
An extended abstract of this paper appears in ESORICS 2007, J. Biskup and J. Lopez (Eds.), volume
4734 of LNCS, pp. 299-310, Sringer-Verlag, 2007.

Efficient Password-based Authenticated Key Exchange without Public

Information ∗

Jun Shao1 Zhenfu Cao1† Licheng Wang1 Rongxing Lu2

chn.junshao@gmail.com zfcao@cs.sjtu.edu.cn wanglc.cn@gmail.com rxlu.cn@gmail.com

1Department of Computer Science and Engineering 2Department of Electrical and Computer Engineering
Shanghai Jiao Tong University University of Waterloo

August 19, 2007

Abstract

Since the first password-based authenticated key exchange (PAKE) was proposed, it has enjoyed a
considerable amount of interest from the cryptographic research community. To our best knowledge,
most of proposed PAKEs based on Diffie-Hellman key exchange need some public information, such
as generators of a finite cyclic group. However, in a client-server environment, not all servers use the
same public information, which demands clients authenticate those public information before beginning
PAKE. It is cumbersome for users. What’s worse, it may bring some secure problems with PAKE,
such as substitution attack. To remove these problems, in this paper, we present an efficient password-
based authenticated key exchange protocol without any public information. We also provide a formal
security analysis in the non-concurrent setting, including basic security, mutual authentication, and
forward secrecy, by using the random oracle model.

1 Introduction

With the rapid-developing of the Internet, people prefer to communicate with each other through the
common but insecure channel, rather than traditional methods, such as ordinary mail. It demands
a protocol that can provide mutual authentication and generation of a cryptographically-strong (high
entropy) shared key for two communicating entities. Password-based authenticated key exchange (PAKE)
is a such kind of protocol. In a PAKE, it allows two communicating entities to share a fresh authenticated
session key by using a pre-shared human-memorable password. To date, there are two methods to
construct a PAKE: the hybrid (i.e., password and public-key) method and the password-only method. In
the former method, the two communicating entities share a password and the one additionally knows the
public key of the other (see [17, 12]), which demands a secure public-key infrastructure (PKI), thereby
arising of issues of user registration, key management, and key revocation. In contrast, in the latter
method, the need of a secure PKI can be eliminated, which can make the protocol be more efficient
and practical. Note that the pre-shared human-memorable password is low entropy, however, the fresh
authenticated session key is high entropy. It seems paradoxical to get a high entropy key by only using
a low entropy key. In other words, the latter method seems impossible. However, in 1992, Bellovin
and Merritt [3] proposed the first such kind of protocol, named as Encrypted Key Exchange, by using a

∗Supported by National 863 Project of China, No.2006AA01Z424, National Natural Science Foundation of China,
No.60673079 and No.60572155, Research Fund for the Doctoral Program of Higher Education, No.20060248008.

†Corresponding Author.

1

combination of symmetric and asymmetric cryptographic techniques. In their paper, they proposed two
protocols, one is based on RSA [21], and the other is based on ElGamal public key encryption [9].

Due to its simplicity and convenience, password-only authenticated key exchange protocol has received
much interest from the cryptographic research community, and most of proposed protocols are based on
Bellovin and Merritt’s work [4, 20]. However, these protocols have not been proven secure. Until the
results in [5, 6], the security proof of PAKE was not treated rigorously. Following these results, a number
of provable protocols and improvements have been put forth, in random oracle model [5, 19, 2, 24, 1], in
ideal cipher model [6, 2], and in standard model [10, 15, 14, 16, 11]. Most of provable PAKEs based on
Diffie-Hellman key exchange need public information [15, 14, 2, 1], such as generators of a finite cyclic
group. However, in a client-server environment, not all servers choose the same public information, which
would bring some security problems. For example, we use the protocol in [15], which “do require that no
one know the discrete logarithms of any of the generators with respect to any other” [15]. If an adversary
changes the generators (g1, g2, h, c, d) to (g′1, g

′
2, h

′, c′, d′), which he knows the discrete logarithms. As
a consequence, a client’s password will be revealed after an execution of PAKE with the adversary.
And then the adversary can impersonate the client. A natural method to resist this attack (named
substitution attack) is to authenticate the public information before beginning PAKE, however, it is
cumbersome to clients, and adds complexity to password-only PAKE. The other method is to remove the
public information. To our best knowledge, there is no provable PAKE without public information, based
on Diffie-Hellman key exchange. In this paper, we propose a such kind of PAKE, which is very efficient
(it requires only four and five modular exponentiation computations on client’s side and server’s side,
respectively). Furthermore, we give a formal security analysis in the non-concurrent setting, including
basic secure, mutual authentication, and forward secrecy, by using the random oracle model.

1.1 Motivation

In this paper, we focus on the PAKE without public information. But what’s the benefit we can get from
this kind of PAKE? Firstly, we discuss the disadvantages of the PAKE with public information.

As mentioned above, to resist substitution attack, users must get valid public information. Although
users can do it, there still exist some problems, which are described as follows.

• On the one hand, compared with the password, the public information is more complex and larger.
For different servers, the public information is different, hence it is a heavy burden for users who
store the public information.

• On the other hand, if users will not store the public information, they must get the public infor-
mation before performing the protocol every time. To our best knowledge, there are two following
methods to get the public information.

– from a public board;

– from a particular party trusted by communicating parties.

For the former one, the public board should be maintained by a particular trusted party, whom has
to be trusted by all users and all servers, and the data the party maintains will be larger and larger
with the number of servers increasing. Furthermore, on the one hand, if the public information for
some server changes, which will raise the problems similar to the certificate management problem.
On the other hand, if the party is corrupted by some adversary, the adversary can impersonate all
users and all servers, such as in the protocols of [15, 14].

For the latter method, before performing the PAKE with public information, the user must commu-
nicate with the particular trusted party, which will increase user’s communication and computation

2

burden. Furthermore, in the PAKE with public information, it requires that the party and server
are connectable at the same time. If the user cannot communicate with the party, the PAKE cannot
be performed.

Now, we can say that the benefit from the PAKE without public information is to remove the above
disadvantages.

1.2 Differences from Previous Work

In fact, the method proposed in this paper is very similar with that in [18, 7], while not the same. On
the one hand, in [18], the author proposed a PAKE named Open Key Exchange (OKE), where the server
and the client only needs to share the password, while the author focuses on the PAKE based on the
RSA problem, not the one based on Diffie-Hellman key exchange. On the other hand, it seems that our
proposal belongs to the generic construction in [7], which extends the OKE construction by using trapdoor
hard-to-invert group isomorphisms. However, in the generic construction, the PAKE needs six rounds1,
while our proposal just needs four rounds. Furthermore, although the concrete construction based on
Diffie-Hellman key exchange in [7] needs the same rounds2 as our proposal does, the shared information
between the client and the server is different from our proposal. The concrete construction requires that
the shared information is not only the password, but also the generator of a finite cyclic group, while in
our proposal, the shared information is only the password.

In this paper, we aim to propose a provable PAKE based on Diffie-Hellman key exchange, where the
client and the server only share the password. Our proposal can be considered as a natural extension of
[18, 7].

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we first review the issues related to the security
of password-based authenticated key exchange protocol. Then, we propose our protocol and its security
analysis in Section 3 and Section 4, respectively. In what follows, we do comparisons our proposal with
other PAKEs, and give some discussions on PAKE without public information in Section 5 and Section
6, respectively. Finally, we draw our conclusions in Section 7.

2 Preliminaries

In a password-only authenticated key exchange protocol, there are two entities, say client and server
(denoted by C and S), both holding a secret password drawn from a small password space P. Based
on the password, client and server can authenticate each other and generate a fresh session key which is
only known to the two of them. There is an active adversary, who controls all communications between
client and server, and aims to defeat the goal of the protocol. The adversary can guess a value for the
password and use this value in an attempt to impersonate a player, either on-line or off-line. For the
former attack, it can be easily detected by the server after several failed attempts, and the server can
halt the account for a while, while the latter one is not the same case due to its independence of the
server. Thus, the fundamental security goal of a password-only authenticated key exchange protocol is
to be secure against the latter attack. Our formal model of security for password-only authenticated key
exchange protocols is based on the “oracle-based” model of Bellare, Pointechaval, and Rogaway [6]. In
the following, we recall their definition of their model. For further details, we refer the reader to [6].

1We add one round for the client authenticates the server’s session key.
2We add one round for the client authenticates the server’s session key.

3

2.1 Notes, Initialization

Let I be the set of protocol entities, and C and S be two elements of I, but not fixed. Before running of
the protocol, each pair of entities, C,S ∈ I, share a password pwd, randomly selected from the password
space P. The public information of the protocol, such as the generators of the underlying finite cyclic
group, are also specified. However, in our proposal, there does not exist any public information.

2.2 Execution of the Protocol

In a challenge-response protocol, entities’ behave in response to received message is determined by the
protocol. For each entity, she can execute the protocol multiple times with different entities, which is
modeled as an unlimited number of instances3. We denote the i-th instance of entity C as Ci. Since the
adversary is assumed to control all communications among entities, she can interact with entities, which
is modeled via access to oracles. The oracle types are as follows:

Send(Ci,M): This sends message M to instance Ci. The instance executes and responses as specified
by the protocol. This oracle models the active attack.

Execute(Ci, Sj): This executes the protocol between instances Ci and Sj honestly and outputs the
transcript. This oracle models the passive attack.

Reveal(Ii): This outputs the session key ski
I of Ii. This oracle models the misuse of session key.

Test(Ii): This oracle can be used only once per challenge. The instance Ii generates a random bit b and
sends its session key ski

I to the adversary if b = 1, or a random session key if b = 0.

We say that two instances Ci and Sj are partners if they both have accepted and hold the same messages
sent and received by Ci (or Sj). An instance is said to be fresh if the instance has accepted and neither
it nor its partner is queried to a Reveal oracle.

The notion of semantic security intuitively says that an adversary cannot effectively distinguish be-
tween a correct session key and a random session key. This is formally defined via a game, which is
described as follows: it initialized by fixing a password pwd, randomly chosen from password space P,
let the adversary A ask a polynomial number of queries to the oracles as described above. During the
game, the adversary queries a single Test oracle on a fresh instance. At the end of game, the adversary
A outputs its guess b′ on the bit b selected in the Test oracle. We define the advantage of A to be

AdvPAKE
A = |Pr|b = b′| − 1/2|.

Semantic security means that any efficient adversary’s AdvPAKE
A is no more than Q(k)/N + ε(k), where

k is the security parameter, Q(k) is the maximum times of online attacks, N is the size of dictionary, and
ε(·) is a negligible function.

2.3 Computational Diffie-Hellman Assumption

Let G = 〈g〉 be a finite cyclic group of order a k-bit prime number q. Computational Diffie-Hellman
assumption means that there is no probabilistic polynomial time adversary can solve the following problem
in G with non-negligible probability:

On input a tuple (g, gx, gy), where x, y ∈ Z∗
q , computing the value gxy.

In the following, we denote εcdh as the probability that the adversary solves the above problem.
3The security analysis of our proposal is not in a concurrent setting.

4

2.4 Decisional Diffie-Hellman Assumption

Let G = 〈g〉 be a finite cyclic group of order a k-bit prime number q. Decisional Diffie-Hellman assumption
means that there is no probabilistic polynomial time adversary can solve the following problem in G with
non-negligible probability:

On input a quadruple (g, gx, gy, gz), where x, y, z ∈ Z∗
q , outputs the decision whether gxy = gz.

In the following, we denote εddh as the probability that the adversary solves the above problem.

3 Our Proposal

A high-level description of the protocol is given in Figure 1. Our protocol is in a finite cyclic group
G = 〈g〉 with a k-bit prime order q, where G is chosen by client C. FH is denoted as the family of
universal one-way hash function: {0, 1}∗ → {0, 1}k′

. k and k′ are security parameters.
As shown on Figure 1, the protocol runs between a client C and a server S, who initially share a

low-entropy secret string pwd, the password, uniformly drawn from the dictionary P, without knowing
other public parameters, such as the generator g of the underlying finite cyclic group G, where k and k′

are security parameters. Note that all computations are in G.

The protocol consists of the following four flows.

1. The client first chooses a random finite cyclic group G = 〈g〉 of order a k-bit prime number q, and
selects a random number rC ∈ Z∗

q , and computes the value RC ← grC , then it sends

(G, q, g, RC , client)

to the server as Flow1.

2. After receiving Flow1, the server first checks whether q is k-bit prime, g and RC are two members
of G with order q (gq ?= 1 and Rq

C
?= 1). If not, reject Flow1 and abort; otherwise, choose a random

number rS ∈ Z∗
q , and compute

RS ← grs , R∗
S ← (RC)pwdRS , and R′ ← (RC)rS ,

then it sends (R∗
S , server) to the client as Flow2.

3. Upon receiving Flow2, the client first checks whether R∗
S is a member of G with order q ((R∗

S)q ?= 1),
if not, reject Flow2 and abort; otherwise, choose randomly three hash functions H0,H1,H2 from
FH , and compute

R
′
S ← R∗

S(RC)−pwd, R← (R
′
S)rC , and α← H1(client||server||RC ||R

′
S ||R),

and send (H0,H1,H2, α) to the client as Flow3.

4. On receiving Flow3, the server first checks whether H0,H1,H2 are chosen from FH , and α
?=

H1(client||server||RC ||RS ||R′). If not, reject Flow3 and abort; otherwise, compute

skS ← H0(client||server||RC ||RS ||R′), β ← H3(client||server||RC ||RS ||R′)

which the server sends to the client as Flow4.

5. If β
?= H3(client||server||RC ||R

′
S ||R) holds on the client side, the client computes

skC ← H0(client||server||RC ||R
′
S ||R), which means that they have successfully exchanged the

session key.

5

client and server only share a password pwd.

client server

G, q, g
rC ∈R Z∗

q

RC ← grC

Flow1 ← (G, q, g, RC , client) Flow1−−−−−−−→
Check q ∈ {k-bit prime},

gq ?= 1

(RC)q ?= 1
Reject if not, else

rS ∈R Z∗
q

RS ← grS

R∗
S ← (RC)pwdRS

R′ ← (RC)rS

Flow2←−−−−−−− Flow2 ← (R∗
S , server)

Check (R∗
S)q ?= 1

Reject if not, else
R′

S ← R∗
S(RC)−pwd

R← (R′
S)rC

H0,H1,H2 ∈R FH

vC ← client||server||RC ||R′
S ||R

α← H1(vC)
Flow3 ← (H0,H1,H2, α) Flow3−−−−−−−→

Check whether H0,H1,H2 ∈ FH ,
vS ← client||server||RC ||RS ||R′

α
?= H1(vS)

Reject if not, else
skS ← H0(vS)

β ← H2(vS)
Flow4←−−−−−−− Flow4 ← β

Check β
?= H2(vC)

if not, skC ←⊥
else, skC ← H0(vC)

Figure 1: Password-based authenticated key exchange without public information.

6

3.0.1 Mutual Authentication.

The server authenticates the client by Flow3, and the client authenticates the server by Flow4.

4 Security of Our Protocol

In this section, we deal with the semantic security goal in the non-concurrent setting, including the basic
security of the protocol, mutual authentication goal, and forward-secrecy.

4.1 Basic Security

Theorem 1 Let P be the protocol in Figure 1, where passwords are chosen from a dictionary P of size
N , and let k and k′ be the security parameters. Let A be an adversary which asks qex queries to Execute

oracle, qs queries to Send oracle, and qh queries to the hash oracles. Then, in the non-concurrent setting:

AdvPAKE
A < (qex + qh + qs)εddh +

qs

2k′−1
+

2qs

N

Proof: We incrementally define a sequence of experiments starting at the real attack (Experiment Exp0),
and ending up at Experiment Exp10. We define Si to be the event that b = b′ in Experiment Expi, where
b is the bit involved in the Test-query, and b′ is the output of the adversary A.

Experiment Exp0. This experiment corresponds to the real attack, which starts by choosing a
random password pwd. By definition,

AdvPAKE
P,A = 2Pr[S0]− 1. (1)

Experiment Exp1. In this experiment, we simulate the hash oracles (H0, H1 and H2, but also three
additional hash functions H3, H4, and H5: {0, 1}∗ → {0, 1}k′

), as usual by maintaining a hash list ∧H

(and another list ∧A containing the hash-queries asked by the adversary itself) (see Figure 2). We also
simulate all the instances, as the real players would do, for the Send-queries (a list ∧Ψ keeps track of the
exchanged messages) (see Figure 3), and for the Execute, Reveal and Test-queries (see Figure 4).

From the simulation, we easily see that this experiment is perfectly indistinguishable from the real
experiment. Hence,

Pr[S1] = Pr[S0]. (2)

— For a hash-query Hi(x) (with i ∈ {0, 1, 2, 3, 4, 5}), such that a record (i, x, y) appears in ∧H ,
the answer is y. Otherwise the answer y is defined according to the following rule:

Rule H(1) Choose a random element y ∈ {0, 1}k′
.

The record (i, x, y) is added to ∧H .

Figure 2: Simulation of the random oracles

Experiment Exp2. In this experiment, queries to the Execute oracle are answered as before, except
that R is chosen at random from G. The following bounds the effect on the adversary’s advantage:

Lemma 1 The adversary’s success probability in Experiment Exp2 differs by at most εddh from its ad-
vantage in Experiment Exp1.

7

We answer to the Send-queries to the client as follows:
— For a Send(Ci, Start)-query, the answer (client, G, g, q, RC) is defined according to the fol-
lowing rule:

Rule C1(1)-Choose a random finite cyclic group G = 〈g〉 of order a k-bit prime number q,
and selects a random number θ and compute RC ← gθ.

The client instance goes to an expecting state.

— For a Send(Ci, (server,R∗
S))-query, if the client instance Ci is in an expecting state, the

answer (H0,H1,H2, α) is defined according to the following rule:
Rule C2(1)-Choose three random hash functions: H0,H1,H2 from FH .
Rule C3(1)-Compute R

′
S ← R∗

SRC
−pwd, R← RS

θ, α← H1(client||server||RC ||R
′
S ||R)

Then the client instance goes to an expecting state.

— For a Send(Ci, β)-query, if the client instance Ci is in an expecting state, this query is
processed according to the following rules:

Rule C4(1)-Compute β′ ← H2(client||server||RC ||R
′
S ||R) and check whether β = β′. If the

equality does not hold, the client instance terminates without accepting.
If equality holds, the client instance accepts and goes on, applying the following rule:
Rule C5(1)-Compute the session key skC ← H0(client||server||RC ||R

′
S ||R).

Finally, the client instance terminates. We also adds (Flow1, F low2, F low3) to ∧Ψ.

We answer to the Send-queries to the server as follows:
— For a Send(Sj , (client, G, g, q, RC))-query, it is processed according to the following rule:

Rule S1(1)-Check whether q is k-bit prime, g is a generator of G with order q. If the equality
does not hold, the server instance Sj terminates without accepting.

If equality holds, the server instance Sj accepts and goes on, applying the following rule:
Rule S2(1)-Choose a random exponent ϕ ∈ Z∗

q , compute RS ← gϕ, R∗
S ← RC

pwdRS , and
R′ ← RrS

C

Finally the query is answered with (server,R∗
S), and the server instance goes to an expecting

state.

— For a Send(Sj , (client, H0,H1,H2, α))-query, it is processed according to the following rule:
Rule S3(1)-Compute α′ ← H1(client||server||RC ||RS ||R′), and check whether α = α′ and

H0,H1,H2 are chosen from FH . If the equality does not hold, the server instance Sj terminates
without accepting.

If equality holds, the server instance Sj accepts and goes on, applying the following rule:
Rule S4(1)-Compute β ← H2(client||server||RC ||RS ||R′) and skS ←

H0(client||server||RC ||RS ||R′).
Finally the query is answered with (server, β), and the server instance terminates. We also

adds (Flow1, F low2, F low3, F low4) to ∧Ψ.

Figure 3: Simulation of the Send-queries.

8

—For a Execute(Ci, Sj)-query, it proceed as follows:
Choose a random finite cyclic group G = 〈g〉 with a k-bit prime q, and three random hash

functions H0,H1,H2 from FH .

θ
R←− Z∗

q ; RC ← gθ;

ϕ
R←− Z∗

q ; RS ← gϕ; R∗
S ← RC

pwdRS ;
R← RS

θ;
α← H1(client||server||RC ||RS ||R);
β ← H2(client||server||RC ||RS ||R);
skC ← H0(client||server||RC ||RS ||R); skS ← skC ;
The query is answered with ((G, g, q, RC , client), (R∗

S , server), (H0,H1,H2, α), β).

—For a Reveal(Ii)-query, it is answered the session key computed by the instance Ii, if the
latter has accepted. Otherwise ⊥.

—For a Test(Ii)-query, it is processed as follows:
Get the session key from Reveal(Ii), and flips a coin b. If b = 1, the output is the value of

the session key, otherwise, the output is a random value drawn from {0, 1}k′
.

Figure 4: Simulation of the Execute, Reveal and Test-queries.

—For a Execute(Ci, Sj)-query, it proceed as follows:
Choose three random hash functions H0,H1,H2 from FH .

θ
R←− Z∗

q ; RC ← uθ;

ϕ
R←− Z∗

q ; RS ← vϕ; R∗
S ← RC

pwdRS ;
R← wθϕ;
α← H1(client||server||RC ||RS ||R);
β ← H2(client||server||RC ||RS ||R);
skC ← H0(client||server||RC ||RS ||R); skS ← skC ;
The query is answered with ((G, g, q, RC , client), (R∗

S , server), (H0,H1,H2, α), β).

Figure 5: Simulation of the Execute-queries.

9

Proof: The simulator uses the adversary as a black box to distinguish Diffie-Hellman tuples from random
tuples. Given tuple (g, u, v, w) and group G = 〈g〉, the query to Execute oracle is answered as in Figure
5.

By a random self-reducibility property of the Diffie-Hellman problem, if (g, u, v, w) is a Diffie-Hellman
tuple, this is an exact simulation of Experiment Exp1; on the other hand, if it is a random tuple, this is
an exact simulation of Experiment Exp2. �

Since the adversary can issue qex Execute queries at most, hence,

|Pr[S2]− Pr[S1]| ≤ qexεddh. (3)

Experiment Exp3. In this experiment, we replace the random oracle Hi (i ∈ {0, 1, 2}) for com-
puting α, β, skC and skS for all sessions generated via an Execute oracle query. More precisely, we
use private random oracle Hi+3, and in the Execute-queries, one gets α ← H4(client||server||RC ||R∗

S),
β ← H5(client||server||RC ||R∗

S), and skC , skS ← H3(client||server||RC ||R∗
S).

Since the resulting values are random to A as in those the Experiment Exp2, it is clear that the
Experiment Exp3 is perfectly indistinguishable from the Experiment Exp2. Hence,

Pr[S3] = Pr[S2]. (4)

Experiment Exp4. In this experiment, we ensure that all accepted α will come from either the
simulator, or an adversary that has correctly guessed the value of R

′
S . We reach this aim by modifying

the following rule:
Rule S2(4)-Check whether α = α′, where α′ = H1(client||server||RC ||RS ||R′). If the equality does

hold, check if (1, client||server||RC ||RS ||R′, α) ∈ ∧A or ((client, RC), (server,R∗
S), α) ∈ ∧Ψ. If these two

later tests fail, then reject α: terminate, without accepting. If this rule does not make the server to
terminate, the server accepts and moves on.

The two experiments Exp4 and Exp3 are perfectly indistinguishable unless the server rejects a valid α.
In experiment Exp4, we ensure that all accepted α will come from either the simulator, or an adversary
that has correctly guessed the value of R

′
S . However, in experiment Exp3, the accepted α may come from

other method, i.e., the adversary has correctly guessed the value of α directly. Hence,

|Pr[S4]− Pr[S3]| ≤
qs

2k′ . (5)

Experiment Exp5. In this experiment, we ensure that all accepted β will come from either the
simulator, or an adversary that has correctly guessed the value of RS . We reach this aim by modifying
the following rule:

Rule C2(5)-Check whether β = β′, where β′ = H2(client||server||RC ||R
′
S ||R). If the equation does

hold, check if (2, client||server||RC ||R
′
S ||R, β) ∈ ∧A or ((client, RC), (server,R∗

S), α, β) ∈ ∧Ψ. If these
two later tests fail, then reject β: terminate, without accepting. If this rule does not make the client to
terminate, the client accepts and moves on.

The two experiments Exp5 and Exp4 are perfectly indistinguishable unless the server rejects a valid
β. In experiment Exp5, we ensure that all accepted β will come from either the simulator, or an adversary
that has correctly guessed the value of R′

S . While in experiment Exp4, the accepted β may come from
other two method, i.e., the adversary has correctly guessed the value of β directly, or gets the value of
R′

S by using offline dictionary attack4. Hence,

|Pr[S5]− Pr[S4]| ≤ qs(
1

2k′ + εcdh) < qs(
1

2k′ + εddh). (6)

4If the adversary can solve the CDH problem, with the value of α, he can launch the offline dictionary attack to get the
value of pwd.

10

Experiment Exp6. In this experiment, we modifying the Send(Sj , (client, G, g, q, RC))-query by
maintaining a list ∧E . We use the following rule:

Rule S2(6)-Choose a random exponent ϕ ∈ Z∗
q , compute RS ← gϕ and R∗

S ← Rpwd
C RS . If such a

tuple (g, q, ϕ, pwd, RC , R∗
S) does not exist in the list ∧E , add it to the list ∧E .

It is clear that Experiments Exp6 and Exp5 are perfectly indistinguishable. Hence,

Pr[S6] = Pr[S5]. (7)

Experiment Exp7. In this experiment, we modifying the Send(Cj , (server,R∗
S))-query by main-

taining a list ∧D. We use the following rule:
Rule C2(7)-Choose three random hash functions: H0,H1,H2 from FH , and compute R

′
S ← R∗

SRC
−pwd,

R← RS
θ, α← H1(client||server||RC ||R

′
S ||R). If such a tuple (g, q, θ, pwd, RC , R∗

S) does not exist in the
list ∧D, add it to the list ∧D.

It is clear that Experiments Exp7 and Exp6 are perfectly indistinguishable. Hence,

Pr[S7] = Pr[S6]. (8)

Experiment Exp8. In this experiment, we abort the game wherein the adversary may have been
lucky in guessing the password pwd, then used it to get R

′
S , and asked the query to the oracle H1. We

use the following rule:
Rule S2(8)-Check whether α = α′, where α′ = H1(client||server||RC ||RS ||R′). If the equality does

hold, check if (1, client||server||RC ||RS ||R′, α) ∈ ∧A or ((client, RC), (server,R∗
S), α) ∈ ∧Ψ. It the

equality does hold, check if (g, p, ∗, pwd,RC , R∗
S) ∈ ∧D. If the record is not found, abort the game.

Otherwise, the server accepts and moves on.
This rule ensures that all accepted α come from the simulator. The two experiments Exp8 and Exp7

are perfectly indistinguishable unless the server rejects a valid α, which implies that the adversary has
been lucky in guessing the password pwd. Hence,

|Pr[S8]− Pr[S7]| ≤
qs

N
. (9)

Experiment Exp9. In this experiment, we abort the game wherein the adversary may have been
lucky in guessing the password pwd, and used it to get RS and R′, and asked the query to the oracle H2.
We use the following rule:

Rule C2(9)-Check whether β = β′, where β′ = H2(client||server||RC ||R
′
S ||R). If the equality does

hold, check if (2, client||server||RC ||R
′
S ||R, β) ∈ ∧A or ((client, RC), (server,R∗

S), α, β) ∈ ∧Ψ. It the
equality does hold, check if (g, p, ∗, pwd,RC , R∗

S) ∈ ∧E . If the record is not found, abort the game.
Otherwise, the server accepts and moves on.

This rule ensures that all accepted β come from the simulator. The two experiments Exp9 and Exp8

are perfectly indistinguishable unless the server rejects a valid β, which implies that the adversary has
been lucky in guessing the password pwd. Hence,

|Pr[S9]− Pr[S8]| ≤
qs

N
. (10)

Experiment Exp10. In this experiment, we do not compute the values of α, β, and the session key
sk using the oracles H0, H1, H2, but using the private oracles H3, H4 and H5. We use the following
rules:

Rule C3(10)-α← H4(client||server||RC ||R∗
S).

Rule C5(10)-skC ← H3(client||server||RC ||R∗
S).

Rule S4(10)-β ← H5(client||server||RC ||R∗
S), and skS ← H3(client||server||RC ||R∗

S).

11

In this experiment, the session keys are random, independent from any other data (from an information
theoretical point of view, since H3, H4 and H5 are private random oracles). Then

Pr[S10] = 1/2 (11)

The experiments Exp10 and Exp9 are indistinguishable unless the following event AskH occurs: A
queries the hash functions Hi (i ∈ {0, 1, 2}) on client||server||RC ||R

′
S ||R or on client||server||RC ||RS ||R′,

that is on the common value client||server||RC ||RS ||CDH(RC , RS). Since the probability of this event
is Pr[AskH] ≤ qhεcdh < qhεddh. Hence,

|Pr[S10]− Pr[S9]| < qhεddh. (12)

Combining (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (12), and (11), we obtain,

AdvPAKE
P,A < (qex + qh + qs)εddh +

qs

2k′−1
+

2qs

N

as required. �

4.2 Mutual Authentication

The following theorem shows that our protocol ensures mutual authentication, that is, a server/client
instance will never accept a non-corresponding/non-expected client/server instance with non-negligible
probability. We denote that AuthC/AuthS is the probability that a server/client instance accepts a non-
corresponding/non-expected client/server instance.

Theorem 2 Let us consider our protocol, where P is a finite dictionary of size N equipped with the
uniform distribution. Let A be an an adversary against the security of our protocol, with less than qs

Send queries, qex Execution queries, and qh hash queries. Then in the non-concurrent setting, we have

AuthC < (qex + qs)εddh +
qs

2k′−1
+

qs

N
,

AuthS < (qex + qs)εddh +
qs

2k′−1
+

2qs

N
.

Proof. We use the proof presented in above theorem, and denote that AuthCi/AuthSi is the proba-
bility that a server/client instance accepts a non-corresponding/non-expected client/server instance in
Experiment Expi.

For AuthC, since
AuthC = AuthC0,

and in Experiment Exp8, AuthC8 = 0, and Equations (2), (3), (4), (5), (6), (7), (8), and (9) extends to

AuthC1 = AuthC0, |AuthC2 −AuthC1| ≤ qexεddh,
AuthC3 = AuthC2, |AuthC4 −AuthC3| ≤ qs

2k′ ,

|AuthC5 −AuthC4| < qs(1
2k′ + εddh), AuthC6 = AuthC5,

AuthC7 = AuthC6, |AuthC8 −AuthC7| ≤ qs

N .

Then we have
AuthC ≤ (qex + qs)εddh +

qs

2k′−1
+

qs

N

For AuthS, since
AuthS = AuthS0,

12

and in Experiment Exp9, AuthC9 = 0, and Equations (2), (3), (4), (5), (6), (7), (8), (9), and (10) extends
to

AuthS1 = AuthC0, |AuthS2 −AuthS1| ≤ qexεddh,
AuthS3 = AuthC2, |AuthS4 −AuthS3| ≤ qs

2k′ ,

|AuthS5 −AuthC4| < qs(1
2k′ + εddh), AuthS6 = AuthS5,

AuthS7 = AuthC6, |AuthS8 −AuthS7| ≤ qs

N ,
|AuthS9 −AuthS8| ≤ qs

N .

Then we have
AuthS ≤ (qex + qs)εddh +

qs

2k′−1
+

2qs

N

�

4.3 Forward Secrecy

In this section, in order to deal with forward secrecy, we introduce a new kind of query named the
Corrupt-query [2]:

Corrupt(I): This query models the adversary A have succeeded at getting the password pwd of the
entity I. However, A does not get internal data of I.

Now, we say an instance is a fresh instance if before the Corrupt-query has been asked, the instance
has accepted and neither it nor its partner is queried to a Reveal Oracle.

Forward-secrecy ensures that the adversary can not get any information about the session keys estab-
lished before the password pwd is revealed. We use the same game in Section 2 to define forward-secrecy,
and denote the advantage of A to be

AdvPAKE−FS
A = |Pr|b = b′| − 1/2|.

Forward-secrecy means that any efficient adversary’s AdvPAKE−FS
A is negligible.

Theorem 3 Let us consider our protocol, where P is a finite dictionary of size N equipped with the
uniform distribution. Let A be an an adversary against the security of our protocol, with less than qs

Send queries, qex Execution queries, and qh hash queries. Then in the non-concurrent setting, we have

AdvPAKE−FS
A < (qex + qh + qs)εddh +

qs

2k′−1
+

2qs

N
.

We use the proof on a similar sequence of experiments as before, but just modifying some rules.

Rule S2(8)- Check whether α = α′, where α′ = H1(client||server||RC ||RS ||R′). If the equality does hold,
check if (1, client||server||RC ||RS ||R′, α) ∈ ∧A or ((client, RC), (server,R∗

S), α) ∈ ∧Ψ. It the equal-
ity does hold, check if (g, p, ∗, pwd,RC , R∗

S) ∈ ∧D. If the record is not found and Corrupted=false,
abort the game. Otherwise, the server accepts and moves on.

Rule C2(9)- Check whether β = β′, where β′ = H2(client||server||RC ||R
′
S ||R). If the equality does

hold, check if (2, client||server||RC ||R
′
S ||R, β) ∈ ∧A or ((client, RC), (server,R∗

S), α, β) ∈ ∧Ψ.
It the equality does hold, check if (g, p, ∗, pwd,RC , R∗

S) ∈ ∧E . If the record is not found and
Corrupted=false, abort the game. Otherwise, the server accepts and moves on.

Rule C3(10)- If Corrupted=false, α← H4(client||server||RC ||R∗
S);

otherwise, α← H4(client||server||RC ||R
′
S ||R).

13

Rule C5(10)- If Corrupted=false, skC ← H3(client||server||RC ||R∗
S);

otherwise, skC ← H3(client||server||RC ||R
′
S ||R).

Rule S4(10)- If Corrupted=false, β ← H5(client||server||RC ||R∗
S),

and skS ← H3(client||server||RC ||R∗
S);

otherwise, β ← H5(client||server||RC ||R
′
S ||R′),

and skS ← H3(client||server||RC ||R
′
S ||R′).

As a consequence, we can get the similar result:

AdvPAKE−FS
A < (qex + qh + qs)εddh +

qs

2k′−1
+

2qs

N
.

�

5 Comparison

In this section, we will compare our proposal with the scheme in [13] (named IEEE) and the scheme
in [1] (named AP05). From our viewpoint, the hash functions are not the public information, but
the common sense, like the operator “+” in algebra. Since in our proposal, no matter which special
finite cyclic group G = 〈g〉 is, we can always use the hash function SHA − 1 only. For example, set
H0 : SHA − 1(client||server||RC ||RS ||R||0), H1 : SHA − 1(client||server||RC ||RS ||R||1), and H2 :
SHA− 1(client||server||RC ||RS ||R||2).

Table 1: Comparison of PAKEs between with and without public information.
Our proposal IEEE AP05

public information None G, g, q, (Ek,Dk) G, g, q, M , N

the total number of round 4 3 2
Authentication Mutual Unilateral None

Computation Costs Client’s side 4Te
a + 1Tm

b 2Te 3Te + 2Tm

Server’s side 5Te + 1Tm 2Te 3Te + 2Tm

Communication Costsc Client’s side 6 2 1
Server’s side 3 2 1

aTime for a modular exponentiation computation
bTime for a modular multiplication computation
cSince the schemes all work in a finite cyclic group G = 〈g〉 of order a k-bit prime number q, hence, we just consider the

total number of data unit.

From Table 1, compared with IEEE and AP05, our proposal is a little bit inefficient than these two
protocols.

• Its computational overhead is five more modular exponentiation computations than that in IEEE,
and three more modular exponentiation computations than that in AP05. Since in our proposal,
the server has to check the validity of Flow1, and the client has to check the validity of Flow2, but
IEEE and AP05 do not need to do this.

• Its communication costs on client’s side are more than that in IEEE and AP05. Since in our
proposal, the client’s terminal does need transmit the parameters. If we want to reduce the length
of transmitting data, we can use the cyclic finite group on the elliptic curve.

14

• Since our proposal provides full functions including mutual authentication, while IEEE and AP05
do not. Hence, the total number of round in our proposal is more than that in IEEE and AP05.

6 Discussion

6.0.1 The Parameters Can Be Reused.

Now, let us think more about our new kind of PAKE. We can find that there is no need for the client’s
terminal to generate new parameters each time. Since every server can perform the same as the proposed
scheme suggests, hence, it allows the client to choose its own parameters once and re-use them for several
different servers. In fact, if the client has a device with the parameters, then the same parameters can
be used every time. We think it is very flexible and pretty attractive to users.

6.0.2 Generating And Testing The Parameters.

In our proposal, the client’s terminal should generate G, q, g, and the server’s terminal should verify these
parameters. For the client’s terminal, since the user can reuse the parameters, the time for generating
the parameters is not a problem in our proposal. For the server’s terminal, checking whether an element
g in a cyclic finite group is a generator with a prime order q is fast, which just needs a exponentiation
computation in the underlying cyclic finite group (gq ?= 1). On the other hand, there exist fast algorithms
to test primality [23, 22]. As a result, the time for testing the parameters is not a problem in our proposal,
neither.

6.0.3 Is There Existing PAKE Without Public Information?

The answer is “Yes”. Most PAKEs based on RSA [3, 19, 24] can be considered as the PAKE without
public information, since the public key of RSA (n, e) is chosen by the client, and the client sends them
to the server. However, our proposal is the first provable-secure PAKE without public information, only
sharing password, based on Diffie-Hellman key exchange.

6.0.4 Can All PAKEs Be Changed Into The PAKE Without Public Information?

The answer is also “Yes”. If the protocol just needs one generator of the underlying finite cyclic group, it
can be changed into the PAKE without public information by the method in our proposal. If the protocol
needs more than one generators, it should need more communication and computation to compute the
generators, such as performing a standard Diffie-Hellman key exchange [8] to get a generator.

7 Conclusion

In this paper, to remove the disadvantages raised by getting valid public information, we have proposed
an efficient password-based authenticated exchange protocol without public information. Furthermore,
we gave its security proof in the non-concurrent setting, including basic security, mutual authentication,
and forward secrecy, by using the random oracle model.

Compared with the PAKEs with public information, our proposal is a little bit inefficient in terms
of computational complexity. However, since the parameters can be reused in our proposal, it is very
flexible and attractive to users.

15

References

[1] M. Abdalla and D. Pointcheval. Simple Password-based Encrypted Key Exchange Protocols. In
CT-RSA 2005, LNCS 3376, pp. 191-208, 2005. 1, 5

[2] E. Bresson, O. Chevassut, and D. Pointcheval. Security Proofs for an Efficient Password-Based
Key Exchange. In Proc. of the 10th ACM Conference on Computer and Communication Security,
pp. 241-250, 2003. 1, 4.3

[3] S.M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure against
dictionary attacks. In Proc. of the IEEE Symposium on Research in Secruity and Privacy, pp.
72-84, 1992. 1, 6.0.3

[4] S.M. Bellovin and M. Merritt. Augmented encrypted key exchange: A passowrd-based protocol
secure against dictionary attacks and password file compromise. In ACM CCS 1993, pp. 244-250,
1993. 1

[5] V. Boyko, P. MacKenzie, and S. Patel. Provably secure password authenticated key exchange
using Diffie-Hellman. In EUROCRYPT 2000, LNCS 1807, pp. 156-171, 2000. 1

[6] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictio-
nary attack. In EUROCRYPT 2000, LNCS 1807, pp. 139-155, 2000. 1, 2

[7] D. Catalano, D. Pointcheval, and T. Pornin. IPAKE: Isomorphisms for Password-based Authen-
ticated Key Exchange. In CRYPTO 2004, LNCS 3152, pp. 477-493, 2004. 1.2

[8] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Trans. Info. Theory, vol. 22,
no. 6, 1976, pp. 644-654. 6.0.4

[9] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.
IEEE Transactions on Information Theory, vol. IT-31, no.4, 1985, pp. 469-472. 1

[10] O. Goldreich and Y. Lindell. Session-key generation using human passwords only. In CRYPTO
2001, LNCS 2139, pp. 408-432, 2001. 1

[11] R. Gennaro and Y. Lindell. A framework for password-based authenticated key exchange. In
EUROCRYPT 2003, LNCS 2656, pp. 524-542, 2003. 1

[12] S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols. ACM Trans. on
Info. and Sys. Security, vol. 2, no. 3, 1999, pp. 230-268. 1

[13] IEEE Standard 1363-2000. Standard Specifications for Public Key Cryptography. IEEE. Avail-
able from http://grouper.ieee.org/groups/1363, August 2000. 5

[14] K. Kobara and H. Imai. Pretty-simple password-authenticated key-exchange under standard
assumptions. IEICE Trans., vol. E85-A, no. 10, 2002, pp. 2229-2237. 1, 1.1

[15] J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Exchange Using
Human-Memorable Passwords. In EUROCRYPT 2001, LNCS 2045, pp. 475-494, 2001. 1, 1.1

[16] J. Katz, R. Ostrovsky, and M. Yung. Forward Screcy in Password-only Key Exchange Protocols.
In SCN 2002, LNCS 2576, pp. 29-44, 2003. 1

16

[17] T. M. A. Lomas, L. Gong, J. H. Saltzer, and R. M. Needham. Reducing Risks from Poorly-Chosen
Keys. ACM Operating Systems Review, vol. 23, no. 5, 1989, pp. 14-18. 1

[18] S. Lucks. Open Key Exchange: How to Defeat Dictionary Attacks Without Encrypting Public
Keys. In Proc. of thhe Security Protocols Workshop, LNCS 1361, pp. 79-90, 1997. 1.2

[19] P. MacKenzie, S. Patel, and R. Swaminathan. Password-authenticated key exchange based on
RSA. In ASIACRYPT 2000, LNCS 1976, pp. 599-613, 2000. 1, 6.0.3

[20] D.P. Jablon. Strong password-only authenticated key exchange, SIGCOMM Computer Commu-
nications Review, vol. 26, no. 5, pp. 5-26, 1996. 1

[21] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and Public
Key Cryptosystems. Communications of the ACM, vol. 21, no. 2, 1978, pp. 120-126. 1

[22] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM Journal of Computing,
vol. 6, no. 1, 1977. 6.0.2

[23] E. W. Weisstein. Primality Testing Is Easy. http://mathworld.wolfram.com/news/2002-08-
07/primetest/ 6.0.2

[24] M. Zhang. New Approaches to Password Authenticated Key Exchange Based on RSA. In ASI-
ACRYPT 2004, LNCS 3329, 2004, pp. 230-244. 1, 6.0.3

17

	Introduction
	Motivation
	Differences from Previous Work
	Organization

	Preliminaries
	Notes, Initialization
	Execution of the Protocol
	Computational Diffie-Hellman Assumption
	Decisional Diffie-Hellman Assumption

	Our Proposal
	Mutual Authentication.

	Security of Our Protocol
	Basic Security
	Mutual Authentication
	Forward Secrecy

	Comparison
	Discussion
	The Parameters Can Be Reused.
	Generating And Testing The Parameters.
	Is There Existing PAKE Without Public Information?
	Can All PAKEs Be Changed Into The PAKE Without Public Information?

	Conclusion

