
Secure Similarity Search
Hyun-A Park, Bum Han Kim, Dong Hoon Lee

CIST(Center for the information security technologies),
Graduate School of Information Management and Security,

Korea University
Email: kokokzi@cist.korea.ac.kr,

anewholic @cist.korea.ac.kr, donghlee@korea.ac.kr

Yon Dohn Chung
Department of Computer
Science and Engineering,

Korea University
Email:ydchung@korea.ac.kr

Justin Zhan
Carnegie Mellon CyLab Japan,
Carnegie Mellon Heinz School

Email:justinzh@andrew.cmu.edu

Abstract— One of the most substantial ways to protect users’
sensitive information is encryption. This paper is about the
keyword index search system on encrypted documents. It has
been thought that the search with errors over encrypted data is
impossible because 1 bit difference over plaintexts may reduce
to enormous bits difference over cyphertexts. We propose a
novel idea to deal with the search with errors over encrypted
data. We develop two similarity search schemes, implement the
prototypes and provide substantial analysis. We define security
requirements for the similarity search over encrypted data. The
first scheme can achieve perfect privacy in similarity search but
the second scheme is more efficient.

Keywords: index keyword search over encrypted data, sim-
ilarity search, hamming distance

I. INTRODUCTION

When documents contain sensitive data, they are typically
stored under encryption to protect privacy. This paper deals
with the search system on encrypted data where a secure
keyword index search protocol is provided. The protocol
enables a legitimate querier to search the encrypted documents
with the encrypted keyword in a server without decrypting
them and revealing any information of the documents. The
search system on encrypted data has been an active research
area where a number of works have been produced.

Song et al. [34] proposed sequential scanning search over
entire documents. Following this idea, the works have been
focused on the keyword index search. Boneh et al. [4] devel-
oped the keyword search using a public key system. Chang
et al. [18] proposed two index search schemes using the
idea of pre-built dictionaries. Goh [13] proposed a secure
index scheme, which formulates a security model for indexes
known as semantic security (or no leakage of information)
against adaptive chosen keyword attack (IND-CKA). Recently,
Boneh et al. [11] proposed the public key systems supporting
queries on encrypted data, using tokens produced by a secret
key for testing any supported query predicate. They construct
the systems for comparisons and subset queries as well as
conjunctive versions of these predicates. However, this scheme
does not consider the arithmetic operation, while Hacigumus
et al. [23] proposed a method for range queries on encrypted
data in DAS (Database As a Service) model using privacy
homomorphism which allows basic arithmetic (+,−,×) over
encrypted data. However, all of the above works about the

search on encrypted data have not considered similarity search.
It is commonly thought that similarity search such as

the search with errors over encrypted data is impossible
because the search process over encrypted documents can
be accomplished only through equality test. It is because
that 1 bit difference over plaintexts may result in enormous
bits difference over cyphertexts. For example, assume that a
user mistypes ‘abcd’ into ‘abcf’. In the general search on
plaintexts, it can be searched for the form of ‘abc*’ or other
similar form’s keywords. In the search on the encrypted data,
however, the result of one character’s mistypo will be failure or
preposterous. It motivates us to propose novel secure similarity
search schemes which allow a limited number of ‘errors’ in
the matches over encrypted data.

A. Key Idea and Contribution

For the purpose of the similarity search over encrypted
data, we encrypt a keyword character by character. However,
it is difficult to design a character-wise encryption algorithm
since the domain is too limited. The total number of alphabets
is only 26 so that the total number of outputs is also 26
independently of the encryption algorithm. It suffers dictionary
attacks by an adversary.

To solve this problem, we design the encryption algorithm
satisfying ‘Cell Privacy’ which means a character has different
encryption values cell by cell. As the method for this, we en-
crypt a character together with all of the user’s secret key, the
document’s identifier, and the field’s identifier. Consequently,
an adversary is not able to guess a character by observing the
encrypted indexes. The dictionary attack by an adversary is
impossible as well.

To achieve higher lever of security, it would be advisable to
design the algorithm satisfying ‘Query Privacy’. It makes the
trapdoor by encrypting a keyword which a user want to search
with a newly generated random value every query time. Even
if the same character is queried repeatedly, no one can know
the fact that it is the same character because of the newly
generated random value every query time.

Based on these methods, we design two similarity search-
able schemes over encrypted documents and define the security
requirements for the similarity search over encrypted data. We
then demonstrate that our first scheme SSS-I can guarantee
the best security under our definition of ‘Perfect Similarity

Search Privacy’ which is explained in detail in Section III. The
implementation of the prototypes shows that another scheme
SSS-II is more efficient by accepting a little weaker security
guarantee. The detailed methods are described in the following
sections. In Section II, we address the settings of our schemes.
We present the constructions of SSS-I and SSS-II in Section
III and VI respectively. The implementation of our schemes is
addressed in Section V. We provide our conclusion in Section
IV.

II. MODEL

A. DAS model

Our scheme is based on DAS model [23], an instantiation
of the computing model where clients are trusted and their
data are stored at an untrustworthy server. We assume that
an untrustworthy server is an adversary of our scheme.
DAS model enables the system provider not to correctly
interpret the data. The clients own the data, only have limited
computational power and storage, and rely on the server
for the mass computational power and storage. The server
manages the clients’ databases at the server. In our scheme,
authorized clients are given encryption keys. The data is
encrypted by the client before being sent to the server. The
encryption key should not be given to any administrator,
thus the server cannot decrypt the data. The queries are
decomposed into client and server queries. The query sent
to the server is executed against encrypted data. The results
of the original query are obtained if the client decrypts
it after implementing the server queries. Data privacy is
assured under the conditions that the client does not share the
encryption keys, the metadata or the unencrypted data with
any party.

B. Similarity Search based on Approximate String Matching

As mentioned in Section I, we construct the similarity
search schemes over encrypted documents. The similarity
search is based on approximate string matching in this pa-
per. We use ‘hamming distance’ as the approximate string
matching method which defines the degree of similarity in
our proposed scheme.

C. Algorithms

Our proposed schemes consist of six algorithms.
• SysParam(1k): Parameter generation algorithm

SysParam that is executed by the client takes an
input as a secret parameter k and produces a system
parameter λ.

• KeyGen(λ): Key generation algorithm KeyGen is exe-
cuted by the client. It produces the user’s search key set
K.

• IndGen(K, W, d, J): Index generation algorithm
IndGen takes the user’s secret key K, a keyword list
W , the document’s identifier d, and the fields(column)’s
identifier J and generates W ’s index I . It is done by the
client.

• Trapdoor(K, w): It is a trapdoor generation algorithm
executed by the client. Trapdoor takes a keyword w and
the user’s secret key K and returns the trapdoor T for w.

• PattGen(T, d): Pattern generation algorithm PattGen is
executed by the server. It takes as input the trapdoor T
and a document’s identifier d and makes the pattern P
for the similarity test.

• SimMatch(P, I): Similarity string matching algorithm
SimMatch which is executed by the server takes as
input the pattern P and an index I . It returns ‘yes’ if
the similarity string matching test satisfies the similarity
κ, or ‘no’ otherwise.

D. Premitives

Definition.1. Hamming Distance and Degree of Similarity

For two strings s and t, the Hamming distance H(s, t)
is defined as the number of places where the two strings
differ, i.e., in number of characters. Accordingly, we define
the degree of similarity as H(s, t) ≤ κ, where κ(≥ 0) is an
integer [37].

Definition 2. PRF(Pseudo Random Function)

We say that ‘F : Kf × X −→ Y is (t, q, e) -secure
pseudorandom function’ if every oracle algorithm A making
at most q oracle queries and with running time at most
t has advantage AdvA < e. The advantage is defined as
AdvA =| Pr[AFk = 1]−Pr[AR = 1] | where R represents a
random function selected uniformly from the set of all maps
from X to Y , and where the probabilities are taken over the
choice of k and R [34].

Definition 3. PRG Gr(Pseudo Random Generator)

We say that ‘Gr : KGr −→ S is a (t, e)-secure
pseudorandom generator’ if every algorithm A with running
time at most t has advantage AdvA < e. The advantage is
defined as AdvA =| Pr[A(Gr(UKGr

)) = 1] − Pr[A(US) =
1] |. Where UKGr

, US are random variables distributed
uniformly on KGr, S [34].

Definition 4. DDH (Decisional Diffie-Hellman)

Let G be a group of prime order q and g a generator of
G. The DDH problem is to distinguish between triplets of the
form (ga, gb, gab) and (ga, gb, gc), where a, b, c are random
elements of {1, ..., q − 1}.

Consider the following experiment with a polynomial
time adversary A : Flip a coin δ(to get 0 or 1), if δ = 1,
set c = ab, else choose c at random. The DDH problem
is said to be hard if for any polynomial time adversary A,
|Pr(A(G, ga, gb, gc) = δ)− 1/2| is negligible.

E. Notions of Security

Definition 5. Security Game ICC (Indistinguishability of
Ciphertext from Ciphertext)

It is the security proof model which gurantees semantic
securrity(Indistinguishability) against CKA(Chosen Keyword
Attack) and based on Goh [18] and Golle et.al.’s [20] security
model.
• Setup. The challenger C creates a set W of q words
∈ {Dn} and gives this to the adversary A. A chooses a
polynomial number of subsets from W . This collection
of subsets is called W ∗ and is returned to C. Upon
receiving W ∗, C runs algorithm KeyGen to generate
the master key and encrypts each subset W ∗ running
algorithm IndGen. Finally, C sends all indexes with their
associated subsets to A.

• Queries. A is allowed to query C on a word w and
receives the trapdoor Tw for w. With Tw, A can invoke
algorithm PattGen and SimMatch on an index I to
determine if H(Pw, I) ≤ κ. (Pw is a pattern of the word
‘w’ for string matching test.)

• Challenge. After making some Trapdoor queries, A
decides on a challenge by picking two keyword sets
W0,W1, where |W0| = |W1|. A must not have queried
the trapdoors for the keywords belonged to W0 and
W1. Next, A gives W0 and W1 to C and C chooses
b

$← {0, 1}, invokes algorithm IndGen to obtain Ib for
Wb, and returns Ib to A. The challenge for A is to
determine b with the error rate H(Pw, I) ≤ κ. After
the challenge is issued, A is not allowed to query the
trapdoors for the keywords belonged to W0 and W1 to
C.

• Response. A eventually outputs a bit b′, representing
its guess for b. The advantage of A in winning this
game is defined as AdvA = |Pr[b = b′] − 1/2|, where
the probability is over A and C’s coin tosses. Also,
adversary A(t, ε, q) is said to have an ε − advantage if
AdvA > ε after A takes at most t times and makes q
trapdoor queries to the challenger.

For the purpose of simplicity, we define other variants of
the security game ICC. In the first variant, the adversary
chooses W0 as well as a subset V of the keywords W0.
The challenger creates a document W1 = Rand(W0, V).
The goal of A is to distinguish between an encrypted
index I0 of W0 and I1 of W1. It is called Security Game
ICR(Indistinguishability of Ciphertexts from Random)
and the detailed process is similar to ICC.

As the final security game, we consider an adversary who
is able to distinguish between Wo = Rand(W,V − {wt})
and W1 = Rand(W,V), for some keyword set W and
query set V, and wt ∈ V . It is called Security Game
ICLR(Indistinguishability of Ciphertexts from Limited

Random). The detailed process is also similar to ICC and ICR.

Definition 6. Query Privacy

According to the security game ICC, given two words
w0 and w1, we define the search scheme provides ‘query
privacy’ if A cannot distinguish the trapdoors T0 from T1 for
w0 and w1 with non-negligible advantage, for all polynomial
time adversary A. The advantage is defined as AdvA =
|Pr[Expind−cka−trp−1

A = 1]− Pr[Expind−cka−trp−0
A = 1]|.

Definition 7. Index Privacy

According to the security game ICC, given two word-lists
W0 and W1, we define the search scheme provides ‘index
privacy’ if all polynomial time adversary A cannot distinguish
the indexes I0 from I1 for the word-lists W0 and W1 with
non-negligible advantage which is defined as AdvA =
|Pr[Expind−cka−idx−1

A = 1]− Pr[Expind−cka−idx−0
A = 1]|.

Definition 8. Cell Privacy

Under the condition that index privacy is satisfied, given
two words wi,0 and wi,1 in a word-list Wi, we define the
search scheme provides ‘cell privacy’ if all polynomial time
adversary A cannot distinguish the indexes Ii,0 from Ii,1 for
the words wi,0 and wi,1 with non-negligible advantage. The
advantage is defined as AdvA = |Pr[Expind−cka−cell−1

A =
1]− Pr[Expind−cka−cell−0

A = 1]|.

Definition 9. Perfect Similarity Search Privacy

It is defined that the search scheme provides ‘perfect
similarity search privacy’ if both of the query privacy and
cell privacy are achieved.

F. Notation

· n; the number of documents.
· m; the number of fields.
· Di; the i-th document.
· Wi; the document Di’s keyword list
· Wi,j ; the keyword of the j-th field in the i-th document,

where 1 ≤ i ≤ n and 1 ≤ j ≤ m. i.e. Wi =
{Wi,1, Wi,2, ...,Wi,m}
· ws

i,j ; s-th character of the keyword Wi,j . i.e. Wi,j =
w1

i,j‖w2
i,j‖...‖ws

i,j .
· s; the number of characters in the keyword
· di; the identifier of Di which is randomly selected.
· j; the identifier of a field which is randomly selected.
· Ii; the index of Wi.
· Ii,j ; the index of Wi,j i.e. Ii = Ii,1, Ii,2, ...Ii,j

III. SSS-I

A. The construction of SSS-I

In this section, we construct our first Secure Similarity
Search scheme, SSS-I. We use the Keyword field as in Golle
et al.’s scheme [20], which consists of m keyword fields
associated with each document. We assume that each field has
a distinctive attribute so that the same keyword never appears
in two different keyword fields. The matching information
between each field and each attribute must be stored in the
client to enable the queries by users. Our scheme SSS-I is
constructed as follows:

1) SysParam(1k)
It generates system parameter λ = (G, g, f(·),
Gr, h(·), HS(·)). G is a group of order q which
is a large prime and g is a generator of a group G.
f : {0, 1}k×{0, 1}∗ → Zq is a pseudo random function
and Gr is a pseudo random generator. h : {0, 1}∗ → Zq

and HS : {0, 1}∗ → {0, 1}k are one way hash functions.

2) KeyGen(λ)
Key generation algorithm KeyGen(λ) outputs a users’
search key set K ∈ {0, 1}k for index encryption.

3) IndGen(K, W, d, J)
It takes as input a user’s secret key ku, a keyword list
Wi={Wi,1,Wi,2, ...,Wi,m}, a document identifier di,
and fields(columns)’ identifier set J = {j1, j2, ..., jm},
where 1 ≤ i ≤ n and Wi,j=w1

i,jw
2
i,j ...ws

i,j . It processes
as follows.

a) For the keyword Wi,j , compute;

FKu(W1,1) = fku(w1
1,1|1)‖fku(w2

1,1|1)‖...‖fku(ws
1,1|1)

FKu(W1,2) = fku(w1
1,2|2)‖fku(w2

1,2|2)‖...‖fku(ws
1,2|2)

...

FKu(Wi,j) = fku(w1
i,j |j)‖fku(w2

i,j |j)‖...‖fku(ws
i,j |j)

b) Compute Ii,j ;

Ii,j = HS(gdih(ku)fku (w1
i,j |j))‖HS(gdih(ku)fku (w2

i,j |j))

‖...‖HS(gdih(ku)fku (ws
i,j |j))

c) Produce an index Ii;

Ii = idi,1, idi,2, Ii,1, Ii,2, ...Ii,m

(where, idi,1 = gdih(ku), idi,2 = g−di . These are the
document Di’s identifiers.)

4) Trapdoor(K, w)
It takes a user’s secret key ku and the keyword
W = w1w2..ws that a user wants to search. It generates

Fig. 1. System Process of SSS-I

the trapdoor for the keyword W as follows.

T = (T1, T2, T3)
= ((fku

(w1|j) + α)‖...‖(fku
(ws|j) + α), h(fku

)α,
j (the field identifier))

T1 = (fku(w1|j) + α)‖...‖(fku(ws|j) + α) = t1‖...‖ts

α; the random value which is generated newly every query
time by pseudo random generator.

5) PattGen(T, I)
It takes the trapdoor T and the document’s index Ii

and generates the pattern P for string matching. For
j-th Ii,j of each index Ii;

HS((idi,1)t1 · (idi,2)T2)‖...‖HS((idi,1)ts · (idi,2)T2)

= HS((gdih(ku))(fku (w1|j)+α) · (g−di)(h(fku)α))‖
...‖HS((gdih(ku))(fku (ws|j)+α) · (g−di)(h(fku)α))

= HS(gdih(ku)fku (w1|j))‖...‖HS(gdih(ku)fku (ws|j))
= P

6) SimMatch(P, I)
As input, it takes pattern P and j-th field’s index Ii,j .
It computes the hamming distance H(P, Ii,j) between
pattern string P and index string Ii,j for each Ii. If
H(P, Ii,j) ≤ κ, return ‘yes’ or ‘no’ otherwise.

B. The Security Analysis of SSS-I

Theorem 1. SSS-I can provide ‘Query Privacy’ according to
the game ICC if Gr is (t, e)-secure pseudo random generator.

Proof. We prove it with contraposition. We assume that SSS-I
cannot provide ‘query privacy’ of the Definition 6. according
to the security game ICC. Then, there exists an algorithm
A(t, ε, q) which wins the game ICC. We construct an algorithm
β which can solve the problem about whether Gr is pseudo
random or random generator with non-negligible probability. β
uses an algorithm A as a subroutine and can query the oracle
OGr

so that it can obtain the value of random number αq.
Algorithm β simulates algorithm A as follows;
• Setup. Algorithm β creates a set W of q words ∈
{Dn} and gives this to the adversary A. A chooses a
polynomial number of subsets {Wi} from W . We call
this the collection of subsets W ∗ = {Wi}, where Wi =
{Wi,1,Wi,2, ..,Wi,l}. A sends them to β again. Upon
receiving W ∗, β runs algorithm KeyGen to generate
search keys K = {ku} and invokes algorithm IndGen
for keywords set Wi ∈W ∗. Where, an index string Ii is
produced and an unique identifier di for each document
Di is assigned. After producing all the index stirings, β
sends them to A.

• Queries. If A queries the trapdoor for a word Wi,j ∈Wi,
β runs algorithm Trapdoor for a word Wi,j and produces
Ti,j and sends it to A. Ti,j is obtained through the queries
to the oracle OGr

and again with Ti,j as input value, A
runs algorithm PattGen and SimMatch on each index
Ii,j (1 ≤ i ≤ n) to determine if H(Pw, Ii,j) ≤ κ. Pw is
a pattern of the word Wi,j for string matching test.

• Challenge. After making some queries, A chooses
distinctive Wi,0, Wi,1 ∈Wi. A cannot query the trapdoor
for Wi,0, Wi,1 ∈Wi any more. Next, A gives Wi,0 and
Wi,1 to β and β chooses b

$← {0, 1}, and then invokes
algorithms Trapdoor for Wi,b. The result of this, Ti,b is
returned to A.

• Response. A finally outputs a bit b′, representing its
guess for b. If b = b′, then β outputs 1. Otherwise,
β outputs 0. ‘β outputs 1’ means that Gr is a pseudo
random generator.

We show that β can solve the problem about whether Gr

is pseudo random or random generator with non-negligible
probability. Accordingly, the advantage of β in winning this
experiment is;

Advβ = Pr[ExpPR
β = 1] = Pr[b′ = b]

= Pr[b′ = b|b = 1] ·Pr[b = 1]+Pr[b′ = b|b = 0] ·Pr[b = 0]

= Pr[b′ = b|b = 1] · 1
2

+ Pr[b′ = b|b = 0] · 1
2

= Pr[b′ = 1|b = 1] · 1
2

+ Pr[b′ = 0|b = 0] · 1
2

= Pr[b′ = 1|b = 1] · 1
2

+(1−Pr[b′ = 1|b = 0]) · 1
2

=
1
2

+
1
2
(Pr[Expind−cka−1

A = 1]− Pr[Expind−cka−0
A = 1])

=
1
2

+
1
2
Advind−cka

A =
1
2

+
1
2
ε

Theorem 2. SSS-I can provide ‘Index Privacy’ according to
the game ICC in random oracle model if DDH problem is hard.

For example, the indexes for a common keyword
W = w1w2 of D1 and D2 of a user u, are
HS(gd1h(ku)fku (w1‖j))‖HS(gd1h(ku)fku (w2‖j)) and
HS(gd2h(ku)fku (w1‖j))‖HS(gd2h(ku)fku (w2‖j)) . They have
different values respectively because of unique identifiers d1

and d2 and field identifier j. Hence, although two indexes
are for a common keyword, an adversary cannot know the fact.

Proof. According to [20], the existence of an adversary that
wins the game ICC with non-negligible probability implies
the existence of an adversary that wins the game ICLR with
non-negligible probability. Let A be an adversary that wins
the game ICLR with advantage ε. We construct an adversary
∆ that uses A as a subroutine and breaks DDH with non-
negligible advantage.

∆ invokes the algorithms SysParam and KeyGen. Let
gδ, gτ , gγ be a Diffi-Hellman triplet, the challenge is to deter-
mine whether γ = δτ . ∆ guesses a value wz

i,j for the character
wt

i,j that A will choose in the game ICLR, by picking wz
i,j

uniformly independently at random in {W1,W2, ...,Wm}.
∆ simulates the algorithm IndGen as follows. ∆ associates

every keyword Wi,j = w1
i,jw

2
i,j ...w

s
i,j with a random value

Xi,j = x1
i,jx

2
i,j ...x

s
i,j . Also search key K with K ′, and gK′

with g′. For Wi = {Wi,1,Wi,2, ...,Wi,m}, ∆ chooses a
random value δi for each Wi and outputs;

Ii = (gδiK′
, g−δi , HS(gδix1

i,1K′
)‖...‖HS(gδixs

i,1K′
),,

HS(gδix1
i,zK′

)‖..‖HS((gτ)δixs
i,zK′

),,

HS(gδix1
i,mK′

)‖..‖HS(gδixs
i,mK′

)

= ((g′)δi , g−δi , ..., HS((g′)δix1
i,z)‖...‖HS(((g′)τ)δixs

i,z),

..., HS((g′)δix1
i,m)‖...‖HS((g′)δixs

i,m))

If A queries for a keyword Wi,j , ∆ outputs the trapdoor
Tw and runs algorithm PattGen and SimMatch.

Finally, A selects a challenge keyword set Wi =
{Wi,i, ..,Wi,m} along with a query set V ⊆ Wi and a
character wt

i,j ∈ V . If wz
i,j 6= wt

i,j , ∆ returns a random value
in reply to the DDH challenge. With the probability about
1/m × s, we have wz

i,j = wt
i,j and that case ∆ proceeds

as follows. Let It
i,j = HS(((g′)τ)δix

t
i,j). For Wi,j ∈ V ,

ws
i,j 6= wt

i,j , let Is
i,j = Rs

i,j(random value). For Wi,j /∈ V ,
let Ii,j = HS(gδix

1
i,jK′

)‖...‖HS(gδix
s
i,jK′

). ∆ returns to A
the following; Ii = ((g′)δi , g−δi , Ii,1, .., Ii,m).

Check that this index is an encryption of W in every
keyword Wi,j /∈ V . If γ = δτ , this index is also an encryption
of Wi for a character wt

i,j ; otherwise it is not.
∆ is again allowed to ask for index of keyword sets, with the

restriction that A may not make a query that are distinguishing
Wo = Rand(Wi, V − {wt

i,j}) from W1 = Rand(Wi, V).
Finally, A outputs a bit b′. If b′ = 0, ∆ guesses that

gδ, gτ , gγ is not a DDH triplet. If b′ = 1, ∆ guesses that
gδ, gτ , gγ is a DDH triplet. Since the encryption will be
random for character ws

i,j if and only if the challenge is not
a DDH tuple, ∆ solves the DDH challenge with the same
advantage that A has in winning game ICLR.

Theorem 3. Under the condition that ‘Index Privacy’ is
achieved, SSS-I can provide ‘Cell Privacy’ according to the
game ICC if f is pseudo random function.

By the assumption that ‘Index Privacy’ is achieved, the same
character in different documents has the different index value
for each document. It is because that each index is encrypted
with the distinctive document’s identifier.

Next, we consider the same character in different fields of
a document. Assume that the same character is ‘a’. ‘a’ has
the different index value for each field in the document since
‘a’ is encrypted with the distinctive field’s identifier. Hence,
the character or the keyword has the different values in the
different cell.

The proof can be done similarly to Theorem 1. For
simplification, we consider only a character because it can
imply the case of a keyword. In the stage of challenge, select
the distinctive fields jo, j1 where ‘ai,jo

’ and ‘ai,j1’ are
encrypted to generate the index value. Then the challenge
is to determine b of Ii,b for ai,jb

. We leave out the detailed
proof since the rest are almost the same as the proof of
Theorem 1.

Theorem 4. SSS-I can provide ‘Perfect Similarity Search
Privacy’ if it guarantees both of the ‘Query Privacy’ and ‘Cell
Privacy’.

By Theorem 1 and 3, it is clear that SSS-I can provide
‘Perfect Similarity Search Privacy’.

Note 1. Our scheme is firstly proposed so that there is no
scheme to compare with. Hence, we implement the prototype
and check the correctness and efficiency of our proposed
scheme in Section V.

Note 2. In SSS-I, α in the trapdoor generation equation,
which is a randomly generated number every query time, is
removed in the pattern formative equation. These equations
enable us not to have to update all documents every query
time such as in Golle et al.’s scheme [20] where a random
number is generated every query time and all documents in
a server have to be updated every query time to prohibit any
information from being leaked by the accumulated results.

However, our proposed scheme SSS-I can leave out such
inefficient processes by forming the efficient trapdoor and
pattern equations and at the same time it can keep the same
level of security as Golle et al.’s scheme.

IV. SSS-II

A. Construction of SSS-II

Our second scheme SSS-II also uses m keyword fields
but there is no rule that each field has a specific attribute.
Therefore, the clients do not have to store the matching
information between each field and each attribute. Since SSS-
II has the same algorithms SysParam(1k) and KeyGen(λ) as
SSS-I, we start from the algorithm IndGen(K, W, d, J).

1) IndGen(K, W, d, J)
It takes as input a user’s secret key ku, a keyword list
Wi={Wi,1,Wi,2, ...,Wi,m}, a document identifier di,
and fields(columns)’ identifier set J = {j1, j2, ..., jm},
where 1 ≤ i ≤ n and Wi,j=w1

i,jw
2
i,j ...ws

i,j . It processes
as follows.

a) For keywords Wi,j , compute;
FKu(W1,1) = fku(w1

1,1|1 + 1)‖fku(w2
1,1|2 + 1)‖....

...‖fku(ws
1,1|s + 1) = f1

1,1‖f2
1,1‖...‖fs

1,1

FKu(W1,2) = fku(w1
1,2|1 + 2)‖fku(w2

1,2|2 + 2)‖....
...‖fku(ws

1,2|s + 2) = f1
1,2‖f2

1,2‖...‖fs
1,2

...
FKu(Wi,j) = fku(w1

i,j |1 + j)‖fku(w2
i,j |2 + j)‖....

...‖fku(ws
i,j |s + j) = f1

i,j‖f2
i,j‖...‖fs

i,j

b) Compute Ii,j ;

Ii,j = HS(f1
i,j |di)‖HS(f2

i,j |di)‖..‖HS(fs
i,j |di)

c) Produce an index Ii;

Ii = di, Ii,1, Ii,2, ...Ii,m

= di, HS(f1
i,1|di)‖...‖HS(fs

i,1|di),
HS(f1

i,2|di)‖...‖HS(fs
i,2|di), ...

....,HS(f1
i,m|di)‖..‖HS(fs

i,m|di)

2) Trapdoor(K, w)
It takes a user’s secret key ku and the keyword
W = w1w2..ws that a user want to search. It generates
m trapdoors for the keyword W as follows. (m is the
total number of fields.)

T = (T1, T2, ..., Tm)

T1 = fku(w1|1 + 1)‖fku(w2|2 + 1)‖....
...‖fku

(ws|s + 1) = t11‖t21‖...‖ts1
T2 = fku

(w1|1 + 2)‖fku
(w2|2 + 2)‖....

Client Server

Search

SetUp

SysParam

KeyGen

IndGen

Trapdoor

PattGen

SimMatch

All
fields

Client Server

Search

SetUp

SysParam

KeyGen

IndGen

SysParam

KeyGen

IndGen

Trapdoor

PattGen

SimMatch

PattGen

SimMatch

All
fields

Fig. 2. System Process of SSS-II

...‖fku
(ws|s + 2) = t12‖t22‖...‖ts2

............
Tm = fku(w1|1 + m)‖fku(w2|2 + m)‖....

...‖fku(ws|s + m) = t1m‖t2m‖...‖tsm

3) PattGen(T, I)
It takes trapdoor T and the document’s index Ii and
generates the pattern P = (P1, P2, .., Pm) for string
matching.

T1; HS(t11|di)‖HS(t21|di)‖...‖HS(ts1‖di) = P1

T2; HS(t12|di)‖HS(t22|di)‖...‖HS(ts2‖di) = P2

..............

Tm; HS(t1m|di)‖HS(t2m|di)‖...‖HS(tsm‖di) = Pm

4) SimMatch(P, I)
As input, it takes pattern P = (P1, P2, .., Pm) and
index Ii. It computes the hamming distance H(P1, Ii,1),
H(P2, Ii,2),...,H(Pm, Ii,m) respectively for each Ii. If
at least one of them satisfies the condition H(Pj , Ii,j) ≤
κ, return ‘yes’ or ‘no’ otherwise.

B. Analysis

The index formation, i.e., the encryption requirement for
cell privacy of SSS-II is to include all values of the user’s
secret key, the identifier of the document, and the identifier
of the field. In addition to these, the character’s ordering
number, by which even the same character in the same cell
has different encryption value. Anyway, we can say SSS-II
can provide ‘Cell Privacy’. However, it cannot provide ‘Query
Privacy’ because it does not use random factor in the trapdoor
generation. For this reason, one attack may be supposed as
follows.

We assume that the malicious server manager stores the
queried trapdoors and their results matched with ‘yes’. By
using those trapdoor values through a considerable number of
queries, the server manager can produce another database. It
is filled with the trapdoor values matched with ‘yes’ results.
However, the problem is that the trapdoor value does not
include the document’s identifier. This means that it cannot
satisfy ‘Cell Privacy’. Accordingly, within a field, the server
manager can obtain the total of 26× the number of users×
the number of characters(i.e. the length of the keyword)
encryption values.

For example, the 1st field ’s trapdoors have the form as
like this; fku

(w1|1 + 1)‖fku
(w2|2 + 1)‖...‖fku

(ws‖s + 1).
The diversity of these values depends on users’ secret keys
and the length of the keywords while other factors, the field’s
identifier and the ordering number of each character are same.
There is no document identifier. Since it is a character-wise
encryption, the total number of distinctive encryption values is
26× the number of users× the length of the keywords.
We assume that the number of users is 1000. Since the
length of the keywords is various keyword by keyword, we
assume the average length is ‘e’. Then the adversary can
obtain 26, 000×e distinctive encryption values. Each alphabet
can take 1, 000 × e values among 26, 000 × e encryption
values. Hence, the probability that an adversary can success
in a dictionary attack is 1/(26,000×eC1,000×e)26, i.e. negligi-
ble. The formulation of an adversary’s success probability is
1/(26×u×eCu×e)26 if the number of users is u and the average
length of the keywords is e. Consequently, the security of
SSS-II depends on the number of users and the length of the
keywords.

As we mentioned before, the specific attribute is not
assigned to each field in SSS-II. It makes the ‘trade-off’
happen. The positive aspect is that SSS-II has no information
leaked by the identifiers of the fields in the trapdoors, where
the identifier may be enough to allow the server to infer
unintended information about the documents. The negative
is inefficiency. No attribute-assignment for each field make
us generate m(the number of trapdoors) trapdoors for one
keyword. This enforces the server to produce m patterns
and to test the similarity between m patterns and m indexes
respectively. If SSS-II use the specific m keyword fields such
as SSS-I, the performance will be more efficient. We will
provide the prototype implementation in next section.

V. PROTOTYPE IMPLEMENTATION

In this section, we describe the implementation of our
proposed schemes. It processes the transactions on Intel Core 2
Duo 2.13 GHz processor with 2 GB RAM. We use Oracle 10g
as a database system and OCCI (Oracle C++ Call Interface) as
the interface between Oracle DBMS and SSS client to reduce
the interface latency. We use OpenSSL cryptography modules
for cryptographic operations such as SHA-1, AES, and Elliptic
Curve operation. Since an exponentiation calculation is very
heavy and the size of a group element is generally long, we
use a group over ‘Elliptic Curve’ to solve that problem. We

TABLE I
IMPLEMENTATION ENVIRONMENT AND PARAMENTERS

Processor Intel Core 2 Duo 2.13
GHz

Agent RAM 2 GB
Language C++
Crypto. Eng. OpenSSL 0.9.8e

Database Product Oracle 10g
Interface OCCI (Oracle C++

Call Interface)
Curve WTLS Curve 3

Cryptographic Size 163 bits
Parameter Hash Function SHA-1 (160 bits)

PRF AES (128 bits)
of MAX 10
keywords (=m)

Data Set # of MAX characters
(=s)

15

of documents 500/1, 000/5, 000/
10,000 / 50,000
/ 100,000

Hamming distance
H(P, I) ≤ κ

κ = 1

use ‘Koblitz curve’, where the underlying field GF (2163) is
defined by generating the polynomial x163+x7+x6+x3+x+1.
This curve has been used in many standards and identified in
WAP WTLS standard as WTLS Curve 3. As for the degree
of similarity, Hamming Distance H(P, I) ≤ κ, we set κ as
1. The detailed implementation parameters are presented in
Table 1.

To benchmark the performance of SSS-I and SSS-II, we
make a data set then estimate the time which is required for
the search process of our two schemes. Firstly, we build two
tables for SSS-I and SSS-II and select random keywords using
the standard C language random function rand() where s =
15 and m = 10. Next, SSS generates the index strings I =
{Ii,j} related to the keywords then inserts the document into
the database. We repeat this procedure 100, 000 times, i.e.,
100, 000 documents are inserted into the database. At last,
if a user requests a document with the specific keyword, SSS
client performs the search process with a server. We repeat the
experiment with respect to the data set size. The experimental
results of the search process using SSS-I and SSS-II are shown
in Figure 1. For example, SSS-I search process takes about 6.6
sec and SSS-II 0.73 sec for 10,000 documents. In addition, we
experiment the modified version SSS-IIM which is the SSS-II
using the specific m keyword fields such as SSS-I. Since in
SSS-IIM, the server only has to search for the field queried in
the trapdoor, it takes about 0.58 sec.

To check the correctness of our scheme, we make four
test files. Each of them includes the keywords (complement),
(compliment), (complement and compliment), and (comple-
mente) respectively. Those files are inserted into the database
which is generated with random function. The first we query
the ‘complement’ and then ‘compliment’. The first result is
all of the four test files and the second one is the former three
files including (complement), (compliment), and (complement
and compliment) respectively. It shows the correctness of our

-

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

500 1,000 5,000 10,000 50,000 100,000

SSS-I

SSS-II

SSS-IIM

S
e
a
rc

h
 T

im
e
 (
m

il
li
se

co
n
d
)

Number of Documents (n)

343

30/47
56/78

359

281

733

575

3,635

2,733

8,299

5,414

687

3,354

6,677

Fig. 3. Performance of the Search Process

scheme.
Consequently, SSS-II scheme is more efficient then SSS-I

since the exponentiation calculation of SSS-I requires heavy
computational overhead. Instead, SSS-I can achieve the
‘Perfect Similarity Search Privacy’ while SSS-II cannot
provide ‘Query Privacy’. We expect that if the SSS-I and
SSS-II schemes are internally supported in the DBMS, the
performance of the search process can be greatly improved.

VI. CONCLUSION

In an information-oriented society, the management of a
database which is a storage of sensitive data is one of the
most important factors. To protect users’ private information,
the encryption is commonly utilized. However, the encryption
method introduces some negative effects such as inefficiency
and malfunctioning. Thus, it has been believed that similarity
search with errors over encrypted data is impossible.

In this paper, we open a new page in this area. We design
two similarity searchable schemes over encrypted document,
implement the prototype, and analyze the security and effi-
ciency. SSS-I can meet the ‘Perfect Similarity Search Privacy’
which we define as the best security and SSS-II is more effi-
cient by accepting a little weaker security guarantee than SSS-
I. It is not desirable that the encryption for privacy hinders the
performance of database’s other general operations. As future
work, we would like to investigate how to further incorporate
our searching algorithms into database management systems.

REFERENCES

[1] M. Abdalla, M. Bellare, D.Catalano, E.Kiltz, T.Kohno, T.Lange,
J.Malone-Lee, G.Neven, P. Paillier, and H.a Shi, Searchable Encryption
Revisited: Consistency Properties, Relation to Anonymous IBE, and
Extensions, Crypto05, LNCS 3621, pp.205-222, 2005

[2] M. J. Atallah1, K.B. Frikken1, M.T. Goodrich, and R. Tamassia, Secure
Biometric Authentication for Weak Computational Devices, FC 2005,
LNCS 3570, pp. 357.371, 2005

[3] R. Baeza-Yates, Text retrieval: Theory and practice, In 12th IFIP World
Computer Congress, Elsevier Science, vol. I, pp. 465-476, 1992

[4] D.Boneh, G.D.Crescenzo, R.Ostrovsky, and G.Persiano, Public-key en-
cryption with keyword search, Eurocrypt04, LNCS, Springer-Verlag, 2004

[5] J. Bethencourt, H. Chan, A. Perrig, E. Shi, and D. Song, Anonymous
multi-attribute encryption with range query and conditional decryption,
Technical report, CMU-CS- 06-135, 2006.

[6] K.Bennett, C.Grothoff, T.Horozov, I.Patrascu, Efficient sharing of en-
crypted data, ACISP02, 2002

[7] L.Ballard, M.Green, B.de Medeiros, F.Monrose, Correlation-Resistant
Storage via Keyword-Searchable Encryption, SPAR Technical Report TR-
SP-BGMM-050705

[8] L.Ballad, S.Kamara, and F.Monrose, Achieving efficient conjunctive
keyword searches over encrypted data, ICICS 2005, LNCS 3783, pp.414-
426, 2005

[9] J.W.Byun, D.H.Lee, and J.I. Lim, Efficient conjunctive keyword search on
encrypted data storage system, EuroPKI 2006, LNCS 4043 pp.184-196,
2006

[10] R. Baeza-Yates and G.Navarro, Faster approximate string matching,
Algorithmica 23, pp. 127-158, 1999

[11] D. Boneh, B. Waters, Conjunctive, Subset, and Range Queries on
Encrypted Data, In the Proceedings of TCC 07, 2007.

[12] B.Chor, N.Gilboa, M.Naor, Private Information Retrieval by Keywords,
Technical Report TR CS0917, 1997

[13] Y.C.Chang and M.Mitzenmacher, Privacy preserving keyword searches
on remote encrypted data, Cryptology ePrint Archive, 2004

[14] G. Cornode and S. Muthukrishnan, The String Edit Distance Matching
Problem With Moves, ACM Transactions on Algorithms, Vol. 3, No. 1,
Article 2, 2007

[15] Sun S.Chung and Gultekin Ozsoyoglu, Processing Aggregation Queries
over Encrypted Databases, ICDE 2006, LNCS, 2006.

[16] J. Domingo-Ferrer, A new privacy homomorphism and applications,
Information Processing Letters, 1996.

[17] J. Domingo-Ferrer, A Provably Secure Additive and Multiplicative
Privacy Homomorphism, ISC, LNCS 2433, pp. 471-483, 2002.

[18] Eu-Jin Goh, Secure Indexes, Cryptology ePrint Archive, 2004
[19] Tingjian Ge, Stan Zdonik, Fast, Secure Encryption for Indexing in a

Column-Oriented DBMS, Proceedings of the 23nd International Confer-
ence on Data Engineering pp.676-685 , ICDE 2007.

[20] P.Golle, J.Staddon, B.Waters, Secure Conjunctive Keyword Search Over
Encrypted Data, ACNS04, 2004

[21] H. Hacigumus, B. Iyer, and S. Mehrotra, Query Optimization in En-
crypted Database Systems, DASFAA 2005, LNCS 3453, pp. 43.55, 2005.

[22] Hakan Hacigumus, Balakrishna R. Iyer, Li Chen, Sharad Mehrotra,
Executing SQL over Encrypted Data in the Database-Service-Provider
Model, In the Proceedings of ACM SIGMOD, June, 2002.

[23] H.Hacigumus, B.Iyer, and S.MehrotraEfficient, Execution of Aggrega-
tion Queries over Encrypted Relational Databases, DASFAA2004, LNCS
2793, pp.125-136, 2004

[24] Einar Mykletun and Gene Tsudik, Aggregation Queries in the Database-
As-a-Service Model, In the proceedings of DBSEC 2006.

[25] G.Navarro, A guided tour to approximate string matching. ACM Com-
puting Surveys 33(1), pp. 31-88, 2001.

[26] G.Navarro and R. Baeza-Yates, Matchsimile: A Flexible Approximate
Matching Tool for Searching Proper Names, Journal of the American
society for Information Science and Technology, 2003

[27] Ogata and K. Kurosawa, Oblivious Keyword Search, Journal of Com-
plexity, Volume 20, pp.356 - 371, 2004

[28] G.Ozsoyoglu, D.Singer, S.Chung , Anti-Tamper Databases: Querying
Encrypted Databases, In the Proceedings of IFIP 11.3 Conference 2003
on Database Security, August 3 - 6.

[29] Hyun-A. Park, J.W.Byun, and D.H.Lee, Secure Index Search for Groups,
TrustBus 2005, LNCS3592 pp.128-140, 2005

[30] D.Park, K.Kim, and P.Lee, Public Key Encryption with Conjunctive
Field Keyword Search, WISA 2004, LNCS 3325, pp.73-86, 2004

[31] H.S.Rhee, J.W.Byun, and D.H.Lee, Oblivious Conjunctive Keyword
Search, WISA2005, LNCS3886, pp.318-327, 2006

[32] Ontario, Office of the Information and Privacy Commissioner (IPC) and
Netherlands Registratiekamer (1995), Privacy-Enhancing Technologies:
The Path to Anonymity, Information and Privacy Commissioner and Reg-
istratiekamer, at: http://www.ipc.on.ca/english/pubpres/papers/anon-e.htm

[33] R.Sion and B.Carbunar, Conjunctive keyword search on encrypted data
with completeness and computational privacy, Cryptology ePrint Archive,
2005

[34] D.Song, D.Wagner, and A.Perrig, Practical techniques for searches on
encrypted data, IEEE Symposium on Security and Privacy, pp.44-55, 2000

[35] A. Takasu, An Approximate Multi-word Matching Algorithm for Robust
Document Retrieval, CIKM06, ACM 1-59593-433-2/06/0011, 2006

[36] B.Waters, D.Balfanz, G.Durfee, and D.Smetters, Building an encrypted
and searchable audit log, NDSS Symposium, pp.205-214, 2004

[37] http : //www.cut− the−knot.org/doyouknow/Strings.shtml,
Distance

