Faster and Shorter
Password-Authenticated Key Exchange

Rosario Gennaro
IBM T.J. Watson
19 Skyline Drive,

Hawthorne 10532, USA.
rosario@us.ibm.com

August 17, 2007

Abstract

This paper presents an improved password-based authenticated key exchange protocols in
the common reference string model. Its security proof requires no idealized assumption (such
as random oracles).

The protocol is based on the GL framework introduced by Gennaro and Lindell, which gen-
eralizes the KOY key exchange protocol of Katz et al. Both the KOY and the GL protocols use
(one-time) signatures as a non-malleability tool in order to prevent a man-in-the-middle attack
against the protocol. The efficiency of the resulting protocol is negatively affected, since if we
use regular signatures, they require a large amount of computation (almost as much as the rest
of the protocol) and further computational assumptions. If one-time signatures are used, they
substantially increase the bandwidth requirement.

Our improvement avoids using digital signatures altogether, replacing them with faster and
shorter message authentication codes. The crucial idea is to leverage as much as possible the
non-malleability of the encryption scheme used in the protocol, by including various values into
the ciphertexts as labels. As in the case of the GL framework, our protocol can be efficiently
instantiated using either the DDH, Quadratic Residuosity or N-Residuosity Assumptions.

For typical security parameters our solution saves as much as 12 Kbytes of bandwidth if
one-time signatures are implemented in GL with fast symmetric primitives. If we use number-
theoretic signatures in the GL framework, our solution saves several large exponentiations (al-
most a third of the exponentiations computed in the GL protocol). The end result is that we
bring provable security in the realm of password-authenticated key exchange one step closer to
practical.

1 Introduction

The central problem of cryptography is to enable reliable and secure communication among parties
in the presence of an adversary. In order to do this, parties must share a common secret key to se-
cure communication using known techniques (e.g., applying encryption and message authentication
codes to all messages).

A protocol that allows two parties to establish such a secret key is called a key exchange protocol.
The key exchange problem was initially studied by Diffie and Hellman [16] who considered a passive
adversary that can eavesdrop on the honest parties’ communication, but cannot actively modify it.
In other words, parties are assumed to be connected by reliable, albeit non-private, channels. Many
efficient and secure protocols are known for this scenario. The more realistic scenario however is
that of a far more powerful adversary who can modify and delete messages sent between the parties,
as well as insert messages of its own choice. This is the scenario we consider in this paper.

Once we allow such a powerful adversary it becomes clear that in order to securely exchange a
key, any two parties (call them Alice and Bob) must hold some secret information. Otherwise, there
is nothing preventing an adversary from pretending to be Bob while communicating with Alice (and
vice versa). The most common type of secret information considered are (i) parties already share
a high entropy secret key; (ii) each party holds a secret key matching an authenticated public key
(i.e. a public key securely associated with his identity) and (iii) the case we consider in this paper:
parties share only a low entropy password that can be remembered and typed in by human users.

Cryptography has long been concerned with cases (i) and (ii), while the scenario of low entropy
passwords (arguably the most commonly used case) has only recently received attention. This
paper proposes a new and improved family of protocols (a framework) for password-based key
exchange in the face of a powerful, active adversary.

Password-based authenticated key-exchange. Our model consists of a group of parties, with
each pair of them sharing a password chosen uniformly at random from some small dictionary (the
assumption of uniformity is made for simplicity only). The parties communicate over a network in
the presence of an active adversary who has full control over the communication lines. In other words
all communication between parties is basically carried out through the adversary. Nevertheless, the
goal of the parties is to generate session keys in order to secretly and reliably communicate with
each other.

An immediate observation is that the small size of the dictionary implies a non-negligible prob-
ability that the attacker will succeed in impersonating one of the parties, since the adversary can
always guess Bob’s password and pretend to be him while communicating with Alice. This type of
attack is called an on-line guessing attack and is inherent whenever security depends on low entropy
passwords. The severity of on-line guessing attacks can be limited with other mechanisms (such
as locking an account after a number of failed attempts). A more dangerous attack is the off-line
guessing attack, in which the adversary obtains a transcript of an execution of the key exchange
protocol and is then able to check guesses for Bob’s password against this transcript off-line. The
aim of password-based authenticated key exchange is to limit the adversary only to on-line guessing
attacks, and rule out possible off-line ones.

Prior related work. Bellovin and Merritt [4] proposed the first protocol for password-based
session-key generation. Although the specific protocol of [4] can be attacked (see [28]), small
modifications to the protocol prevent these attacks [28], and even allow one to prove it secure under
the ideal cipher and random oracle models [2]. Bellovin and Merritt’s work was very influential and

was followed by many protocols (e.g. [5, 29, 23, 27, 28, 30]) which, however, have not been proven
secure and their conjectured security is based on heuristic arguments.

A first rigorous treatment of the problem was provided by Halevi and Krawczyk [22]. They
consider an asymmetric model in which some parties (called servers) hold certified public keys
available to the all parties, including the clients who instead hold only passwords. In this model
(which requires a public-key infrastructure) Halevi and Krawczyk provide a secure password-based
key exchange. The first (and only currently known) protocol to achieve security without any addi-
tional setup is that of Goldreich and Lindell [20]. Their protocol is based on general assumptions
(i.e., the existence of trapdoor permutations) and constitutes a proof that password-based authen-
ticated key exchange can actually be obtained. Unfortunately, the protocol of [20] is not very
efficient and thus cannot be used in practice.

Katz, Ostrovsky and Yung (KOY') [24] present an efficient and practical protocol for the problem
of password-authenticated key-exchange in the common reference string model. In this model, the
extra setup assumption is that all parties have access to some public parameters, chosen by some
trusted third party. This assumption is clearly weaker than assuming a public-key infrastructure,
and there are settings in which it can be implemented safely and efficiently (such as a corporation
wanting to provide secure password login for its employees, and thus can be trusted to choose and
distribute the common reference string). The KOY protocol is based on the security against chosen-
ciphertext attack [17] of the original Cramer-Shoup encryption scheme [12]. This in turn can be
reduced to the Decisional Diffie-Hellman (DDH) assumption. The complexity of the KOY protocol
is only 5-8 times the complexity of a Diffie-Hellman unauthenticated key-exchange protocol.

The KOY protocol was generalized by Gennaro and Lindell [19], using generic building blocks
instead of specific number-theoretic assumptions. More specifically, they use the notion of projec-
tive hash functions and the CCA-secure encryption schemes defined in [13]. The resulting protocol
GL has a much more intuitive proof of security and can be proven secure under a variety of compu-
tational assumptions (such as Quadratic Residuosity and N-Residuosity).

We note that there are password-authenticated key-exchange protocols which are more efficient
than KOY and GL, but whose proof holds in an idealized model of computation such as the ideal
cipher and random oracle models [2, 7]. The common interpretation of such results is that security
is likely to hold even if the random oracle is replaced by a (“reasonable”) concrete function known
explicitly to all parties (e.g., SHA-1). However, it has been shown that it is impossible to replace
the random oracle in a generic manner with any concrete function [8]. Thus, the proofs of security
of these protocols are actually heuristic in nature.

1.1 Owur Contributions

We improve on the both the GL and KOY protocols, in particular by reducing the communication
bandwidth required by the protocol.

Both the KOY and the GL protocol use (one-time) signatures as a non-malleability tool in order
to prevent a man-in-the-middle attack against the protocol. This negatively affects the efficiency
of the resulting protocol. Indeed in order to preserve provable security without use of the random
oracle an implementation of the KOY or GL protocol is presented with two choices.

One-time signature schemes (i.e. signature schemes which are secure if the key is used to
sign only one message) can be implemented from fast symmetric key primitives (such as one-way
functions). However the length of the resulting keys and signatures is problematic and causes a
substantial increase in the required bandwidth.

One could use “regular” signature schemes (i.e. secure for many messages) but then, if we

require provable security in the standard model, the amount of computation would substantially
increase. Moreover if we want to use the most efficient provably secure signature schemes in the
literature (e.g. [18, 15, 25]) we would introduce new computational assumptions such as the Strong
RSA assumption, on top of the ones required by the GL protocol.

Our improvement avoids using digital signatures altogether, replacing them with faster and
shorter message authentication codes. The crucial idea is to leverage as much as possible the non-
malleability of the encryption scheme used in the protocol, by including various values into the
encryption as labels. For typical security parameters our improvement saves as much as 12 Kbytes
of bandwidth in a protocol execution.

As in the case of the GL framework, our protocol can be efficiently instantiated using either the
DDH, Quadratic Residuosity or N-Residuosity Assumption.

1.2 Our Construction in a Nutshell

Let us describe our construction informally. We start by first describing the tools that we are going
to use and then describing the protocol.

Chosen-Ciphertext Secure Public-Key Encryption [17]: We use an encryption scheme &
which is secure against chosen-ciphertext attack. The common reference string for our pass-
word protocol is simply the public key PK for such an encryption scheme. We stress that the
corresponding secret key does not have to be known by any party’.

Smooth projective hashing [13]: Let X be a set and L C X a language. Loosely speaking,
a hash function Hj that maps X to some set is projective if there exists a projection key that
defines the action of Hj over the subset L of the domain X. That is, there exists a projection
function a(-) that maps keys k into their projections s = a(k). The projection key s is such that
for every = € L it holds that the value of Hy(x) is uniquely determined by s and z. In contrast,
nothing is guaranteed for ¢ L, and it may not be possible to compute Hy(z) from s and z. A
smooth projective hash function has the additional property that for x ¢ L, the projection key
s actually says nothing about the value of Hy(x). More specifically, given z and s = a(k), the
value Hy(z) is uniformly distributed (or statistically close) to a random element in the range
of Hk

What makes smooth projective hashing a powerful tool (in both our application and the original
one in [13]) is that if L is an NP-language, then for every x € L it is possible to efficiently compute
Hj(x) using the projection key s = a(k) and a witness of the fact that x € L. Alternatively, given
k itself, it is possible to efficiently compute Hy(x) even without knowing a witness. Gennaro
and Lindell [19] also prove another important property of smooth projective hash functions
that holds when L is a hard-on-the-average NP-language. For a random = €g L, given z and
s = a(k) the value Hy(z) is computationally indistinguishable from a random value in the range
of Hy(x). Thus, even if x € L, the value Hy(z) is pseudorandom, unless a witness is known.

The basic idea behind the KOY and GL protocols is to have the parties exchange non-malleable
encryptions of the joint password. The session key is the computed as the result of applying
smooth projective hash functions to these encryptions (in this case the hard-on-the-average NP

n the GL protocol the requirement is actually weaker, as all is needed is a non-interactive non-malleable (with
respect to many commitments) commitment which in the common reference string can be built out of CCA-Secure
Encryption. For simplicity we describe our protocol using encryption, but in the final version we show that we can
also use commitments. In practice this does not make much difference since CCA encryption is the most efficient
known implementation of for this type of non-malleable commitments.

language consists of correct ciphertext/message pairs). Figure 1 shows the basic layout of the
protocol.

The basic problem with the protocol described in Figure 1 is that the projective hash function
themselves can be malleable, and an adversary could manage to get information about the session
key by playing man-in-the-middle. In order to avoid this attack, the GL and KQOY protocols add a
signature step. A verification key is chosen by party A in the first message and bound together
with the first encryption, by including it as a label?. Then A signs the whole transcript in the third
message. Party B accepts only if the signature is correct. Since the verification key cannot be
changed (being protected by the non-malleability of the encryption in the first step), the adversary
cannot modify the projection keys, unless it is able to produce a forgery.

In our protocol we expand the use of encryption labels. We protect the first projection s, by
including it as a label in the second ciphertext® ¢/. Now the adversary is left with the possibility of
manipulating the second projection key s’. But at this point the master key computed by party A
is already pseudorandom for the adversary and thus it can be used as a key to MAC the projection
key s’ in order to prevent A from changing it.

A technical issue arises here, as party B has to use the same key that party A uses to compute
the MAC, but party B has to yet finish the protocol and compute such key. Moreover the adversary
can make B compute a different key from A, by modifying the projection s’. This issue can be
solved by using skp as a MAC key since B already knows it. However the explicit use of only one
component of the session key would allow an off-line attack from A (see Section 4).

The final solution is to MAC the transcript with skp and then use sk4 to “mask” the value
of the MAC from the adversary. In the proof if B accepts after A modified s’ he will be able to
retrieve a forgery on the MAC keyed with skp. The protocol in full details is shown in Figure 2.

1.3 Efficiency gain.

The most efficient implementation of the KOY or GL protocols uses one-time signatures. These are
based on symmetric primitives such as one-way functions. One example of such a signature is the
Lamport signature [26]: to sign a single bit b the public key consists of two values yo,y1 and the
secret key is xg, 1 where y; = F(z;) for a one-way function F. To sign bit b the signer reveals x;.

Assuming a security parameter of 128 (e.g. a one-way function applied to 128 bits input, and
messages hashed to 256 bits using a collision resistant function), we have that transmitting the key
and the signature requires about 12 KBytes. In contrast our solution requires only 256 bits for the

MAC.

Number-Theoretic Signatures. Of course one could implement the signature step in the KOY or
GL protocol using provably secure signature schemes such as Gennaro-Halevi-Rabin [18] or Cramer-
Shoup [15] which are based on the Strong RSA Assumption: they not only introduce another
computational assumption for the security of the scheme, but require several modular exponentia-
tions and about 4 Kbit of bandwidth to transmit keys and signatures. A shorter alternative would
be the Boneh-Boyen [6] which requires only 160 bit for the signature, but it would still require 2
Kbits to send the verification key. Moreover signature verification in the Boneh-Boyen scheme is
particularly expensive since it requires the computation of a bilinear map.

2A label is a public string that accompanies a ciphertext and is an integral part of it. It must be submitted together
with the ciphertext in order to obtain a decryption and the adversary should not be able to modify it. See Section
2.1 for details.

3Interestingly this is already done in the KOY protocol, but it is not used in the proof in any significant way.
Indeed the GL proof shows that the use of digital signatures make this step unnecessary. We reinstate it exactly
because we want to avoid using signatures.

Insecure Password-Authenticated Key Exchange

e Common reference string: The public key PK for a chosen-ciphertext secure encryption scheme &.
A description of a smooth projective hashing family Hj, over the set X of ciphertext/password pairs
(c,w).

e Common input: a shared (low-entropy) password w.
e The protocol:
1. Party A computes an encryption ¢ = Epk (w) and sends it to party B.

2. Party B chooses a key k for the smooth projective hash function, and computes its projection
s = a(k). Also B computes the projective hash over (¢, w), i.e. sk = Hi(c, w).
Finally B computes another encryption of the password i.e., ¢’ = Epx (w).
B sends s, to party A.

3. Party A chooses another key k' for the smooth projective hash function, and computes its pro-
jection s’ = a(k’). Also A computes the projective hash over (¢, w), i.e. ska = Hy (', w).

A sends s, t to party B.
e Session Key Definition:

1. Party B computes ska using the projection s’ and its knowledge of a witness for the fact that ¢’
is an encryption to the password w (it knows a witness because it generated ¢’) and outputs the
session key sk = ska & ski.

2. Party A also computes skp using the projection s and its knowledge of a witness for the fact
that c is an encryption to the string w (it knows a witness because it generated c¢) and outputs
sk = ska © skp.

Figure 1: Common skeleton of KOY, GL and our protocol

The above signatures are secure against many messages. There are more efficient number-
theoretic one-time signatures such as the one obtained by a chain of length two in the GMR
scheme [21], or the one recently proposed in [11] based on chameleon hashing with two trapdoors.
Still because of the computation of modular exponentiations and the transmission of verification
key and signature, these options are much more expensive then sending a simple MAC. It is not
hard to see that for each one of these options the reduction in the number of exponentiations is at
least a third.

1.4 Organization

In section 2 we recall the cryptographic tools that we need: chosen-ciphertext secure public-key
encryption, and message authentication codes. In Section 3 we review the notions of smooth
projective hash functions. The protocol is then presented in Section 4 and some concluding remarks
are presented in Section 5.

For lack of space we recall the formal definition of password-based authenticated key exchange,
in Appendix A and the security proof of our protocol appears in Appendix B.

2 Cryptographic Tools

We denote by n the security parameter.

If S is a set, with |S| we denote its cardinality. |m| denotes the bit length of m, if m is a string
or a number. If m is a 2n-bit string we denote with m®) and m® the first and second half of it
respectively.

If A(-,-,---) is a probabilistic algorithm, then x €r A(x1,x9,---) denotes the experiment of
running A on input x1,z9,--- with x being the outcome. If S is a set, x €r S denotes the
experiment of choosing x € S uniformly at random. If X is a probability distribution over S then
x €r X denotes the experiment of choosing x € S according to the distribution X.

Finally, we denote statistical closeness of probability ensembles by %, and computational indis-
tinguishability (with respect to non-uniform polynomial-time machines*) by =

We say that a real-valued function €(-) defined over the integers is negligible if for every constant
¢ > 0 there exists an integer n. such that for all n > n. e(n) < n=°.

2.1 Chosen-Ciphertext Secure Public-Key Encryption

A public key encryption scheme is a tuple of three algorithms PKE = (K, €, D). The key generation
algorithm KC generates a pair (PK,SK) €r K(1™), where PK is a public key and SK is a secret
key.

We use labeled encryption, which means that the encryption algorithm & takes a public key PK
a plaintext m, and a label ¢ and returns a ciphertext/label pair ¢ €g Epg(m,). The decryption
algorithm D takes a secret key SK, a ciphertext ¢ and a label ¢, and returns Dgx (¢, ¢) which is
either a message m or reject.

The adaptive chosen ciphertext attack (IND-CCA) game is defined similarly. A key pair is
generated by the key generation algorithm: (PK,SK) €r K(1™). Then a PPT adversary A, on
input the public key PK, queries a pair of equal length messages my and m; and a label £* to an
encryption oracle. The encryption oracle chooses b €r {0,1} and computes a challenge ciphertext
c* €r Epk(my, £*), which is given to A. In the course of the game the adversary A is given access to
a decryption oracle, Dgg (-, -) which A can query on any ciphertext/label pair except the challenge
ciphertext/label pair ¢*, ¢*. The game ends with the adversary outputting a bit b.

We say that the encryption scheme is secure against (adaptive) chosen-ciphertext attack if for
any adversary A, the probability that b = b is negligible (in the security parameter n).

Notice that the adversary is allowed to query the decryption oracle on any ciphertext/label pair
which is not the target pair. In particular this definition guarantees that the adversary will not
get any information from querying a ciphertext with a label different from the one used when the
ciphertext was created.

Notice that in our notation the first argument of the encryption algorithm is always the message,
the second argument is the label, and the random coins are implicit.

2.2 Message Authentication Codes

A message authentication code M AC is a function
MAC :{0,1}" x {0,1}* — {0,1}".

The first input is the key k& € {0,1}", and the second input is the message m € {0,1}*. The output
is called a “tag” t = M ACy(m).

The chosen message attack (CMA) game is defined as follows. A key is selected uniformly at
random k €r {0,1}". The adversary A is given t* = M AC}(m*) for many adaptively adversarially

4All of our results also hold with respect to uniform adversaries.

chosen m*, after which the adversary outputs a pair (m,t). We say that (m,t) is a forgery if
m # m* for all the queried m* and ¢t = M ACy(m).

We that a MAC is secure if for every adversary A the probability of computing a forgery is
negligible.

3 Smooth Projective Hash Functions

Following Gennaro and Lindell [19] we use a modified version of the notion of smooth projective
hashing introduced by Cramer and Shoup [13]. We recall the definition from [19] which is needed
here and refer the reader to [19] for a description of the differences between this definition and the
original one from [13].

Subset membership problems. Intuitively, a hard subset membership problem is a problem
for which “hard instances” can be efficiently sampled. More formally, a subset membership problem
7 specifies a collection {I,,},en such that for every n, I, is a probability distribution over problem
instance descriptions A. A problem instance description defines a set and a hard language for that
set. Formally, each instance description A specifies the following:

1. Finite, non-empty sets X,, L, C {0,1}?°Y(such that L, C X, and distributions D(Ly,)
over L,, and D(X,\ L,) over X, \L,.

2. A witness set W,, C {0, 1}p01y<n) and an NP-relation R, C X,, x W,,. R,, and W,, must have
the property that = € L, if and only if there exists w € W,, such that (z,w) € R,.

We are interested in subset membership problems Z which are efficiently samplable. That is, the
following algorithms must exist:

1. Problem instance samplability: a probabilistic polynomial-time algorithm that upon input 17,
samples an instance A = (X,,, D(X,,\Ly), Ly, D(Ly,), Wy,, Ry,) from I,,.

2. Instance member samplability: a probabilistic polynomial-time algorithm that upon input 1"
and an instance (X,,, D(X,\Ly), Ly, D(Ly), Wy, R,,), samples = € L,, according to distribu-
tion D(L,,), together with a witness w for which (z,w) € R,,.

3. Instance non-member samplability: a probabilistic polynomial-time algorithm that upon input
1™ and an instance (X, D(X,\Ly), Ly, D(Ly), Wy, R,,), samples z € X,,\ L,, according to
distribution D(X,\Ly,).

We are now ready to define hard subset membership problems:

Definition 3.1 (hard subset membership problems): Let V(L,,) be the following random variable:
Choose a problem instance A according to I, a value x € Ly, according to D(Ly,) (as specified in
A), and then output (A, z). Similarly, define V(X,\Ly) as follows: Choose a problem instance A
according to I, a value x € X,,\ Ly, according to D(X,\Ly,) (as specified in A) and then output
(A,x). Then, we say that a subset membership problem T is hard if

{V(Ln)}nEN < {V(Xn\Ln)}n

en’

In other words, Z is hard if random members of L, cannot be distinguished from random non-

members. In order to simplify notation, from here on we drop the subscript of n from all sets.
However, all mention of sets X and L etc., should be understood as having been sampled according

Loosely speaking a smooth projective hash function is

to the security parameter n.
Smooth projective hash functions.
a function with two keys. The first key maps the entire set X to some set G. The second key
(called the projection key) is such that it can be used to correctly compute the mapping of L to G.
However, it gives no information about the mapping of X\ L to G. In fact, given the projection
key, the distribution over the mapping of X'\ L to G is statistically close to uniform (or “smooth”).
We now present the formal definition.

Let X and G be finite, non-empty sets and let H = { H }rcx be a collection of hash functions
from X to G. We call K the key space of the family. Now, let L be a non-empty, proper subset
of X (i.e., L is a language). Then, we define a key projection function o : K x X — S, where S is

the space of key projections. Informally, the above system defines a projective hash system if for

x € L, the projection key s, = a(k,z) uniquely determines Hy(x). (Ignoring issues of efficiency,

this means that Hy(z) can be computed given only s, and x € L.) We stress that the projection
key s, = a(k,z) is only guaranteed to determine Hy(z) for z € L, and nothing is guaranteed for

x' # x. Formally,
Definition 3.2 (projective hash functions): The family (H,K,X,L,G,S,«) is a projective hash

family if for allk € K and x € L, it holds that the value of Hi(x) is uniquely determined by a(k, =)

and .
Of course, projective hash functions can always be defined by taking «(-,-) to be the identity
function. However, we will be interested in smooth projective hash functions which have the
property that for every = ¢ L, the projection key s, = «(k,x) reveals (almost) nothing about
Hy(z). More exactly, for every x ¢ L, the distribution of Hy(z) given a(k,x) should be statistically
Let (H,K,X,L,G,S,a) be a projective

close to uniform. Formally,
Definition 3.3 (smooth projective hash functions [13])
hash family. Then, for every x € X\ L define the random wvariable V(z,a(k), Hi(z)) by choosing
k €er K and output (z,a(k,x), Hy(z)). Similarly, define V(z,a(k,), g) as follows: choose k €g K,
Then, the projective hash family (H, K, X, L,G, S, «a) is smooth

g €r G and output (z,a(k,x),g)
neN

if for every x € X\ L:
V@, ak), Hy(2))}
We say that a smooth projective hash family is

efficient if the following algorithms exist:

Efficient smooth projective hash functions.
1. Key sampling: a probabilistic polynomial-time algorithm that upon input 1" samples k € K
2. Projection computation: a deterministic polynomial-time algorithm that upon input 1%, k €

uniformly at random.

K and z € X outputs s = a(k, z).
8

3. Efficient hashing from key: a deterministic polynomial-time algorithm that upon input 17,
k € K and x € X, outputs Hy(x).

4. Efficient hashing from projection key and witness: a deterministic polynomial-time algorithm
that upon input 1", = € L with a witness w such that (z,w) € R, and a(k,z) (for some
k € K), computes Hy(x).

We note an interesting and important property of such hash functions. For z € L, it is possible to
compute Hy(x) in two ways: either by knowing the key & (as in item 3 above) or by knowing the
projection s, of the key, and a witness for = (as in item 4 above). This property plays a central
role in our password-based protocol.

Another interesting property formalized by Gennaro and Lindell in [19] is that these are the
only ways to compute Hy(x). Specifically, for €g D(L) (where an appropriate witness w is not
known), the value Hy(x) is computationally indistinguishable from random, given the projection
Sy

Since we use smooth projective hashing in our password protocol, it is necessary to prove the
above statement even when the adversary sees many tuples (x, s, Hi(z)) with z €g D(L). Let M
be a (non-uniform) polynomial-time oracle machine. Define the following two experiments.

Expt-Hash(M): An instance A = (X, D(X\L), L, D(L), W, R) of a hard subset membership prob-
lem is chosen from I,,. Then, the machine M is given access to two oracles: €y and Hash(-).
The €7, oracle receives an empty input and returns z € L chosen according to the distribution
D(L). The Hash oracle receives an input x. It first checks that x was previously output by
the Qf, oracle. If no, then it returns nothing. Otherwise, it chooses a key k €r K and returns
the pair (a(k,x), Hi(z)) . We stress that the Hash oracle only answers for inputs x that were
generated by 7. The output of the experiment is whatever machine M outputs.

Expt-Unif(M): This experiment is defined exactly as above except that the Hash oracle is replaced
by the following Unif oracle. On input x, Unif first checks that was previously output by the
Qg oracle. If no, it returns nothing. Otherwise, it chooses a key k €gr K and a random element
g €r G, and returns the pair (a(k,z),g). As above, the output of the experiment is whatever
M outputs.

In [19] it is proven that no efficient M can distinguish between the experiments. In other words,
when = €r D(L), the value Hy(x) is pseudorandom in G, even given a(k,z). This lemma is used
a number of times in the proof of our password protocol.

Lemma 3.4 Assume that Z is a hard subset membership problem. Then, for every (non-uniform)
polynomial-time oracle machine M it holds that,

|Pr[Expt-Hash(M) = 1] — Pr[Expt-Unif(M) = 1]| < negl(n).

Hard partitioned subset membership problems. We now consider a variant of hard subset
membership problems, where the set X can be partitioned into disjoint subsets of hard problems.
That is, assume that the set X contains pairs of the form (i,z), where i € {1,...,¢} is an index.
We denote by X (i) the subset of pairs in X of the form (i,2). Furthermore, we denote by L(7)
the subset of pairs in the language L of the form (i,x). (We also associate sampling distributions
D(L(i)) and D(X (2)\L(7)) to each partition.) Then, such a problem constitutes a hard partitioned
subset membership problem if for every i, it is hard to distinguish = €r D(L(i)) from x €p
D(X(i\L(7)). (In the notation of Definition 3.1, we require that for every i, the ensembles {V (L(7))}

and {V (X (¢)\L(7))} are computationally indistinguishable.) We stress that the definition of smooth
projective hashing is unchanged when considered in the context of hard partitioned subset problems.
That is, the smoothness is required to hold with respect to the entire sets X and L, and not with
respect to individual partitions.

Lemma 3.4 also holds for hard partitioned subset membership problems (see [19]. Specifically,
the definitions of the oracles in the experiments are modified as follows. The €, oracle is modified
so that instead of receiving the empty input, it is queried with an index i, and returns z € g D(L(1)).
Likewise, {2x\;, receives an index 4 and returns an element x €g D(X (i)\L(7)). Notice that in this
scenario, the distinguishing machine M is given some control over the choice of x. Specifically, M
can choose the index ¢ that determines from which partition an element x is sampled.

Corollary 3.5 Assume that T is a family of hard partitioned subset membership problem. Then,
for every (non-uniform) polynomial-time oracle machine M

|Pr[Expt-Hash(M) = 1] — Pr[Expt-Unif(M) = 1]| < negl(n).

4 The Protocol

Our protocol uses a chosen-ciphertext secure public-key labeled encryption scheme £. The common
reference string for the protocol is a public key PK for £.

We then use a family of smooth projective functions H = {Hj} such that for every k in the
key space K, Hy, : Cpg x M — {0,1}?", where M is the message space, Cpg is an efficiently
recognizable superset of the ciphertext space. Notice that we are assuming that the projective hash
function outputs 2n-bit strings®.

Finally, we assume that there is a mechanism that enables the parties to differentiate between
different concurrent executions and to identify who they are interacting with. This can easily be
implemented by having P; choose a sufficiently long random string r and send the pair (i,7) to P;
along with its first message. P; and P; will then include r in any future messages of the protocol.
We stress that the security of the protocol does not rest on the fact that these values are not
modified by the adversary. Rather, this just ensures correct communication for protocols that are
not under attack. The protocol appears in Figure 2.

Intuitive Security Proof. First notice that both A and B can compute the session key as
instructed. Specifically, A can compute H(c,w, A o B) because it has the projection key s and
the witness (coins) for ¢. Furthermore, it can compute Hy/ (¢, w,c o s) because it has the key £’
(and therefore does not need the witness for ¢’). Likewise, B can also correctly compute both the
hash values (and thus the session key). Second, when both parties A and B see the same messages
(¢, 8,8, t) the session keys that they compute are the same. This is because the same hash value
is obtained when using the hash keys (k and k') and when using the projection keys (s and s).
This implies that the correctness property holds for the protocol.

We now proceed to motivate why the adversary cannot distinguish a session key from a random
key with probability greater that Qgsend/|D|, where Qsenq equals the number of Send oracle calls
made by the adversary to different protocol instances and D is the password dictionary. In order
to see this, notice that if A, for example, receives ¢’ that is not an encryption to w with label

"We note that the constructions in [19] output values in a large algebraic group G. Tt is a standard application of
randomness extraction (e.g. via universal hashing) to map such elements into 2n-bit strings, assuming the group G
is large enough.

10

G-PaKE

e Common reference string: The public key PK for a chosen-ciphertext secure encryption scheme
E. A description of a smooth projective hashing family Hjy over the set X of ciphertext/password
pairs (¢, w). The NP language L is composed of the tuples (¢, m,£) where ¢ = Epx(m,) i.e. ¢ is an
encryption of m with label £ under PK. A message authentication code M AC.

e Common input: a shared (low-entropy) password w.
e The protocol:

1. Party A computes an encryption ¢ = Epk(w, A o B) and sends it to party B.

2. Party B chooses a key k for the smooth projective hash function (for the language L described
above), and computes its projection s = a(k,c). Also B computes the projective hash over
(c,w,Ao B),ie. skg = Hg(c,w, Ao B).

Finally B computes another encryption of the password with label co s i.e., ¢’ = Epk(w,co s).
B sends s, to party A.

3. Party A chooses another key k' for the smooth projective hash function (for the language L
described above), and computes its projection s' = a(k’,c’). Also A computes the projective
hash over (¢, w,cos), i.e. ska = Hy (c',w,cos).

A also computes skp using the projection s and its knowledge of a witness for the fact that c is
an encryption to the string w with label A o B (it knows a witness because it generated c).

Set t = MACSkg) (c,s,c,8") & skS).
A sends s',t to party B.
e Session Key Definition:

1. Party B computes ska using the projection s’ and its knowledge of a witness for the fact that ¢’
is an encryption to the password w with label c o s (it knows a witness because it generated c)

It tests if t = MACsk(l) (c,8,c,8") D sk(Al). If the test fails it outputs an error message, otherwise
B
it outputs sk = skf) @ skg).

2. Party A outputs sk = sk(j) @ skg).

Session-Identifier Definition: Both parties take the series of messages (c,s,c’,s’) to be their session
identifiers.

Figure 2: Improved Password-Based Session-Key Exchange

co s under PK, then A’s component of the session key sk4 will be statistically close to uniform.
This is because A computes Hy/ (¢, w,c o s) for ¢ &€ Epk(w,c o s) i.e. on an input outside the
language. Therefore, by the definition of smooth projective hashing, {¢, w, a(k,), Hi(¢',w,cos)}
is statistically close to {¢/,w, a(k,c'),r}, where r is a random 2n-bit string.

The same argument holds if B receives ¢ that is not a encryption of w with label A o B. It
therefore follows that if the adversary is to distinguish the session key from a random element, it
must hand the parties encryptions of the valid messages (and in particular containing the correct
passwords). One way for the adversary to do this is to copy (valid) commitments that are sent by
the honest parties in the protocol executions. However, in this case, the adversary does not know
the random coins used in generating the commitment, and once again the result of the projective
hash function is a pseudorandom 2n-bit string (see Lemma 3.4). This means that the only option
left to the adversary is to come up with valid commitments that were not previously sent by honest

11

parties. However, by the non-malleability of the encryption scheme, the adversary cannot succeed
in doing this with probability non-negligibly greater than just a priori guessing the password. Thus,
its success probability is limited to Qgend/|D| + negl(n).

This intuitive explanation of the security of the protocol is not complete. Indeed it does not
address the use of message authentication codes in the protocol. The MAC is needed to prevent
further malleability attacks. Indeed the combination of projective hash function and semantically
secure symmetric encryption alone could be malleable, and by recycling messages from previous
executions the adversary could gain some knowledge about a session key. For example, it is possible
that for some smooth projective hash family it holds that for every k, Hox(x) = 2Hy(x). If this
were the case, in the basic protocol described in Figure 1 an adversary could cause two instances
to accept with different session identifiers and related session-keys. By requesting a Reveal for
one of the instances, it could then distinguish the other instance’s session-key from random, in
contradiction to the security requirements.

Notice that the projection s is protected by malleability attacks because is incorporated as a
label in the ciphertext ¢/. The surprising thing is that at this point the value skpg is already pseudo-
random to the eyes of the adversary, and known to both parties A and B. The most intuitive thing
would be to use it to MAC the other projection s’.

But if A were to send t = M ACs,(c, s, s) the adversary could perform the following off-line
attack. The adversary would start a session with A pretending to be B and obtain the commitment
c. Next, the adversary A chooses k and returns s = a(k,c) to A together with an incorrect
encryption ¢/. The response from A is s’ and ¢ computed as above with skg = Hg(c,w, A o B).
Now the adversary can traverse the entire dictionary D and for all possible w’s compute skp =
Hy(c,w, Ao B) (it can do this because it knows k and so can compute Hy(c, w) without a witness
for ¢). The right password is the one for which skp verifies the above MAC ¢.

The final solution is then to “mask” the MAC, using sk4 which is not known to the adversary,
and cannot even be computed off-line by traversing the dictionary (because the adversary does not
know the coins used to produce). If the adversary modifies s’ and makes B accept then it must
produce a MAC forgery with key skp. Of course this is just an intuition and the proof in the
Appendix works out all the detailsS.

Theorem 4.1 Assume that £ is a public-key encryption secure against adaptive chosen ciphertext
attack, M AC is a secure message authentication code and H is a family of smooth projective hash
functions. Then, Protocol G-PaKE in Figure 2 is a secure password-based session-key generation
protocol.

5 Extension and Conclusions

The reader is referred to [19] to see examples of efficient chosen-ciphertext secure encryption schemes
that admit the type of projective hash functions needed in this protocol. They are based on the
encryption schemes proposed by Cramer and Shoup in [12, 13], and can be based on the DDH,
Quadratic Residuosity and N-Residuosity Assumptions. Labels are easily incorporated into these
schemes, without impacting their overall efficiency. See Appendix C for a discussion of this point.

For simplicity we have presented the protocol using chosen-ciphertext secure encryption. It
is possible using techniques used in [19] to prove the protocol assuming that £ is non-malleable
commitment scheme, which admits a projective hash function. The protocol needs to be modified

50One final technicality: in in order to protect the semantic security of the final session key we use the fist half of
ska and skp to perform the MAC test during the protocol and the second half to compute the actual session key.

12

and the proof is more complicated. However in practice it does not make much of a difference,
as the only known efficient implementations of such commitment schemes are the ones mentioned
above (i.e. based on chosen-ciphertext secure encryption and described by [19]).

Canetti et al. extend the KOY and GL protocol to the Universal Composability framework in [9].
Their protocol also uses one-time signatures to prevent malleability attacks and our modification
is applicable to their protocol as well.

Conclusions. We have shown an improvement of the KOY and GL protocols, which does not
require one-time signatures. Our protocol works in the common reference string and its proof
does not require idealized assumptions such as the random oracle. For typical security parameters
our protocol saves about 12 Kbytes of bandwidth, thus bringing provable security in the realm of
password-authenticated key exchange one step closer to practical.

References

[1] M. Abe, R. Gennaro and K. Kurosawa. . Tag-KEM/DEM: A New Framework
for Hybrid Encryption. To appear in the Journal of Cryptology. Available at
http://eprint.iacr.org/2005/027.

[2] M. Bellare, D. Pointcheval and P. Rogaway. Authenticated Key Exchange Secure Against
Dictionary Attacks. In Furocrypt 2000, Springer-Verlag (LNCS 1807), pp.139-155, 2000.

[3] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In CRYPT0’93,
Springer-Verlag (LNCS 773), pp.232-249, 1994.

[4] S.M. Bellovin and M. Merritt. Encrypted Key Exchange: Password Based Protocols Secure
Against Dictionary Attacks. In Proceedings 1992 IEEE Symposium on Research in Security
and Privacy, pp.72-84. IEEE Computer Society, 1992.

[5] S.M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A Password-Based
Protocol Secure Against Dictionary Attacks and Password File Compromise. In Proceedings
of the 1st ACM Conference on Computer and Communication Security, pp.244-250, 1993.

[6] D. Boneh and X. Boyen. Short Signatures Without Random Oracles. EUROCRYPT’04, LNCS
3027, pp.56-73

[7] V. Boyko, P. MacKenzie and S. Patel. Provably Secure Password-Authenticated Key Exchange
Using Diffie-Hellman. In Eurocrypt 2000, Springer-Verlag (LNCS 1807), pp.156-171, 2000.

[8] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited. Journal
of the ACM, 51(4):557-594, 2004.

[9] R. Canetti, S. Halevi, J. Katz, Y. Lindell and P. MacKenzie. Universally Composable Password-
Based Key Ezchange. EUROCRYPT 2005, LNCS Vol.3494, pp.404-421, 2005.

[10] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels. In Eurocrypt 2001, Springer-Verlag (LNCS 2045), pp.453-474, 2001.

[11] D. Catalano, M. Di Raimondo, D. Fiore and R. Gennaro. Some Theoretical and Ezperimental
Results about Off-Line/On-Line Signatures. Manuscript. Available from the authors.

13

[12]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

[23]

R. Cramer and V. Shoup. A Practical Public-Key Cryptosystem Secure Against Adaptive
Chosen Ciphertexts Attacks. In CRYPTO’98, Springer-Verlag (LNCS 1462), pp.13-25, 1998.
Full version in [14].

R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen Ci-
phertext Secure Public-Key Encryption. In FEurocrypt 2002, Springer-Verlag (LNCS 2332),
pp.45-64, 2002. Full version in [14].

R. Cramer and V. Shoup. Design and Analysis of Practical Public-Key Encryption Schemes
Secure Against Adaptive Chosen Ciphertext Attack. SIAM Journal of Computing, 33:167-226,
2003.

R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. ACM
Trans. Inf. Syst. Secur. 3(3): 161-185 (2000)

W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Trans. on Inf. Theory,
IT-22, pp.644-654, Nov. 1976.

D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. SIAM Journal of Computing,
30(2):391-437, 2000.

R. Gennaro, S. Halevi and T. Rabin. Secure Hash-and-Sign Signatures Without the Random
Oracle. EUROCRYPT 1999, LNCS Vol.1592, pp.123-139, Springer 1999.

R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange. ACM
Transactions on Information and System Security (TISSEC), 9(2):181-234, ACM Press, May
2006.

O. Goldreich and Y. Lindell. Session Key Generation using Human Passwords Only. In
CRYPTO 2001, Springer-Verlag (LNCS 2139), pp.408-432, 2001.

S. Goldwasser, S. Micali and R.L. Rivest, A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attacks. SICOMP, 17(2):281-308, 1988.

S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols. ACM Trans-
actions on Information and System Security (TISSEC), 2(3):230-268, 1999.

D.P. Jablon. Strong Password-Only Authenticated Key Exchange. SIGCOMM Computer
Communication Review, 26(5):5-26, 1996.

J. Katz, R. Ostrovsky and M. Yung. Practical Password-Authenticated Key Exchange Prov-
ably Secure under Standard Assumptions. In Eurocrypt 2001, Springer-Verlag (LNCS 2045),
pp-475-494, 2001.

K. Kurosawa and K. Schmidt-Samoa. New Online/Offline Signature Schemes Without Random
Oracles. Public Key Cryptography 2006, LNCS Vol.3958, pp.330-346, Springer.

L. Lamport. Constructing digital signatures from a one-way function. Technical Report CSL-
98, SRI International, Oct. 1979.

S. Lucks. Open Key Exchange: How to Defeat Dictionary Attacks Without Encrypting Public
Keys. In Proceedings of the Workshop on Security Protocols, Springer-Verlag (LNCS 1361),
pp-79-90, Ecole Normale Superieure, 1997.

14

[28] S. Patel. Number Theoretic Attacks on Secure Password Schemes. In Proceedings of the 1997
IEEE Symposium on Security and Privacy, pp.236—247, 1997.

[29] M. Steiner, G. Tsudik and M. Waidner. Refinement and Extension of Encrypted Key Exchange.
ACM SIGOPS Oper. Syst. Rev., 29(3):22-30, 1995.

[30] T. Wu. The Secure Remote Password Protocol. In 1998 Internet Society Symposium on
Network and Distributed System Security, pp.97-111, 1998.

A Password-Based Authenticated Key Exchange

In this section, we briefly recall the formal security model for password key exchange protocols as
presented in [2] (which is in turn based on [3]). For more details and motivation, we refer the reader
to [2]. A protocol for password key exchange assumes that there is a set of principals which are the
clients and the servers who will engage in the protocol. Each client stores its own private password
w, while each server stores all the passwords of the clients who have access to that server.” The
passwords for all pairs of parties are uniformly (and independently) chosen from a fixed dictionary
D.2 Each principal may start various executions of the protocol, with different partners. Thus we
denote with Hé the I** instance that user P; runs. The adversary is given oracle access to these
instances and may also control some of the instances itself. We remark that unlike the standard
notion of an “oracle”, in this model instances maintain state which is updated as the protocol
progresses. In particular the state of an instance Hii includes the following variables (initialized as
null):

. sidéi: the session identifier of this particular instance;

° pidlii: the partner identifier which is the name of the principal with whom H? believes it is

interacting (we note that pidif' can never equal 7);

° accii: a boolean variable denoting whether Hli" accepts or rejects at the end of the execution.

Partnering. We say that two instances Hli" and Hé»j are partnered if the following properties hold:

(1) pidli" = j and pidé»j = 4; and (2) sidli" = sid;j # null. The notion of partnering is important for
defining security, as we will see.

The adversarial model. The adversary is given total control of the external network (i.e., the
network connecting clients to servers). In particular we assume that the adversary has the ability to
not only listen to the messages exchanged by players, but also to interject messages of its choice and
modify or delete messages sent by the parties.? The above-described adversarial power is modeled
by giving the adversary oracle access to the instances of the protocol that are run by the principals.
Notice that this means that the parties actually only communicate through the adversary. The
oracles provided to the adversary are as follows:

"We actually make no use of the asymmetry between clients and servers. Indeed, the protocol is stated for a
general scenario where arbitrary pairs of parties share secret passwords.

8This uniformity requirement is made for simplicity and can be easily removed by adjusting the security of an
individual password to be the min-entropy of the distribution, instead of 1/|D|.

In principle, the adversary should also be given control over a subset of the oracles, modeling the case of an
“inside attacker”. In the password-only setting, this actually makes no difference because the adversary can internally
simulate these oracles by itself. We therefore leave out this requirement in our formal definition and analysis.

15

e Execute(i,l;,7,1;): When this oracle is called, a complete protocol execution between instances

Hli" and H;j takes place. The oracle-output is the protocol transcript (i.e., the complete series
of messages exchanged by the instances throughout the execution). These oracle calls reflect
the adversary’s ability to passively eavesdrop on protocol executions. As we shall see, the
adversary should learn nothing from such oracle calls.

e Send(i,l;, M): This call sends the message M to the instance Hil The output of the oracle
is whatever message the instance Héi would send after receiving the message M (given its
current state). This oracle allows the adversary to carry out an active man-in-the-middle
attack on the protocol executions.

e Reveal(i,l;): This call outputs the secret key skﬁi which resulted from instance Hﬁl This oracle
allows the adversary to learn session keys from previous and concurrent executions, modeling
improper exposure of past session keys and insuring independence of different session keys in
different executions.

e Test(i,l;): This call is needed for the definition of security and does not model any real
adversarial ability. The adversary is only allowed to query it once, and the output is either
the private session key of Hii, denoted sk:f", or a random key sk that is chosen independently
of the protocol executions (each case happens with probability 1/2). The adversary’s aim is
to distinguish these two cases.

The security of key exchange protocols is composed of two components: correctness and privacy.
We begin by stating the correctness requirement:

Non-triviality: If two instances Héi and H;j that hold each other’s partner identifier communicate

without adversarial interference (as in an Execute call), then Héi and Hé»j are partnered and they
both accept.

Correctness: If two partnered instances Hli" and Hé»j accept (i.e., accli" = accz-j = 1), then they

must both conclude with the same session key (i.e., skf" = sk;j)

Privacy: We now define what it means for a protocol to be private. Intuitively, a protocol achieves
privacy if the adversary cannot distinguish real session keys from random ones. (This then implies
that the parties can use their generated session keys in order to establish secure channels; see [10]
for more discussion on this issue.) Formally, we say that the adversary succeeds if it correctly
guesses the bit determining whether it received the real session key or a random session key in the
Test oracle query. Of course, the adversary can always correctly guess the bit in a Test(i,l;) query
if it queried Reveal(i,[;) or Reveal(j, ;) when Hli" and Hé»j are partnered. Therefore, A is only said
to have succeeded if these oracles were not queried. Now, the adversary’s advantage is formally
defined by:
Adv(A) = |2 - Prob[A succeeds | — 1].

We reiterate that an adversary is only considered to have succeeded if it correctly guesses the bit
used by the Test(7,[;) oracle and it did not query Reveal(i,[;) or Reveal(j,l;) when Héi and Hz-j are
partnered.

As we have mentioned, when low entropy passwords are used, the adversary can always gain a
non-negligible advantage (by just guessing passwords in an on-line guessing attack). A protocol is

16

therefore called private if it is limited to such an on-line guessing attack. Notice that in Execute
oracle calls, the adversary is passive (and thus is not carrying out any on-line attack). Therefore,
we only count password guesses when the adversary queries the Send oracle. Furthermore, we also
only count one Send query for each protocol instance (i.e., if the adversary sends two Send oracle
queries to a single protocol instance, it should still only count as a single password guess). Formally,
a protocol is said to be private if the advantage of the adversary is at most negligibly more than
Qsend/|D|, where Qgeng is the number of Send oracle queries made by the adversary to different
protocol instances and D is the dictionary. In summary;,

Definition A.1 (password-based key exchange): A password-based authenticated key exchange
protocol is said to be secure if for every dictionary D and every (non-uniform) polynomial-time
adversary A that makes at most Qgsena queries of type Send to different protocol instances,

Qsend

Adv(A) <

+ negl(n).

Furthermore, the probability that the correctness requirement is violated is at most negligible in the
security parameter n.

We note that the bound of Qgenq/|D| for A’s advantage is actually optimal. That is, one can always
construct an adversary who obtains this exact advantage by guessing a password, and then playing
Hi“s role in a protocol execution with ng , using the guessed password. It is easily verified that
A’s advantage in this attack is exactly Qgsend/|D)|-

B Proof of Security

Our proof of security significantly differs from the proof of [24, 19] since it has to work without
using digital signatures. It is however structured in the same way, i.e. through a series of hybrid
arguments.

We begin by proving the correctness requirement. Notice that the session identifiers are defined
to be (¢, s,c,s',t) as seen by the parties in the execution. Since the session key is fully defined by
these values, it follows that parties with the same identifiers must always have the same session
key. Thus, correctness holds.

We now proceed to prove the privacy requirement through a series of hybrid experiment. In
the following we refer to sk4 and skp as the master keys computed by the players. In each new
hybrid, we modify the way these master keys (and thus the session key) are chosen for certain
protocol instances. We begin by choosing random master keys for protocol instances for which the
Execute oracle is called. We then proceed to choose random master keys for instances that receive
Send oracle calls. These instances are gradually changed over six hybrid experiments, depending
on specific sub-cases. In the last hybrid experiment, all the master keys are (almost) uniform 2n-
bit strings. Thus, the adversary clearly cannot distinguish them from random. We denote these
hybrid experiments by Hy,...,Hs and by Adv(A, H;) the advantage of A when participating in
experiment H;. The real adversarial attack is denoted by Hj and in this experiment all the oracles
are as defined in the protocol. Thus Adv(A, Hy) = Adv(A) and we wish to bound this advantage
by Qsend/|D| + negl(n), where Qseng denotes the number of Send queries that A makes to different
protocol instances during its attack.

17

Hybrid experiment Hy: In this experiment, the Execute oracle is modified so that the master
keys of protocol instances for which Execute is called are all chosen uniformly as random 2n-bit
strings, rather than being computed using the projective hash. We prove that the view of the
adversary in H; is indistinguishable from its view in a real execution. Intuitively, this is due to
Lemma 3.4 which states that without knowing k& or the randomness used to generate an encryption,
the distribution {s,w,i o j, Hx(c,w,i07)} is computationally indistinguishable from {s,w,io j, p},
where p € {0,1}2". We now formally prove that modifying the oracles in this way can make at
most a negligible difference. That is,

Claim B.1 For every non-uniform polynomial-time adversary A,

|Adv(A, Hy) — Adv(A, Hy)| < negl(n).

Proof: The proof of this claim works by showing how any advantage that A has in distinguishing
H, from Hy can be used to construct a polynomial-time machine that distinguishes between Expt-
Hash and Expt-Unif as defined in Section 3. We recall the definition of these two experiments,
specified to our setting:

Expt-Hash(D): A public key PK is chosen and given to the machine D. D can then query two
oracles: Encrypt(-,-) and Hash(:,-,-). The Encrypt oracle receives a message m and a label ¢ and
returns an encryption ¢ €r Epg(m,c,f) (generated using random coins 7). The Hash oracle
receives an input ¢, where ¢ was output by the Encrypt oracle on input m,¢. It chooses a key
k €r K and computes the projection s = «a(k,c). It then outputs (s, Hi(c,m,£)). We stress
that the Hash oracle only answers on inputs ¢, where ¢ was generated by Encrypt on input m, £.
The output of the experiment is whatever the machine D outputs.

Expt-Unif(D): This experiment is defined exactly as above except that the Hash oracle works as
follows. Upon input ¢, ¢, where ¢ was generated by Encrypt on input m, ¥, it chooses a key
k €r K and computes the projection s = a(k,c). It then chooses a random string p €r {0,1}"
and outputs (s, p).

In Corollary 3.5, we showed that for every (non-uniform) probabilistic polynomial-time machine D,
|Pr[Expt-Hash(D) = 1] — Pr[Expt-Unif(D) = 1]| < negl(n).

Indeed we can see this as a family of partitioned hard subset membership problems where X is
partitioned by the message/label pair m, . In this context, the Encrypt oracle plays the role of Q..

We now show that |Pr[Expt-Hash = 1] — Pr[Expt-Unif = 1]| upper bounds the difference between
an adversary A’s advantage in Hy and H;. Loosely speaking, this is shown as follows. For all
instances involved in Execute calls, the Encrypt and Hash oracles from the Expt-Hash and Expt-Unif
experiments are used to obtain the commitments and projection keys, and to compute the master
key mk. Then, if Expt-Hash is being used, the result is identical to the protocol specification, and
therefore Hy. In contrast, if Expt-Unif is being used, then the master keys are chosen at random
for all Execute calls (and everything else remains the same as in the protocol specification). The
result is therefore exactly H;. We conclude that any distinguisher for Hy and H; can be used to
distinguish between Expt-Hash and Expt-Unif, with the same probability.

Formally, let A be an adversary interacting in either Hy or Hy. Then, we construct a machine
D for the Expt-Hash and Expt-Unif experiments as follows. D receives a randomly chosen public

18

key PK, and chooses random passwords wy, ws, ... for all the pairs of parties. Then, D emulates
the Ho/H; experiment exactly as prescribed. The only difference relates to the emulation of the
Execute oracles. Rather than computing ¢, s,c,s’,t as prescribed by the protocol, D queries its
Encrypt oracle with (w,7 o j) and (w,c o s) obtaining ¢ and ¢ respectively. Then, the Hash oracle
is queried with (¢,i07j) and (¢, co s), returning (s, h) and (s, ') respectively. The projection keys
are included in the transcript and the master keys for these instances are chosen as sk = h + h'.
Everything else in the emulation remains the same. At the conclusion of the emulation, D outputs
whatever A does.

Now, if D interacts in Expt-Hash, then the emulation carried out by D is exactly that of Hy. In
contrast, if D interacts in Expt-Unif, then the master keys of protocol instances for which Execute is
invoked are all random strings. Thus, the emulation by D is exactly that of Hy. We conclude that D
distinguishes between Expt-Hash and Expt-Unif with probability exactly |Adv(A, Hy) — Adv(A, Hy)|.
Thus, by Corollary 3.5, this value is negligible. This completes the proof of Claim B.1. [

At this point, the Execute oracles provide almost no advantage to the adversary A because the
session keys are n-bit strings chosen uniformly at random. We now proceed to show that the Send
oracles are also not of “too much” help to the adversary. We divide the Send oracles into four
different types:

e Sendy(i,l;): this oracle returns the first message (c) as sent by the initiator P; in protocol
instance II;’.

e Send;(j,1j,c): this oracle returns the reply (s,c) of P; upon receiving the message ¢ in protocol

. l:
instance 11 j] .

e Sends(i,l;, s, ¢): this oracle returns the final message (s, t) sent by P; upon receiving the message
(s,c') in protocol instance Hil

e Sends(j,l;,s',t): this oracle returns nothing, but it updates the state of Hé»j by feeding it the
message (s, 1).

Terminology. Before proceeding, we introduce the following terminology: an encryption c is said
to have been oracle-generated if it was output by a Sendy or Send; oracle (otherwise, it is said to
have been adversarially-generated). Likewise, if an encryption ¢ was generated by oracle Héi, then
we say that it was Héi—oracle-generated. We say that an encryption c is valid for a protocol instance

if it is of the correct format. Thus, c is valid for H;j when received in a Send; oracle query if

and only if ¢ = Epx(w,i o j) where c¢ is received by ng , wis P; and Pj’s shared password and
l;

pidgj = 4. Likewise, if ¢ is received by IL; in a Sendy oracle query, then it is valid if and only if
d = Epi(w,cos) where s is the projection key sent along with ¢’ and c¢ is the encryption output

by the instance Hi’ Note that an encryption may be valid for one instance and not for another

by default, when we say that an instance 1% receives a valid or invalid encryption c¢, the validity
J

Lj
refers to IL7).

Hybrid experiment Hy: In this hybrid experiment we allow the simulator to choose the common
reference string by running the key generation algorithm for the encryption algorithm. So the
common reference string is set to PK but the simulator knows SK the matching secret key. Clearly
the distribution seen by the adversary is the same.

Now the simulator uses the secret key to determine if any adversarially-generated encryption

19

is walid (in particular it contains the correct password). If that happens, the simulator sets the
session key of the party receiving the message to a special symbol . Also the adversary is given a
success if it ever queries Reveal or Test on a key set to 7. Otherwise the experiment proceeds as in
H;. Tt clearly holds that:

Claim B.2 For every non-uniform polynomial-time adversary A, Adv(A, Hy) < Adv(A, Hs).

Hybrid experiment Hjs: In this experiment, if an instance H? receives a Sends(s, ¢') oracle call
in which ¢ is invalid, then Héi master keys are chosen at random. The rest of the emulation is
identical to Hs.

Claim B.3 For every non-uniform polynomial-time adversary A, For every non-uniform polynomial-
time adversary A

|Adv(A, H3) — Adv(A, H)| < negl(n).

Proof: The proof of this Claim follows immediately from the definition of projective hash function.
If ¢ is invalid i.e. it is not an encryption of w with label ¢ o s under public key PK where c is the
encryption output in the first message by Hii), then the n-bit string Hy/ (¢, w, c o s) is distributed
almost uniformly. We note that this Claim holds information-theoretically.

We also note that this is the step of the proof where the masking of the MAC with sk, is
needed. Notice that in this experiment we are setting both of Hii master keys to random. But the
above argument proves that only sk; (i.e. the one computed hashing the commitment ¢ prepared
by Hil) is random. If Hli" answered with the MAC computed only using sk; (the other master
key), then the adversary could distinguish between the view in this hybrid and its view in Hy. But
because the MAC is masked by the randomness of sk; the view of the adversary remains the same
between these two hybrid experiments. [l

Before defining the next hybrid experiment, we prove a lemma stating that if A forwards the
first two messages ¢ and ¢/, s of an execution unmodified, then it cannot modify the projection key
s’ sent between the parties during the execution, without the party receiving ¢ eventually aborting.
Formally, denote by main(Hli") the projection keys and commitments (¢, s,c’,s’) seen by Hli" in the
execution. The above-mentioned lemma is formally stated as follows:

Lemma B.4 Denote by Send01—unmodified(H?,Hé»j) the event of Hé»j receiving on a Sendy call the
exact message output by Hli" upon a Sendg oracle call, and Héi receiving on a Sendy call the exact

message output by H;j in the previous Sendy call. Then,

Pr [Send(]l—unmodified(ﬂlii,H;j) & main(I1) # main(Hz-j) & accz-j = } < negl(n).

Proof: The proof of this lemma is based on the security of the MAC function and the pseudoran-
domness of the result of the projective hash function.

By the assumption in the lemma, Hz-j received the same first message ¢ sent by Hii, and Hii

received the same message that H;j sent in response. In other words this is “almost” an Execute
call, except that the adversary has the power to modify the last message of the protocol. It is not

20

hard to see that it follows from the proof of Claim B.1 that the master key computer by Héi is
pseudorandom and thus can be replaced in this execution with a random value.

Now assume that A is able to modify s’ and make Hé»j accept. This means that we can use A
to forge the MAC, as follows. We are given access to a MAC oracle that on input a message m
produces t,, = M AC(m) where £ is a random n-bit key. Set up the whole emulation of the entire
network, and guess an execution in which the adversary will not modify the first two messages, but
will modify the last and make Hé»j accept.

In this execution “replace” skg)

for Hii, i.e. choose s’ and ask the MAC oracle for 7 = M AC(c, s, ¢, s') and then send ¢ = T@Sk?(Al).
Because we have already observed that skp and sk, are pseudo-random to the adversary, the view
of the adversary after this change is indistinguishable from the real one.

with k, i.e. use the MAC oracle to compute the last message

Now, the adversary will send §,¢ to Hé»j which accepts. The simulator now computes (for

Hé»j) the projective hash function over the encryption ¢ with the projection § that the adversary
provided him. It can do that because it has the coins used to generate ¢’. Let o be the result. Since

Hé»j accepts it must be that t @ 0 = M AC,(c,s,d,§) and this constitutes a forgery since s’ # §'.
[

Hybrid experiment Hy: In this experiment, if Sends(s’,t) is called on a protocol instance ng ,
which accepts, then the simulator examines the first message c¢ received by instance Hé»j . If cis
oracle-generated, then the session key of ng is chosen at random. If there exists an instance Hi?'

such that sidlii = sidé»j then this instance is given the same session key as Hé»j . The rest of the
emulation is identical to experiment Hs.

Claim B.5 For every non-uniform polynomial-time adversary A,

|Adv(A, Hy) — Adv(A, H3)| < negl(n).

Proof: The proof of this Claim uses Lemma B.4 in a crucial way.
Assume that the adversary submits a Sends(s’,t) oracle call to an instance Hé»j , which accepts
(i.e. t is the correct MAC). Let ¢ be the encryption that ng received in the first message, and s, ¢/

be its response. Assume ¢ was generated by oracle Héi (i.e. the adversary did not modify the first
message). Then there can be only two cases:

1. The adversary submitted Sendy(s,) to instance Hi' In this case, since Hé.j accepts, Lemma
B.4 tells us that Hli" must have answered s’,¢t. That is sidii = sid;j , 1.e. the adversary did not

modify any messages between Hii and Hé»j;

2. The adversary submitted Sends(3,) to instance IT% where [3,¢] # [s,¢/]. In this case & is
either adversarially-generated or invalid. Indeed remember that in order to be valid for Hli",
¢ must be an encryption of w with label c o § where c is the first message output by H? and
§ is the label that accompanies d. All oracle-generated ¢ (except one) come from different
instances and thus for a different c. The only possibility is ¢/, but ¢ is valid for label s, and
if the adversary submits ¢’ it must change the label to § # s (otherwise we fall in case 1).

21

In case 1, the master keys for both Hz-j and Hli" can be chosen at random. The proof that the
adversary cannot distinguish follows from Claim B.1, since this session is basically an Execute call,
in which the adversary does not modify messages.

In case 2, in the real protocol instance H;j ends with master keys Hy(c, w,i0j) and Hy/(¢/, w, cos).
Let us focus on the first component. This component is pseudorandom for the adversary since A
does not know the coins used to generate ¢ (here there is a reduction to the pseudorandomness
of the projective hash function output). Moreover this component is independent from the key
established by the instance Hﬁi which outputted ¢. Indeed in its Sends oracle call Hii received
either a valid adversarially-generated commitment and its key is set to T or Hﬁi received an invalid

encryption and thus its key is already random. So the session key of Hé»j can be safely replaced with
a random one, making at most a negligible difference in the probability of success of the adversary.

Hybrid experiment Hs: In this experiment, if a protocol instance Hii receives an oracle-
generated encryption ¢ in a Sends oracle call, then its session key is chosen at random. We stress
that if Héi is such that its session key is already chosen at random, then nothing different is done.
The indistinguishability of H4 and Hjs is due to the fact that for oracle-generated encryptions, A
cannot predict the hash function value.

Claim B.6 For every non-uniform polynomial-time adversary A,

|Adv(A, Hs) — Adv(A, Hy)| < negl(n).

Proof: Let Hii be a protocol instance that receives an oracle-generated encryption ¢’ in a Sends
oracle call. We differentiate between the case that ¢ is valid or not.

1. is not valid: This case was already handled in H3 and the key set to random.

2. is valid: This proof uses the same tools as the proof of Claim B.1. See that proof for the
definition of the experiments Expt-Hash and Expt-Unif, and the oracles Hash and Encrypt.

We show that this case contributes at most a negligible difference to A’s advantage by con-
structing a machine D to distinguish between Expt-Hash and Expt-Unif with probability neg-
ligibly close to |Adv(A, Hs) — Adv(A, Hy)|. Machine D receives a randomly chosen common
public key PK, and chooses random passwords wy, ws, ... for all the pairs of parties. Then,
D emulates the Hy/Hs experiment exactly as prescribed. The only difference relates to the
emulation of the Send; and Sends oracles. Specifically, let H;j be a protocol instance who was
queried with a Send; oracle call. Then, rather than computing the encryption ¢ by itself, D
queries its Encrypt oracle with the appropriate password. Furthermore, if this ¢ is received
unmodified in a Sends oracle call by any protocol instance Hii, then machine D queries its
Hash oracle with ¢’ obtaining (s’,h"). The reply of Héi then includes s’ and the appropriate
portion of the master key is set to be h/. We stress that D only modifies the choice of the
master key for instances in which the master key is not already chosen randomly in Hy. If
the key is already chosen at random (as defined in Hy when sidéi = sid;j), then D leaves it
this way. Everything else in the emulation remains unchanged. At the conclusion of the em-
ulation, D outputs whatever 4 does. (We note an important point that facilitates the above

22

emulation. In Hy, protocol instances 1% who receive oracle generated Send; messages always
choose their master keys at random, rather than using the projective hash functions. This is
crucial because in the emulation, the encryption ¢ sent by such an instance is obtained by D
from the Encrypt oracle. Therefore, D does not know the random coins used to generate ¢’
and cannot compute the portion of the session key Hy/(¢/,w, co s) when given the projection
key s’ as chosen by the adversary.)

Now, on the one hand, if D interacts in Expt-Hash, then the emulation carried out by D
is exactly that of Hy. On the other hand, if D interacts in Expt-Unif, then the emulation
is exactly that of Hs because the session keys of instances Héi receiving oracle-generated ¢/
encryptions are chosen uniformly at random. Thus D distinguishes between Expt-Hash and
Expt-Unif with probability |Adv(A, Hs) — Adv(A, Hy)|. By Corollary 3.5, we have that A’s
advantage in Hs is negligibly close to its advantage in Hy4, as required.

This completes the proof of Claim B.6 W

Hybrid experiment Hg: In this experiment, if a protocol instance ng receives an invalid en-
cryption ¢ in a Send; oracle call, then its session key is chosen at random. This makes at most a
negligible difference because when c is not valid, ng ’s session key is anyway statistically close to
uniform due to the property of projective hash functions. We note that the following Claim holds
information-theoretically.

Claim B.7 For every non-uniform polynomial-time adversary A
|Adv(A, Hg) — Adv(A, Hs)| < negl(n).

We are now ready to conclude the proof by bounding the advantage of the adversary in experiment
Hyg. First, consider the case that all the adversarially-generated commitments are not valid. Then,
in experiment Hg, all master keys are actually chosen independently and uniformly at random in
G. Thus the probability that the adversary distinguishes between a real key and a random one is
exactly 1/2.

If the adversary generates a valid encryption then in Hg we say that it succeeds. Due to the
non-malleability of the encryption scheme £ the probability that A outputs a valid encryption must
be negligibly close to the probability of guessing the password outright, that is Qgena/|D)|.

Concluding the probability of the adversary succeeding in Hg is:

l Qsend

> "D

+ negl(n) (1)

as desired.

By combining Claims B.1 to B.7, and Equation (1) we obtain that A’s advantage in a real execution
is at most Qgsena/|D| + negl(n), as required. This completes the proof of Theorem 4.1.

C Labels in Cramer-Shoup Encryption Schemes

Consider the original Cramer-Shoup scheme based on the DDH Assumption:

Parameters A cyclic group G of prime order ¢; two random generators g1, g2. A collision resistant
hash function H which outputs elements in Z,.

23

Key Generation The secret key consists of five random values z,x1, x2,y1,y2 €r Z;. The public
xr1 T2 Y1 Y2

key are the group elements h = g7, c = g7"'¢5” and d = g7' g5°.

Encryption To encrypt a message m € G, the sender chooses a random value r €r Z, and
computes u; = g7, ug = g5, e = h" - m, the hash value a = H(uj, u9, e) and finally the group
element v = (¢d®)". The ciphertext is (uq,uz,e,v).

Decryption The receiver on input (u1,us,e,v), checks that these are indeed elements of G, then
computes a = H(uy,us,e) and checks if v = gfﬁayl g3 Y2 1f the check fails it outputs an

error message otherwise it outputs m = e - uy “.

Cramer and Shoup in [12] prove that the above scheme is secure if the DDH Assumption holds
over the group G and H is a target collision resistant (e.g. universal one-way) hash function.

As discussed in [1] to incorporate labels in the above ciphertext it is sufficient to add them to
the input of the hash function H. In other words if the sender is encrypting a message m with
label ¢, then the only step that must be modified in the encryption and decryption procedures is
the computation of a as a = H(uq,us,e,f). Notice that this modification has virtually no impact
on the efficiency of the scheme. However, as pointed out in [1], the proof of security requires H to
be a fully collision resistant function (actually in [1] a slightly weaker condition is assumed).

It also important to notice that even with this modification there exists a simple way to define
what a correct ciphertext is: given a public key PK = (g1, g2, h, ¢, d), a message m, a label £ and a
ciphertext C' = (uy,u2,e,v), we have that C is a correct encryption of m with label £ under public
key PK if and only if

e
log, u1 = logg, us = logy, = log, g v

where a = H (u1, us, e,). This simple property of ciphertext is what allows us to construct efficient
projective hash functions for them (as described in [19] following [24]).

24

