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Abstract. The strongest security definition for public key encryption (PKE) schemes
is indistinguishability against adaptive chosen ciphertext attacks (IND-CCA). A prac-
tical IND-CCA secure PKE scheme in the standard model is well-known to be difficult
to construct given the fact that there are only a few such kind of PKE schemes avail-
able. From another perspective, we observe that for a large class of PKE-based appli-
cations, although IND-CCA security is sufficient, it is not a necessary requirement.
Examples are Key Encapsulation Mechanism (KEM), MT-authenticator, providing
pseudorandomness with a-priori information, and so on. This observation leads us
to propose a slightly weaker version of IND-CCA, which requires ciphertexts of two
randomly selected messages are indistinguishable under chosen ciphertext attacks.
Under this new security notion, we show that highly efficient schemes proven secure
in the standard model can be built in a straightforward way. We also demonstrate
that such a security definition is already sufficient for the applications above.

Keywords: Public Key Encryption, Adaptive Chosen Ciphertext Attacks, Standard
Model

1 Introduction

Design and analysis of public key encryption (PKE) schemes are among the most
important tasks for cryptographers, and an appropriate security definition is a pre-
requisite before any work. If the definition is too weak, the resulting schemes are not
able to be widely deployed; on the other hand, if the definition is too strong, the
design work may become very difficult, and the schemes may be very complicated
and inefficient.

The commonly agreed (and also strongest) security definition for PKE schemes
is Indistinguishability under Chosen Ciphertext Attacks (or IND-CCA) [17, 25]. It
ensures that the ciphertexts of any two different messages1 selected by any poly-
nomial time adversary are indistinguishable even if the adversary has access to a
decryption oracle. Such a definition of security allows the encryption scheme to be
safely deployed in the widest range of applications. Many practical PKE schemes

1 Hereinafter we simply assume that all the messages have equal length.
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have been proven to be IND-CCA in the random oracle model, for example, RSA-
OAEP[18], OAEP+[30], SAEP[8]. However, security in the random oracle model
does not rule out all the possible attacks in the real world [6, 11]. On the other
hand, only few efficient IND-CCA schemes are constructed in the standard model.
Some IND-CCA schemes were proposed by following the Naor-Yung paradigm [22,
23, 26, 27], but they are quite impractical as they rely on generic non-interactive
zero knowledge proofs. The first provably secure and practical PKE scheme in the
standard model was proposed by Cramer and Shoup[13], later, two fairly practical
schemes were also proposed by the same authors [14], and these are the only known
efficient PKE schemes in the standard model2.

In this paper, we reconsider the notion of IND-CCA. After reviewing some appli-
cations of PKE, we find that IND-CCA is a sufficient but not necessary condition.
For example, in the construction of hybrid encryption schemes, we can use Key En-
capsulation Mechanism (KEM) to replace PKE in order to achieve high efficiency
[2, 20, 21, 29]. In another example, when we use PKE for authentication purpose [4],
we only need to ensure the confidentiality of a random challenge. Hence, we con-
sider a variant of the IND-CCA definition for PKE schemes, which we call Weak
INDistinguishability under Chosen Ciphertext Attacks (or simply, WIND-CCA). In
this definition, we require that the ciphertexts of two messages drawn independently
and randomly from the message space are indistinguishable under chosen ciphertext
attacks. An alternative definition that is similar to semantic security can also be
derived. To see the difference, consider the following example: we construct the en-
cryption algorithm in such a way that if the input is the first element (we denote it
by m0) in lexical order in the message space, we append a ‘0’ at the end of the cipher-
text, otherwise, we append a ‘1’. Obviously, the ciphertext of m0 is distinguishable
from that of any other element in the message space, but such an encryption scheme
may be still WIND-CCA if the message space is sufficiently large. We will see later
that such a modification in security definition allows highly efficient PKE schemes
to be built.

Our Contributions. We first define a new type of indistinguishability against
adaptive chosen ciphertext attacks for public key encryption schemes. This new
definition (WIND-CCA) is strictly weaker than the conventional IND-CCA security.
With this new notion, we hope more efficient PKE schemes can be built (in the
standard model) in the future.

Then we propose an efficient PKE scheme that is WIND-CCA in the standard
model. Different from the Naor-Yung paradigm, we use an efficient non-interactive
zero knowledge proof system for proving the equivalence of discrete logarithms.
Compared with the schemes by Cramer and Shoup [13, 14], our new scheme has a
slightly longer ciphertext but a smaller key size.

Furthermore, we give several applications where a WIND-CCA PKE scheme can
be applied. In particular, we show a generic way to construct CCA secure KEM

2 In this paper, when we say PKE schemes, we do not refer to hybrid encryption schemes. In fact,
we concentrate on the asymmetric primitives for building hybrid encryption schemes.
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(and hence CCA secure hybrid encryption schemes). Compared with existing KEM
schemes, the derived KEM is more flexible and has a wider range of applications.
Some other applications are also presented, such as providing pseudorandomness
with a-priori information, constructing an encryption based MT-authenticator and
so on.

Organisation: In the next section we review the underlying assumptions, and the
notions of IND-CCA PKE schemes and IND-CCA KEM schemes. The definition
of WIND-CCA PKE schemes is also given here. We then give our concrete con-
struction in Sec. 3, along with the security proof. In Sec. 4, 5 and 6 we discuss
the applications of WIND-CCA PKE schemes in constructing KEM schemes, pro-
viding pseudorandomness with a-priori information and building encryption-based
MT-authenticators, respectively.

2 Preliminaries

We denote the selection of a random element e from a set S by e
R← S, and let

|S| denote the cardinality of S. If A(·, ·) is a probabilistic algorithm, y ← A(x1, x2)
denotes the experiment of running A with input x1, x2 and output y. In the rest of
this paper, we only consider probabilistic polynomial time (PPT) algorithms.

2.1 Intractable Assumptions

Let k be a security parameter. Let p = 2q+1 be a randomly chosen k-bit safe prime.
Let Q be the group of squares modulo p, and g ∈ Q \ {1}.
Decisional Diffie-Hellman (DDH) Assumption [28]: For a, b, c

R← Z∗q , 〈g, ga, gb, gab〉
and 〈g, ga, gb, gc〉 are computationally indistinguishable.

The Knowledge of Exponent Assumption (KEA) [1, 7, 15]: Given a pair
g, ĝ = ga with unknown discrete log a, the only way to efficiently come up with
another pair A, Â = Aa is by raising g and ga to some power b (i.e. A = gb, Â = ĝb).

2.2 Public Key Encryption Schemes

A public key encryption scheme consists of a tuple of algorithms PKE = (G, E ,D).
The key generation algorithm takes the security parameter as input and gener-
ates a key pair (pk, sk) ← G(1k) where pk is the public key and sk is the private
key. The encryption algorithm takes a message m and pk as input and outputs a
ciphertext c ← E(pk, m). The decryption algorithm is a (probabilistic or determin-
istic) algorithm which takes the private key and a ciphertext as input and outputs
m ← D(sk, c) or rejects the ciphtertext by outputting a special symbol ‘⊥’.

Indistinguishability against Chosen Ciphertext Attacks (IND-CCA) is defined by the
following game.

GameIND−CCA
A :
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(pk, sk) ← G(1k)
(m0,m1, σ) ← AOsk

1 (pk)
b

R← {0, 1}, c ← E(pk, mb)
b′ ← AOsk

2 (pk, σ, c)

In the above game, A is separated into two stages and σ denotes the internal
state of A after the ‘find’ stage. Osk denotes a decryption oracle with respect to
the private key sk, the only restriction is that in the ‘guess’ stage, the adversary
cannot query the decryption oracle with input c. A wins the game if b′ = b, and the
advantage of A is defined as follows:

AdvIND−CCA
A = Pr(b′ = b)− 1

2

A PKE scheme is secure under chosen ciphertext attacks if AdvIND−CCA
A is negligible

for any PPT adversary A.
The definition of IND-CPA is similar except that A does not have access to a

decryption oracle. These definitions require that the ciphertexts of any two distinct
plaintexts selected by the adversary are indistinguishable. However, as stated in the
introduction, in a lot of applications, we only use PKE schemes to protect randomly
selected messages, so we introduce the following weaker version of IND-CCA.

GameWIND−CCA
A :

(pk, sk) ← G(1k)
(m0,m1)

R←M(pk)
b

R← {0, 1}, c ← E(pk, mb)
b′ ← AOsk(pk, m0,m1, c)

In the above game, M(pk) denotes the message space with respect to pk. As in the
traditional IND-CCA game, A has access to a decryption oracle Osk except that
A cannot query Osk with input c3. The advantage of an adversary A is defined
analogously to the original IND-CCA game, and a PKE scheme is WIND-CCA if
AdvWIND−CCA

A is negligible for any PPT adversary A. The definition of WIND-CPA
is defined analogously except that A does not have access to the decryption oracle.

2.3 Key Encapsulation Mechanism

A KEM is a key derivation and encapsulation algorithm. It takes a public key as
input and outputs a symmetric key K and a ciphertext ψ of the keying material
of K, and the private key owner decrypts ψ and derives K. KEM and its variants
are combined with symmetric key encryption schemes to produce hybrid encryption
schemes [2, 20, 21, 29]. In the following we describe the syntax and security definition
for KEM.

A KEM consists of a tuple of algorithms KEM = (KEM.G, KEM.E, KEM.D).
3 It is easy to see that allowing the adversary to access the decryption oracle before receiving the

challenge ciphertext does not give the adversary any additional power, since the the adversary
can simulate this process after receiving the challenge ciphertext.
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1. The key generation algorithm takes the security parameter as input and generates
a key pair (pk, sk) ← KEM.G(1k)

2. The encryption algorithm takes the public key as input and outputs a symmetric
key K and a ciphertext ψ of the keying material of K, (K, ψ) ← KEM.E(pk)

3. The decryption algorithm takes the private key and the ciphertext as input
and generates a symmetric key K = KEM.D(sk, ψ) or rejects the ciphertext by
outputting ‘⊥’.

The security definition of KEM has the same flavor with that of session key
security in key exchange protocols [5, 9]. It is defined by the following game4.

GameKEM.CCA
A :

(pk, sk) ← KEM.G(1k)

(K1, ψ) ← KEM.E(pk), K0
R← K

b
R← {0, 1}

b′ ← AOsk(pk, ψ,Kb)

where K denotes the symmetric key space. The advantage of the adversary A is
defined as

AdvKEM.CCA
A = Pr(b′ = b)− 1

2

We observe that two techniques are used in the KEM constructions5 by Shoup
[29] and Kurosawa-Desmedt [21]:

i) Since generating the symmetric key and encrypting the keying material are done
in one step, they can use the same random coins in both processes. However,
this combination limits the flexibility and range of applications of KEM. For
example, if the symmetric key is generated from some other party or process,
the randomness in sampling the (random) key may not be able be recovered (e.g.
K = gr), and we cannot rule out this possibility in real applications.

ii) The key derivation process relies on the public key. This will again limit the
flexibility, consider that we want to use KEM to transport the same symmetric
key to more than one receivers, if we use Shoup’s KEM, then we need to find
r1 and r2 such that hr1

1 = hr2
2 where hi is part of useri’s public key. This is

impossible since the sender does not know the secret exponents corresponding
to h1 and h2.

Jumping ahead, we will see a construction that can avoid these problems in
Sec. 4.
4 Due to the same reason as footnote 3, we let the adversary query the decryption oracle after

receiving the challenge ciphertext.
5 For the ‘PKE + hash’ based Tag-KEM construction by Abe et al.[2], they do not follow this

approach, but they use a fully IND-CCA PKE scheme. In their generic construction of hybrid
encryption, they also adopt these techniques in the Tag-KEM part.
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2.4 Non-interactive Zero Knowledge Proof

In this section, we review a non-interactive zero-knowledge proof (NIZK) system
which is important in our construction of a WIND-CCA PKE scheme. Non-interactive
zero-knowledge proof is an essential tool in the Naor-Yung paradigm, but generic
NIZK proofs are quite inefficient due to the complex NP reductions. However, there
are efficient NIZK proofs for some specific problems, for example, proving the equiv-
alence of two discrete logarithms [12, 16].

In [16], Damg̊ard et al. developed a method that compiles all known discrete-log
based Σ-protocols (3-move public-coin protocols) into NIZK arguments. In the fol-
lowing, we review the compilation of a Σ-protocol Peqdlog for proving the equivalence
of two discrete logarithms.

Prover P and verifier V get common input x = (p, q, g, g′, h1, h2) where p, q, g
are the parameters in the DDH assumption, g′ is a random element of Q and h1 =
gw, h2 = g′w for some w ∈ Z∗q . P gets w as private input.

1. P chooses r
R← Z∗q and sends a = (a1, a2) to V , where a1 = gr, a2 = g′r;

2. V chooses e
R← Z∗q and sends it to P ;

3. P sends z = r + ew to V who checks that gz = a1h
e
1, g

′z = a2h
e
2.

Let Reqdlog = {(x,w)} be the relation as specified above, and LR = {x| ∃ w :
(x,w) ∈ Reqdlog}. The above Σ-protocol has the following properties:

1. Special Soundness. From x ∈ LR and two accepting conversations (a, e, z),
(a, e′, z′) where e 6= e′, w can be efficiently computed.

2. Special Honest Verifier Zero Knowledge. There exists a PPT simulator
which on input x and e outputs a conversation (a, e, z) whose distribution is
(statistically) indistinguishable from that of conversations between P and V for
the given statement x ∈ LR and challenge e.

Under the assumption that Paillier cryptosystem [24] is 2-harder than the dis-
crete logarithm problem (informally, H is 2-harder than G means even if there exists
an algorithm A that completely breaks G on instances of size k, no algorithm run-
ning in comparable time can break H on instances of size 2k or larger), Damg̊ard
et al. compiled the above Σ-protocol to an NIZK proof in the registered public key
model [3]. The compilation makes use of the homomorphic property of the Paillier
encryption.

In the key setup phase for the verifier, a public/private key pair (pk, sk) of
the Paillier cryptosystem is generated, also a challenge e as V would do in the Σ-
protocol is chosen, and set c to be a random encryption of e under pk. The public
key is p̂k = (pk, c) and the private key is ŝk = (sk, e).

Since the Σ-protocol is with linear answer and Paillier encryption is homomor-
phic, it is possible to execute the prover’s side given only an encryption of the
challenge. The compilation is reviewed below:



WIND-CCA and Its Applications 7

Protocol Compile(Peqdlog):

1. Given an instance x,w to prove, P gets V ’s public key (pk, c) and computes the
first message a according to Peqdlog. Let the final message be of form u + ev,
P computes ξ ← randomize(EPaillier

pk (u)cv), which can be done by multiplying
EPaillier

pk (u)cv with a random encryption of 0. P sends x, π to V where π = (a, ξ).
2. On input (x, π), V gets z ← DPaillier

sk (ξ) and verifies (x; a, e, z) by running the
verifier of Peqdlog.

Damg̊ard et al. showed that the above NIZK protocol is statistically zero knowl-
edge in the registered public key model. Namely, there exists a PPT algorithm M ,
such that for all instances (x,w) ∈ Reqdlog, the following two ensembles are statisti-
cally close:

Verifier’s key pair, real proof:

{(p̂k, ŝk, π) | (p̂k, ŝk) ← KeySetup(1k);π ← P (1k, x, w, p̂k)}
Verifier’s key pair, simulated proof:

{(p̂k, ŝk, π) | (p̂k, ŝk) ← KeySetup(1k);π ← M(1k, x, ŝk, p̂k)}

Remark: In order to prove the above protocol is zero-knowledge, the simulator has
to interact with V in order to emulate the view of V in real life. In particular, M
has to know the private key of V .

3 A WIND-CCA (but not IND-CCA) PKE Scheme

In this section, we show how to construct a PKE scheme that is WIND-CCA secure.
We first present our construction, and then show that this scheme is not semantically
secure, thus separate WIND-CCA from IND-CCA.

The Construction: Let p, q, Q, g be defined as in the DDH assumption, we assume
that messages are (or can be encoded as) elements of Q.

Key Generation: Run the key setup algorithm of the NIZK proof system in Sec. 2.4
and get (p̂k, ŝk); randomly choose s

R← Z∗q , and compute h = gs. The public key
is (p̂k, h) and the private key is (ŝk, s).

Encryption: Given a message m ∈ Q, randomly select r
R← Z∗q and computes

u1 = gr, u2 = mr, λ = mhr. Then generate an NIZK proof π = P (1k, x =
(g, u1,m, u2), r, p̂k) as described in Sec. 2.4. The ciphertext is (u1, u2, λ, π).

Decryption: Given a ciphertext u1, u2, λ, π, calculate m = λ/us
1, and d ← V (1k,

ŝk, x = (g, u1,m, u2), π) as described in Sec. 2.4. If d = accept, return m, oth-
erwise, return ⊥. (Notice that only the private key owner can verify the state-
ment/proof pair (x, π)).
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Theorem 1. The above PKE scheme is not IND-CPA.

Proof. It’s easily observed that the ciphertext of g is distinguishable from that of
any other element in Q. ut
Theorem 2. The above PKE scheme is WIND-CCA.

Proof. The proof is by contradiction, if there exists an adversary A that breaks the
above scheme in the WIND-CCA game with a non-negligible probability, we con-
struct another adversary B that can break the DDH assumption with non-negligible
probability.

B is given g, g1 = gr, g2 = m, g3 = mz where r
R← Z∗q ,m

R← Q and z = r

or z
R← Z∗q . B generates a public/private key pair (p̂k, h)/(ŝk, s) by running the

key generation algorithm (p̂k is of the form (pkPaillier, c) and ŝk is of the form
(skPaillier, e) where e

R← Z∗q and c ← EPaillier
sk (e)). Then B generates a ciphertext

γ = (g1, g2g
s
1, g3, π) where π is generated by running the simulation algorithm M

with input (x = (g, g1, g2, g3), ŝk, p̂k) (i.e. π = (a1, a2, E
Paillier
sk ($)) where $

R← Z∗q ,
a1 = g$/ge

1 and a2 = g$
2 /ge

3). B tosses a coin b and sets mb = g2, B also selects

m1−b
R← Q and runs A with input (p̂k, h),mb,m1−b, γ. Up to now (before A issues

any decryption queries), we can get that

Claim 1 The challenge ciphertext created by B reveals no information about b.

Proof. We separate the case that z = r from the case that z is a random element of
Q.

1. z = r: Due to the DDH assumption, g3 and g2g
s
1 reveals no information about b.

The fact that g3 does not revel b follows from that (gr, g, mr,m) and (gr, g, mr, U)
are computationally indistinguishable (here U denotes a random element of Q);
and g2g

s
1 does not reveal b follows from that (g, g1, g

s, gs
1) and (g, g1, g

s, U) are
computationally indistinguishable. The fact that π reveals no information about
b follows from that Paillier’s cryptosystem is semantically secure under the de-
cisional composite residuosity assumption

2. z
R← Z∗q : By following the same reason as above, g2g

s
1 and π do not reveal b. And

g3 is independent of b. ut
After giving the challenge ciphertext to A, B answers A’s decryption queries by

following the normal decryption procedures6. Finally, if A outputs b′ = b, B outputs
z = r, otherwise B outputs z

R← Z∗q .
If B’s input is a DH tuple: the game is essentially the same as the real game

except that the proof π in the challenge ciphertext is generated by the simulation
algorithm M . Since the challenge ciphertext to A is statistically close to a valid
ciphertext, A has a non-negligible advantage over 1

2 to guess correctly.

6 Here we require the stronger result of [16], that is the NIZK protocol is unboundedly sound, see
[16] for details.
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If B’s input is not a DH tuple: the ciphertext A has received is an invalid ci-
phertext. Suppose A asks a decryption query with input u′1, u

′
2, e

′, π′. From the
soundness of the NIZK proof, it follows that B (with negligible error) will only de-
crypt ciphertexts in correct form (i.e. u′1 = gr′ , u′2 = m′r′ where m′ = e′/u′s1 ). For
those ciphertexts in the correct form, we have the following claim:

Claim 2 Under the knowledge of exponent assumption, A can produce a ciphertext
u′1, u

′
2, e

′, π′ in the correct form only if A knows the message m′ = e′/u′s1 .

Proof. Suppose A gives B a ciphertext u′1 = gr′ , u′2 = m′r′ , e′, π′ where m′ = e′/u′s1 .
We consider the following cases (these are just mental experiments):

1. A knows r′. Then A can get m′ = e′/hr′ by herself.
2. A does not know r′ and u′2 = u′1. This implies m′ = g and A can get this

information by herself.
3. A does not know r′ and u′2 6= u′1. If A does not know m′, then A and B constitute

an algorithm that breaks the knowledge of exponent assumption. By contradic-
tion, A must know the message m′. ut

By the above claim, it follows that if the ciphertext is in correct form, A must
know the corresponding plaintext. So we can conclude that the decryption queries
essentially do not provide any help to A. Hence, due to the DDH assumption, gs

1

is essentially a one-time pad, and A has only negligible advantage over 1
2 to guess

correctly. ut

4 Constructing Hybrid Encryption Schemes

KEM is an essential tool of existing approaches to constructing hybrid encryption
schemes. In the next, we give a construction of KEM based on WIND-CCA PKE
schemes.

Let (pk, sk) be the key pair of the PKE scheme. As in [21, 29], let H : Mpk →
{0, 1}k be a hash function that essentially preserves the entropy of the input distri-
bution, which can be constructed without any intractability assumptions. Without
loss of generality, we assume that |Mpk| > 2k. Then a CCA secure KEM can be
constructed as follows:

KEM.ENC(pk):

Select m
R←Mpk

Calculate ψ ← E(pk, m)
and K = H(m)

Return (K, ψ)

KEM.DEC(sk, ψ′):

Calculate m′ ← D(sk, ψ′)
If m′ = ⊥, return ⊥
Else, calculate K ′ = H(m′)
Return K ′

Theorem 3. If there exists a PPT algorithm that breaks the CCA security of the
above KEM scheme, there exists another PPT algorithm that can break the WIND-
CCA security of the PKE scheme.
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The proof is given in Appendix A.
From the result of Shoup [29], we can construct a hybrid encryption scheme

that is IND-CCA by combining the above KEM with the symmetric key encryption
scheme in [29]. We can also derive a CCA-secure Tag-KEM based on the above KEM
and a secure message authentication code (MAC) [2]. It’s easy to see that the above
KEM construction does not have those limitations discussed in Sec. 2.3.

5 Pseudorandomness with A-Priori Information

In [10], Canetti proposed a new cryptographic primitive which is named Oracle
Hashing. It can provide pseudorandomness with a-priori information. However, in
order to prove the security of the oracle hashing, Canetti raised a new assumption
that is related to the DDH assumption (we call it Strong DDH assumption). He
proved that the construction H(x, r) = r‖rx is a strong oracle hashing under the
Strong DDH assumption. First we recall this assumption, as below:
Strong Decisional Diffie-Hellman (SDDH) Assumption [10]: Let p, q, g be
the parameters as in the DDH assumption. For any non-invertible function f and for
a, b, c

R← Z∗q , 〈f(a), gb, gab〉 and 〈f(a), gb, gc〉 are computationally indistinguishable.
Canetti showed a very simple way to construct an IND-CPA hybrid encryption

scheme by using trapdoor one-way permutation and oracle hashing. In other words,

SDDH + Trapdoor One-way Permutation → IND-CPA

However, it would be better to replace the SDDH assumption by a commonly
used one, and we find that WIND-CPA PKE schemes can help. In the next, we will
show that

DDH + WIND-CPA → IND-CPA

In other words, besides the generic transformation from WIND-CCA to IND-
CCA hybrid encryption, there is another generic transformation from WIND-CPA
to IND-CPA hybrid encryption. We start by defining the following variance of the
DDH assumption:

Definition 1 (DDH with A-Priori Information). Let p, q, g be defined as in
the DDH assumption. Let PKE = (G, E ,D) denote an asymmetric key encryption
scheme. Define TR = 〈y, g, ga, gb, gc〉 and TD = 〈y, g, ga, gb, gab〉. For any PPT algo-
rithm A, define

PR
A = Pr

(
A(TR) = 1 | (pk, sk) ← G(1k); a, b, c

R← Z∗q ; y ← E(pk, a)
)

PD
A = Pr

(
A(TD) = 1 | (pk, sk) ← G(1k); a, b

R← Z∗q ; y ← E(pk, a)
)

where the probabilities are taken over the random choices of a, b, c and the random
coins of G, E ,A. We say TR and TD are computationally indistinguishable with
respect to PKE if for any positive polynomial q(·) and all sufficiently large k,
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|PD
A − PR

A | <
1

q(k)

We say TR and TD are computationally indistinguishable under chosen cipher-
text attacks (CI-CCA) with respect to PKE if A has access to a decryption oracle
Osk with the restriction that A cannot ask the decryption of y.

In the next, we prove that 〈E(pk, x),H(x, r)〉 and 〈E(pk, x),H(y, r)〉 are com-
putationally indistinguishable (CI-CCA respectively) if the encryption scheme is
WIND-CPA (WIND-CCA respectively). Hence, by following the same proof in [10],
it follows that E(pk, x), r, rx ⊕m is IND-CPA if E(·, ·) is WIND-CPA.

Lemma 1. For any PKE = (G, E ,D) that is WIND-CPA (WIND-CCA respectively),
TR and TD are computationally indistinguishable (CI-CCA respectively) under the
DDH assumption.

The proof is given in Appendix B. Here we only prove the part corresponding to
CCA security, the part corresponding to CPA security essentially follows the same
proof and can be obtained by simply removing the decryption oracle.

Pseudorandomness with A-Priori Information: From the above lemma, we
can derive the following theorem by using Hoefding Inequality [19].

Theorem 4. For any encryption scheme (G, E ,D) that is WIND-CPA (WIND-
CCA respectively), 〈E(pk, x),H(x, r)〉 and 〈E(pk, x),H(y, r)〉 are computationally
indistinguishable (CI-CCA respectively) where x, y

R← Z∗q , and r
R← Q.

The proof is given in Appendix C. Again, we only prove the part correspond-
ing to CCA security, and the part corresponding to CPA security can be obtained
straightforwardly.

6 Constructing an Encryption Based MT-authenticator

The concept of MT-authenticator was introduced by Bellare et al. [4] in construct-
ing authenticated key exchange (AKE) protocols. An MT-authenticator is a proto-
col ‘emulating’ the ideal message transfer functionality. By replacing every message
transfer with an MT-authenticator, the AKE protocol is immune to any imperson-
ation attacks. So authentication and session key security can be separated in the
design of AKE protocols. Later, the work was further extended by Canetti and
Krawczyk [9].

In [4], several MT-authenticators are constructed, and one of them is based
on a PKE scheme and an MAC scheme, which is called ‘Encryption-based MT-
authenticator’.
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Pi ← Pj : ENCPi(Nj)
Pi → Pj : m, MACNj (m,Pj)

Encryption-based MT-authenticator

In this protocol, Nj
R← {0, 1}k is a random challenge. ENCPi denotes the public

key encryption function of Pi and MACNj denotes an MAC under key Nj . Bellare
et al. proved that the above protocol is an MT-authenticator if the PKE scheme
is IND-CCA and the MAC scheme is unforgeable against chosen message attacks.
However, it’s easy to observe that in the security proof we merely need to guarantee
that the ciphertexts of two randomly selected message are indistinguishable, thus
a WIND-CCA secure PKE scheme would suffice. The proof essentially follows the
original one in [4] and thus is omitted here.

7 Conclusion

In the face of the difficulty in constructing efficient IND-CCA PKE schemes in the
standard model, and the fact that IND-CCA is a sufficient but not necessary condi-
tion for many PKE-based applications, we define a new type of indistinguishability
against adaptive chosen ciphertext attacks (or WIND-CCA in short). We show that
efficient PKE schemes fulfilling this new security definition can be easily constructed
in the standard model. We also demonstrate that WIND-CCA schemes are sufficient
for many PKE-based applications, such as constructing more flexible CCA secure
KEM (and hence CCA secure hybrid encryption schemes), providing pseudorandom-
ness with a priori information, constructing MT-authenticators, and so on. With this
new security notion, we hope more practical PKE schemes can be built in the future.
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A Proof of Theorem 3

Proof. Let PKE = (G, E ,D) be a WIND-CCA public key encryption scheme, and
(pk, sk) ← G(1k). Let m

R← M(pk), K = H(m) and ψ ← E(pk, m). Let K ′ be a
symmetric key chosen randomly from the key space. Assume that there exists a PPT
algorithm A such that

Pr
(AOsk(K, ψ) = 1

)− Pr
(AOsk(K ′, ψ) = 1

) ≥ ε
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We then construct another adversary B which breaks PKE in the WIND-CCA
game. B is given m0,m1

R←M(pk) and c ← E(pk, mb) where b denotes the random
coin of the challenger. B first calculates K0 = H(m0), K1 = H(m1) and tosses a
coin b′. B then runs A on input Kb′ , c. B answers A’s decryption queries using its
own decryption oracle. Finally, if A outputs 1, B outputs b′; otherwise it outputs
1− b′. It is easy to see that

Pr (B guesses b correctly) ≥ 1
2

+
ε

2
ut

B Proof of Lemma 1

Proof. The theorem is proved by a hybrid argument. First, we define T0 = 〈E(pk, m), g, ga, gb, gab〉
and T1 = 〈E(pk, m), g, ga, gb, gc〉 where m,a, b, c

R← Z∗q . Then we have the following
claims:

Claim 3 T0 and TD are CI-CCA.

Proof. Suppose there is a PPT algorithm A such that

Pr
(AOsk(TD) = 1

)− Pr
(AOsk(T0) = 1

) ≥ δ

we construct an algorithm B that breaks the encryption scheme in the WIND-CCA
game. B is given m,a, y, where m and a denote the two randomly selected messages
and y denote the challenging ciphertext. After receiving the challenge y, B chooses
b

R← Z∗q and runs A on input y, g, ga, gb, gab. It answers A’s decryption queries by
asking its own decryption oracle. Finally, B outputs what A outputs. It is obvious
that B succeeds with probability at least 1

2 + δ
2 . ut

Similarly, we can prove the following claim:

Claim 4 T1 and TR are CI-CCA.

Now assume that there is an algorithm D such that

Pr
(DOsk(TD) = 1

)− Pr
(DOsk(TR) = 1

) ≥ ε

Then we construct another algorithm D′ that breaks the DDH assumption. D′ is
given T = (g, ga, gb, gz) where z = ab or z

R← Z∗q . D′ first runs the key generation
algorithm of the public key encryption scheme to generate the encryption/decryption
key pair (pk, sk). Then D′ selects m

R← Z∗q , and runs D on input (E(pk, m), T ). It
answers D’s decryption queries using the decryption key. Finally, D′ outputs what
D outputs.

1. If z = ab, we have that (E(pk, m), T ) = T0. According to Claim 3, D outputs 1
with probability Pr(DOD(TD) = 1) + ε1 where ε1 is negligible.
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2. If z
R← Z∗q , we have that (E(pk, m), T ) = T1. According to Claim 4, D outputs 1

with probability Pr(DOD(TR) = 1) + ε2 where ε2 is negligible.

Therefore, we can get that

Pr
(
D′(g, ga, gb, gab) = 1

)
− Pr

(
D′(g, ga, gb, gz) = 1

)
≥ ε + ε1 − ε2

ut

C Proof of Theorem 4

Hoefding Inequality: Let X1, X2, ..., Xn be n independent random variables with
the same probability distribution, each ranging over the real interval [a, b], and let
µ denote the expected value of each of these variables. Then, for every ε > 0,

Pr
(∣∣∣∣

Σn
i=1Xi

n
− µ

∣∣∣∣ > ε

)
< 2e

− 2ε2

(b−a)2
n

Proof. Assume that there exists a distinguisher D and a polynomial ρ such that
∀x, y

R← Z∗q , r
R← Q

Pr
(DOsk(E(pk, x), r, rx) = 1

)− Pr
(DOsk(E(pk, x), r, ry) = 1

) ≥ 1
ρ

(1)

Then we construct an distinguisherD′ that distinguishes between (E(pk, a), g, ga, gb, gab)
and (E(pk, a), g, ga, gb, gc). First, we define

P̂1 = Pr(DOsk(E(pk, x), r, rx) = 1)

P̂2 = Pr(DOsk(E(pk, x), r, ry) = 1)

Given (E(pk, a), g, ga, gb, gz) where z = ab or z
R← Z∗q , D′ runs as follows:

For i = 1 to ρ3

1. Choose ri, r
′
i

R← Z∗q
2. Run algorithm D with input (E(pk, a), gri , (ga)ri) and get P i

1 = DOsk(E(pk, a),
gri , (ga)ri). D′ answers D’s decryption queries using its own oracle.

3. Run algorithmD again with input (E(pk, a), (gb)r′i , (gz)r′i) and get P i
2 = DOsk(E(pk, a),

(gb)r′i , (gz)r′i). D′ answers D’s decryption queries using its own oracle.

Then D′ computes P1 = Σρ3

i=1P
i
1 and P2 = Σρ3

i=1P
i
2. If |P1 − P2| > ρ2

2 , it outputs 0;
otherwise, it outputs 1.

1. If z = ab, both P1 and P2 are the sums of ρ3 independent samples from a
distribution over {0, 1} with mean ρ3P̂1. By Hoefding Inequality, it follows that
Pr(|P1 − P2| > ρ2

2 ) < exp(−ρ).
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2. If z
R← Z∗q , P1 is the sum of ρ3 independent samples from a distribution over

{0, 1} with mean ρ3P̂1 (denoted by µ1), and P2 is the sum of ρ3 independent
samples from a distribution over {0, 1} with mean ρ3P̂2 (denoted by µ2). By
equation (1), it follows that µ1−µ2 ≥ ρ2. Then by Hoefding Inequality again, it
follows that Pr(|P1 − µ1| > ρ2

4 ) < exp(−ρ), and Pr(|P2 − µ2| > ρ2

4 ) < exp(−ρ).
Hence, we have that with overwhelming probability, |P1 − P2| > ρ2

2 holds. ut


