm of Fig. 2. In Fig. 2, E takes three inputs; $\alpha \in \{1,-1\}$ specifies encryption or decryption, k is an ℓ -bit key, and if $\alpha = 1$ w is an n-bit plaintext, otherwise w is an n-bit ciphertext. The double dash, //, begins a comment that extends to the end of the line. The table E[k][x] is initialized with the special symbol \bot , and stores a ciphertext y obtained by encrypting the plaintext x with the key k. The symbol $\mathcal{Y}(E[k])$ denotes a current set of all ciphertexts y defined with the key k, and $\overline{\mathcal{Y}(E[k])}$ denotes the complement of $\mathcal{Y}(E[k])$ relative to $\{0,1\}^n$. Similarly, $\mathcal{X}(E[k])$ denotes a current set of all plaintexts x defined with the key k, and $\overline{\mathcal{X}(E[k])}$ denotes its complement set. As queries are made, each E[k][x] is filled with an n-bit random string.

2.2 Definition of Compression Functions

In this paper, we first analyze security of the compression function that was proposed by Lai and Massey [11] (called an *LM compression function*). Although they proposed it, they did not discuss its security. Our purpose is to show that the LM compression function has good properties (exactly, indifferentiability and collision resistance). If the LM compression function has the good properties, then the MPP transform [1] allows us to construct a hash function with the good properties.

¹ In [1], this is the definition of a random function, and a random oracle is defined as a public random function. In this paper we treat only a public random function.

```
Random oracle R(x)
                                                    Ideal cipher E(\alpha, k, w)
  100 if R[x] = \perp then
                                                    200 if \alpha = 1 then // encryption
            R[x] \xleftarrow{\$} \{0,1\}^n
                                                    202
                                                             if E[k][x] = \perp then
  102 return R[x]
                                                                 E[k][x] \stackrel{\$}{\leftarrow} \overline{\mathcal{Y}(E[k])}
                                                    203
Fig. 1. Random oracle R.
                                                              return E[k][x]
                                                    204
                                                    205 if \alpha = -1 then // decryption
                                                    206
                                                             Find x s.t. E[k][x] = y.
                                                    207
                                                    208
                                                             if no such an x then
                                                                x \stackrel{\$}{\leftarrow} \overline{\mathcal{X}(E[k])}
                                                    209
                                                                 E[k][x] \leftarrow y
                                                    210
                                                    211
                                                             return x
```

Fig. 2. Ideal cipher E.

Let E be an ideal cipher in $\mathsf{Bloc}(\ell,n)$ where $\ell > n$. For $z \in \{0,1\}^{\ell-n}$ and $x \in \{0,1\}^n$, the LM compression function is defined as

$$H_{LM}(z,x) = E(1,x \parallel z,x).$$
 (1)

In addition, we call the following function a *CP compression function* where *CP* stands for a Constant Plaintext.

$$H_{CP}(z,x) = E(1,x \parallel z,c),$$
 (2)

where c is an n-bit public constant string, say 0^n . Although we do not think that the CP compression function is novel, the security of the CP compression function have not been studied formally. Our purpose is to show that the CP compression function has good properties.

Compression functions are usually classified as rate and length. A compression function H is called a rate-1/r compression function if r invocations of block cipher $E(1,\cdot,\cdot)$ is necessary to compute H. A compression function H is called a single-length compression function if the output length of H is equal to the block length of E. Accordingly, the LM compression function and the CP compression function are rate-1 and single-length. Although Black et al. [6] cyclopaedically analyzed collision resistance of rate-1 and single-length compression functions, the LM compression function and the CP compression function were not included in them because Black et al. analyzed compression functions based on the block cipher such that the key length was equal to the block length.

3 The LM Compression Function

Let E be the ideal cipher of Fig. 2, i.e., a function from $\{1, -1\} \times \{0, 1\}^{\ell} \times \{0, 1\}^{n}$ to $\{0, 1\}^{n}$ where an element of $\{1, -1\}$ stands for encryption or decryption, ℓ is key length, and n is block length. The LM compression function is defined as

$$H(z,x) = E(1,x \parallel z, x), \tag{3}$$

which is a function from $\{0,1\}^{\ell-n} \times \{0,1\}^n$ to $\{0,1\}^n$. In this section, we omit the subscription LM of Eq. (1) for simplification. In hash-function contractions such as the MPP transform, z is a message block to be compressed and x is output of the preceding compression function.

3.1 Indifferentiability

To evaluate the indifferentiability from a random oracle, we introduce the advantage of an adversary against the LM compression function, which is called a pro-advantage. The pro-advantage indicates how much the LM compression function behaves like a random oracle. The pro-advantage of an adversary A is defined as

$$\mathbf{Adv}_{H,S}^{\text{pro}}(A) = \Pr\left[A^{H^E,E} \Rightarrow 1\right] - \Pr\left[A^{R,S^R} \Rightarrow 1\right],\tag{4}$$

```
The LM compression function H_0(z,x)
100 return E_0(1, x || z, x)
Ideal cipher E_0(\alpha, k, w)
200 if \alpha = 1 then
                                                                             212 if \alpha = -1 then
           x \leftarrow w; Parse k into a \parallel z.
                                                                                        y \leftarrow w; Parse k into a \parallel z.
           if E_0[k][x] = \perp then
                                                                             214
                                                                                         Find x s.t. E_0[k][x] = y.
202
203
              if a = x then
                                                                             215
                                                                                         if no such an x then
                  y \stackrel{\$}{\leftarrow} \{0,1\}^n
                                                                                            x \stackrel{\$}{\leftarrow} \overline{\mathcal{X}(E_0[k])}
204
                                                                             216
                                                                                            if a = x then
205
                                                                             217
                                                                                                bad \leftarrow \mathtt{true}
                                                                                                                     // bad_d
                                                                             218
                  y \stackrel{\$}{\leftarrow} \{0,1\}^n
206
                                                                             219
                                                                                             E_0[k][x] \leftarrow y
               if y \in \mathcal{Y}(E_0[k]) then
207
                                                                             220
                                                                                         return x
                  bad \leftarrow \texttt{true} \quad // \ bad_e
208
                  y \stackrel{\$}{\leftarrow} \overline{\mathcal{Y}(E_0[k])}
209
               E_0[k][x] \leftarrow y
210
211
           return E_0[k][x]
```

Fig. 3. Game $G_0 = (H_0, E_0)$.

where H is the LM compression function, E is the ideal cipher, R is the random oracle, and S is a simulator. The random oracle R exposes the same interface as H, i.e., R is a function from $\{0,1\}^{\ell-n} \times \{0,1\}^n$ to $\{0,1\}^n$. It is easy to implement R using a random oracle from $\{0,1\}^\ell$ to $\{0,1\}^n$. The simulator S exposes the same interface as E, and emulates E as possible. If the value of $\mathbf{Adv}_{H,S}^{\mathrm{pro}}(A)$ is negligibly small, then it means that the adversary A cannot distinguish between the LM compression function H and the random oracle R.

We quantify the indifferentiability of the LM compression function using the game-playing framework [4]. We assume that A is an infinitely powerful adversary and A makes no pointless query such as the same query to oracles.

We start with a game G_0 as shown in Fig. 3. In Fig. 3, H_0 is a function from $\{0,1\}^{\ell-n} \times \{0,1\}^n$ to $\{0,1\}^n$, and E_0 is a function from $\{1,-1\} \times \{0,1\}^\ell \times \{0,1\}^n$ to $\{0,1\}^n$. In line 201 and line 213, k is parsed into an $(\ell-n)$ -bit string a and an n-bit string z. The flag bad in line 208 and line 218, which will be used for later discussion, does not any effect on the output of E_0 . It is easy to verify that H_0 and E_0 exactly emulate the LM compression function of Eq. (3) and the ideal cipher of Fig. 2, respectively. Hence, we have, for any adversary A,

$$\Pr\left[A^{H^E,E} \Rightarrow 1\right] = \Pr\left[A^{G_0} \Rightarrow 1\right].$$

Note that the description of E_0 is of redundancy (e.g., line 203–206), which is helpful to compare other games. We next consider a game G_1 as shown in Fig. 4. In Fig. 4, R_1 exposes the same interface as H_0 , but R_1 is algorithmically equivalent to the random oracle R of Fig. 1. The function S_1 is a simulator that we here study, and is designed to emulate the ideal cipher as possible. It follows that

$$\Pr\left[A^{R,S^R}{\Rightarrow}1\right] = \Pr\left[A^{G_1}{\Rightarrow}1\right]$$

for any adversary A. Therefore, the pro-advantage of Eq. (4) is rewritten as

$$\mathbf{Adv}_{H,S}^{\text{pro}}(A) = \Pr\left[A^{G_0} \Rightarrow 1\right] - \Pr\left[A^{G_1} \Rightarrow 1\right]. \tag{5}$$

We compare the game G_1 and a game G_2 of Fig. 5. The function R_2 exposes the same interface as R_1 , but the algorithm of R_2 differs from that of R_1 . However, if a query is fresh, then R_2 returns an n-bit random string due to line 204, line 209, and line 220 in Fig. 5. Hence, R_2 as well as R_1 is the random oracle. Comparing S_1 and S_2 , we see that the difference is line 204 and line 220, i.e., $y \leftarrow R_1(z, x)$ in S_1 and $y \leftarrow \{0, 1\}^n$ in S_2 . Both of them return a random string if a query is fresh. It follows that S_1 and S_2 are functionally equivalent. Hence, we have

$$\Pr\left[A^{G_1} \Rightarrow 1\right] = \Pr\left[A^{G_2} \Rightarrow 1\right] \tag{6}$$

```
Random oracle R_1(z,x)
100 if R_1[x \parallel z] = \perp then
            R_1[x \parallel z] \stackrel{\$}{\leftarrow} \{0,1\}^n
102 return R_1[x \parallel z]
 Simulator S_1(\alpha, k, w)
200 if \alpha = 1 then
                                                                                 213 if \alpha = -1 then
201
            x \leftarrow w; Parse k into a \parallel z.
                                                                                 214
                                                                                             y \leftarrow w; Parse k into a \parallel z.
202
            if S_1[k][x] = \perp then
                                                                                 215
                                                                                             Find x s.t. S_1[k][x] = y.
203
                if a = x then
                                                                                 216
                                                                                             if no such an x then
204
                    y \leftarrow R_1(z, x)
                                                                                                 x \stackrel{\$}{\leftarrow} \overline{\mathcal{X}(S_1[k])}
                                                                                 217
205
                                                                                                if a = x then
                                                                                 218
                   y \stackrel{\$}{\leftarrow} \{0,1\}^n
206
                                                                                                    bad\leftarrowtrue
                                                                                 219
                if y \in \mathcal{Y}(S_1[k]) then
207
                                                                                 220
                                                                                                    S_1[k][x] \leftarrow R_1(z,x)
208
                   bad\leftarrow\mathtt{true}
                                                                                                    x \stackrel{\$}{\leftarrow} \overline{\mathcal{X}(S_1[k])}
                                                                                 221
209
                   if a \neq x then
                                                                                 222
                                                                                                 S_1[k][x] \leftarrow y
                       y \stackrel{\$}{\leftarrow} \overline{\mathcal{Y}(S_1[k])}
210
                                                                                 223
                                                                                             return x
211
                S_1[k][x] \leftarrow y
212
            return S_1[k][x]
```

Fig. 4. Game $G_1 = (R_1, S_1)$.

```
Function R_2(z,x)
100 return S_2(1, x || z, x)
Simulator S_2(\alpha, k, w)
200 if \alpha = 1 then
                                                                                213 if \alpha = -1 then
201
           x \leftarrow w; Parse k into a \parallel z.
                                                                                214
                                                                                            y \leftarrow w; Parse k into a \parallel z.
202
           if S_2[k][x] = \perp then
                                                                                215
                                                                                            Find x s.t. S_2[k][x] = y.
203
               if a = x then
                                                                                216
                                                                                            if no such an x then
                   y \stackrel{\$}{\leftarrow} \{0,1\}^n
                                                                                                x \stackrel{\$}{\leftarrow} \overline{\mathcal{X}(S_2[k])}
204
                                                                                217
                                                                                                if a = x then
205
               else
                                                                                218
                                                                                                   bad \leftarrow \mathtt{true}
                                                                                219
                   y \stackrel{\$}{\leftarrow} \{0,1\}^n
206
                                                                                220
                                                                                                    S_2[k][x] \leftarrow \{0,1\}^n
               if y \in \mathcal{Y}(S_2[k]) then
207
                                                                                                   x \stackrel{\$}{\leftarrow} \overline{\mathcal{X}(S_2[k])}
                   bad\leftarrowtrue
                                                                                221
208
                                                                                                S_2[k][x] \leftarrow y
                   if a \neq x then
                                                                                222
209
                                                                                223
                                                                                            return x
                       y \stackrel{\$}{\leftarrow} \overline{\mathcal{Y}(S_2[k])}
210
211
                   S_2[k][x] \leftarrow y
212
           return S_2[k][x]
```

Fig. 5. Game $G_2 = (R_2, S_2)$.

for any adversary A. Substituting Eq. (6) into Eq. (5) yields the following equation.

$$\mathbf{Adv}_{H,S}^{\text{pro}}(A) = \Pr\left[A^{G_0} \Rightarrow 1\right] - \Pr\left[A^{G_2} \Rightarrow 1\right]. \tag{7}$$

We compare the game G_0 with the game G_2 . Since H_0 and R_2 are algorithmically the same, we focus on the difference between E_0 and S_2 . We easily see that the difference appears after the statement $bad \leftarrow \texttt{true}$. Namely, E_0 and S_2 are identical until the flag bad sets. Using the fundamental lemma [4], we obtain

$$\mathbf{Adv}_{H,S}^{\text{pro}}(A) = \Pr\left[A^{G_0} \Rightarrow 1\right] - \Pr\left[A^{G_2} \Rightarrow 1\right]$$
< \text{\$\text{Pr} \left[G_0 \text{ sets } bad\right],}\$

where $\Pr[G_0 \text{ sets } bad]$ denotes the probability that the flag bad in Fig. 3 is set to **true** in the execution of A with the game G_0 . We calculate the probability $\Pr[G_0 \text{ sets } bad]$. Since the query to H_0 turns out to be the query to E_0 , we consider only the query to E_0 . Since the flag bad appears in line 208 and line 218, we have

$$\Pr[G_0 \text{ sets } bad] \le \Pr[G_0 \text{ sets } bad_e] + \Pr[G_0 \text{ sets } bad_d], \tag{8}$$

where $\Pr[G_0 \text{ sets } bad_e]$ and $\Pr[G_0 \text{ sets } bad_d]$ are probabilities that bad is set to true in line 208 and line 218, respectively. These probabilities are calculated as follows. At the *i*-the query to E_0 , the number of defined elements in the table $E_0[k][x]$ is at most i-1, namely, $|\mathcal{X}(E_0[k])|$ and $|\mathcal{Y}(E_0[k])|$ are at most i-1. The probability that bad_e is set at the *i*-the query is not greater than $(i-1)/2^n$, and the probability that bad_d is set at the *i*-the query is not greater than $1/(2^n - (i-1))$. Assuming that q queries are made in the execution of A with the game G_0 , we have

$$\Pr[G_0 \text{ sets } bad_e] \leq \frac{1}{2^n} + \frac{2}{2^n} + \dots + \frac{q-1}{2^n}$$

$$= \frac{q(q-1)}{2^{n+1}},$$

$$\Pr[G_0 \text{ sets } bad_d] \leq \frac{1}{2^n} + \frac{1}{2^n-1} + \dots + \frac{1}{2^n-(q-1)}$$

$$\leq \frac{q}{2^{n-1}},$$

where we assumed that $q \leq 2^{n-1} + 1$. Substituting the above inequalities into Eq. (8), we obtain

$$\mathbf{Adv}_{H,S}^{\text{pro}}(A) \le \Pr\left[G_0 \text{ sets } bad\right]$$

$$\le \frac{q(q+3)}{2^{n+1}}.$$
(9)

3.2 Collision Resistance

In this section, we analyze the collision resistance of the LM compression function. Although Lai and Massey proposed this function, they did not evaluate its collision resistance. To quantify the difficulty of finding a collision in H, we consider the following probability, called a *col-advantage* of adversary B [6].

$$\mathbf{Adv}_{H}^{\text{col}}(B) = \Pr\left[B^{H^{E},E} \Rightarrow ((z,x),(z',x')) : \text{Outputs collide.}\right],\tag{10}$$

where "Outputs collide" means that one of the following events occurs.

- $-(z,x) \neq (z',x') \land H(z,x) = H(z',x')$
- For a constant y_0 given in advance, $H(z,x) = y_0$.

Since the game G_0 (= (H_0, E_0)) in Fig. 3 exactly emulates H and E, the col-advantage is given by

$$\mathbf{Adv}_H^{\operatorname{col}}(B) = \Pr\left[B^{G_0} {\Rightarrow} ((z,x),(z',x')) : \text{Outputs collide.}\right].$$

Let C_i be the event that there exists $j \in \{1, 2, ..., i-1\}$ such that $(z_i, x_i) \neq (z_j, x_j) \wedge H_0(z_i, x_i) = H_0(z_j, x_j)$ or $H_0(z_i, x_i) = y_0$. In the game G_0 , an oracle's answer is randomly selected from a set of at least $2^n - (i-1)$ because the adversary makes no pointless query. Noticing that y_0 was given in advance, we have $\Pr[C_i] \leq i/(2^n - (i-1))$. Hence, we obtain

$$\mathbf{Adv}_{H}^{\text{col}}(B) \leq \Pr\left[\mathsf{C}_{1} \vee \mathsf{C}_{2} \vee \ldots \vee \mathsf{C}_{q}\right]$$

$$\leq \sum_{i=1}^{q} \Pr\left[\mathsf{C}_{i}\right]$$

$$\leq \frac{q(q+1)}{2^{n}},$$
(11)

where we assumed that $q \leq 2^{n-1}$.

4 The CP Compression Function

Let E be an ideal cipher from $\{1, -1\} \times \{0, 1\}^{\ell} \times \{0, 1\}^n$ to $\{0, 1\}^n$ as shown in Fig. 2. For $z \in \{0, 1\}^{\ell-n}$ and $x \in \{0, 1\}^n$, the CP compression function is defined as

$$H(z,x) = E(1,x \parallel z,c), \tag{12}$$

where c is a public constant string, say 0^n . In this section, we omit the subscription CP of Eq. (2). In hash-function contractions, z is a message block to be compressed and x is output of the preceding compression function.

In this section, we quantify the indifferentiability and the collision resistance of the CP compression function. We will observe that these properties of the CP compression function and those of the LM compression function are the same level in terms of adversary's advantage. In other words, the encryption of variable x in the LM compression function does not contribute to improving adversary's advantage.

4.1 Indifferentiability

We quantify the indifferentiability of the CP compression function in a similar way to Section 3.1. We define the pro-advantage of an adversary A as

$$\mathbf{Adv}_{H,S}^{\text{pro}}(A) = \Pr\left[A^{H^E,E} \Rightarrow 1\right] - \Pr\left[A^{R,S^R} \Rightarrow 1\right],\tag{13}$$

where H is the CP compression function, E is the ideal cipher, R is the random oracle, and S is a simulator that we study here. We assume that A is an infinitely powerful adversary and A makes no pointless query.

We start with a game G_3 as shown in Fig. 6. In Fig. 6, H_3 and E_3 exactly emulate the CP compression function of Eq. (12) and the ideal cipher of Fig. 2, respectively. Thus, for any adversary A, we have

$$\Pr\left[A^{H^E,E}{\Rightarrow}1\right] = \Pr\left[A^{G_3}{\Rightarrow}1\right].$$

Note that the redundant description of E_3 is helpful to compare other games. We next consider a game G_4 as shown in Fig. 7. In Fig. 4, R_4 exposes the same interface as H_3 , but R_4 is algorithmically equivalent to the random oracle R of Fig. 1. The function S_4 is a simulator that we here study. It follows that

$$\Pr\left[A^{R,S^R} \Rightarrow 1\right] = \Pr\left[A^{G_4} \Rightarrow 1\right]$$

for any adversary A. Therefore, the pro-advantage of Eq. (13) is rewritten as

$$\mathbf{Adv}_{H,S}^{\text{pro}}(A) = \Pr\left[A^{G_3} \Rightarrow 1\right] - \Pr\left[A^{G_4} \Rightarrow 1\right]. \tag{14}$$

We compare the game G_4 and a game G_5 of Fig. 8. The function R_5 exposes the same interface as R_4 , and R_5 always returns an n-bit random string due to line 204, line 209, and line 220 in Fig. 7. Hence, R_4 as well as R_3 is the random oracle. Comparing S_4 and S_5 , we see that line 204 and line 220 are different, but both of them return a random string if the query is fresh. Hence, S_4 and S_5 are functionally equivalent. Since G_4 and G_5 are the same for the adversary, Eq. (14) is rewritten as

$$\mathbf{Adv}_{H,S}^{\text{pro}}(A) = \Pr\left[A^{G_3} \Rightarrow 1\right] - \Pr\left[A^{G_5} \Rightarrow 1\right]$$

\$\leq \Pr\left[G_3 \text{ sets } bad\right].

The above inequality is based on the fact that E_3 and S_5 are identical until the flag bad sets. We can calculate the probability $\Pr[G_3 \text{ sets } bad]$ in a similar way to Section 3.1.

$$\begin{split} \Pr\left[G_3 \text{ sets } bad\right] &\leq \Pr\left[G_3 \text{ sets } bad_e\right] + \Pr\left[G_3 \text{ sets } bad_d\right] \\ &\leq \frac{q(q+3)}{2^{n+1}}. \end{split}$$

The above bound is the same as Eq. (9). Comparing Eq. (3) and Eq. (12), we observe that encrypting variable x does not improve the upper bound of the advantage.

```
100 return E_3(1, x \parallel z, c)
Ideal cipher E_3(\alpha, k, w)
200 if \alpha = 1 then
                                                                               212 if \alpha = -1 then
202
           if E_3[k][x] = \perp then
                                                                                           Find x s.t. E_3[k][x] = y.
203
               if x = c then
                                                                               215
                                                                                           if no such an x then
                   y \stackrel{\$}{\leftarrow} \{0,1\}^n
                                                                                               x \stackrel{\$}{\leftarrow} \overline{\mathcal{X}(E_3[k])}
204
                                                                               216
                                                                                               if x = c then
205
                                                                               217
                                                                                                  bad \leftarrow \mathtt{true}
                                                                                                                        // bad_d
                  y \stackrel{\$}{\leftarrow} \{0,1\}^n
                                                                               218
206
                                                                               219
                                                                                               E_3[k][x] \leftarrow y
               if y \in \mathcal{Y}(E_3[k]) then
207
                                                                               220
                                                                                           return x
                  bad \leftarrow \texttt{true} \quad /\!/ \ bad_e
208
                   y \stackrel{\$}{\leftarrow} \overline{\mathcal{Y}(E_3[k])}
209
               E_3[k][x] \leftarrow y
210
211
           return E_3[k][x]
```

The CP compression function $H_3(z,x)$

Fig. 6. Game $G_3 = (H_3, E_3)$.

```
Random oracle R_4(z,x)
100 if R_4[x \parallel z] = \perp then
101 R_4[x \parallel z] \stackrel{\$}{\leftarrow} \{0, 1\}^n
102 return R_4[x \parallel z]
Simulator S_4(\alpha, k, w)
200 if \alpha = 1 then
                                                                                  213 if \alpha = -1 then
201
                                                                                  214
                                                                                               Find x s.t. S_4[k][x] = y.
202
           if S_4[k][x] = \perp then
                                                                                  215
203
                                                                                               if no such an x then
               if x = c then
                                                                                  216
                   y \leftarrow R_4(z,x)
204
                                                                                                   x \stackrel{\$}{\leftarrow} \overline{\mathcal{X}(S_4[k])}
                                                                                  217
205
                                                                                  218
                                                                                                  if x = c then
                    y \stackrel{\$}{\leftarrow} \{0,1\}^n
206
                                                                                  219
                                                                                                       bad \leftarrow \mathtt{true}
               if y \in \mathcal{Y}(S_4[k]) then
207
                                                                                  220
                                                                                                       S_4[k][x] \leftarrow R_4(z,x)
                   bad \leftarrow \mathtt{true}
208
                                                                                                       x \stackrel{\$}{\leftarrow} \overline{\mathcal{X}(S_4[k])}
                                                                                  221
209
                    if x \neq c then
                                                                                                   S_4[k][x] \leftarrow y
                                                                                   222
                       y \stackrel{\$}{\leftarrow} \overline{\mathcal{Y}(S_4[k])}
210
                                                                                   223
                                                                                               return x
               S_4[k][x] \leftarrow y
211
212
           return S_4[k][x]
```

Fig. 7. Game $G_4 = (R_4, S_4)$.

4.2 Collision Resistance

To quantify the difficulty of finding a collision in the CP compression function H, we define the col-advantage of adversary B as

$$\mathbf{Adv}_{H}^{\text{col}}(B) = \Pr \left[B^{H^{E},E} \Rightarrow ((z,x),(z',x')) : \text{Outputs collide.} \right]. \tag{15}$$

In a similar way to Section 3.2, we obtain the following bound on $\mathbf{Adv}_H^{\mathrm{col}}(B)$.

$$\mathbf{Adv}_{H}^{\text{col}}(B) = \Pr\left[B^{G_3} \Rightarrow ((z, x), (z', x')) : \text{Outputs collide.}\right]$$

$$\leq \frac{q(q+1)}{2^n},$$
(16)

where we assumed that $q \leq 2^{n-1}$. The above bound is the same as Eq. (11).

```
Function R_5(z,x)
100 return S_5(1, x \parallel z, c)
Simulator S_5(\alpha, k, w)
200 if \alpha = 1 then
                                                                                  213 if \alpha = -1 then
201
                                                                                  214
            x \leftarrow w
202
            if S_5[k][x] = \perp then
                                                                                  215
                                                                                               Find x s.t. S_5[k][x] = y.
203
               if x = c then
                                                                                  216
                                                                                               if no such an x then
                    y \stackrel{\$}{\leftarrow} \{0,1\}^n
                                                                                                   x \stackrel{\$}{\leftarrow} \overline{\mathcal{X}(S_5[k])}
204
                                                                                  217
                                                                                                  if x = c then
205
                                                                                  218
                                                                                                      bad \leftarrow \texttt{true}
                                                                                  219
                    y \stackrel{\$}{\leftarrow} \{0,1\}^n
206
                                                                                                      S_5[k][x] \leftarrow \{0,1\}^n
                                                                                  220
                if y \in \mathcal{Y}(S_5[k]) then
207
                                                                                  221
                                                                                                      x \stackrel{\$}{\leftarrow} \overline{\mathcal{X}(S_5[k])}
208
                    bad \leftarrow \texttt{true}
                                                                                  222
209
                    if x \neq c then
                                                                                                   S_5[k][x] \leftarrow y
                                                                                  223
                       y \stackrel{\$}{\leftarrow} \overline{\mathcal{Y}(S_5[k])}
                                                                                               return x
210
                    S_5[k][x] \leftarrow y
211
212
            return S_5[k][x]
```

Fig. 8. Game $G_5 = (R_5, S_5)$.

5 Concluding Remarks

Due to [1], the problem of building a multi-property hash function was reduced to that of building a multi-property compression function. Hence, it is significant to build a multi-property compression function from primitives. In this paper, we employed the ideal cipher as the primitive.

We have first quantified the indifferentiability and the collision resistance of the LM compression function in the ideal cipher model. In order to distinguish between the LM compression function and the random oracle, or in order to find a collision in the LM compression function, an adversary needs about $\sqrt{2^n}$ queries to oracles where n is output length. Next, we have analyzed the indifferentiability and the collision resistance of the CP compression function, which is a variant of the LM compression function. We have shown that the CP compression function has the same properties as the LM compression function in terms of adversary's advantage.

Although the Davies-Meyer compression function is widely used for popular hash functions such as the SHA family [14], the Davies-Meyer compression function is not a multi-property compression function, that is, it is distinguishable from the random oracle in the ideal cipher model. In contrast, the LM compression function and the CP compression function are multi-property compression functions. Therefore, the use of these compression functions enables us to build hash functions with the same properties by the MPP transform.

References

- 1. M. Bellare and T. Ristenpart, "Multi-property-preserving hash domain extension and the EMD transform," Advances in Cryptology ASIACRYPT 2006, Lecture Notes in Computer Science, vol. 4248, pp. 299–314, 2006.
- 2. M. Bellare and P. Rogaway, "Optimal asymmetric encryption," Advanced in Cryptology EUROCRYPT '94, Lecture Notes in Computer Science, vol. 950, pp. 92–111, 1994.
- 3. M. Bellare and P. Rogaway, "The exact security of digital signatures how to sign with RSA and Rabin," Advances in Cryptology EUROCRYPT '96, Lecture Notes in Computer Science, vol. 1070, pp. 399–416, 1996.
- 4. M. Bellare and P. Rogaway, "Code-based game-playing proofs and the security of triple encryption," Cryptology ePrint Archive, Report 2004/331, 2004. http://eprint.iacr.org/.
- J. Black, "The ideal-cipher model, revisited: An uninstantiable blockcipher-based hash function," Fast Software Encryption, FSE 2006, Lecture Notes in Computer Science, vol. 4047, pp. 328–340, 2006. Cryptology ePrint Archive, Report 2005/210, http://eprint.iacr.org/.
- J. Black, P. Rogaway, and T. Shrimpton, "Black-box analysis of the block-cipher-based hash-function constructions from PGV," Advances in Cryptology - CRYPTO 2002, Lecture Notes in Computer Science, vol. 2442, pp. 320–335, 2002.
- D. Chang, S. Lee, M. Nandi, and M. Yung, "Indifferentiable security analysis of popular hash functions with prefix-free padding," Advances in Cryptology ASIACRYPT 2006, Lecture Notes in Computer Science, vol. 4284, pp. 283

 298

 2006
- 8. J. S. Coron, Y. Dodis, C. Malinaud, and P. Puniya, "Merkle-Damgård revisited: How to construct a hash function," Advances in Cryptology CRYPTO 2005, Lecture Notes in Computer Science, vol. 3621, pp. 430–448, 2005.
- 9. I. B. Damgård, "Collision free hash functions and public key signature schemas," Advances in Cryptology EURO-CRYPT '87, Lecture Notes in Computer Science, vol. 304, pp. 203–216, 1988.
- 10. H. Kuwakado and M. Morii, "Indifferentiability of single-block-length and rate-1 compression functions," Cryptology ePrint Archive, Report 2006/485, 2006. http://eprint.iacr.org/.
- 11. X. Lai and J. L. Massey, "Hash functions based on block ciphers," Advances in Cryptology EUROCRYPT '92, Lecture Notes in Computer Science, vol. 658, pp. 55–70, 1993.
- 12. U. Maurer, R. Renner, and C. Holenstein, "Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology," First Theory of Cryptography Conference, TCC 2004, Lecture Notes in Computer Science, vol. 2951, pp. 21–39, 2004.
- 13. R. C. Merkle, "One way hash functions and DES," Advances in Cryptology CRYPTO '89, Lecture Notes in Computer Science, vol. 435, pp. 428–446, 1990.
- 14. National Institute of Standards and Technology, "Secure hash standard," Federal Information Processing Standards Publication 180-2, August 2002. http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf.
- 15. B. Preneel, R. Govaerts, and J. Vandewalle, "Hash functions based on block ciphers: a synthetic approach," Advances in Cryptology CRYPTO '93, Lecture Notes in Computer Science, vol. 773, pp. 368–378, 1994.