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Abstract

In this work we re-visit the question of building cryptographic primitives that remain secure
even when queried on inputs that depend on the secret key. This was investigated by Black,
Rogaway, and Shrimpton in the context of randomized encryption schemes and in the random
oracle model. We extend the investigation to deterministic symmetric schemes (such as PRFs
and block ciphers) and to the standard model. We term this notion “security against key-
dependent-input attack”, or KDI-security for short. Our motivation for studying KDI security
is the existence of significant real-world implementations of deterministic encryption (in the
context of storage encryption) that actually rely on their building blocks to be KDI secure.

We consider many natural constructions for PRFs, ciphers, tweakable ciphers and random-
ized encryption, and examine them with respect to their KDI security. We exhibit inherent
limitations of this notion and show many natural constructions that fail to be KDI secure in the
standard model, including some schemes that have been proven in the random oracle model.
On the positive side, we demonstrate examples where some measure of KDI security can be
provably achieved (in particular, we show such examples in the standard model).

1 Introduction

Does it make sense for an application to self-encrypt an encryption key? That is, if Es represents
an encryption function with key s, would it ever be the case that an application needs to store or
transmit Es(s)? Cryptographers typically see this as a dangerous abuse of an encryption scheme,
and standard security criteria for encryption scheme do not take this possibility into account. Still,
there are applications where such form of security is helpful. This security concern was formally
defined and studied by Black, Rogaway, and Shrimpton [5] in the context of symmetric encryption
under the name KDM-security (for Key-Dependent-Messages). In particular Black et al. proved
that KDM-secure symmetric encryption can be achieved in the random-oracle model.

If “encrypting your own key” is abusive for randomized encryption, using this practice with
deterministic constructions (such as pseudo-random functions and permutations) seems even more
dangerous. The present work was motivated by a real-world application that turned out to be doing
just that: the IEEE P1619 standard group was developing a standard for “sector level encryption”
[15], which must be length-preserving and hence must be deterministic. The group was considering
a scheme based on the tweakable cipher of Liskov et al. [18], but some members objected, citing
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an attack that can be mounted when the proposed scheme is applied to its own secret key. An
argument ensued as to whether or not this “self-encryption” scenario is a real problem or just
a theoretical possibility that would never happen in the real world. The argument was decided
when the group was informed that the implementation of disk encryption in Windows Vista

TM
can

store to the disk an encryption of its own secret keys in some situations. Consequently, the group
switched to a different scheme, based on Rogaway’s work [23], for which the particular attack in
question does not seem to apply (see more details in Section 5 and in [14]).

Another reason to study KDI-security arises in the context of anonymous credentials: Camenisch
and Lysyanskaya [7] introduced the notion of “circular security”, which is similar to (but somewhat
weaker than) KDI security, and used it as a tool to discourage delegation of credentials in an
anonymous credential system. Also, in the formal-methods community the definitional work of
Black et al. from [5] was used to strengthen the definition of computational encryption and prove
it equivalent to the Dolev-Yao formulation [17, 1].

1.1 Our results

In this work we re-visit KDM security, with emphasis on deterministic constructions and analysis
in the standard model. We rename the notion to KDI security, to stress that we are not talking
only about encryption (and hence the Input is not necessarily a Message). We demonstrate some
inherent limitations of these notions and present positive and negative results concerning the KDI
security of encryption, pseudo-random functions and (tweakable) pseudo-random permutations,
with respect to this notion, both in the standard model and in the “ideal cipher model”.

Definition and inherent limitations. We begin in Section 2 by exploring the notion of KDI-
security and its limitations, specifically as they pertain to deterministic constructions. We observe
that KDI-security of deterministic schemes cannot be achieved (even in an idealized models) without
restricting the key-dependent queries that the attacker can make: Allowing the attacker to query a
function fs on multiple functions of the key necessarily translates into a KDI attack that recovers
the full key, and this attack works even if the underlying primitive is an “ideal cipher” or a random
oracle! (This is similar to the setting of “related key attacks” [3].) In practical terms this means
that an application must restrict the types of information on the key that may potentially be
“encrypted” under the key itself.

For this reason, we parametrize KDI security by the set of functions of the key that the attacker
can use in its queries. Given the impossibility mentioned above when the set of functions is too rich,
it makes sense to even investigate the minimal notion of KDI-security with respect to just a single
function, as we may at least hope that even an abusive implementation that “encrypts its own key”
will only do so in one form, rather than “encrypting” many copies of the key in many different
forms (e.g., it may encrypt the key itself or a hash of the key, but not multiple, arbitrary functions
of the key). In particular, negative results obtained in this minimalistic setting imply impossibility
of stronger notions of KDI security. In this light, we investigate the existence of schemes that are
KDI-secure with respect to all efficient deterministic functions of the key, as long as the attacker is
restricted to query a single function of its choice in the attack.
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Pseudo-random functions. We investigate in Sections 3 and 4 the existence of pseudo-random
functions (PRFs) that are KDI secure with respect to any (single) function of the key, and present
the following results:

1. We show that in the “ideal cipher model”, KDI security is achievable if one restricts the
functions of the key that can be queried to be independent of the ideal cipher itself.

2. In contrast we prove that this goal cannot be achieved in the standard model, by showing
that for each (deterministic) PRF family there is a function of the key relative to which the
given family in not KDI secure.

3. On the positive side, if we allow the PRF construction to depend on a fixed public random
value, often called a “salt” (and do not allow the function of the key to depend on the same
salt value), then we can get KDI-security in the standard model (assuming that standard
PRFs exist).

4. The construction from 3 also implies a non-constructive proof that for every function g there is
a PRF (whose description depends on g) that is KDI-secure against this particular function g.
We show also a constructive proof for the case where g is a “well spread” function.

5. Finally, we describe an “arguably more natural” PRF (based on the Blum-Micali pseudo-
random generator) that is KDI-secure with respect to the identity function.

Tweakable ciphers. We return in Section 5 to the “ideal cipher model” to study the KDI
security of tweakable ciphers (which are the basis for the IEEE P1619 standard that provided the
initial motivation of this work). We establish a definition of KDI security for tweakable ciphers,
describe an attack on a scheme of Liskov et al. [18] thus demonstrating that it is not KDI-secure
(even in the “ideal cipher model”), and then show that some other schemes (including the one by
Rogaway [23]) are KDI-secure in this model.

Randomized encryption. We conclude in Section 6 by taking another look at randomized
encryption, in particular PRF-based symmetric encryption. Black et al. proved in [5] that the
encryption scheme Encs(x) = (r, fs(r)⊕ x) is KDI-secure when fs is implemented using a random
oracle as fs(x) = H(s|x). We observe that this encryption scheme is not KDI-secure in general
when we only require that fs is a secure PRF, not even if fs is itself KDI-secure. More surprisingly,
this construction fails even for “natural” choices of the PRF fs, such as when instantiated using
the Davies-Meyer construction. (This serves as an interesting reminder of the caution one has to
exercise when basing security on idealized models.)

On the positive side, we show that if fs is a KDI-secure invertible PRF, then the encryption
scheme Encs(x) = (r, fs(r)⊕ fs(x)) is also KDI secure. Unfortunately our salted PRF from Item 3
above seems to be inherently non-invertible, but the “g-specific construction” from Item 4 can be
made invertible and, if randomized, can work for any function g, not just a “well spread” one.
Hence we obtain for every function g an encryption scheme Enc(g) that is KDI secure with respect
to that function g.
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The moral. We view the results in this work as lending support to the “common cryptographic
wisdom” that the practice of self encryption of a key is a dangerous abuse of a cryptosystem. We
demonstrate that many security goals that can be stated with respect to this practice inherently
cannot be achieved; in some cases not even in an idealized model. Our counter-example for the
case of randomized encryption (Section 6) is particularly troubling: We show a failure of a text-
book construction for symmetric encryption with respect to a very natural implementation of its
components. Moreover, this is the case in spite of the fact that almost the same construction was
previously proved secure in the random oracle model! We also show that similar warnings apply to
other secret-key primitives, such as a PRF, when applied to the key or, more generally, to a function
of the key. On the positive side, we show explicit constructions that achieve limited notions of KDI
security (even in the standard model). Two interesting open questions that remain are finding,
for each function g of the key, a (deterministic) PRF that is KDI secure with respect to g and,
more fundamentally, finding a symmetric encryption scheme that can be proven KDI-secure in the
standard model with respect to any function g.

Terminology. To simplify the presentation we state our results in the language of asymptotic se-
curity, using the terms “feasible” for probabilistic polynomial-time, “non-negligible”or “noticeable”
for larger than some polynomial fraction, and “negligible” or “insignificant” for smaller than any
polynomial fraction. It is clear, however, that all the results could also be stated in the language
of “exact security” (at a price of a somewhat more cluttered presentation).1

2 Definitional approach and some intrinsic limitations

Roughly, to define security with respect to key-dependent input attacks we modify the standard
attack scenarios for the various primitives that we study, by allowing the attacker to query its
oracles not only on explicit strings but also on functions of the secret key. That is, where the
original notion provided the attacker access to an oracle O(·), we add an oracle O′(·) that gets as
input a description of a function g (e.g., in the form of a circuit that computes the function) and
outputs O(g(s)) where s is the secret key of the construction in question. We will refer to the queries
to O′ as functional queries. We extend this definitional approach to the “ideal cipher model” by
allowing oracle access to keyed random permutations (and their inverses) and by possibly allowing
the functional queries to depend on these oracles.

Ideally, we would like to find constructions that remain secure even when the attacker can query
the primitive on any efficient function of the key. There are, however, some inherent limitations to
this approach. For example, letting the attacker query a cipher Es on input g(s) = E−1

s (s), the
key would be obviously exposed. A more general limitation arises in the context of deterministic
primitives, as we show next.

KDI-insecurity against unrestricted queries. The idea of this argument is that an attacker
can try to apply many different functions to the key s, and use collisions of the form g(s) = g′(s) to
do a binary search for the key s. That is, the attacker uses two different functional queries g, g′, and

1On the other hand, the “exact security” language may be somewhat more natural when talking about block
ciphers and tweakable block ciphers.
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checks if it gets the same answer on both. This (in essence) tells the attacker whether g(s) = g′(s),
which cuts the key-space by two. Here we describe a simple example of this argument, which is
essentially the same as the one described in [3] in the context of related-key attacks.

Let Ψ be any deterministic construction that has a secret key (such that the disclosure of s
compromises the security of Ψ). For simplicity (this is not essential for the general argument),
assume that both the key space and the input space of Ψ is {0, 1}n, and that for every fixed
key s ∈ {0, 1}n the function Ψs(·) is injective. Consider now a set of functions {gi, g′i : 1 ≤ i ≤ n}
with the property that for every i and every s we have gi(s) = g′i(s) if and only if the i’th bit of s
is zero. (An example is a set of functions containing additions of constants modulo 2n as well as
xor with constants from {0, 1}n. For example, for all i < n we set gi to be xor with 0n−i10i−1 and
g′i to be addition of 2i modulo 2n.)

The attacker then simply queries its oracle Ψ′ on the inputs gi and g′i for all i. If the i’th bit of
the secret key is 0 then gi(s) = g′i(s) and therefore Ψ′(g) = Ψ(gi(s)) = Ψ(g′i(s)) = Ψ′(g′) (because
Ψ is deterministic). On the other hand, if the i’th bit of the secret key is 1 then gi(s) 6= g′i(s) and
since Ψ is injective it follows that also Ψ′(g) = Ψ(gi(s)) 6= Ψ(g′i(s)) = Ψ′(g′). The attacker can
therefore determine all the bits of the secret key s in violation of the security of Ψ.

Parametrized definition. As a consequence of the above observations, and similar to the case
of key-related attacks [3], the definition of KDI-security will be parametrized by a class of function
descriptions C, and all the queries to the O′ oracle will be restricted to functions from C. The
question of whether KDI security with respect to a certain class C provides a meaningful level of
security depends heavily on the application. In some cases anything less than “all polynomial-size
circuits” may be insufficient while in others having C restricted to the identity function only (i.e.,
one is allowed to query the primitive on the key itself but not on other functions of the key) may
suffice.

In many cases, providing security assurance against one function of the key, i.e., the case where
|C| = 1, will be of significant value: we may at least hope that even an abusive implementation that
“encrypts its own key” will only do so in one form, rather than encrypting many copies of the key in
many different forms. Given the limitations discussed above (and more to be shown in the sequel)
we will judge different constructions under the “modest” requirement that they resist singleton
classes |C| = 1. We would like to get a construction that is KDI secure against all singleton classes
(i.e., the attacker is allowed to choose a single function g(s) to query but the function g could be any
efficient function of s). Unfortunately, examples such as the one with the function g(s) = E−1

s (s)
demonstrate that even this modest goal cannot always be achieved. In such a case we will study
the “minimalist” requirement that a construction is KDI secure against one specific function.

3 Pseudo-random Functions

Below we use the convention that for security parameter n, the key for a pseudo-random function
is a random n-bit string, and that the function is from {0, 1}`in(n) to {0, 1}`out(n) where `in and `out

are efficiently computable and polynomially bounded. Then a family of pseudo-random functions

5



is an ensemble
F =

{
fs : {0, 1}`in(n) → {0, 1}`out(n)

∣∣∣∣ s ∈ {0, 1}n}
n∈N

and we require that there is an efficient evaluation procedure that given any s ∈ {0, 1}n and any
x ∈ {0, 1}`in(n) computes y = fs(x).

The standard security definition for pseudo-random functions as defined in [10] asserts that no
feasible attacker Aφ(1n) (with oracle access to φ) can distinguish with non-negligible advantage the
case where φ = fs for a random s ∈R {0, 1}n from the case where φ is chosen as a random function
from {0, 1}`in(n) to {0, 1}`out(n).

In order to capture KDI security of pseudo-random functions, we augment the standard defini-
tion of pseudo-random functions by letting the adversary also access another oracle φ′ that takes
as input a description of a function g, and outputs φ(g(s)). (The output size of the functions g
considered here is assumed to match the size of inputs to the pseudorandom function f .)

Definition 1 (KDI-secure PRFs) A family F of pseudo-random functions is KDI-secure with
respect to a class C of circuits if no feasible attacker Aφ,φ′(1n) (with oracle access to φ, φ′) can
distinguish with non-negligible advantage between the following two cases:

1. φ = fs for a random s ∈R {0, 1}n and for any g ∈ C φ′(g) = φ(g(s));

2. φ is chosen as a random function φ : {0, 1}`in(n) → {0, 1}`out(n), s is chosen at random in
{0, 1}n, and for any g ∈ C, φ′(g) = φ(g(s)).

Note: Many of our results apply to the case where C includes a single function g; in this case, one
can dispense of the φ′ oracle and simply assume that the attacker is given the value of φ(g(s)).

On KDI-insecure PRFs. We first observe that secure PRFs (or block ciphers) are not neces-
sarily KDI-secure, not even with respect to the identity function. Indeed, given any secure PRF
family F = {Fs}, one can trivially modify it as follows:

F ′
s(x) =

{
s if x = s
Fs(x) otherwise

Clearly, the family F ′ = {F ′
s} is still a secure PRF, but it is not KDI-secure with respect to the

identity function. Similarly, if we start with a secure cipher E (a strong pseudo-random permu-
tation) we can build another secure cipher E′ that is not KDI-secure with respect to the identity
function:

E′
s(x) =


s if x = s
Es(s) if x = E−1

s (s)
Es(x) otherwise

Negative Example 1 There exist secure PRFs and secure block ciphers that are KDI-insecure
with respect to the identity function.
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3.1 Constructions in the “ideal-cipher model”

We saw above that the construction fs(x) = Es(x) where E is a secure block cipher is not necessarily
KDI-secure. Here we show that this construction is at least KDI secure in the “ideal-cipher model”.
We begin by adapting our definition of KDI security to Shannon’s “ideal cipher model”.

Recall that in the ideal-cipher model, all the parties (including the attacker) are given black-box
access to two tables Π(·, ·) and Π−1(·, ·). These tables are chosen at random subject to the condition
that for every “key” s, Π(s, ·) is a permutation and Π−1(s, ·) is its inverse (and all these permutations
are over the same domain). For simplicity of presentation we assume that on security parameter n,
the key that selects the permutation is of length n bits and the permutations themselves are over
{0, 1}n. Namely, for each s ∈ {0, 1}n, Π(s, ·) is a random permutation over {0, 1}n , and Π−1(s, ·)
is the inverse permutation.

We augment the definition of KDI-security to the ideal-cipher model by providing the attacker
with oracle-access to Π,Π−1, and more importantly by potentially allowing the class of function-
descriptions in C to depend on Π and/or Π−1. Specifically, in this case we allow the circuits in C
to include also Π-gates that on input (s, x) return Π(s, x) (and similarly also Π−1-gates). When
stating a result in this paper in the context of the ideal cipher model we will specify whether we
assume the functional queries g(s) to depend or not in the oracles Π and Π−1.

Note that when adapting Definition 1 to the “ideal cipher model”, the attacker’s advantage
is measured with respect to the probability distribution where for each s ∈ {0, 1}n, Π(s, ·) is a
random permutation over {0, 1}n and Π−1(s, ·) is the inverse permutation (also, this advantage is
parametrized in terms of the number of queries the attacker performs to these oracles as well as the
number of such queries performed while computing the function g, if the latter depends on Π,Π−1).

Remark. The distinction between circuits that include Π and Π−1 gates and circuits that do not
is one of the main reasons for using the “ideal cipher model” in the KDI context. Indeed, in some
cases we would like to argue that a cipher is KDI-secure with respect to any function g that “does
not depend on the cipher itself”. This restriction is generally not well defined in the standard model
but can be captured in the “ideal cipher model” by specifying that the function g is described by
a circuit that does not include Π or Π−1 gates.

KDI-security of fs(x) = Πs(x). It is easy to see that even in the “ideal cipher model”, we can
find functions g that depend on Π such that the construction fs(x) = Π(s, x) is not KDI-secure
with respect to g. For example, if we set g(s) = Π−1(s, s) then

fs(g(s)) = Π(s,Π−1(s, s)) = s (1)

However, we can show that this construction is KDI secure with respect to every function g that
does not depend on Π, specifically:

Theorem 1 Let g be any Boolean circuit with no Π-gates or Π−1-gates. Then the construction
fs(x) = Πs(x) is a KDI-secure pseudo-random function in the “ideal cipher model” with respect to
the singleton class C = {g}.

Proof Sketch The attacker A has access to three oracles: Π(·, ·), and Π−1(·, ·) that represent
the ideal cipher and f(·) which is either Π(s, ·) for a random s (the “real case”), or an independent
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random function (the “random case”). In addition, the attacker is given the value f(g(s)), where
s is the key in the “real case” and just a random string in the “random case”.

We consider a “hybrid case” which is just like the “random case”, except that f is chosen as
a random permutation rather than a random function. Clearly, the “hybrid” and the “random”
cases cannot be distinguished upto the birthday bound. The heart of the proof is in showing that
the attacker cannot distinguish the “hybrid” from the “real” case.

Next we argue that the attacker has only a negligible probability to ever query its Π or Π−1

oracles with the correct key s: since g is independent of Π,Π−1 then all the values that the
attacker sees are entries of Π,Π−1 that by themselves are independent of s. (This is where the
counterexample g(s) = Π−1(s, s) comes in, dependent on Π−1 allows the attacker to ask for “the
value in the entry in which s is written”.) As long as the attacker still did not query Π or Π−1 with
the right key s, then the answer that it got so far can be completely simulated by the attacker itself,
save for cases where a query f(x) on some string x happened to return the same value as f(g(s)).
This last event either happens with negligible probability (if the pre-image of g(s) is smaller than
2n/2) or they still leave exponentially many possibilities for s (if the pre-image of g(s) is larger).
Hence the attacker only has an exponentially small probability of hitting the right key s in the next
query that it makes.

But short of querying Π,Π−1 on the right s (and since g is independent of Π,Π−1), the answers
that the attacker gets in both the “hybrid” and the “real” cases are drawn from the same probability
distribution. Namely the initial value of f(g(s)) and the answers to all the queries to f are computed
using a random permutation which is independent of the queries that the attacker makes to Π,Π−1.

Similar claims can be made for many of the published PRP-to-PRF constructions in the literature,
e.g., the schemes from [4], the truncation construction [12], the XOR construction [20], etc.2

4 KDI-Secure PRFs in the Standard Model

We have shown that an ideal cipher is also a KDI-secure PRF with respect to any function g
that does not depend on the cipher itself. On the other hand, we saw, in the examples following
Definition 1, that in the standard model a secure cipher (or PRF) does not have to be KDI-secure,
not even with respect to simple functions such as the identity function. Here we investigate the
existence (and constructibility) of KDI-secure schemes in the standard model. One obstacle is the
fact that in the standard model it is harder to impose independence between a PRF (or cipher)
scheme and the function g.

4.1 No single deterministic construction for all g

We begin by showing that one cannot get a single deterministic construction that is KDI secure in
the standard model with respect to every singleton class {g}.

2For these constructions one gets KDI security in the “ideal cipher mode” but not necessarily KDI security “beyond
the birthday bound”. (Getting PRF security beyond the birthday bound has been the initial motivation for these
constructions.)
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Theorem 2 (No single construction for all g) There exists no deterministic construction of a
pseudo-random function family that is KDI-secure with respect to {g} for all functions g.

Proof Let F = {Fs} be a pseudo-random family. Define gF (s) = Fs(0), and we show that F
is not KDI-secure with respect to {gF }. An attacker A queries its key-dependent oracle to obtain
a = Fs(gF (s)) = Fs(Fs(0)); then it queries the F -oracle on 0 to obtain b = Fs(0); finally, it queries
the F -oracle on b to obtain c = Fs(b). A outputs 1 if a = c and 0 otherwise. Clearly, when
the oracle F is answered with the pseudo-random function Fs then a = c and A outputs 1 with
probability 1, while if the F -oracle is random then a and c are independent random values and
hence A outputs 1 only with small probability.

Given Theorem 2, our options for obtaining positive results in the standard model are either
to settle for randomized (or salted) constructions, or to come up with different constructions for
different functions g. In Section 4.2 we show a randomized construction that is KDI secure with
respect to g for any function g, while in Section 4.3 we show that for each “well spread” function g
one can construct an explicit deterministic PRF (whose definition depends on g) that is KDI-secure
with respect to the function g. This leaves open the question of whether one can construct, for each
function g, an explicit deterministic PRF that is KDI secure with respect to g. (We note that the
existence of non-explicit g-specific deterministic schemes for each g follows from our randomized
construction.)

4.2 A single randomized construction for all g

Here we describe a construction for a pseudo-random function family F that depends on a public
random “salt” r, such that for every function g, with high probability over the choice of r, the
family F r is KDI-secure with respect to g. This construction uses in an essential way strong
randomness extractors [21], see a brief description and definitions in Appendix A. On a high level,
our construction is as follows:

F rs (x) = fextr(s)(Compress(x))

where f is a standard PRF, ext is a randomness extractor, and Compress is some function whose
output is much shorter than its input. The goal is to “break the dependence” between the input
and the key, even in the case where the input is g(s). Roughly, since Compress outputs very
short strings, then there must be many different keys s that match any value of Compress(g(s)).
Namely, s still has high entropy even given the value Compress(g(s)), so extr(s) is likely to be
random and independent of Compress(g(s)). Of course, one also needs to argue Compress does not
introduce easy to find collisions which would destroy the PRF property of F . This can be done by
using a collision resistant function, but then we would have to assume that those exist. Instead,
below we show that some form of universal hashing is sufficient in this context. (This complicates
the proof, but let us rely on a weaker assumption.) We now provide the details.

Theorem 3 (A single randomized construction for all g) If pseudo-random function fami-
lies exist, there there exists a salted pseudo-random function family F r, which is KDI-secure with
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respect to {g} for any efficiently computable3 function g, with high probability over the choice of
the salt r.

Proof Let m = n/12. We use the following components:

• f : {0, 1}m × {0, 1}6m → {0, 1}12m is a standard pseudo-random function family with m-bit
keys, 6m-bit inputs, and 12m-bit outputs, and denote fs(·) = f(s, ·). (Such a PRF exists
under the assumption that PRFs, or one-way functions, exist.)

• ext : {0, 1}t × {0, 1}12m → {0, 1}m is a strong (4m, 2−m, 2−9m) randomness extractor,4 and
denote extr(·) = ext(r, ·).

• H : {0, 1}m ×{0, 1}12m → {0, 1}6m is a hash function, which is defined as follows: The m-bit
key is interpreted as a non-zero element u ∈ GF (26m) (say, by padding it with 5m one bits),
and the 12m-bit input is interpreted as two element x1, x2 ∈ GF (26m). Then the function is
evaluated as

H(u, 〈x1, x2〉) = Hu(x1, x2)
def= u · x1 + x2 (2)

when the evaluation is in GF (26m). (The scheme can use more general universal hash func-
tions; see the proof of Lemma 1 for the properties of this function H that we use in our
analysis.)

We define F : {0, 1}2t︸ ︷︷ ︸
salt

×{0, 1}n︸ ︷︷ ︸
key

×{0, 1}n︸ ︷︷ ︸
input

→ {0, 1}n︸ ︷︷ ︸
output

:

F r1,r2s (x) def= fextr2 (s)

(
Hextr1 (s)(x)

)
(3)

(recall that n = 12m). Roughly, the proof that F r1,r2 is KDI-secure consists of two arguments:

• In Lemma 1 we prove that the probability of collisions in the hash function H is small (this
is the most technically involved part of the proof).

• Moreover, since the key and output of H(g(s)) together are only 7m-bits long, then the PRF
key s must have high min-entropy even conditioned on these two values, and therefore extr2(s)
is nearly uniform even given the extractor seeds and these two values.

Lemma 1 Let g : {0, 1}12m → {0, 1}12m be any fixed function, H : {0, 1}m × {0, 1}12m → {0, 1}6m
be the function that is defined in Eq. (2), and let ext : {0, 1}t × {0, 1}12m → {0, 1}m be a strong
(4m, 2−m, 2−9m) randomness extractor. We say that a seed r ∈ {0, 1}t for the extractor is g-bad if
there exist x, x′ ∈ {0, 1}12m such that

• either Prs[u = extr(s), Hu(x) = Hu(x′)] > 2−m+1,

• or Prs[u = extr(s), x 6= g(s) and Hu(x) = Hu(g(s))] > 2−m+2.
3Hereafter, we limit our treatment to efficiently (polynomial-size) computable functions g.
4That is, for any distribution D with min entropy 4m or more, for all but a 2−9m fractions of the seeds r, it holds

that extr(D) is 2−m-close to the uniform distribution over {0, 1}m (see Appendix A). The 2−9m parameter facilitates
the proof, though it seems that one can do with a regular (4m, 2−m)-extractor.
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Otherwise, r is g-good. Then Prr[r is g-bad] < 2−m.

The proof of the lemma is presented later in this section. Using Lemma 1 we now prove the KDI-
security of the PRF from Eq. (3) using a sequence-of-games argument. We fix a function g and a
feasible adversary A, and consider several games between this adversary and a “challenger”. We
start with Game 0 that describes the “random” case in the definition of KDI-security, then go
through two hybrid games (called Games 1 and 2), until we get to Game 3 that describes the “real”
case in the definition of KDI-security. We show that the adversary cannot distinguish between
successive games in the sequence, except with an insignificant advantage. We use Lemma 1 in the
transition from Game 0 to Game 1, the security of the underlying PRF is used in the transition from
Game 1 to Game 2, and the argument about “high conditional min-entropy” that was sketched
above is used in the transformation from Game 2 to Game 3.

For the rest of the proof, fix an efficiently computable function g : {0, 1}n → {0, 1}n and an
adversary A. We assume that A is deterministic (or else we fix also the randomness of A). Since we
consider only a single function g, we can slightly simplify all the games by providing the adversary
with F r1,r2s (g(s)) as input (instead of waiting for it to query F r1,r2 on g(s)).

Game 0. In this game the challenger chooses three random strings r1, r2 ∈R {0, 1}t and s ∈R
{0, 1}n, and a random function φ : {0, 1}n → {0, 1}n. It computes x0 = g(s), provides the
adversary A with input (r1, r2, φ(x0)), and answers any further queries xi ∈ {0, 1}n of A with
φ(xi).

Below it is convenient to view this game as if the challenger chooses ahead of time all the po-
tential outputs of φ (call them y0, y1, . . . , yq), each chosen uniformly at random in {0, 1}n. The i’th
query φ(xi) is answered with yi if xi is different from all the other φ queries so far, and if xi = xj
for some j < i then this query is answered with the same answer that was given to φ(xj).

Game 1. The challenger chooses random strings r1, r2 ∈R {0, 1}t and s ∈R {0, 1}n, and a random
function φ′ : {0, 1}n/2 → {0, 1}n. It computes u = extr1(s), x0 = g(s), and h = Hu(x0). Then it
provides the adversary A with input (r1, r2, φ′(h)), and answers any further queries xi ∈ {0, 1}n
of A with φ′(Hu(xi)).

We can view this game as choosing y0, y1, . . . , yq ahead of time, then answering the i’th query xi
with yi if Hu(xi) is different from all previous values Hu(xj), and answering as in a previous query
xj if there is a collision. Note that as long as there are no collisions then A’s questions depend
only on the r, r′ and the yi’s, so we can consider playing the game as if there are no collisions,
and choosing s only after the fact. This will give us exactly the view of Game 0, and it will be
inconsistent with Game 1 only if the choice of s implies a collision. But since all the queries of A
were made before s was chosen, we can apply Lemma 1 to conclude that if r1 is not g-bad then
the probability of collisions is at most

(q
2

)
2−m+1 + q2−m+2, and we only have probability 2−m of

choosing a g-bad value for r1 (where m = n/12).

Game 2. The challenger now chooses four random strings r1, r2 ∈R {0, 1}t, s ∈R {0, 1}n, and
u′ ∈R {0, 1}n/12, computes u = extr1(s), x0 = g(s), and h = Hu(x0). Then it provides the
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adversary A with input (r1, r2, fu′(h)), and answers any further query xi ∈ {0, 1}n of A with
fu′(Hu(xi)).

Since the PRF key u′ here is chosen independently of everything else then the security of fu′ as
a (standard) pseudo-random function implies that the adversary has only a negligible advantage in
distinguishing Game 2 from Game 1.

Game 3. The challenger chooses only three random strings r1, r2 ∈R {0, 1}t and s ∈R {0, 1}n.
It computes u = extr1(s), u

′ = extr2(s), x0 = g(s), and h = Hu(x0). The challenger provides
the adversary A with input (r1, r2, fu′(h)), and answers any further query xi ∈ {0, 1}n of A with
fu′(Hu(xi)).

The crux of this step of the proof is showing that the views of the adversary in Game 2 and
Game 3 are statistically close. Since we assume that the adversary A is deterministic, then the
view in both games is uniquely determined by the strings r1, u, h, r2 and u′ (since everything else is
computed deterministically from them). Thus it is enough to show that the distribution over these
strings is almost the same in both games.

To show this, consider the modified challenger: it chooses r1 ∈R {0, 1}t and s∗ ∈R {0, 1}n
and computes u = extr1(s

∗) and h = Hu(g(s∗)). Then it re-chooses s conditioned on u and h,
namely it chooses s ∈R ext−1

r1 (u) ∩H−1
u (h), then chooses r2 ∈R {0, 1}t and computes u′ = extr2(s).

Clearly, this modified challenger induces an identical distribution over the vector 〈r1, u, h, r2, u′〉 as
in Game 4.

With this modification, denote by BAD the event (over the choice of r1, s∗) in which the set
ext−1

r1 (u) ∩H−1
u (h) (from which s is chosen) has less than 24m elements. (Recall that m = n/12).

Since h and u together have only 7m bits, then a simple counting argument shows that for every
r1, the probability of this BAD event (over the choice of s∗) is at most 2−m. On the other hand, if
the BAD event did not occur then s is chosen uniformly from a set of size at least 24m, so it has at
least 4m bits of min-entropy. Since ext is a strong extractor, then in this case we know that even
after fixing r2, u1, h, the distribution over u′ = extr2(s) is no more than 2−m away from the uniform
distribution over {0, 1}m, except with error probability of 2−9m over the choice of r2.

We conclude that the statistical distance between the views of A in Game 2 and Game 3 is at
most 2−m + 2−9m. This concludes the proof of Theorem 3.

Proof of Lemma 1. The rare collisions between two fixed inputs x, x′ are easy to show; the
harder problem is showing that there are no collisions between x and g(s) (in principle, since the
key to H, u, depends on s then there could be a value x that collides with relatively high probability
with g(s)). The idea behind this argument is as follows: on one hand, if g(s) has many pre-images
then ext will extract an almost uniform hashing key u even given g(s). On the other hand, if there
are many values of s for which g(s) has very few pre-images, then g(s) itself has high min-entropy,
even given the hashing key u = extr(s). Since for any fixed u there are only small number of values
that collide with x, then the chances that g(s) “hits” any of these values is small. To make these
arguments formal, we use the following three properties of the hash function H:

• H is “2−m-almost-universal”: For every fixed x 6= x′ ∈ {0, 1}12m, Pr[Hu(x) 6= Hu(x′)] ≤ 2−m,
where the probability is over choosing u uniformly at random from {0, 1}m.
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• H is regular: For every fixed key u ∈ {0, 1}m and every output z ∈ {0, 1}6m, the pre-image
size of z under Hu is bounded by |H−1

u (z)| ≤ 212m−6m = 26m.

• H has much shorter keys than outputs: the key-space for H has only 2m elements.

It is easy to check that the function from Eq. (2) satisfy these conditions.

Denote by SMALL ⊆ {0, 1}12m the subset of the keys s for which the pre-image of g(s) under
g is smaller than 24m,

SMALL
def=

{
s ∈ {0, 1}12m : |g−1(g(s))| < 24m

}
Also let BIG def= {0, 1}12m \ SMALL and g(BIG) def= {g(s) : s ∈ BIG}. For every element
y ∈ g(BIG), consider the uniform distribution on g−1(y): by definition this distribution has at
least 4m bits of min-entropy, so we hope to be able to use ext to extract from it an almost-uniform
m-bit string. A seed r is said to fail for y if the distribution extr(g−1(y)) is more than 2−m away
from the uniform distribution on {0, 1}m.

Since ext is an (4m, 2−m, 2−9m) randomness extractor then for any fixed y ∈ g(BIG) the
probability that a random seed r fails for y is at most 2−9m. Since each y ∈ g(BIG) has at least
24m pre-images under g then there could be at most 28m such elements, |g(BIG)| ≤ 28m. It follows
from the union bound that the probability that a random seed r fails for any y ∈ BIG is at most
2−m. If r does not fail for any y then in particular it holds for every y ∈ BIG and very x 6= x′

Pr[s ∈R g−1(y), u = extr(s),Hu(x) 6= Hu(x′)]
≤ dist(extr(g−1(y)), U) + Pr[u ∈R {0, 1}m,Hu(x) 6= Hu(x′)] = 2−m+1

From now on, we consider only seeds r that do not fail for any y ∈ g(BIG).5 In addition,
if the function g has |SMALL| > 24m then we require also that extr(SMALL) is at most 2−m

away from uniform. (Still, a random seed satisfies this with probability at least 1 − 2−m, since if
|SMALL| > 24m then |g(BIG)| ≤ 28m − 1, so again we have at most 28m different distributions.)
For the rest of the proof fix a seed r that satisfies these conditions, and we show that it must be
g-good.

Clearly, with this seed r the distribution extr({0, 1}12m) is at most 2−m away from uniform (since
it is a convex combination of distributions that are all at most 2−m away from uniform). It follows
that for any two fixed x, x′ ∈ {0, 1}12m the probability that Hu(x) = Hu(x′) when u = extr(s) (for
a random s ∈R {0, 1}12m) is at most 2−m+1. It remains to show that the probability of collision
between x and g(s) is small.

Consider now the following experiment: we choose s∗ ∈R {0, 1}12m and compute y = g(s). If
s∗ ∈ BIG then we re-choose s ∈R g−1(y), and otherwise we re-choose s ∈R SMALL. Clearly,
this experiment induces the same distribution on s. Now fix some x ∈ {0, 1}12m and we show that
the probability of a collision Hu(x) = Hu(g(s)) where u = extr(s) is at most 2−m+1. We start by
proving that the collision probability conditioned on s∗ ∈ BIG is small. This is quite clear, since
after we choose s∗ then the value of y = g(s∗) is already fixed (since we re-choose s ∈R g−1(y)).

5It is sufficient to consider r’s that may fail for a negligible fraction of y’s, but the argument is simplified when
one considers r values that never fail.
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But the value of u is still nearly uniform, so if y 6= x then the probability of a collision (over the
re-choosing s and computing u = extr(s)) is at most 2−m+1. Hence

Pr
s

[s ∈ BIG and x 6= g(s) and Hu(g(s)) = Hu(x)]

≤ Pr
s

[x 6= g(s) and Hu(g(s)) = Hu(x) | s ∈ BIG] ≤ 2−m+1

We complete the proof by bounding the collision-probability also for the case s ∈ SMALL. (This
is the only place where we use the last two conditions from above on the hash function H.) Indeed,
we have

Prs[s ∈ SMALL and Hextr(s)(g(s)) = Hextr(s)(x)]

=
∑
u

Pr[s ∈ SMALL and u = extr(s) and Hu(g(s)) = Hu(x)]

≤
∑
u

Pr[s ∈ SMALL and Hu(g(s)) = Hu(x)] (∗)

Recall that for any fixed hashing key u and output z = Hu(x), the pre-image of z under Hu is
of size 26m, so there are at most 26m values of g(s) that can collide with x under Hu. Moreover,
since s ∈ SMALL then each such value of g(s) has at most 24m pre-images. Hence for every fixed
hashing key u there are at most 210m values s ∈ SMALL for which Hu(g(s)) = Hu(x). If we now
use the fact that there are at most 2m different keys u then we can continue the inequality (∗) as

(∗) ≤
∑
u

26m · 24m

212m
= 2m+6m+4m−12m = 2−m

We therefore conclude that

Pr
s

[x 6= g(s) and Hu(g(s)) = Hu(x)]

≤ Pr
s

[s ∈ BIG and x 6= g(s) and Hu(g(s)) = Hu(x)] + Pr
s

[s ∈ SMALL and Hu(g(s)) = Hu(x)]

≤ 2−m+1 + 2−m ≤ 2−m+2

Extension to larger families. One can ask whether the result from Theorem 3 can be extended
to provide KDI-security against larger families, not just a singleton {g}. One hurdle in proving
such extensions is that, as we saw in Section 2, when the family of functions g is too large then
no construction can be KDI secure against it. So we must restrict the function family C so as to
exclude a binary-search on the key. This can be formalized in a manner similar to the way it was
done in [3]. Moreover, by extending C we get more distributions from which we may want to extract
entropy (roughly 28m for every function g ∈ C), and we need to extend Lemma 1 to prove that
even collisions between Hu(g1(s)) and Hu(g2(s)) are rare, for any g1, g2 ∈ C. This can be done by
using even stronger extractors and even smaller hashing keys. Using these modifications, we can
show that the construction from Eq. (3) (with somewhat stronger extractors and smaller hashing
keys) is KDI-secure with respect to every class C with 2poly(n) functions that “does not allow binary
search for the key”.
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4.3 On g-dependent deterministic KDI-secure schemes

The construction from Section 4.2 implies a non-constructive deterministic g-dependent KDI-secure
scheme for each function g (i.e., for each g, there exist values rg, r′g for which F rg ,r

′
g is KDI-secure

with respect to g). In this section we attempt a constructive proof of the same fact, namely, a
deterministic transformation that takes a circuit that computes g and produces a PRF that is
KDI-secure with respect to function g. We succeed to do so only for functions g that are “well
spread” (i.e., for each s, g−1(g(s)) is not too big).

First try. We begin with a simple construction that at first glance looks as if it should work.
Let f = {fs} be a pseudo-random function with (n+1)-bit inputs and n-bit outputs and keys. Fix
some function g : {0, 1}n → {0, 1}n, and define a family F

(g)
= {F (g)

s } with n-bit inputs, outputs,
and keys:

F
(g)

s (x) =

{
fs(1|x) if x 6= g(s)
fs(0) if x = g(s)

(4)

Perhaps surprisingly, we show that this construction does not always work:

Negative Example 2 There are functions g s.t. F (g) from Eq. (4) is not KDI-secure with respect
to {g}.

Proof Define g(s) = fs(0). We show a KDI-attacker A that distinguishes between F (g) and a
random function. The attacker A has input a = φ′(g) = φ(g(s)), it queries the oracle φ on a to get
b = φ(a), and outputs 1 if a = b and 0 otherwise.

When the φ-oracle is a real one (i.e., instantiated with F
(g)
s ) then we have a = F

(g)
s (g(s)) =

fs(0) = g(s), and therefore also b = F
(g)
s (a) = F

(g)
s (g(s)) = fs(0), thus A outputs 1 with proba-

bility 1. On the other hand, if the φ oracle is a random function then a is a random value and
b = φ(a) is an independent random value, hence a = b happens only with small probability.

The reason for this counter-example is that the attacker is able to compute g(s) given access
to F (g). Indeed, it is not hard to show that when g(s) is unpredictable even given access to F (g)

then the construction from above is secure (a proof is implicit in the proof of Lemma 2 below).
Thus we try to construct a PRF F (g) such that g(s) is unpredictable given access to F (g)

s (·) and
then use it as above. (Clearly, this is not possible if there is a single value of g(s) that occurs with
noticeable probability, but it does work as long as g(s) has sufficient min-entropy.)

Lemma 2 If PRF families exist, then there exist a transformation T that takes any constant α > 0
and a description of an (efficiently computable) function g, and outputs a description of a PRF
family F (g), such that if the distribution g(s) has min-entropy at least αn + ω(log n) then F (g) is
KDI-secure PRF with respect to the singleton class {g}.

Proof Fix some α > 0, and let f : {0, 1}αn × {0, 1}n → {0, 1}n be a standard pseudo-random
function family with αn-bit keys and n-bit inputs and outputs, and denote fs(·) = f(s, ·). Denote
prfix(s) the first αn bits of s, and we define

F (g)
s (x) def=

{
fprfix(s)(1|x) if x 6= g(s)
fprfix(s)(0) if x = g(s)

(5)
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We show that if the distribution on g(s) for a random s has min-entropy more than αn+ ω(log n)
then the function F

(g)
s (x) from above is KDI-secure with respect to g. Roughly, the reason is

that since prfix(s) has only αn bits then g(s) still has min-entropy ω(log n) even conditioned on
prfix(s). As the view of A when interacting with F

(g)
s depends on s only via prfix(s), then g(s) is

unpredictable to A, and therefore so F (g)
s should be secure.

Formally we show how to transform a KDI attacker A(g) against F (g) into a standard PRF
attacker A against the underlying PRF family f , where both attackers have the same distinguishing
advantage except for a negligible difference.

Attacker A interacts with a “box” (oracle) φ that is implemented via either a random function
or a function from the family fs. It invokes A(g), and since A(g) expect as input the value F (g)

s (g(s))
then A gives it the input value φ(0). When A(g) queries a value xi, then A responds with φ(1|xi).
When A(g) halts then A halts as well with the same output bit. It is clear that in both the “real”
and “random” cases, the view of A(g) during an attack on F (g) (as per Definition 1) is identical to
its view when interacting with A, unless one of the xi’s that it queries happens to be equal to g(s).
(In the “Real” case this is true since s′ = prfix(s) is random when s is). We now show that in both
the “real” and “random” cases, this event only occurs with a negligible probability.

“Random” case. In this case, as long as A(g) does not query xi = g(s), the answers that it gets
are only random nit-strings, and they do not carry any information on the value s (or on g(s)).
Hence the probability that A(g) will query any xi = g(s) is at most as the most likely value of
g(s) times the number of queries that A(g) makes. By assumption, A(g) makes only polynomially
many queries, and the min-entropy of g(s) is at least αn + ω(log n), so the probability of having
any xi = g(s) is at most poly(n) · 2−αn+ω(logn) = negl(n).

“Real” case. In this case, as long as A(g) did not query xi = g(s) explicitly, all responses depend
on s only via s′ = prfix(s). Therefore, for every query i the probability of xi = g(s) is no more than
the most likely value of g(s) given s′ = prfix(s). But since the min-entropy of g(s) is αn+ ω(log n)
and s′ = prfix(s) only has αn bits, then the probability of this most-likely input can be bounded by∑

s′

Pr
s

[prfix(s) = s′] ·max
y

{
Pr
s

[
g(s) = y | prfix(s) = s′

]}
≤

∑
s′

Pr
s

[prfix(s) = s′] ·max
y

{
Prs[g(s) = y]

Prs[prfix(s) = s′]

}
=

∑
s′

max
y

{
Pr
s

[g(s) = y]
}
≤ 2αn · 2−(αn+ω(logn)) = negl(n)

Hence in this case too the probability of getting any query with xi = g(s) is negligible.

Randomized extension to any function g. The construction from Eq. (5) can be extended
(via randomization!) to deal also with “low entropy” functions g by replacing prfix(s) with a
randomness extractor extr(s), i.e.,

F
(g,r)

s (x) =

{
fextr(s)(1|x) if x 6= g(s)
fextr(s)(0) if x = g(s)

(6)
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where f accepts (n+1)-bit inputs and short keys (if needed, such keys can be expanded into longer
ones using a pseudorandom generator applied to extr(s)).

As in the case of the scheme from Eq. (3), the intuition is that if g is “low entropy” then extr(s)
is close to uniform even given g(s), and for “high-entropy” g(s) the reasoning from the proof above
still holds when replacing prfix(s) with extr(s). These arguments can be extended to arbitrary
functions g as stated in Lemma 3 below. Note that the resulting scheme is both randomized and
“tailored” for each g, and hence inferior to the construction in Section 4.2. On the other hand,
scheme (6) preserves invertibility, namely, if f is a family of invertible pseudorandom permutations
(over n + 1 bits) then F

(g,r)
is a KDI-secure invertible pseudorandom family mapping n bits into

n + 1 bits. This fact is used in an essential way in Section 6 to claim KDI-secure encryption (cf.
Theorem 4).

Lemma 3 If the family f is a secure PRF and ext is a strong randomness extractor, then for every
(efficiently computable) function g, the family F

(g,r)
from Eq. (6) is a KDI-secure PRF with respect

to the singleton class {g}, with high probability over the choice of the salt r.

4.4 KDI security relative to the identity function

In the case of the identity function, g(s) = s, one can use the simple scheme from Eq. (4). Here
we describe a construction that is more involved but somewhat more “natural” (or “less tailored”),
which is KDI-secure with respect to the identity function.6 Assume that we have a pseudo-random
generator G : {0, 1}n → {0, 1}2m, and denote the first m bits of output of G on seed s by G1(s)
and the last m bits by G2(s). Assume further that G has the extra property that it is hard to find
two different seeds s1, s2 such that G2(s1) = G2(s2).

We call a generator with this extra property a collision-resistant generator. For example,
one can verify that such a pseudo-random generator (with m = n) can be constructed from any
one-way permutation ρ over m bits using the Blum-Micali construction [6]:

G(s) = b(s) b(ρ(s)) b(ρ2(s)) . . . b(ρm−1(s)) | ρm(s) (7)

where b(·) is a hard-core predicate for ρ(·). It is also plausible that ad-hoc constructions such as
G(s) = AESs(0)|AESs(1)|AESs(2) · · · have this property, since we can make m sufficiently larger
than n. Given a collision-resistant pseudo-random generator G(·) and a pseudo-random function
fs(·), we construct another pseudo-random function Fs(·) by setting

Fs(x) = fG1(s) (G2(x)) . (8)

Lemma 4 The construction F is KDI-secure with respect to the singleton class containing the
identity function C = {ID}, assuming that f is a pseudo-random function and G is a collision-
resistant pseudo-random generator.

6This construction is inspired by an unpublished “symmetric PRF” construction due to Barak [2]. (A “symmetric
PRF” is a function f(x, y), which is a PRF both when x is viewed as the key and y as the input, as well as when y
is viewed as the key and x as the input.)
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Proof Sketch We first note that because of the collision-resistance of G it is unlikely that the
attacker will ever query F on two inputs x, x′ such that G2(x) = G2(x′). Assuming that this does
not happen, we consider a “hybrid game” where the attacker’s functional query (i.e., its query of
Fs(s)) is answered by fG1(s)(r) for a random r instead of by fG1(s)(G2(s)). Then we show that the
advantage of the attacker in the hybrid game is close to its advantage in the real game (since G is
a PRG), and at the same time this advantage must be negligible (since f is a PRF).

We remark that although the identity function does not appear to be “hard wired” in the
definition of F from above, this construction is not secure in general against any other function.
For example, consider the function g(s) = s + 1, and we show a PRF f and a collision-resistant
PRG G such that the resulting F is not KDI-secure with respect to C = {g}.

Assume that we have a PRG G(s) = G1(s)|G2(s) which is collision resistant with respect to
both G1 and G2. (Again, it is plausible that an ad-hoc construction such as G(s) = AESs(0)|
AESs(1)|AESs(2) · · · has this property, since we can have |G1(s)| = |G2(s)| � |s|.) We then define
a new PRG

G̃(s|b) = G̃1(s|b) | G̃2(s|b)

where
if b = 0 then G̃1(s|b) = G1(s), G̃2(s|b) = G2(s)|b
if b = 1 then G̃1(s|b) = G2(s), G̃2(s|b) = G1(s)|b

It is clear that G̃ is a collision-resistant PRG. Also, let f be a PRF with input which is one-bit
longer than the key, and we modify it as follows:

f ′s(x|b) =

{
0 if x = s
fs(x|b) otherwise

Again, clearly f ′ is still a PRF. However the construction F from Eq. (8) is NOT KDI-secure with
respect to g(s) = s+ 1, since for any key whose last bit is zero, s′ = s|0, we get

Fs′(s′ + 1) = Fs|0(s|1) = f ′
G̃1(s|0)(G̃2(s|1)) = f ′G1(s)(G1(s)|1) = 0

5 Tweakable Pseudo-random Permutations

Recall that a tweakable cipher (or tweakable pseudo-random permutation) [18] has a key and two
inputs: a plaintext and a tweak. Below we use the convention that for security parameter n, both
the plaintext and the tweak are n-bit strings, and that the cipher key is of length {0, 1}`(n) where
` is some polynomially bounded function (we often use `(n) = n or `(n) = 2n). Formally a family
of tweakable pseudo-random permutations is an ensemble

P =
{
ps,t ∈ S ({0, 1}n)

∣∣∣∣ s ∈ {0, 1}`(n), t ∈ {0, 1}n
}
n∈N

where S denotes the symmetric group, and we require that there are efficient evaluation and in-
version procedures that given any s, t ∈ {0, 1}n and any x ∈ {0, 1}`(n) compute y = ps,t(x) and
z = p−1

s,t (x), respectively.
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The standard security definition for strong tweakable pseudo-random permutations as defined
in [19, 18] asserts that no feasible attacker Aπ,π′(1n) (with oracle access to π, π−1) can distinguish
with any non-negligible advantage the case where for a random s ∈R {0, 1}n we set π(t, x) ≡ ps,t(x)
and π−1(t, x) ≡ p−1

s,t (x), from the case where for every t ∈ {0, 1}n, π(t, ·) is chosen as a random
permutation over {0, 1}`(n) and π−1(t, ·) is set to the inverse permutation.

Adding KDI-security to this definition requires some choices. The attacker in this model has
two oracles, each with two inputs (namely π(·, ·) and π−1(·, ·)) and we need to decide what input
to what oracle can depend on the key. In this work we only consider the variant where the
plaintext/ciphertext inputs to both π and π−1 can depend on the key, but not the tweaks. The
reason that we do not consider key-dependent tweaks is that tweaks typically represent some context
information or label that comes from a higher layer (e.g., in the storage application that motivated
this paper the tweak represents the physical position where the data is to be stored), and so it may
be reasonable to assume that it does not depend on the key.

With these choices, we modify the standard definition of tweakable PRPs by giving the adversary
access to two additional oracles ψ,ψ−1 that take as input a tweak t and a description of a function
g and output π(t, g(s)) and π−1(t, g(s)), respectively.

Definition 2 (KDI-secure tweakable strong PRPs) A family P of tweakable pseudo-random
permutations is KDI-secure with respect to a class C of circuits if no feasible attacker Aπ,π−1,ψ,ψ−1

(1n)
can distinguish with non-negligible advantage between the following two cases:

1. The key s ∈R {0, 1}n is chosen at random, and for any t, x, g the oracles are set as, π(t, x) ≡
ps,t(x), π−1(t, x) ≡ p−1

s,t (x), ψ(t, g) ≡ ps,t(g(s)), and ψ−1(t, g) ≡ p−1
s,t (g(s));

2. The key s ∈R {0, 1}n is chosen at random, for every t ∈ {0, 1}n we set π(t, ·) to a ran-
dom permutation over {0, 1}` and π−1(t, ·) to its inverse, and then ψ(t, g) ≡ π(t, g(s)), and
ψ−1(t, g) ≡ π−1(t, g(s)).

As before, Definition 2 is adapted to the “ideal cipher model” by giving oracle access to the ideal
cipher Π,Π−1 to the construction itself, the attacker A, and potentially also the circuits in C.

Below we demonstrate that some constructions of tweakable ciphers in the literature are KDI
insecure against simple functions of the key, while others can be proven secure in the ideal cipher
model.

KDI-insecurity of the LRW constructions. Consider the following instantiation of the second
construction of Liskov et al. from [18]. This instantiation has two keys, denoted s1, s2, where s1 is
used as a key for an underlying block cipher E and s2 is treated as an element of GF (2n) with n
the block-size of E. This construction then defines the following tweakable cipher, with both the
block size and the tweak size equals to n bits:

Ẽs1,s2(t, x) = Es1((t · s2)⊕ x)⊕ (t · s2) (9)

where t · s2 is a multiplication in GF (2n)). In [18] it is shown that the generic construction
Es1(hs2(t) ⊕ x) ⊕ hs2(t) is a secure tweakable cipher when E is a secure cipher and h is a “xor-
universal” hash function, which implies the security of Eq. (9) since hs2(t) = t · s2 is indeed
xor-universal.
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However, as pointed out when this construction was considered for the IEEE 1619 standard, this
construction is not KDI-secure with respect to the function g(s1, s2) = s2 (i.e., when “encrypting”
the element s2 from the secret key). The attacker can query ψ(0, g) (i.e., using tweak value 0 and
“plaintext” s2) and also π(1, 0) (i.e., tweak value 1 and “plaintext” 0), thus getting

c1 = Ẽs1,s2(0, s2) = Es1(s2) and c2 = Ẽs1,s2(1, 0) = Es1(s2)⊕ s2

Next the attacker can compute s2 = c1⊕ c2 and then verify this value (e.g., by asking to “decrypt”
the value of c1 ⊕ 2s2 with respect to the tweak value 2).

Negative Example 3 The construction from Eq. (9) is not KDI-secure with respect to the func-
tion g(s1, s2) = s2.

KDI-security of the “trivial construction”. Alternatively, consider the “trivial” construction
of tweakable SPRP from a block cipher

Ẽs(t, x) = EEs(t)(x) (10)

It is easy to see that if E is a secure cipher then this construction is a secure tweakable cipher.
Although there are functions g for which this construction is not KDI-secure (for example the
function g(s) = E−1

Es(t)
(0), we can show, however, that Ẽ from Eq. (10) is KDI-secure in the “ideal

cipher model” with respect to any function that does not depend on the cipher itself.

Lemma 5 Let g be any Boolean circuit with no Π-gates or Π−1-gates. Then the construction Ẽ
from Eq. (10) is a KDI-secure tweakable strong pseudo-random permutation in the “ideal cipher
model” with respect to the singleton class C = {g}.

Proof Sketch Again, the proof is straightforward. Recall that the adversary in this game has
six oracles: Π(·, ·) and Π−1(·, ·) that represent the ideal cipher, Ẽ(·, ·) and Ẽ−1(·, ·) that represent
either the construction with a fixed random key s or a random tweakable permutation (independent
of Π), and ψ(·) and ψ−1(·) that allow key-dependent queries7 with ψ(t) = Ẽ(t, g(s)) and ψ−1(t) =
Ẽ−1(t, g(s)) (where s is the secret key in case one and just a random string in case two).

Similarly to the proof of Theorem 1, the proof goes by arguing that the attacker is very unlikely
to ever query its Π or Π−1 oracles on the right “key” s, and without such queries the view of the
attacker is the same in both cases.

Other constructions. We comment that a similar lemma can be proven also for Rogaway’s XEX
construction from [23], where on input x and tweak (i, j) one computes:

Ẽs((i, j), x) = Es((2i · Es(j))⊕ x)⊕ (2i · Es(j)) (11)
7Compared to Definition 2 we slightly simplify notations here by having ψ,ψ−1 as single-input oracles. We can

do this because the function g is always the same, since we are interested in the singleton class C = {g}.
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Namely, this construction too can be proven KDI-secure in the “ideal cipher model” with respect
to any function g that does not depend on the ideal cipher. The proof itself is very similar to
Rogaway’s proof of security for XEX [23]. The key-dependent queries are handled using the fact
that in the “ideal cipher model” the quantity Es(j) is independent of s for all j, and therefore the
attacker is unlikely to be able to issue two queries for which (2i · Es(j)) ⊕ x = (2i

′ · Es(j′)) ⊕ x′
(even if x, x′ can be set as functions of the secret key s).

6 Symmetric Encryption

Being randomized, encryption schemes are potentially easier to make KDI secure than non-randomized
primitives such as PRFs and ciphers. Black, Rogaway, and Shrimpton studied in [5] the question of
KDI-security for symmetric encryption (under the name KDM-security). They presented a defini-
tion of security (using much of the same rationale as in Section 2), and proved that it can be easily
met in the random-oracle model. However, we do not know of a construction that achieves similar
level of KDI security in the standard model (not even with respect to all singletons {g}). Yet, we
provide two significant results in this section: The first shows that a natural “textbook” PRF-based
encryption scheme that is KDI-secure in the random oracle model (with respect to all functions
g) is not KDI-secure in the standard model, not even with respect to the identity function, not
even when the PRF itself is KDI secure, and not even with respect to “practical instantiations”
of the pseudorandom function. The second result shows that for every function g we can build an
encryption scheme that is KDI-secure with respect to {g} (based on any invertible pseudorandom
function, such as any block cipher).

6.1 Definitions

Recall that a (symmetric) encryption scheme consists of algorithms for key-generation, encryption
and decryption, E = (Gen,Enc,Dec), with Gen, Enc randomized and where both Enc and Dec
use the secret key that is generated by Gen. Below we assume that for security parameter n,
the messages that are encrypted are of length n. The standard definitions of CPA-security for
symmetric encryption (cf. [11, 16]) asserts that no feasible attacker with oracle access to the
encryption algorithm (with the secret key hard-wired) can produce two equal-length messages
m,m′ for which it can distinguish with non-negligible advantage a random encryption of m from a
random encryption of m′. The standard definition for CCA-security is similar (cf. [22, 16]) except
that the attacker is also given access to a decryption oracle, but is not allowed to query that oracle
on the ciphertext for which it needs to decide if it came from m or m′.

As usual, we incorporate KDI-security by providing another oracle to the attacker that on input
a function g outputs the encryption of g(s) under the secret key s.8

Definition 3 (KDI-secure encryption) Let C be a class of functions (circuits). A symmetric
encryption scheme E = (Gen,Enc,Dec) is CPA-KDI-secure with respect to C if no feasible attacker
Ae,e′(1n) has non-negligible advantage in guessing the value of the bit b in the following game:

8The output size of the functions g considered here is assumed to match the size of inputs to the encryption
function Enc.
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1. The key-generation algorithm is run to get s← Gen(1n).

2. The attacker Ae,e′(1n) is given the security parameter and access to two oracles e(·), e′(·),
which are defined by e(m) ≡ Enc(s;m) for m ∈ {0, 1}n, and e′(g) ≡ Enc(s; g(s)) for g ∈ C.
The attacker A interacts with these oracles and then outputs two queries q1, q2 for these
oracles (each qi can be a query to either e(·) or e′(·)).

3. A bit b ∈R {0, 1} is chosen at random and the attacker is given c∗, the ciphertext resulting
from encrypting qb under the corresponding oracle. The attacker A can continue interacting
with its oracles, and then it outputs a guess b′ for the bit b.

We similarly say that E is CCA-KDI-secure with respect to C if no no feasible attacker has
non-negligible advantage in guessing the value of the bit b in the modified game where Ae,e′,d(1n)
is also given access to an oracle d(c) ≡ Dec(s; c), but cannot query the oracle d(·) on the challenge
ciphertext c∗ produced in step 3 or in any output from oracle e′.

It is important to observe that we do not allow key-dependent queries to the decryption oracle.
In particular, note that if we allowed such queries then one could query the decryption oracle with
the function g(s) = Encs(s) and obtain s (this is possible even if one restricts the functions in C to
be deterministic, as we could define the function g(s) to be the encryption of s with the random
coins set to a fixed string, say all zeros). Finally, note that Definition 3 can be adapted to the
“ideal cipher model” by providing A (and potentially also the circuits in C) with oracle access to Π
and Π−1.

6.2 Insecurity of a textbook randomized scheme

Below we consider a very natural PRF-based symmetric encryption scheme, which is essentially
the scheme that was proven secure in the random-oracle model by Black et al. We show that not
only this construction fails to be KDI secure in the standard model, but this failure is manifested
even for a natural instantiations of the PRF. Given a PRF fs(·) we define

Encs(x) = (r, fs(r)⊕ x) (12)

where r is chosen at random with each encryption. This encryption scheme is CPA-secure (up to
the birthday bound on |r|) if fs(·) is a secure PRF, and, intuitively, it appears that it “should”
also be KDI-secure. In particular, it was shown in [5, Thm 5.1] that when fs is implemented as
fs(x) = H(s|x) and H is a random oracle, then the scheme in Eq. (12) is KDI-secure with respect
to all functions of the key s.

We demonstrate, however, that this construction is not KDI-secure in general, and perhaps more
surprising it even fails for practical PRFs. Specifically, we show that when the underlying PRF
is implemented from a block cipher via the Davies-Meyer construction, the resulting encryption
scheme is not KDI-secure, even with respect to the identity function (and even if the block cipher
itself is an ideal cipher!). Recall the Davies-Meyer construction

fs(x) = Ex(s)⊕ s (13)
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This construction was meant as a component of a collision-resistant hash function, but for con-
temporary block ciphers one can expect it to also be a good PRF. (For example, the assumption
that the Davies-Meyer compression function keyed via its IV is a PRF was used in the analysis
of HMAC.) Moreover, it is easy to prove that when E is an ideal cipher, then the Davies-Meyer
construction is a KDI-secure PRF with respect to any function g that does not depend on the ideal
cipher itself

Plugging the Davies-Meyer construction in Eq. (12) we obtain the encryption scheme Encs(x) =
(r, (Er(s)⊕ s)⊕ x). An attacker that asks to encrypt the secret key will get Encs(s) = (r, (Er(s)⊕
s)⊕s) = (r, Er(s)), from which it can recover s (using the decryption routine E−1 with r as a key).
We note that this construction fails even if E is an ideal cipher (and also when augmented with a
MAC function to provide CCA security).

Negative Example 4 The symmetric encryption scheme Encs(x) = (r, x⊕ fs(r)), with fs imple-
mented via the Davies-Meyer construction fs(x) = Ex(s) ⊕ s, is KDI-insecure with respect to the
identity function, even when E is an ideal cipher.

6.3 KDI-secure symmetric encryption

On the positive side, we show that an invertible KDI-secure PRF can be used to obtain KDI-secure
symmetric encryption, using a slight variation of the insecure “textbook construction” from above.
(We call a PRF fs invertible if given s and fs(x) one can efficiently recover x.) Specifically, consider
the encryption scheme

Encs(x) = (r, fs(r)⊕ fs(x)), Decs(r, y) = f−1
s (y ⊕ fs(r)) (14)

Lemma 6 If the family fs has input size ω(log n) (with n the security parameter), and if it is a
KDI-secure (invertible) PRF with respect to a class C, then the encryption scheme from Eq. (14)
is CPA-KDI secure with respect to the same class C.

Proof Fix a class C and assume toward contradiction that the encryption scheme from Eq. (14) is
not CPA-KDI secure with respect to C, and we show that the underlying family fs cannot be KDI-
secure PRF with respect to C. Let AE be an attacker that demonstrates the KDI-insecurity of the
encryption scheme, and we use it to describe an attacker Af that demonstrates the KDI-insecurity
of the PRF family.

Af is provided with oracle access to φ, φ′, as described in Definition 1. It activates the at-
tacker AE (on the same security parameter). When AE asks to encrypt an explicit string x then
Af chooses a random string r, queries s = φ(r) and t = φ(x) and returns the ciphertext (r, s ⊕ t)
to AE . When AE asks to encrypt g(s) for some g ∈ C then Af chooses again a random string r
queries s = φ(r) and t = φ′(g) (= φ(g(s))), and returns the ciphertext (r, s ⊕ t) to AE . When
AE outputs q0, q1 then Af chooses a random bit b and returns an encryption of qb using the same
procedure as above. Finally Af outputs whatever AE does.

It follows by definition that when φ = fs then the view of AE is identical to its view when
interacting with the real encryption scheme. On the other hand, when φ is a random function then
the view of AE is nearly independent of q0, q1 (except for the case where the random string r that
Af chooses for the encryption of qb collides with an earlier input to φ or φ′, which happens with
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negligible probability if |r| is large enough). Hence the advantage of Af is negligibly close to half
the advantage of AE .

Lemma 6 tells us that we can get KDI-secure encryption from invertible KDI-secure PRFs, so
it is natural to ask if the KDI-secure PRF schemes studied in this paper can be made invertible.
Clearly, the trivial construction fs(x) = ES(x) from Section 3.1 is invertible, and it is KDI-secure
in the ideal cipher model (but not in the standard model). On the other hand, the construction
from Eq. (3) in Section 4.2, i.e., Fs(x) = fext′(s)(Hext(s)(x)), seems inherently non-invertible; in fact
the security proof for it relies in an essential manner on H(x) having many fewer bits than x itself.
Fortunately, the g-dependent construction (6) from Section 4.3 is invertible if the underlying PRF
f is invertible (e.g., when f is a block cipher) and it is KDI secure wrt {g} in the standard model.
Therefore, if we instantiate the encryption scheme defined in Eq. (14) with the scheme F (g,r) of
Eq. (6) (and assuming the function f underlying F (g,r) is invertible) we obtain an encryption scheme
Enc(g) that is, according to Lemma 6, CPA-KDI-secure. Note that the random salt r used in F (g,r)

(which is in addition to, and independent from, the randomness r in Eq. (14)) can be chosen by the
encryptor with each encryption or can be chosen at random and be fixed as a parameter of Enc(g).
From this discussion and Lemma 3 we obtain the following result.

Theorem 4 If secure PRF families exist then for every efficiently computable function g there
is a symmetric encryption scheme that depends on g and is CPA-KDI-secure with respect to the
singleton class {g}.
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A Randomness extractors

Min-entropy and statistical distance. We use the terms probability distributions and ran-
dom variables pretty much interchangeably. For a discrete random variable X, the min-entropy
of X is related to the most probable value that X can assume, specifically min-entropy(X) =
− log2 (maxx Pr[X = x]). In other words, if min-entropy(X) = ` then X does not assume any value
with probability of more than 2−`. In this case we also say that “X has ` bits of min-entropy.”
The statistical distance between two random variables X,Y is defined as

dist(X,Y ) def=
∑
x

|Pr[X = x]− Pr[Y = x]|

where the summation is taken over the union of the supports of both X and Y . If dist(X,Y ) = ε
then we say that X is ε-close to Y .

Randomness extractors. A (strong) randomness extractor [21] is a function extr(x) that takes a
random seed r and a “somewhat random” input x, and produces an output y (shorter than x) which
should be almost uniform, even given r. Specifically, a function ext : {0, 1}t × {0, 1}n → {0, 1}m is
a strong (k, ε) extractor if for any distribution D over {0, 1}n with more than k bits of min-entropy,
the statistical distance between the two distributions{

〈r, y〉 : r $←{0, 1}t, x $←D, y ← extr(x)
}

and
{
〈r, y〉 : r $←{0, 1}t, y $←{0, 1}m

}
is at most ε. For any k > m, there are known constructions (e.g., using the leftover hash lemma
[13]) that are strong (k, ε) extractors with ε = 2−(k−m)/2.

We will also need a slightly stronger notion of a (k, ε, δ) extractor, where with probability 1− δ
over the seed r, the distribution extr(D) is ε-close to uniform. An extension of the leftover hash
lemma [24, 9] says that we can get (k, ε, δ) extractors with δ = 2−` and ε = 2−(k−m−O(log `))/2 using
O(`)-wise independent hash functions.
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