
Perfect Forward Secure Identity-Based Authenticated

Key Agreement Protocol in the Escrow Mode

Shengbao Wang1, Zhenfu Cao1, Zhaohui Cheng2, and Kim-Kwang Raymond Choo3

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University,

800 Dongchuan Road, Shanghai 200240, China
2 School of Computing Science, Middlesex University

The Burroughs, Hendon, London, UK
3 Canberra, Australian Capital Territory, Australia
{shengbao-wang, cao-zf}@cs.sjtu.edu.cn

m.z.cheng@mdx.ac.uk

raymond.choo.au@gmail.com

Abstract. There are several essential features in key agreement protocols such
as key escrow (essential when confidentiality, audit trail and legal interception
are required) and perfect forward secrecy (i.e., the security of a session key estab-
lished between two or more entities is guaranteed even when the private keys of
the entities are compromised). Majority of the existing escrowable identity-based
key agreement protocols, however, only provide partial forward secrecy. Therefore,
such protocols are unsuitable for real-word applications that require a stronger
sense of forward secrecy — perfect forward secrecy. In this paper, we propose
an efficient perfect forward secure identity-based key agreement protocol in the
escrow mode. We prove the security of our protocol in the random oracle model,
assuming the intractability of the Gap Bilinear Diffie-Hellman (GBDH) problem.
Security proofs are invaluable tools in assuring protocol implementers about the
security properties of protocols. We note, however, that many existing security
proofs of previously published identity-based protocols entail lengthy and compli-
cated mathematical proofs. In this paper, our proof adopts a modular approach
and, hence, simpler to follow.

Key words: Authenticated key agreement; Perfect forward secrecy; Bilinear pair-
ing; Provable security; Modular security proof

1 Introduction

Key agreement protocols are fundamental to establishing secure communications between
two or more parties over an insecure network. A key establishment protocol (including key
agreement protocol) allows two or more communicating parties to establish a common
secret (session) key via public communication channels (e.g., internet). The established
session key can then be used to create a confidential or integrity-protected communication
channel between the parties. Authenticated key agreement (AK) protocols not only allow
parties to compute the session key but also ensure the authenticity of the involved parties
[5].

Authenticated key agreement protocols can be built based on both secret-key cryp-
tography and public-key cryptography. If secret-key cryptography is used, then either a
symmetric secret key or a shared password should be distributed before the key agree-
ment protocol is executed. If traditional (certificate-based) public-key cryptography is

used, a public key infrastructure (PKI) will typically be required to be deployed that al-
lows authentication of registered users’ public keys. In 1984, Shamir proposed the concept
of identity-based cryptography [21] whereby each party’s public key can be an arbitrary
string (typically an identity string) and, hence, removes the need for certificates. This,
therefore, greatly simplified the management of public keys in the identity-based cryp-
tosystems. Following the work of Boneh and Franklin on identity-based encryption [1],
several identity-based two-party key agreement schemes using bilinear pairings on elliptic
curves have been proposed (see [6]).

Motivation 1. Secure key agreement protocol in the escrow mode

ID-based authenticated key agreement protocols may either work in the escrowed
mode (i.e., the private key generator (PKG) is able to recover the session keys established
by its users) or escrowless mode (i.e., the PKG is unable to recover the session keys
established by its users). Majority of the ID-based key agreement protocols are designed
to be escrowless for privacy concerns. However, as noted in [4], key escrow is desirable
under certain circumstances especially in certain closed groups applications. For example,
escrow is essential in situations where confidentiality as well as audit trail are legal
requirements, such as secure communications in the health care profession.

One example of an ID-based authenticated key agreement protocol in the escrow
mode is the protocol of Chen and Kudla [12]. A drawback with this protocol (and also of
Smart’s ID-based authenticated key agreement protocol [20]) is that it does not provide
perfect forward secrecy (i.e., compromise of the long-term secret keys belonging to any
party will expose previously established corresponding session keys). Although Shim [22]
proposed a protocol that claimed to provide such a (perfect forward secrecy) property,
it was later found to be vulnerable to the man-in-the-middle attack [23].

Our first motivation is, therefore, to propose a new protocol that is secure in the
escrow mode and achieves perfect forward secrecy.

Motivation 2. Simplifying the proof — a modular approach

It is by now standard practice for protocol designers to provide security proof in
widely accepted security models in order to assure protocol implementors of their security
properties (see [8]). As pointed out in a recent survey of two-party ID-based authenticated
key agreement protocols [6], many existing protocols are not proven secure in the modular
approach (e.g., the model of Canetti and Krawczyk [11]) and their proofs of security are
often complicated and error-prone [8,17].

Kudla and Paterson [17,16] then developed a modular technique for constructing se-
curity proofs for a large class of key agreement protocols using a slightly modified Smart’s
protocol as an example. Informally, their modular technique works in the following se-
quence.

1. Prove that a protocol Π has the property of strong partnering.
2. Prove that a related protocol π is secure in a highly reduced security model.
3. The security proof for π in the reduced model is then translated into a security proof

for Π in the full model using a Gap assumption [19].

The overall proof technique using the modular approach is far easier than the con-
ventional approach and this forms the second motivation of our paper.

Our contributions

1. We propose an efficient ID-based AK protocol (with only a single online pairing
computation) that works in the escrow mode. With comparable performance, our
new protocol achieves perfect forward secrecy.

2. Using the modular technique of Kudla and Paterson, we prove that our protocols is
secure in the random oracle model, provided that the Gap Bilinear Diffie-Hellman
(GBDH) problem is hard. Our protocol is the first Chen–Kudla-type key agreement
protocol to be proven secure in a modular approach.

Paper organization The remainder of this paper is structured as follows. In Section 2,
we briefly describe bilinear pairings, the computational problems and the corresponding
complexity assumptions, the security model, and the Kudla–Paterson modular proof
approach [16] required in this paper. Section 3 revisits the protocol due to Chen and
Kudla [12]. We present our proposed ID-based authenticated key agreement protocol
(hereafter referred to as E-IBAK) in Section 4. In Section 5, a detailed security proof
in the random oracle model [3] of our proposed E-IBAK protocol is provided. Section 6
provides a performance comparison between several related ID-based protocols. We draw
our conclusions in Section 7.

2 Preliminaries

2.1 Bilinear Pairings and GBDH Probolem

Let G1 denotes an additive group of prime order q and G2 a multiplicative group of the
same order. We let P denote a generator of G1. For us, an admissible pairing is a map
ê : G1 × G1 → G2 with the following properties:

1. The map ê is bilinear: given Q, R ∈ G1 and a, b ∈ Z∗

q , we have ê(aQ, bR) = ê(Q, R)ab.
2. The map ê is non-degenerate: ê(P, P) 6= 1G2

.
3. The map ê is efficiently computable.

Typically, the map ê will be derived from either the Weil or Tate pairing on an elliptic
curve over a finite field. We refer to [2,1,15] for a more comprehensive description of how
these groups, pairings and other parameters should be selected in practice for efficiency
and security.

Definition 1 (Bilinear Diffie-Hellman (BDH) Parameter Generator). As in [1],
we say that a randomized algorithm IG is a BDH parameter generator if IG takes a
security parameter l > 0, runs in time polynomial in l, and outputs the description of
two groups G1 and G2 of the same prime order q and the description of an admissible
pairing ê : G1 × G1 → G2.

The security of the ID-based key agreement protocols in this paper are based on the
difficulty of the following problems:

Definition 2 (Bilinear Diffie-Hellman (BDH) Problem). Let G1, G2, P and ê
be as above. The BDH problem in 〈G1, G2, ê〉 is as follows: Given 〈P, aP, bP, cP 〉 with
uniformly random choices of a, b, c ∈ Z∗

q , compute ê(P, P)abc ∈ G2.

We say that a probabilistic polynomial time (PPT) algorithm B has advantage ǫ in
solving the BDH problem in 〈G1, G2, ê〉 if

Pr[B(P, aP, bP, cP) = ê(P, P)abc] ≥ ǫ

where the probability is measured over the random choices of a, b, c ∈ Z∗

q and the
random bits of B.

The above BDH problem has a decisional counterpart called the decisional bilinear
Diffie-Hellman (DBDH) problem which is defined as follows.

Definition 3 (Decisional Bilinear Diffie-Hellman (DBDH) Problem). Let G1,
G2, P and ê be as above. The DBDH problem in 〈G1, G2, ê〉 is as follows: Given 〈P, aP, bP, cP 〉
with uniformly random choices of a, b, c ∈ Z∗

q, as well as W ∈ G2, determine if

ê(P, P)abc = W (if it holds, then the tuple 〈P, aP, bP, cP, W 〉 is called a BDH tuple).

The BDH and DBDH problems can be used to define a related Gap problem [19].

Definition 4 (Gap Bilinear Diffie-Hellman GBDH Problem). Let G1, G2, P and
ê be as above. The GBDH problem in 〈G1, G2, ê〉 is as follows: Given 〈P, aP, bP, cP 〉 with
uniformly random choices of a, b, c ∈ Z∗

q, as well as an oracle the solves the DBDH

problem in 〈G1, G2, ê〉, compute ê(P, P)abc.

Informally, the BDH, DBDH and GBDH assumptions are that no PPT adversary has
non-negligible advantage in solving the BDH, DBDH and GBDH problems, respectively.

2.2 Desirable Security Attributes

Let Alice (A) and Bob (B) be two honest entities, i.e., legitimate entities who execute
the steps of a protocol correctly. Here we list up a number of desirable attributes of AK
protocols which referred to [5,12].

– Known-key secrecy (K-KS). Each run of a key agreement between A and B should
produce a unique secret session key. The compromise of one session key should not
compromise the keys established in other sessions.

– Perfect forward secrecy (PFS). If long-term private keys of all entities are com-
promised, the secrecy of previous session keys established by honest entities is not
affected.

– Key-compromise impersonation (K-CI) resilience. Suppose A′s private key is dis-
closed. Obviously, an adversary who knows this key can impersonate A to other
entities (e.g. B). However, it is desired that this disclosure does not allow the adver-
sary to impersonate any other entity (e.g. B) to A.

– Unknown key-share (UK-S) resilience. Entity A cannot be coerced into sharing a key
with entity B without A′s knowledge, i.e., when A believes that the key is shared
with some entity C 6= B, and B (correctly) believes the key is shared with A.

– No key control. Neither entity should be able to force the session key (or any portion
of the session key) to a preselected value.

In addition to these security attributes, it would be desirable for a protocol to have
low computational cost (the computing operations needed for A and B to finish a run of
the protocol) and low communication overhead (which means that only a small amount
of data is exchanged) for its practical use.

2.3 Security Model for ID-Based AK Protocols — ID-mBJM

In this subsection, we present our refined formal security model for ID-based authenti-
cated key agreement protocols. Kudla [17] proposed the so called ID-BJM model, which
is an extension of the model of Blake-Wilson et al. [7] (known as the BJM model). In this
paper, we extend a modified version of the BJM model to the ID-based setting which we
call the ID-mBJM model. Following the approach of Choo et al. [9], we use the notion
of session identifier SID (instead of matching conversation used in the BJM model and
Kudla’s ID-BJM model) in our partnership definition.

The model includes a set U of participants modeled by a collection of oracles (e.g.,
oracle Πn

I,J represents the n-th instance of participant I carrying out a protocol session
in the belief that it is communicating with another participant J . Each participant has
a long-term ID-based public/private key pair, in which the public key is generated using
her identity information and the private one is computed and issued secretly by a private
key generator.

There is an active adversary (denoted by E) in the model modeled by a PPT Tur-
ing Machine which has access to all the participants’ oracles4. Participant oracles only
respond to queries by the adversary and do not communicate directly among them-
selves, i.e., there exists at least a benign adversary who simply passes messages between
participants faithfully.

Definition of security in the model depends on the notion of the partner oracles to
any oracle being tested. We define partners by having the same session identifier (SID).
Concretely, we define SID(Πn

I,J) as the concatenation of all messages that oracle Πn
I,J

has sent and received.

Definition 5 (Partner). Two oracles Πn
I,J and Πn′

J,I are said to be partner oracles if
they have accepted with the same SID.

The security of a protocol is defined via a two-phase adaptive game (called the ID-
mBJM game) between a challenger C that simulates a set of participant oracles running
the protocol and the adversary E. C also simulates the PKG in this environment, and
therefore generates the public parameters of the PKG and gives these to E. C also
generates a master secret s from which it can generate a private key dI from any given
identity I.

In the first phase, the adversary E is allowed to issue the following queries in any
order.

Send(I, J, n, M): E can send message M to oracle Πn
I,J . The oracle executes the pro-

tocol and responds with an outgoing message m or a decision to indicate accepting
or rejecting the session. Any incoming and outgoing message is recorded on its tran-
script. If M = λ (denotes the null message), then the oracle initiates a protocol
run.

Reveal(Πn
I,J): To respond to the query, oracle Πn

I,J returns the session key if the session
has been accepted. Otherwise, a symbol ⊥ is returned. Such an oracle, Πn

I,J , is then
considered opened.

Corrupt(I): Upon receiving this query, C outputs the private key dI of the participant
I. A participant is called corrupted if a Corrupt query has been issued to it.

Test(Πn
I,J): At some point, E can make a Test query to some fresh oracle Πn

I,J (see
Definition 6 below). To answer the query C flips a fair coin b ∈ {0, 1}; if the answer
is 0, then C outputs the agreed session key of the test oracle, otherwise outputs a
randomly chosen value from the session key space.

In the second phase, E is allow to continue asking Send, Reveal and Corrupt queries
to the oracles, except that E is not allowed to reveal the target test oracle or its part-
ner oracle (if any), and E cannot corrupt participant J (assuming Πn

I,J is the test oracle).

4 If the proof is given in the random oracle model (ROM), then the adversary also has access
to all the existing random oracles.

Output: Finally, E outputs a prediction (b′) on b. E wins the game if b′ = b, and we
define E’s advantage (l is the security parameter) in winning the game as

AdvE(l) = |Pr[b′ = b] − 1/2|.

Definition 6 (Fresh Oracle). An oracle Πn
I,J (I 6= J) is called fresh if it has accepted

(and therefore holds a session key ski), it is not opened, J has not been corrupted, and
there is no opened oracle Πn′

J,I which is a partner oracle of Πn
I,J .

Remark 1. The above definition of fresh oracle is particularly defined to cover the security
attribute of key-compromise impersonation resilience since it implies that the participant
I could have been issued a Corrupt query [13].

Definition 7 (ID-mBJM Secure Protocol). A protocol is a secure AK protocol in
the ID-mBJM model if:

1. In the presence of the benign adversary (who faithfully relays messages between par-
ties) on Πn

I,J and Πn′

J,I , both oracles always accept holding the same session key, and
this key is distributed uniformly on session key space.

2. AdvE(l) is negligible.

It is easy to see that the above definition of security does not include the property
of perfect forward secrecy (PFS). To model PFS, the definition of fresh oracle (refer to
Definition 6) should be modified so that the the participants associated with the Test
(fresh) oracle can also be corrupted. We define PFS as follows.

Definition 8 (Perfect Forward Secrecy (PFS)). A protocol is said to have perfect
forward secrecy (PFS) if any PPT adversary wins the ID-mBJM game with negligible ad-
vantage when it chooses an unopened oracle Πn

I,J which has a an unopened partner oracle

Πn′

J,I as the test oracle, and both oracles Πn
J,I and Πn′

J,I accepted and both participants I
and J can be corrupted.

Note that as in [18], here we refer to the practical notion of perfect forward secrecy
that involves a benign adversary eavesdropping on a session of the protocol and then
attempting to expose the key.

2.4 Modular Proof Technique for ID-Based AK Protocols

Here we briefly review the modular technique for proving the security for key agreement
protocols [17]. Note that here we mainly focused on ID-based protocols.

The modular proof technique only works on key agreement protocols that produce
hashed session keys on completion of the protocol. This reliance on hashing to produce
a session key is reasonable since it is fairly common to use a key derivation function
(KDF) to derive a session key from a secret value established during a key agreement
protocol, and this key derivation function is usually implemented via a hash function. In
the security proof, the key derivation function will be modeled as a random oracle.

Definition 9 (Session String). Suppose Π is a protocol that produces a hashed session
key using the cryptographic hash function H. Then the session string for a particular
oracle Πi

I,J is denoted ssΠi
I,J

, and is defined to be the string which is hashed to produce

the session key skΠi
I,J

. So we have that skΠi
I,J

= H(ssΠi
I,J

).

Strong Partnering. Suppose Π is a key agreement protocol. If there exists an adversary
E, which when attacking Π in an ID-mBJM game defined in Section 2.3 and with non-
negligible probability in the security parameter l, can make some two oracles Πi

I,J and
Πn

J,I accept holding the same session key when they are not partners, then we say that
Π has weak partnering. If Π does not have weak partnering, then we say that it has
strong partnering.

As shown in [17], for a protocol Π to be ID-mBJM secure, it must have strong
partnering. Since H is modeled as a random oracle, strong partnering can be ensured
by including appropriate “partnering information” in the session string ssΠi

I,J
, where

partnering information is used to decide whether the two oracles are partners or not. In
Section 4, we will use the session identifier SID and the identities of the two parties as
the partnering information of our new protocol.

Reduced Games. A highly reduced game (called th cNR-ID-mBJM game) is used in
the modular security proof. The reduced game is identical as the full ID-mBJM game
defined in Section 2.3 except that the adversary E is not allowed to make Reveal queries
and to win the game, E must select an accepted fresh oracle on which to make a modified
Test query at the end of its attack and output the session key held by this oracle. We
define E’s advantage, denoted AdvE(l), in the cNR-ID-mBJM game to be the probability
that E outputs a session key sk such that sk = skΠi

I,J
where Πi

I,J is the oracle selected

by the adversary for the modified Test query. We define security in the reduced game as
follows:

Definition 10 (cNR-ID-mBJM Secure Protocol [17]). A protocol Π is a secure
key agreement protocol in the cNR-ID-mBJM model if:

1. In the presence of the benign adversary, two oracles running the protocol both accept
holding the same session key, and the session key is distributed uniformly at random
on session key space.

2. For any adversary E, AdvE(l) in the reduced game is negligible.

As part of the the proof technique, it will be necessary to prove that a related protocol
π of protocol Π is secure in the above reduced game.

Related Protocol π. The related protocol π of protocol Π is defied in the same way
as Π except that the session key generated by π is defined to be the session string of
Π rather than the hash of this string (i.e., skπn

I,J
= ssΠn

I,J
). It is usually quite easy to

establish a related protocol’s security in the reduced game.

Definition 11 (Session String Decisional Problem). Given the public parameters,
the transcript TΠn

I,J
of oracle Πn

I,J , as well as the public keys of I and J and a string s,
decide whether s = ssΠn

I,J
, where ssΠn

I,J
is the session string of oracle Πn

I,J .

The following result is at the heart of the modular proof technique that translates
the weak security of a related weaker protocol into the security of the protocol in the
full model.

Theorem 1 (Theorem 8.2 in [17]). Suppose that key agreement protocol Π produces
a hashed session key on completion of the protocol (via hash function H) and that Π
has strong partnering. If the security of the related protocol π in the reduced game is
probabilistic polynomial time reducible to the hardness of the computational problem of
some relation f , and the session string decisional problem for Π is polynomial time
reducible to the decisional problem of f , then the security of Π in the full model is
probabilistic polynomial time reducible to the hardness of the Gap problem of f , assuming
that H is a random oracle.

3 Review of the CK Protocol

In this section, we briefly review the ID-based authenticated key agreement protocol due
to Chen and Kudla (the CK protocol) [12], which requires only 1 pairing evaluation for
each party. The CK protocol is illustrated in Figure 1.

Alice Bob

a ∈R Z
∗

q , TA = aQA b ∈R Z
∗

q , TB = bQB

TA−−−−−−−→
TB←−−−−−−−

KBA = ê(dB , bQA + TA)
skBA = H(A,B, TA, TB , KBA)

KAB = ê(dA, aQB + TB)
skAB = H(A,B, TA, TB, KAB)

skAB = H(A,B, TA, TB, ê(QA, QB)s(a+b)) = skBA

Fig. 1. The CK Protocol [12]

There are three entities in the protocol: two users Alice and Bob who wish to establish
a shared secret session key, and a PKG from whom they each acquire their own private
keys. The protocol consists of two stages: Setup and Key Agreement.

Setup: Suppose we have an admissible pairing ê : G1×G1 → G2 as described in Section
2, where G1 and G2 are two groups with the same prime order q. The PKG follows the
following steps:

1. picks an arbitrary generator P ∈ G1, a secret master key s ∈ Z∗

q ;
2. chooses a cryptographic hash function H1 : {0, 1}∗ → G1;
3. publishes the system parameters params = 〈G1, G2, e, q, P, H1〉;
4. computes the private key dID = sQID for a user with the identity information ID,

in which the user’s public key is QID = H1(ID);
5. distributes the private key dID to the user with the identity information ID via a

secure channel.

Thus, each user’s identity-based public/private key pair is defined as (QID, dID) where
QID, dID ∈ G1.

Key Agreement: To agree on a common session key, both Alice and Bob randomly
choose an ephemeral private key, a, b ∈ Z∗

q respectively, and compute the corresponding
ephemeral public keys

TA = aQA

and
TB = bQB.

They then exchange the ephemeral public keys as depicted in Figure 1.

Alice and Bob respectively computes KAB and KBA as follows,

KAB = ê(dA, aQB + TB) , KBA = ê(dB , bQA + TA).

If Alice and Bob follow the protocol, they will compute shared secrets of equal value,
KAB and KBA respectively:

K = KAB = KBA = ê(QA, QB)s(a+b).

The value of the established shared secret, K, is therefore suitable to be used to
derive a shared session key. We then use a key derivation function H : {0, 1}∗×{0, 1}∗×
G1 × G1 × G2 → {0, 1}k to generate the shared session key. |sk| denotes the length of
the binary representation of sk (i.e., k=|sk|):

sk = H(A, B, TA, TB, K).

The security proof of the CK protocol in the ID-BJM model [17] illustrated that
the protocol has the following security attributes: known-key secrecy, key-compromise
impersonation resilience, unknown key-share resilience, and no key control.

Drawbacks of the CK protocol, however, include the following:

1. Lack of PFS: Suppose the private keys of Alice and Bob (dA and dB) are compro-
mised, an adversary can easily recover previously established session keys between
Alice and Bob as shown below:

K = ê(QA, QB)s(a+b) = ê(dA, TB)ê(dB, TA).

2. Unable to adopt the modular proof approach: As pointed out by Kudla [17], the
CK protocol cannot be proven using the modular approach as the session string
decisional problem cannot be reduced to a decisional problem. We demonstrate that
our proposed protocol (in the next section) can use the modular technique to prove
its security.

4 Proposed Identity-Based AK Protocol

Our scheme employs the ID-based non-interactive key sharing protocol due to Sakai et
al. [24] (hereafter referred to as the SOK protocol). The SOK protocol works as follows:

– The Setup stage of the SOK protocol is similar to that of the CK protocol.
– Once two users, Alice and Bob, have established their respective public/private key

pairs, (QA, dA) and (QB, dB), they can establish a common secret F (called the SOK
secret) statically (i.e., without any message exchange):

F = ê(dA, QB) = ê(dB , QA) = ê(QA, QB)s.

We now describe our proposed escrowable identity-based authenticated key agreement
protocol with perfect forward secrecy (hereafter referred to as E-IBAK).

As with the CK protocol and all other identity-based cryptosystems we assume the
existence of a trusted PKG that is responsible for the generation and secure distribution
of users’ private keys. Our key agreement protocol can be implemented using either the
modified Weil or Tate pairing [1,4]. The new protocol consists of the following two stages:
Setup: This stage is identical to that of the CK protocol (refer to Section 3).

Alice Bob

F = ê(dA, QB) = ê(QA, QB)s F = ê(dB, QA) = ê(QA, QB)s

a ∈R Z
∗

q , TA = aQA b ∈R Z
∗

q , TB = bQB

TA−−−−−−−→
TB←−−−−−−−

KBA1
= ê(dB, TA)

KBA2
= Kb

BA1

skBA = H(A,B, TA, TB, KBA1
, F b, KBA2

)
KAB1

= ê(dA, TB)
KAB2

= Ka
AB1

skAB = H(A,B, TA, TB , F a, KAB1
, KAB2

)

skAB = H(A, B,TA, TB, F a, F b, F ab) = skBA

Fig. 2. Proposed Protocol E-IBAK

Key Agreement: We denote user Alice and Bob’s public/private key pairs as (QA, dA)
and (QB, dB), respectively. We assume that Alice and Bob both pre-compute and store
the above mentioned SOK (non-interactively shared) secret F .

To establish a shared session key, Alice and Bob each firstly generate an ephemeral
private key (say a and b ∈ Z∗

q), and compute the corresponding ephemeral public keys
TA = aQA and TB = bQB, respectively. They then exchange TA, TB and compute the
session key as described in Figure 2. As in the CK protocol, H : {0, 1}∗×{0, 1}∗×G1 ×
G1 × G2 × G2 × G2 → {0, 1}k is a key derivation function (in which k = |sk|).
Protocol Correctness. By the bilinearity of the pairing, we can easily get the following
equations:

KAB1
= ê(dA, TB) = ê(dA, bQB) = F b,

KBA1
= ê(dB , TA) = ê(dB , aQA) = F a

and KAB2
= KBA2

= F ab.

Thus, the two session keys computed by Alice and Bob are

skAB = skBA = H(A, B, TA, TB, F a, F b, F ab).

Escrow. The protocol E-IBAK has the escrow function, namely the PKG can recover all
the session keys using the master secret key s and other public data such as TA and TB.
We prove this as follows.

F a = ê(QA, QB)sa = ê(TA, QB)s,
F b = ê(QA, QB)sb = ê(QA, TB)s,
F ab = ê(QA, QB)sab = ê(TA, TB)s.

The protocol is message independent and role symmetric, which means that each
party performing the same operations and thus incurring the same computational cost.
In the next section we will prove that our protocol E-IBAK achieves the ID-mBJM security
(see Definition 10) as well as perfect forward secrecy.

5 Security Proof

We prove the security (i.e. ID-mBJM security plus PFS) of our new protocol E-IBAK in
stages. We first give a basic identity-based protocol, E-IBAK′, which does not provide
perfect forward secrecy, and prove that it is ID-mBJM secure using the Kudla–Paterson
modular technique. We then prove that the protocol E-IBAK is also secure in the ID-
mBJM model and provides perfect forward secrecy. The only reason for describing the
protocol E-IBAK′ is to make the presentation easier to follow.

Protocol E-IBAK′ is almost identical to protocol E-IBAK except that the final session
key is computed as

skAB = H ′(A, B, TA, TB, F a, F b),

where H ′ : {0, 1}∗×{0, 1}∗×G1×G1×G2×G2 → {0, 1}k is a key derivation function. In
other words, without the value F ab being part of the session string. With the description
of the ID-mBJM model in Section 2.3, we now state:

Theorem 2 (ID-mBJM Security of E-IBAK′). If H ′ and H1 are random oracles
and the GBDH problem (for the pair of groups G1 and G2) is hard, then E-IBAK′ is a
secure key agreement protocol.

We now prove Theorem 2 in three steps. We first show that protocol E-IBAK′ has
strong partnering. Secondly, we prove that the related protocol π of E-IBAK′ is secure
in the cNR-ID-mBJM model (see Definition 10). Lastly, we show that the session string
decisional problem (see Definition 11) of E-IBAK′ is reducible to the DBDH problem.

Lemma 1 (Strong Partnering of E-IBAK′). Protocol E-IBAK′ has strong partnering
in the random oracle model.

Proof. It is easy to verify that this condition holds because the partnering information,
namely the protocol transcript and participant IDs are included in the session string.
Recall that we model H ′ as a random oracle, thus if two oracles end up holding the same
session key, then they are not partners with only negligible probability. ⊓⊔

Lemma 2 (cNR-ID-mBJM Security of π). The related protocol π is secure in the
cNR-ID-mBJM model, assuming the BDH problem is hard (for the pair of groups G1

and G2) and provided that H1 is a random oracle.

Proof. Condition 1 follows from the correctness of the protocol π. Since H ′ is a random
oracle, sk is distributed uniformly at random on {0, 1}k. In the following, we show that
Condition 2 is also satisfied.

For a contradiction, assume that the adversary E has non-negligible advantage ǫ in
winning the cNR-ID-mBJM game, making at most q1 queries to H1. Let qS be the total
number of the oracles that E creates, i.e., for any oracle Πn

AB, n ∈ {1, ..., qS}. We shall
slightly abuse the notation Πn

AB to refer to the n-th one among all the qS participant
instances in the game, instead of the n-th instance of participant A. As n is only used
to help identify oracles, this notation change will not affect the soundness of the model.

We show how to construct a simulator S that uses E as a sub-routine to solves the
BDH problem with non-negligible probability. Given input of the two groups G1, G2, the
bilinear map ê, a generator P of G1, and a triple of elements xP , yP , zP ∈ G1 with
x, y, z ∈ Z∗

q where q is the prime order of G1 and G2, S′s task is to compute and output
the value ê(P, P)xyz .

The algorithm S selects a random integer v from {1, ..., q1} and a random integer w
from {1, ..., qS} and works by interacting with E as follows:

Setup: S sets the PKG’s master key to be xP . S will also simulate all oracles required
during the game. S controls the H1 random oracle. S starts E, and answers all E′s
queries as follows.

H1(IDi): S simulates the random oracle H1 by keeping a list of tuples 〈ri, IDi, Qi〉 which
is called the H1-List. When the H1 oracle is queried with an input IDi ∈ {0, 1}∗, S
responds as follows.

- If IDi is already on the H1-List in the tuple 〈ri, IDi, Qi〉, then S outputs Qi.
- Otherwise, if IDi is the v-th distinct H1 query, then the oracle outputs Qi = yP

and adds the tuple 〈⊥, IDi, Qi〉 to the H1-List.
- Otherwise S selects a random ri ∈ Z∗

q and outputs Qi = riP , and then adds the
tuple 〈ri, IDi, Qi〉 to the H1-List.

We assume that J is the v-th distinct participant created in the game.

Corrupt(IDi): S simulates the Corrupt query on input IDi as follows.

- If IDi 6= J , S outputs the corresponding long-term private key di.
- Otherwise abort the game (Event 1).

Send(A, B, t, M): S answers the queries as follows.

– If t 6= w, S randomly samples ξt ∈ Z∗

q and responds with ξtQA where QA =
H1(A).

– Otherwise,

• If B 6= J , abort the game (Event 2).
• Otherwise answer zP .

Test(Πt
A,B): At some point in the simulation, E will ask a single Test query of some

oracle. If E does not choose the guessed oracle Πw
A,B to ask the Test query, then S

aborts (Event 3).

Output: At the end of the game, the algorithm E outputs a session key of the form
(U, V, a, b, c, d) where U, V ∈ {0, 1}∗, a, b ∈ G1 and c, d ∈ G2.

Solving the BDH Problem: If Πw
A,B was an initiator oracle, then S outputs c as its

guess for the value ê(P, P)xyz , otherwise S outputs d as its guess.

Now we evaluate the probability that the simulation does not abort. If the adversary
indeed has chosen the w-th oracle as the test oracle and that oracle supposes to establish
a session key with party J , then by the rules of the game Event 1, 2 and 3 would not
happen. We have

Pr[S does not abort] ≥
1

qSq1
.

Note that participant J has the public key QJ = yP and private key dJ(= xyP). Given
a message zP , part of the agreed secret is ê(xyP, zP). So if the adversary computes the
correct session key with non-negligible probability ǫ, then S answers the BDH problem
correctly with probability with ǫ/(qSq1) (which is non-negligible in the security parameter
l), contradicting to the hardness of the BDH problem. ⊓⊔

Lemma 3 (Session String Decisional Problem of E-IBAK′). The session string
decisional problem of protocol E-IBAK′ is reducible to the DBDH problem.

Proof. Recall the session string of protocol E-IBAK′ is of the form (A, B, TA, TB, F a, F b)
with TA = aQA, F a = ê(dB , TA) = ê(sQB, TA), s being the master secret key and P , sP
being the public parameters, then we see 〈P, sP, QB , TA, F a〉 (similarly, 〈P, sP, QA, TB, F b〉)
is a BDH tuple. This implies that the session string decisional problem of protocol E-

IBAK′ is reducible to the DBDH problem (in constant time). ⊓⊔

Proof of Theorem 2. The theorem follows directly from Lemma 1, 2, 3 and Theorem
1. ⊓⊔

Now we are ready to prove our main result — the security of our newly proposed
protocol E-IBAK.

Theorem 3 (Security of Protocol E-IBAK). Protocol E-IBAK

i) is secure in the ID-mBJM model, assuming the GBDH problem (for the pair of groups
G1 and G2) is hard and provided that H and H1 are random oracles, and

ii) has the property of perfect forward secrecy (PFS), assuming the BDH problem (for
the pair of groups G1 and G2) is hard and provided that H and H1 are random
oracles.

Proof. i) This follows directly from Theorem 2, since it is easy to see that any success-
ful attack on protocol E-IBAK can be immediately converted to a successful attack on
protocol E-IBAK′.

ii) According to our definition of perfect forward secrecy (see Definition 8), we require
that when E chooses an oracle Πn

I,J as the test oracle, this oracle must indeed have a

partner oracle Πn′

J,I . As before, we let Πn
AB denote the n-th oracle among all the oracles

created in the game.
The proof follows along similar lines to the proof of Lemma 2. For a contradiction,

we assume that the adversary E can win the game with non-negligible advantage ǫ by
creating at most qS oracles and making qH queries to the H random oracle. We show
how to construct a simulator S that uses E as the sub-routine to solves the BDH problem
with non-negligible probability. Identical to the proof of Lemma 2, the input of S are
the two groups G1, G2, the bilinear map ê, a generator P of G1, and a triple of elements
xP , yP , zP ∈ G1 with x, y, z ∈ Z∗

q where q is the prime order of G1 and G2, its task is
to compute and output the value ê(P, P)xyz.

The algorithm S selects two random integers u, v from {1, ..., qS} (assuming u < v)
and works by interacting with E as follows:

Setup: S sets the PKG’s master key to be xP . S will also simulate all oracles required
during the game. S controls two random oracles H1 and H . S starts E, and answers
all E′s queries as follows.

H1(IDi): S simulates the oracle H1 by keeping a list of tuples 〈ri, IDi, Qi〉 which is
called the H1-List. When the H1 oracle is queried with an input IDi ∈ {0, 1}∗, S
responds as follows.

- If IDi is already on the H1-List in the tuple 〈ri, IDi, Qi〉, then S outputs Qi.
- Otherwise S selects a random ri ∈ Z∗

q and outputs Qi = riP , and then adds the
tuple 〈ri, IDi, Qi〉 to the H1-List.

H(IDi, IDj , Ti, Tj, Ai, Bi, Ci): S simulates the random oracle H by keeping an H-List
with tuples of the form 〈IDi, IDj, Ti, Tj , Ai, Bi, Ci, ki〉. If the requested input is
already on the list, then the corresponding ki is returned, otherwise a random ki ∈
{0, 1}k is responded and a new entry is inserted into the list.

Corrupt(IDi): Upon receiving the Corrupt query on input IDi, S outputs the corre-
sponding long-term private key di = rixP .

Send(A, B, t, M): S answers all Send queries as follows
– When t = u, if oracle M 6= λ, then abort (Event 1), otherwise return yP .
– When t = v, if M 6= yP , then abort (Event 2), otherwise return zP .
– When t 6= u, v, randomly sample ξt ∈ Z∗

q , return ξtH1(A).

Reveal(Πt
A,B): Upon receiving a Reveal query, S outputs the appropriate session key,

except if E asks the oracle Πu
A,B or Πv

A,B, then S aborts (Event 3). Note that S
can compute the agreed session secret given ξt, the input message and the private
key dA.

Test(Πt
A,B): If E does not choose the guessed oracle Πu

A,B or Πv
A,B to ask the Test

query, then S aborts (Event 4). To answer the Test query, S randomly picks a value
β from the session key space and responds to E with β.

Output: At the end of the game, the algorithm E outputs its guess.

Solving the BDH Problem: S picks a tuple of the form 〈I, J, TI , TJ , Ah, Bh, Ch〉 (for
some h) from the H-List and returns Ch as the response to the BDH challenge.

Now we evaluate the probability that S does not abort, namely Event 1, 2, 3 and 4
do not happen. By the rule of the game, if the test session is between the u-th and v-th
oracle, then the simulation goes through. The probability that the simulator has chosen
the right session is 1/q2

S, because a randomly chosen oracle is the initiator of the test
session is 1/qS and similarly another randomly chosen oracle is the responder of the test
session is also 1/qS. We have

Pr[S does not abort] ≥ 1/q2
S.

According to the simulation of the Send query, the test oracle Πu
I,J must have obtained

the value TJ = zP from its partner oracle Πv
J,I . The oracle should hold a session key of the

form H(I, J, TI , TJ , Ah, Bh, ê(dI , TJ)y/rI), in which ê(dI , TJ)y/rI = ê(xrIP, zP)y/rI =
ê(P, P)xyz.

Let Q be the event that the session string of the test oracle has been queried to H .
Because of the construction of the session string and the use of session identifier to define
partner oracles, we can easily prove that if Q happens with non-negligible probability in
the random oracle model, it must be caused by a query issued by the adversary (see the
detailed argument in [10]). Because H is a random oracle, we have Pr[E wins|Q̄] = 1/2.
Then

Pr[E wins] = Pr[E wins|Q̄]Pr[Q̄] + Pr[E wins|Q]Pr[Q]
≤ Pr[E wins|Q̄]Pr[Q̄] + Pr[Q]
= 1

2Pr[Q̄] + Pr[Q]
= 1

2 + 1
2Pr[Q].

Pr[E wins] = Pr[E wins|Q̄]Pr[Q̄] + Pr[E wins|Q]Pr[Q]
≥ Pr[E wins|Q̄]Pr[Q̄]
= 1

2Pr[Q̄]
= 1

2 − 1
2Pr[Q].

It follows that Pr[Q] ≥ 2|Pr[E wins − 1/2]| = 2ǫ.
Combining all the above results, we have that S solves the BDH problem with prob-

ability at least 2ǫ/(q2
SqH) (which is non-negligible in the security parameter l), contra-

dicting to the hardness of the BDH problem. ⊓⊔

6 Comparison with Existing Escrowable Protocols

Here we summarize the security properties and performances of our E-IBAK protocol and
several other previously published escrowable protocols in Table 1. Note that:

– Since all listed protocols offer the basic security properties (i.e., known-key secrecy,
unknown key-share resilience, key-compromise impersonation resilience and no key
control), we will restrict our comparison to only the forward secrecy property.

– In practice, pre-computation is often carried out prior to the execution of the pro-
tocol for better performance. We, therefore, compare only the on-line computation
complexity of these protocols.

In the table, Xand × denote that the property holds and does not hold in the protocol
respectively. We also use the following symbols to explain the computation complexity of
each protocol. For simplicity, we only count these computationally expensive operations:

- P: pairing.
- M: scalar point multiplication in G1.
- E: exponentiation in G2.
- A: point addition in in G1.

Table 1. Comparisons of escrowable key agreement protocols (with pre-computation)

↓Protocols / Items→ P M E A Bandwidth PFS Extensible∗

Protocol CK [12] 1 0 0 1 1 point × X

Smart’s [20] 1 0 0 0 1 point × X

Wang’s [25] 1 1 0 2 1 point X X

E-IBAK 1 0 1 0 1 point X X

∗ This indicates that if the protocol is extensible to work in the escrowless mode.

From the table, we observe that only Wang’s protocol [25] and our proposed protocol
E-IBAK achieve perfect forward secrecy (PFS) in the escrow mode. Our protocol is,
however, more efficient than that of Wang’s especially when we take into consideration
that certain computations can be performed off-line.

Finally, it is worth noting that the escrowable protocols listed in Table 1 can be
extended to work in the escrowless mode, using the simple idea due to Chen and Kudla
[12] by embedding a raw Diffie–Hellman protocol [14] (interested readers are referred to
[12] for the details). This reflects the flexibility of these key agreement protocols.

7 Conclusions

Perfect forward secrecy (PFS) is an important security property for authenticated key
agreement protocols (in both escrow and escrowless modes). We presented an identity-
based authenticated key agreement protocol that is provably secure in the escrow mode.
We demonstrated that our proposed protocol provides perfect forward secrecy without
compromising on computational efficiency. We also proved the security of our proposed
protocol in a widely accepted model yet with a simpler modular proof (using the modular
technique due to Kudla and Paterson [16]).

Acknowledgment

The first author would like to thank Liqun Chen for many valuable discussions. This
work was partially supported by the National High Technology Development Program
of China under Grant No. 2006AA01Z424 and the National Natural Science Foundation
of China (Nos. 60572155 and 60673079).

References

1. D. Boneh, M. Franklin. Identity-based encryption from the Weil pairing. In Proc. of CRYPTO
2001, LNCS vol. 2139, pp. 213-229, Springer-Verlag, New York, 2001.

2. P.S.L.M. Barreto, H.Y. Kim and B. Lynn. Efficient algorithms for pairing-based cryptosys-
tems. In Proc. CRYPTO 2002, LNCS vol. 2442, pp. 354-368. Springer-Verlag, New York,2002.

3. M. Bellare, P. Rogaway. Entity authentication and key distribution. In Proc. of CRYPTO
1993, LNCS vol. 773, pp. 110-125, Springer-Verlag, New York, 1993.

4. N. McCullagh, P.S.L.M. Barreto. A new two-party identity-based authenticated key agree-
ment. In Proc. of CT-RSA 2005, LNCS vol. 3376, pp. 262-274, Springer-Verlag, New York,
2005.

5. S. Blake-Wilson, A. Menezes. Authenticated Diffie-Hellman key agreement protocols. In Proc.
of SAC 1998, LNCS vol. 1556, pp. 339-361, Springer-Verlag, New York, 1999.

6. C. Boyd and K.-K. R. Choo. Security of two-party identity-based key agreement. In Proc. of
MYCRYPT 2005, LNCS vol. 3715, pp. 229-243, Springer-Verlag, New York, 2005.

7. S. Blake-Wilson, C. Johnson and A. Menezes. Key agreement protocols and their security
analysis. In Proc. of the sixth IMA International Conference on Cryptography and Coding,
LNCS vol. 1355, pp. 30-45, Springer-Verlag, New York, 1997.

8. K.-K. R. Choo, C. Boyd, and Y. Hitchcock. Errors in computational complexity proofs for
protocols. In Proc. of ASIACRYPT 2005, LNCS vol. 3788, pp. 624-643, Springer-Verlag, New
York, 2005.

9. K.-K. R. Choo, C. Boyd, Y. Hitchcock, and G. Maitland. On session identifiers in provably
secure protocols: The Bellare-Rogaway three-party key distribution protocol revisited. In
Proc. of SCN 2004, LNCS vol. 3352, pp. 351-366, Springer-Verlag, New York, 2005.

10. Z. Cheng and L. Chen. On security proof of McCullagh-Barreto’s key agreement protocol
and its variants. International Journal of Security and Networks 2(3/4), pp. 251-259, 2007.

11. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In Proc. of EUROCRYPT’01, LNCS vol. 2045, pp. 453-474, Springer-Verlag,
New York, 2001.

12. L. Chen, C. Kudla. Identity based key agreement protocols from pairings. In Proc. of the
16 th IEEE Computer Security Foundations Workshop, pp. 219-213, IEEE Computer Society,
2002. See also Cryptology ePrint Archive, Report 2002/184.

13. Z. Cheng, M. Nistazakis, R. Comley and L. Vasiu. On the indistinguishability-based security
model of key agreement protocols - simple cases. In Proc. of ACNS 2004 (technical track).
The full paper available on Cryptology ePrint Archive, Report 2005/129

14. W. Diffie, M.E. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory 22(6),
pp. 644 - 654, 1976.

15. S.D. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. In Proc. of
ANTS-V, LNCS vol. 2369, pp. 324-337, Springer-Verlag, New York, 2002.

16. C. Kudla and K. G. Paterson. Modular security proofs for key agreement protocols. In Proc.
of ASIACRYPT’05, LNCS vol. 3788, pp. 549-565, Springer-Verlag, New York, 2005.

17. C. Kudla. Special signature schemes and key agreement protocols. PhD Thesis, Royal Hol-
loway University of London, 2006.

18. H. Krawczyk. HMQV: A high performance secure Diffie-Hellman protocol. In Proc. of
Crypto’05, LNCS 3621, pp. 546-566, Springer-Verlag, New York, 2005.

19. T. Okamoto and D. Pointcheval. The Gap-problems: a new class of problems for the security
of cryptographic schemes. In Proc. of PKC 2001, LNCS vol. 1992, pp. 104-118, Springer-
Verlag, New York, 2001.

20. N.P. Smart. An identity based authenticated key agreement protocol based on the Weil
pairing. Electronics Letters 38(13), pp. 630-632, 2002.

21. A. Shamir. Identity-based cryptosystems and signature schemes. In Proc. of CRYPTO 1984,
LNCS vol.196, pp. 47-53, Springer-Verlag, New York, 1984.

22. K. Shim. Efficient ID-based authenticated key agreement protocol based on theWeil pair-
ing.Electronics Letters 39(8), pp. 653-654, 2003.

23. H. Sun, B. Hsieh. Security analysis of Shim’s authenticated key agreement proto-
cols from pairings. Cryptology ePrint Archive, Report 2003/113, 2003. Available at
http://eprint.iacr.org/2003/113.

24. R. Sakai, K. Ohgishi and M. Kasahara. Cryptosystems based on pairing. In Proc. of the
2000 Symposium on Cryptography and Information Security, Okinawa, Japan, 2000.

25. Y. Wang. Efficient identity-based and authenticated key agreement protocol. Cryptology
ePrint Archive, Report 2005/108, 2005. Available at http://eprint.iacr.org/2005/108.

