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Abstract. It is well known that universally composable multiparty computation cannot, in general, be
achieved in the standard model without setup assumptions when the adversary can corrupt an arbitrary
number of players. One way to get around this problem is by having a trusted third party generate some
global setup such as a common reference string (CRS) or a public key infrastructure (PKI). The recent
work of Katz shows that we may instead rely on physical assumptions, and in particular tamper-proof
hardware tokens. In this paper, we consider a similar but strictly weaker physical assumption. We assume
that a player (Alice) can partially isolate another player (Bob) for a brief portion of the computation
and prevent Bob from communicating more than some limited number of bits with the environment.
For example, isolation might be achieved by asking Bob to put his functionality on a tamper-proof
hardware token and assuming that Alice can prevent this token from communicating to the outside
world. Alternatively, Alice may interact with Bob directly but in a special office which she administers
and where there are no high-bandwidth communication channels to the outside world. We show that,
under standard cryptographic assumptions, such physical setup can be used to UC-realize any two party
and multiparty computation in the presence of an active and adaptive adversary corrupting any number
of players. We also consider an alternative scenario, in which there are some trusted third parties but
no single such party is trusted by all of the players. This compromise allows us to significantly limit
the use of the physical set-up and hence might be preferred in practice.
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1 Introduction

Traditionally, the security of cryptographic protocols was considered in the stand-alone setting
where a single run of the protocol executes in isolation. In the real world, when many copies of
a single protocol and related protocols may be executing concurrently, security in the stand-alone
setting becomes insufficient.

The universal composability (UC) framework was introduced by Canetti in [Can01] to fix this
problem and allow us to prove the security of protocols in the real-world setting without resorting to
intractably complicated proofs. The initial work of Canetti gave hope that UC security is achievable
by showing that any multiparty computation (MPC) can be realized in the UC framework, assuming
a strict majority of the players are honest. Unfortunately, this work was followed by results showing
that many natural functionalities cannot be UC realized without an honest majority, including
essentially all non-trivial two party computations such as commitments and zero knowledge proofs
[CKL03].

To get around these negative results, one can require the existence of additional setup infras-
tructure available to the parties. For example, such setup can consist of a common reference string
(CRS) which is honestly sampled from some pre-defined distribution and given to all the players
[CLOS02] or a public key infrastructure (PKI) where a trusted certificate authority (CA) verifies
that each player knows the secret key corresponding to his registered public key [BCNP04]. Both
of the above setup assumptions require a trusted party to initialize the infrastructure and the
protocols become completely insecure if this party is corrupted.

In this paper we rely on a physical assumption instead of a trusted third party. Namely, we
assume that a player (Alice) can ensure that another player (Bob) is partially isolated for a short
portion of the computation. During this time, Bob can only exchange a limited number of bits
with the environment but Alice’s communication is unrestricted. We show that, under standard
cryptographic assumptions, the above physical setup allows us to UC realize any two-party and
multiparty computation in the presence of an active and adaptive adversary corrupting any number
of parties. We do not assume erasures.

1.1 Related Work

The idea of relying on physical assumptions to achieve universal composability was first proposed
by Katz in [K07]. In particular, the work of Katz assumes the existence of tamper-proof hardware
tokens. A player, Bob, puts some arbitrary functionality inside such a token and sends it to another
player, Alice. Alice can then only interact with the token through the intended interface. In addition,
it is assumed that Alice can isolate the token during this interaction, ensuring that it has no way
of communicating with the outside world. In general, there seem to be two ways to take advantage
of the fact that Bob’s functionality is placed on tamper-proof hardware (rather than having Bob
run it remotely):

(1) The tamper-proof hardware token is isolated and cannot communicate with the environment.

(2) The tamper-proof hardware token is a new and separate entity from Bob. Bob never sees the
content of Alice’s interaction with the token.

In [K07], Katz shows how to use tamper-proof tokens to UC realize any multiparty computation
in the presence of an active but static adversary, under the Diffie Hellman (DH) assumption. We
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note that this solution only makes use of advantage (1), though this distinction is not explicit and
the formal model allows for both advantages.

The work of Chandran et al. [CGS08] extends the result of Katz by considering an adversary
who might not necessarily know the code of the token he creates. In addition, the adversary may
perform reset attacks on received tokens, effectively getting the power to rewind tokens at will. The
work of Moran and Segev [MS08], on the other hand, presents a protocol for two asymmetrically
powerful parties: a powerful Goliath and a limited David. Only Goliath has the ability to create
tamper-proof hardware tokens. Moreover, Goliath is not assumed to be computationally bounded
(but David is). Both of these works crucially rely on advantage (2) above.

The work of Damg̊ard et al. [DNW08] introduces a new and slightly different physical assump-
tion – namely, that parties can be partially isolated so that their communication with the environ-
ment is limited. This setting was studied only with regard to zero knowledge proofs of knowledge
(ZK PoK). Damg̊ard et al. present a witness indistinguishable (WI) PoK protocol for the case where
only the prover is partially isolated (while the verifier’s communication is unrestricted) and a ZK
PoK protocol for the case where both parties are partially isolated.

1.2 Our Contribution

In this paper we consider the partial isolation physical assumption for multiparty computation in
general. First, we notice that there is a relationship between the partial isolation model of [DNW08]
and the tamper-proof hardware model of [K07]. Namely a party can be (fully) isolated by placing
its functionality on a tamper-proof hardware token. However, isolation can also be implemented
in many other ways. For example, we may imagine a setting where Bob simply brings his laptop
into an office administered by Alice who ensures that there is no wireless or wired internet access
available to Bob. Bob then connects his laptop to Alice’s machine and they run an interactive
protocol between them. During this time, Alice can communicate with the environment as much as
she wants, but Bob cannot. In the above example, we see a crucial difference between the isolated
parties model and the tamper-proof hardware model: we cannot (in general) assume that some
isolated entity is separate from Bob – it might be Bob himself who is isolated! Of course, since Bob
sees Alice’s interaction with himself while he is isolated we do not get advantage (2). Therefore,
even the full isolation model is strictly weaker than the tamper proof hardware model and the
protocols of [CGS08,MS08] cannot be used in the isolation setting.

Moreover, as a further weakening of our physical assumptions, we only assume that parties can
be partially isolated from the environment. Specifically, as in [DNW08], we assume the existence
of some threshold ℓ, such that Alice can prevent Bob from exchanging more than ℓ bits with
the environment. In practice, this might significantly easier to achieve than full isolation. In our
example, where Bob meets Alice in her office, it might be significantly easier for Alice to only block
high-bandwidth communication channels to the outside world than to block all such channels. Even
if the parties do choose to use tamper-proof hardware tokens, it might not be trivial to fully isolate
a token as is required in Katz’s model. Partial isolation might be much simpler to achieve. For
example, if the tamper-proof token is a smart-card that is too small to have its own power supply,
Alice can then observe (and limit) the card’s power consumption to limit communication. A study
by [BA03] shows that one bit of wireless communication by a smart-card has the same power
consumption as 1000 32-bit elementary operations and hence this could be a practical solution in
limiting the amount of communication that is possible.
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The work of [DNW08] defines partial isolation for the case of zero knowledge proofs of knowledge
directly. In this work, we define partial isolation in general as an ideal functionality (similarly to
Katz’s functionality for tamper-proof hardware tokens). We then construct a protocol for arbitrary
two-party and multiparty computation using this functionality. In our protocol, the use of physical
assumptions is limited to a short setup phase during which parties register keys with one another
while the registrant is partially isolated. In practice, the use of physical setup might be expensive
and difficult for individuals. We also propose a hybrid model in which there are some trusted
Certificate Authorities (CAs) but no such authority needs to be trusted by all the players. Each
player either trusts an external CA (and many players may trust the same one) or can act as his own
CA and trust nobody else. This model might be natural in many scenarios where large organizations
(countries, companies...) do not trust each other but individuals trust the organization they belong
to.

1.3 Overview of Construction

Our basic approach is to set up a public key infrastructure (PKI) between the parties so that each
player must know the secret key corresponding to his registered public key. The result of [BCNP04]
shows that such a PKI, when created by a trusted third party, can be used to UC-realize the ideal
commitment functionality, which in turn allow one to UC-realize arbitrary multiparty computation.

Consider the following naive approach of setting up such a PKI. Each player chooses a public
key and registers it with every other player. When a player, Bob, wants to register his key with
another player, Alice, he simply sends her his public key and runs a zero knowledge (ZK) proof of
knowledge (PoK) to convince her that he knows the corresponding secret key.

Unfortunately, using a standard ZK PoK (secure in the stand-alone setting) does not give us
security in the UC-framework. However, if Alice can ensure that Bob is isolated for the duration
of the proof, a standard PoK protocol does guarantee that Bob knows his secret key. In fact, the
result of [DNW08] shows that for any threshold ℓ there is an ℓ-Isolated Proof of Knowledge (ℓ-
IPoK) protocol, which ensures that the prover knows a witness even if he can exchange up to ℓ bits
of information with the environment during the proof. By using an ℓ-IPoK protocol, Alice will be
assured that Bob knows his secret key even if she can only partially isolate Bob and keep him from
communicating more than ℓ bits.

We cannot, however, guarantee that Alice (who is not isolated during the proof) does not learn
anything from such a proof. As is shown in [DNW08], no witness hiding protocol can be zero
knowledge simulatable with respect to a verifier that communicates arbitrarily with the environ-
ment. Instead, we will only rely on the witness indistinguishability (WI) property of an ℓ-IPoK
protocol. This means that our PKI is not perfect and verifying parties might get some limited
information about the registered private keys. Nevertheless, we show that an imperfect PKI of this
type can be used to implement the ideal commitment functionality. To do so, we modify the com-
mitment scheme of [BCNP04] (which is based on the prior scheme of [CLOS02]) so that it remains
secure even if the adversary sees a witness indistinguishable proof of knowledge of the commitment
private key. As is shown in [CLOS02], the commitment functionality allows us to implement all
other two-party and multiparty computation.
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2 The Formal Model of Our Setting

2.1 The Fisolate ideal functionality.

We model partial isolation using an ideal functionality Fisolate described in Fig. 1. It describes a
situation where P is partially isolated from the environment during an interaction with P ′. This
is similar to the ideal functionality Fwrap defined in [K07] to model tamper-proof hardware, but
there are several important differences.

The Fisolate ideal functionality is parametrized by an isolation parameter ℓ, a security parameter κ and a poly-
nomial p.

Isolation of P : Wait until receiving messages (isolate, sid, P, P ′) from P ′ and (isolate, sid, P, P ′, M) from
P . If there is already a stored tuple of the form (P, P ′, ·, ·, ·, ·) then ignore the command. Otherwise:
1. Parse the string M as the description of an ITM with four communication tapes; two tapes (“in” and

“out”) for regular protocol communication with P ′ and two tapes for secret communication with P . Let
the value state encode the initial state of M (including the value of a work tape and an initialized random
tape). Define new values inCom := 0, outCom := 0 and store the tuple (P, P ′, M, state, inCom, outCom).

2. Send (isolate, sid, P ) to P ′.
Interaction with P ′: On input (run, sid, P, P ′, msg) from P ′, retrieve the tuple

(P, P ′, M, state, inCom, outCom). If there is no such tuple then ignore the command.
1. Place the string msg on the “in” tape designated for P and run M for p(κ) steps.
2. If there is any value msg

′ on the output tape for P ′ then send the message (reply, sid, P, msg′) to P ′.
3. If there is any value msg

′ on the output tape for P and outCom + |msg′| < ℓ then send the message
(secretCom, sid, P ′, P, msg′) to P and update outCom := outCom + |msg′|.

4. Update the value of state in the stored tuple to encode the updated state of M and the values of its
tapes.

Communication: On input (secretCom, sid, P, P ′, msg) from P , if there is no tuple of the form
(P, P ′, M, state, inCom, outCom) then ignore. Also if the tuple has inCom+|msg| > ℓ then ignore the command.
Otherwise
1. Update inCom := inCom + |msg|, place msg on the “in” tape for P and run M for p(κ) steps.
2. Proceed with steps 2,3,4 of the above command.

Release of P : On input (release, sid, P, P ′) from P ′, retrieve the tuple (P, P ′, M, state, inCom, outCom) and
send (release, sid, P, P ′, state) to P .

Fig. 1. The Fisolate Ideal Functionality

When Alice wants to isolate Bob, both of them call the isolate command and Bob sends a
description of his functionality (modeled as an ITM M) and current state to Fisolate. Alice can
then interact with Bob’s functionality by issuing run commands to Fisolate which internally runs
Bob’s code to produce replies for Alice. At the conclusion of the interaction, Alice sends a release

command.

The main differences between Katz’s Fwrap functionality and our Fisolate functionality are as
follows. Firstly, we want to capture the fact that it might be Bob himself who is isolated and
not some separate token. Therefore, we make a restriction on how honest parties can use this
functionality in legitimate protocols. We require that, if Bob is honest, he will be inactive between
the time that he issues the isolate command and the time that the release command is issued
by Alice. In addition, when the release command is issued, Fisolate sends Bob the current updated
state of his functionality M , which might contain information about the interaction that took
place with Alice. Secondly, we want to capture the fact that our isolation is only partial and
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that there might be some limited secret communication between a partially isolated party and the
environment. We parameterize Fisolate with a communication threshold ℓ. Bob’s functionality M
can send up to ℓ bits of communication to its creator (and hence the environment) and can receive
up to ℓ bits of communication from its creator using secretCom commands. We require that only
corrupted parties takes advantage of this secret communication — i.e., it describes an allowed flaw
of the isolation rather than a useful feature.

2.2 PKI and Certificate Authorities

We use the ideal functionality Fisolate to setup a public key infrastructure. In the general multiparty
computation setting, there are many parties which will register keys and try to implement ideal
functionalities among them. We denote these parties by P1, . . . , Pn. In addition we have parties
CA1, . . . , CAm acting as certificate authorities. We allow the case where a player Pi acts as his own
certificate authority (Pi = CAk). In general, however, we only require that each party Pi trusts
some certificate authority CAk and many parties may trust the same certificate authority. Any
player Pj who wishes to interact with Pi needs to register a key with an authority CAk trusted by
Pi.

We model the certificate authorities as additional players in the game. In the ideal world, the
certificate authorities have no inputs and receive no outputs. We define a certificate authority trust
structure as the mapping of players to the certificate authority they trust, and we assume that each
player trusts at least one CA. The group of players who trust a single CA is called the certificate
authority’s trust group. To model the notion of trust, we assume that when an adversary actively
corrupts a certificate authority he also actively corrupts all of the players in the authority’s trust
group. The adversary may actively corrupt an arbitrary number of real players Pi and an arbitrary
number of certificate authorities subject to the above restriction. We call any such adversarial
corruption strategy a legal corruption strategy. An adversary can also passively corrupt any CAs at
will. For simplicity, we will just require that an honest CA makes all of its interactions public so
such corruptions are unnecessary.

2.3 Statement of Result

We are now ready to state the main theorem of our paper.

Theorem 1. Assume the existence of one-way permutations and dense public key, IND-CPA secure
encryption schemes with pseudorandom ciphertexts. Then any polynomial time ideal functionality
can be UC realized in the Fisolate-hybrid model under any certificate authority trust structure. We
assume that an active and adaptive adversary can corrupt any number of players and certificate
authorities using a legal corruption strategy. We do not assume erasures.

We can instantiate the theorem with the trust structure in which each player acts as his own
certificate authority and trusts nobody else. This shows that, as a special case of Theorem 1, any
polynomial time ideal functionality can be UC realized in the Fisolate-hybrid model without any
additional certificate authority parties and with an adaptive and active adversary corrupting any
number of players. The proof of the above theorem spans the remainder of the paper. As in [K07],
we will only show how to UC-realize the ideal functionality for multiple commitments and the rest
follows from the work of [CLOS02].
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3 Proofs of Knowledge and Isolated Proofs of Knowledge

Our construction relies heavily on proofs of knowledge (PoK). Here we review some terminology
and results. Recall that an NP relation R is a set of pairs (x,w) where (x,w)∈?R can be checked in
poly-time in the length of x. For such a relation we define the witnesses for an instance WR(x) =
{w|(x,w) ∈ R} and the language L(R) = {x|WR(x) 6= ∅}. Given an NP relation R, a PoK is
an interactive protocol between two parties called a Prover P and a Verifier V . The protocol is
specified by the PPT ITMs (P, V ) where P is given an input (x,w) ∈ R and V is given the instance
x. The parties run the protocol and, at the end, the verifier outputs a judgment J = accept or
J = reject. We require completeness: when P and V are honest then V outputs the judgment
J = accept with all but negligible probability.

In our setting, the prover may communicate with an external adversarial environment during
the proof, but this communication is limited to some pre-defined bound of ℓ bits. The verifier, on
the other hand, has unbounded communication with the environment. This setting is considered in
[DNW08], which defines the notion of an ℓ-Isolated Proof of Knowledge (ℓ-IPoK) protocol. Such a
protocol ensures that a successful prover knows a witness, even in the above environment.

Setup: First the environment E is run to produce x which it sends to P ∗ and V . At this stage P ∗ and E can
communicate arbitrarily.

Execution: Then for r = 1, . . . , ρ the verifier V is activated to produce a message v(r) that is input to P ∗ which
is activated to produce a message p(r) that is input to V . In addition, P ∗ can at any point send a message
y to E and receive a response z from E . However, the total number of bits sent and the total number of bits
received during the execution stage are both bounded by ℓ. At the conclusion of the ρ rounds, the verifier V

produces a judgment J ∈ {accept, reject}.
Extraction: If J = reject then the extractor X wins the extraction game. Otherwise, we construct the view

σ to be the description of P ∗, its initial random tape, the messages v(r), p(r) exchanged between P ∗ and V ,
and the transcript of the communication between P ∗ and E . We let w = X (κ, σ). If w ∈ WR(x), then X
wins the game; otherwise it looses.

Fig. 2. Knowledge soundness extraction game.

Formally, knowledge soundness of an ℓ-IPoK protocol is defined by requiring that for any ad-
versarial prover given by a PPT ITM P ∗, there exists a strict PPT extractor X which wins the
knowledge soundness extraction game outlined in Fig. 2 with all but negligible probability. This
should hold for any environment given by a PPT ITM E .

It was shown in [DNW08] that there exists an Isolated Proof of Knowledge compiler (called an
IPoK) which, for any NP relation R and any ℓ polynomial in the security parameter, produces a
protocol that is an ℓ-IPoK for R. In addition, the protocol is witness indistinguishable (WI ). This
means that for any malicious verifier V ∗, and any two pairs (x,w1) ∈ R, (x,w2) ∈ R the verifier
cannot distinguish between a prover that uses the witness w1 and a prover that uses the witness
w2, even when given w1 and w2. Formally, letting Exec(P (x,w), V (x)) denote the transcript of
the execution between P and V where P uses the witness w for the instance x, we require that for
any PPT cheating verifier V ∗

(Exec(P (x,w1), V
∗(x)), w1, w2) ≈ (Exec(P (x,w2), V

∗(x)), w1, w2)
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This notion is significantly weaker than zero knowledge (ZK) but [DNW08] shows that one can-
not achieve ZK without isolating the verifier as well and hence we will have to rely on witness
indistinguishability only.

4 Construction

We use the results of [CLOS02] which show that one can UC-realize arbitrary MPC given the ideal
functionality for multiple commitments FMCOM which we review in Fig. 3.

Commit Phase: On input (commit, sid, ssid, Pj , m) from Pi, if there is already a stored tuple of the form
(sid, ssid, Pi, Pj , ·) then ignore the command. Otherwise store the tuple (sid, ssid, Pi, Pj , m) and send a receipt
(receipt, sid, ssid, Pi) to Pj .

Reveal Phase: On input (reveal, sid, ssid, Pj) from Pi, if a tuple (sid, ssidPi, Pj , m) is stored then send a
message (reveal, sid, ssid, Pi, m) to Pj . Otherwise, ignore the command.

Fig. 3. The FMCOM Ideal Functionality

There are several challenges in UC realizing the FMCOM functionality. Obviously, we need a
commitment scheme which is hiding and binding. In addition, the simulator needs to be able to
generate commitments for honest parties before knowing the message being committed to and later
be able to decommit to any specified message. A scheme with this property is called equivocal. For
adaptive security, the simulator needs to be able to simulate the corruption of an honest party and
thus reveal all of the randomness used to generate such simulated commitments as though they
were generated honestly. We call this strong equivocality. The simulator also needs to extract the
message contained in any valid commitment even if it was adversarially generated. This is called
extractability.

Luckily, the result of [CLOS02] contains just such a scheme. It relies on two public keys, an
extraction key pkX and an equivocation key pkE , that are generated randomly and placed in a
CRS. The corresponding secret keys, which are known by the simulator but not the players in the
real world, give it the power of strong equivocality and extractability. It was already noticed in
[BCNP04] that the players can choose these keys themselves. A sender uses his extraction key and
the receiver’s equivocation key to generate commitment.

We use the basic idea of [BCNP04] but modify it to fit our setting. Firstly, if the honest sender
knows his own extraction secret key (and cannot erase it) then the adversary learns this key when
the sender is corrupted. This allows the adversary to distinguish if previous commitments sent by
the sender were generated honestly (as is done in the real world) or if they were equivocated (as is
done by the simulator in the ideal world). To get around this issue, we have the sender and receiver
do a coin-flip to generate the extraction public key so that neither party knows the corresponding
secret key. To simulate the coin-flip, it is enough to have a strongly equivocal commitment scheme
(i.e., no extraction is needed) and so players only register their equivocation public keys. The
second problem arises from the fact that the sender’s commitments can only be extracted (and in
general are only binding) when the sender has no information about the receiver’s equivocation key.
However, in our setting the adversary gets to run as a verifier in a WI ℓ-IPoK of the equivocation
secret key, which might potentially leak useful information. We show how to modify the original
scheme so that it remains extractable even with respect to an adversary that sees such proofs.
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We begin by formalizing an abstraction which captures the properties achieved by the scheme of
[CLOS02]. Then we show how to turn any scheme which has those properties into one that is secure
even if the adversary has access to a prover running a WI PoK protocol and using the equivocation
secret key as a witness.

4.1 The Commitment Scheme

Extractability. We define an extraction game between a challenger and an adversary as follows:
1. The challenger generates random (pkE, skE)← genE(1κ) and the adversary is given pkE.
2. The adversary chooses a pair (pkX , skX) ∈ RX , a commitment C and a pair (m′, r′) and sends these to

the challenger.
3. Let m = extract

(pkX ,skX)
pkE

(C). If m′ 6= m and C = commit
pkX

pkE
(m′; r′) then the adversary wins the

extraction game.
We say that a commitment scheme is extractable if there is a PPT algorithm extract such that, for any PPT
adversary A, the success probability of A winning the extraction game is negligible in κ.

Binding. We define a binding game between a challenger and an adversary:
1. The challenger generates a random (pkE, skE)← genE(1κ) and the adversary is given pkE.
2. The adversary generates some public key pkX ∈ {0, 1}t. In addition, the adversary specifies a commit-

ment C and two pairs (m, r), (m′, r) and sends these to the challenger.
3. The adversary wins the binding game if m 6= m′, C = commit

pkX

pkE
(m; r) and C = commit

pkX

pkE
(m′; r′).

We say that a commitment scheme is binding if, for any PPT adversary A, the success probability of A
winning the binding game is negligible in κ.

Strong Equivocality/Hiding. We define equivocality by insisting that there is no adversary that can distin-
guish between the commitment game and the equivocation game defined below:
The commitment game between a challenger and adversary proceeds as follows:
1. The challenger generates a random (pkX , skX)← genX(1κ) and gives pkX to the adversary.
2. The adversary specifies (pkE, wE) ∈ RE , and a message m.
3. The challenger computes C = commit

pkX

pkE
(m; r) where r is chosen randomly and gives (C, r) to the

adversary.
The equivocation game between a challenger and adversary as follows:
1. The challenger generates a random (pkX , skX)← genX(1κ) and gives pkX to the adversary.
2. The adversary specifies (pkE, wE) ∈ RE , and a message m.
3. The challenger computes (C, aux) = ecommit

pkX

pkE ,wE
(), r ← equivocate

pkX

pkE ,wE
(C, aux, m) and gives (C, r)

to the adversary.
We say that a commitment scheme is strongly equivocal if there exists PPT algorithm ecommit and PPT
algorithm equivocate such that no PPT adversary can distinguish between the commitment game and the
equivocation game with more than negligible probability.

Fig. 4. Security of a Two Key Extractable and Equivocal Commitment Scheme

A Two-Key Extractable and Strongly Equivocal Commitment Scheme has two key generation
algorithms (pkE , skE)← genE(1k) and (pkX , skX)← genX(1κ) for the equivocation and extraction
keys respectively. The commitment algorithm takes as input the two public keys and a message m.
It produces a commitment C = commit

pkX

pkE
(m; r) using the randomness r. To decommit, the sender

simply sends (m, r) and the receiver verifies C=?commit
pkX

pkE
(m; r).3 In addition, we need the ability

3 Because we consider adaptive security where the environment can always corrupt the sender to learn all the
randomness r used to commit, there is no reason to consider commitment schemes where the decommitment does
not consist of sending all this randomness: If the simulator can produce it to simulate a corruption of the sender,
it can also produce it to simulate a decommitment.
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to easily recognize well-formed public key/secret key pairs. For that, we assume that there is an
NP relation RE which defines well formed equivocation key pairs (pkE , skE), and a relation RX

that defines well formed extraction key pairs (pkX , skX). We assume that every key pair generated
by genE (resp. genX) is contained in RE (resp. RX) but allow the set of well-formed key pairs to
contain other elements.

Lastly, we require that the extraction keys are dense. More precisely, for (pkX , skX)← genX(1κ),
the element pkX is statistically close to a uniformly random element from some G = {0, 1}t. We use
⊕ to denote bit-wise xor of elements from G. The security properties of the scheme are outlined in
Fig. 4. The commitment scheme of [CLOS02] meets our definition.

The observation that the scheme meets the given security requirements was essentially already
made in [BCNP04]. For completeness, we include a short description of the scheme in Appendix A.

4.2 Security After WI Proofs

In the security definitions for extractability and binding of the commitment scheme, it is crucial
that the adversary has no information about the equivocation secret key skE. However, in our
protocols the adversary will get to see a witness indistinguishable (WI) proof of knowledge of such
a secret key. For this reason, we augment the security definitions for extractability and binding to
give the adversary unlimited protocol access to a prover running a WI proof of knowledge for the
relation RE using the public key pkE as the instance and the secret key skE as a witness. We show
how to turn any two-key extractable and strongly equivocal commitment scheme into a scheme
that has security after WI proofs - i.e. is secure in the above setting.

Assume we have a two-key extractable and strongly equivocal commitment scheme defined by
(genE , genX , commit, extract, ecommit, equivocate) and the equivocation key relation RE. We define
a new commitment scheme (gen′E , gen′X , commit′, extract′, ecommit′, equivocate′) with equivocation
relation R′

E as follows:

Let gen′E generate two equivocation keys (pk
(0)
E , sk

(0)
E ) ← genE(1κ), (pk

(1)
E , sk

(1)
E ) ← genE(1κ)

and let pk′

E = (pk
(0)
E , pk

(1)
E ), sk′

E = sk
(0)
E . We define the relation

R′

E :=
{(

pk
(0)
E , pk

(1)
E , wE

) ∣

∣

∣

(

pk
(0)
E , wE

)

∈ RE or
(

pk
(1)
E , wE

)

∈ RE

}

.

It is clear that this is an NP relation and that (pk′

E , sk′

E) = ((pk
(0)
E , pk

(1)
E ), sk

(0)
E ) ∈ R′

E . We let
gen′X be the same as genX so the extraction keys are generated as in the original scheme.

Now assume that the message space is some {0, 1}s. We use ⊕ to denote bitwise xor in {0, 1}s.
To commit to m the sender chooses a uniformly random m(1) and computes m(0) = m⊕m(1). The
sender then computes

C(0) = commit
pkX

pk
(0)
E

(m(0); r(0)) , C(1) = commit
pkX

pk
(1)
E

(m(1); r(1)) (0)

and sends the commitment C = (C(0), C(1)).

To open the commitment, the sender sends (m, r) = (m, (m(1), r(0), r(1))). The receiver checks
that C(0), C(1) were correctly computed using equation (4.2).
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Equivocality/Hiding. We use a series-of-games argument to show that the above scheme is
strongly equivocal. Let us define Game 1 to be the commitment game used in the definition of
strong equivocality in Fig. 4.

In Step 2 of the game, the adversary specifies (pk′

E , wE) = ((pk
(0)
E , pk

(1)
E ), wE) ∈ R′

E such that

(pk
(b)
E , wE) ∈ RE for b = 0 or b = 1. In addition, since the relation RE is in NP, it is easy to

check which is the case (if both, we let b = 0). Let b̄ = 1 − b. We define Game 2 which proceeds
as Game 1 except that the challenger computes the commitment by choosing m(b̄) randomly and
setting m(b) = m−m(b̄). Games 1 and 2 have identical distributions and so are indistinguishable.

We define Game 3 which proceeds as Game 2, but the challenger computes C(b) and r(b) using
(C(b), aux) = ecommit

pkX

pk
(b)
E

,wE

() and r(b) = equivocate
pkX

pk
(b)
E

,wE

(C(b),m(b), aux). The strong equivocal-

ity of the original scheme ensures that Game 2 and 3 are indistinguishable via a simple reduction.

In Game 3, the commitments C(0), C(1) are computed independently of the message m and
hence Game 3 implicitly defines the functions ecommit′ and equivocate′. Since Games 1 and 3 are
indistinguishable the equivocality/hiding property holds for the new scheme.

Extractability and Binding After WI Proofs. We show that the extractability property for
the new scheme holds even when the adversary has unlimited protocol access to a prover P running
a witness indistinguishable proof for the relation RE. The argument that binding holds as well
proceeds in almost exactly the same way and hence we skip it.

Let us assume that there is an adversary A′ which wins the extraction game for the above
scheme with non-negligible probability. This time, the adversary is also given protocol access to a

prover P running a WI proof for the relation R′

E using the instance pk′

E =
(

pk
(0)
E , pk

(1)
E

)

and the

witness sk′

E = sk
(0)
E . We construct an adversary A which wins the extraction game for the original

scheme.

The adversary A gets a challenge pkE generated randomly by its challenger. It will pick a bit

b at random and choose (pk
(b)
E , sk

(b)
E ) ← genE(1κ) and set pk

(1−b)
E = pkE . Then it sends pk′

E =

(pk
(0)
E , pk

(1)
E ) as a challenge to A′ and gets back (pkX , skX) ∈ RX . Then A outputs (pkX , skX) to

its challenger. (Recall that our construction did not change RX .) In addition, it will act as a prover

for the instance (pk
(0)
E , pk

(1)
E ) using the witness sk

(b)
E . This is different from the original game where

the witness sk
(0)
E is always used. However, since the proof is WI, the success probability of A′ can

be affected at most negligibly.

Next A′ generates some commitment C = (C(0), C(1)) and some decommitment (m′, r′) =
(m′, (m′(1), r(0), r(1))). Define m′(0) = m′ − m′(1). The adversary A sends (m′(1−b), r(1−b)) to its
challenger.

Let

m(0) = extract
pkX ,skX

pk
(0)
E

(C(0)) , m(1) = extract
pkX ,skX

pk
(1)
E

(C(1))

and m = m(0) ⊕m(1). Then, if A′ wins the extraction game, m 6= m′ and so mb̂ 6= m′̂b for some
b̂ ∈ {0, 1}. Since b was only used in choosing which witness to use in the WI proof, with probability
negligibly close to 1/2 we have b̂ = 1 − b. If this is the case, then A wins the original extraction
game. Hence the success probability of A is negligibly close to half the success probability of A′

which is non-negligible.
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4.3 The Protocol

Let (genS, genR, commit, extract, ecommit, equivocate) be a two-key extractable and strongly equiv-
ocal commitment scheme secure after WI proofs. Assume the scheme has an equivocation key
relation RE and that random extraction public keys are statistically close to uniformly random
elements from some G = {0, 1}t. We use such a scheme to UC realize the FMCOM functionality in
the Fisolate-hybrid model with isolation parameter ℓ. We label the players involved P1, . . . , Pn. We
also have some certificate authorities CA1, . . . , CAm and some certificate authority trust structure.
We specify the protocol in Fig. 5.

Key Registration: The first step in the protocol is for each party to register a key with every other party.
Each party Pi that wants to talk to another party Pj registers a public key with a certificate authority
CAk that is trusted by Pj . Formally, this step happens when Pi gets an input (register, sid, Pi, CAk). The
registration is done as follows:
1. Party Pi chooses an equivocation public/secret key pair (pk(E,i), sk(E,i)) ← genE(1k). In addition, Pi

generates the PPT ITM M implementing the prover functionality of a WI ℓ-IPoK protocol for the
relation RE using the instance pk(E,i) and the witness sk(E,i). The random tape of M is initialized with
fresh random coins (enough to run one proof). The machine M is set to run a single proof and, at its
conclusion, goes into an inactive state in which it produces no further output.

2. The player Pi sends (isolate, sid, Pi, CAk, M) to the ideal functionality Fisolate and a key registration
request (register, sid, Pi, CAk, pk(E,i)) to CAk.

3. The authority CAk, upon receiving (register, sid, Pi, CAk, pk(E,i)) from Pi sends
(isolate, sid, Pi, CAk) to Fisolate. It then runs as a verifier in the ℓ-IPoK protocol by sending
challenge messages through the interface provided by Fisolate. At the conclusion of this protocol, CAk

sends (release, sid, Pi, CAk) to Fisolate.
4. If the conversation is accepting, CAk sends the message (certify, sid, CAk, Pj , Pi, pk(E,i)) to every

player Pj in its trust group.
5. When Pj receives (certify, sid, CAk, Pj , Pi, pk(E,i)) from CAk it sends (registered, sid, Pj , Pi, CAk)

to Pi.
6. The party Pi ignores all commands instructing it to commit to Pj until it receives a message

(registered, sid, Pj , Pi, ·, pk(E,i)) from Pj and a message (certify, sid, CAd, Pi, Pj , pk(E,j)) from some
trusted authority CAd. Until then, it also ignores all coin-flip requests or commit messages from Pj .

Commitment Setup: The first time that Pi wants to send a commitment to Pj they run a coin-flipping
protocol to decide on the extraction key pk(X,i,j). This protocol proceeds as follows:
1. Pi sends a “coin flip request” to Pj .
2. Pj picks a random g1 ← G and a random extraction key pkX ← G. It sends pkX and C =

commit
pkX

pk(E,i)
(g1; r) to Pi.

3. Pi sends a random g2 ← G to Pj .
4. Pj sends the opening (g1, r) to Pi and Pi verifies that C was generated correctly as a commitment to

g1. Both parties compute pk(X,i,j) = g1 ⊕ g2.
Commit: Whenever Pi gets input (commit, sid, ssid, Pj , m), it retrieves the key pk(E,j). Then it computes C =

commit
pk(X,i,j)

pk(E,j)
(m; r) and sends (commit, sid, ssid, Pj , C) to Pj , which outputs (receipt, sid, ssid, Pi).

Open: If Pi later gets input (reveal, sid, ssid, Pj), then it sends (commit, sid, ssid, Pj , (m,r)) to Pj . If C =

commit
pk(X,i,j)

pk(E,j)
(m; r), then Pj outputs (reveal, sid, ssid, Pi, m).

Fig. 5. The Commitment Protocol

In the ideal world, the additional certificate authorities are not involved in the protocol at
all. They get no inputs from the environment and receive no outputs. However, in the real world,
parties cannot use the commitment functionality without registering their keys first. We model this
discrepancy by adding a dummy registration phase to the ideal world functionality. When FMCOM
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gets the input (register, sid, Pi, CAk) from Pi then, for every Pj in the trust group of CAk, it
sends (certify, sid, CAk, Pi) to Pj and (registered, sid, CAk, Pj) to Pi. The adversary decides
when these messages are delivered.

The ideal functionality FMCOM ignores all request from Pi to commit to Pj until Pi receives the
messages (certify, sid, CAd, Pj) and (registered, sid, CAk, Pj) for some CAk, CAd. This corre-
sponds to the real world where a sender cannot initiate the commitment protocol until he registers
a key with some CAk trusted by the receiver and the receiver registers a key with some CAd trusted
by the sender.

4.4 Outline of Proof of Theorem 1

We now proceed to go over the intuition for how the simulation is performed and why it is indis-
tinguishable. A detailed description/proof of the simulation is included in Appendix B.

We show that for any certificate authority trust structure, any environment E , and any real-
world adversary A attacking the above protocol using a valid corruption strategy, there exists an
ideal-world simulator S such that E cannot distinguish between interacting with A in the real-world
versus interacting with S and dummy parties using the ideal functionality FMCOM. The simulator
internally runs a copy of the protocol. The simulator also internally runs a copy of A and lets A
attack the internal copy of the protocol. It passes messages from E to its internal copy of A and
outputs from A to E .

The simulator runs all key registrations honestly, by following the code of Key Registration
above. In particular, for an honest party Pi, the simulator will pick a key pair (pk(E,i), sk(E,i))
honestly and remember the secret key. For a corrupt Pi, which successfully registers a public keys
pk(E,i) with an honest CAk, the simulator will see the PPT ITM M given by the adversary to the
Fisolate functionality. In addition, M is able to run an ℓ-IPoK for the relation RE and the instance
pk(E,i) and, by the specification of Fisolate, M communicated at most ℓ bits with its environment
during this proof. By the definition of an ℓ-IPoK, this allows S to extract a witness w(E,i) from M ,
such that (pk(E,i), w(E,i)) ∈ RE. For public keys pk(E,i) registered by a corrupted Pi at a corrupted
CAk no witness can be computed.

The coin-flipping protocols are simulated in two different ways depending on whether Pj

is honest or not. If Pj is honest and accepts the coin-flipping, then it received some message
(registered, sid, CAk, Pj , Pi, pk(E,i)) from an authority CAk trusted by Pj . In addition CAk was
honest since Pj is in the trust group of CAk and Pj is honest. Therefore S knows w(E,i) such
that (pk(E,i), w(E,i)) ∈ RE . The simulator uses w(E,i) to equivocate the commitment sent by Pj .
In particular, the simulator uses ecommit in step 2 of the coin-flip protocol. When it receives g2

from Pi in step 3, it then samples a random key-pair (pk(X,i,j), sk(X,i,j)), lets g1 = pk(X,i,j) ⊕ g2. It
then uses the equivocate algorithm in step 4 to open the commitment C to g2. This results in a key
pk(X,i,j) = g1⊕ g2 for which S knows sk(X,i,j) such that (pk(X,i,j), sk(X,i,j)) ∈ RX . If Pj is corrupted
for the coin-flip, then S simulates Pi by sending a random g2 as in the protocol. Note that when
Pi is honest, then pk(E,i) was picked at random by the simulator and the adversary did not see
sk(E,i), except that it saw a WI proof for sk(E,i). Therefore the commitment C sent in step 2 of
the coin-flip is computationally binding for Pj , and pk(X,i,j) will have been produced by a Blum
coin-flip using a computationally binding commitment scheme. Intuitively it follows that, even if
Pj is corrupted, the public key pk(X,i,j) is a random key. Formally, we rely on the “coin tossing
lemma” from [CDPW] to argue that strong equivocality/hiding still hold even when the extraction
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public key pk(X,i,j) is generated using a Blum coin flip protocol as above rather than randomly as
in the definition of the commitment and equivocation games in Fig. 4.

The commitments are simulated in two different ways, depending on whether Pj is honest or
not. If Pj is honest, then Pj was also honest when pk(X,i,j) was generated. Therefore S knows a
secret key sk(X,i,j) for the key pk(X,i,j) used by Pi. The simulator uses sk(X,i,j) to extract a message
m from all commitments C sent by Pi to Pj . By the Extractability (Fig. 4) the probability that

Pi later opens C to C = commit
pk(X,i,j)

pk(E,j)
(m′; r′) with m′ 6= m is negligible. If Pj is corrupted, then S

simulates Pi without knowing m. As above, since Pi is honest and uses the key pk(E,j) to commit to
Pj , the simulator knows a witness w(E,j) for the instance pk(E,j) in RE . The simulator uses w(E,j)

to equivocate the commitment. In particular, it computes a commitment without knowing m using
ecommit. Later to simulate the opening of the commitment or the corruption of Pi, S receives m
and uses the equivocate command to compute r which serves as both, an opening of m and an
explanation of the randomness used to generate C. By Strong Equivocality/Hiding (Fig. 4),
it follows that computing r using equivocate is indistinguishable from the way it is done in the
protocol.
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A A Two Key Extractable and Strongly Equivocal Commitment Scheme

In this section we briefly describe the construction of a two-key extractable and strongly equivocal
commitment scheme defined in [CLOS02]. Most of the observations here were already made in
[BCNP04]. For our purposes we only need to make a slight modification and use a dense public key
encryption scheme.

We start with a strongly equivocal, perfectly hiding commitment scheme which is not ex-
tractable. For example, we can use the Pedersen commitment scheme which is an efficient scheme
based on the DL assumption. Alternatively we can use the Feige-Shamir commitment scheme which
is based on the existence of one-way permutations (OWP) alone. This is the approach taken by
[CLOS02] where it is shown that a small modification to the Feige-Shamir scheme makes it strongly
equivocal as well. In the Feige-Shamir scheme, the secret key skE is a random string w and the
public key pkE is f(w) where f is some one-way-function. We can define the relation R as the set
of elements (f(w), w) for some one way function f . For any such pair, the equivocated commit-
ments and honestly produced commitments have equivalent distributions. The message space of the
Feige-Shamir scheme is only 1-bit. The scheme has the property that knowledge of w allows one to
create equivocated commitments and openings which are indistinguishable from real commitments
and openings even if the adversary knows w as well. However, for an adversary that only sees f(w),
the scheme is binding.

To get extractability, we take a strongly equivocal, perfectly hiding commitment scheme and
restrict the message space to only 1-bit. Then we use a dense public key CPA secure encryption
scheme (gen,Enc,Dec) where the ciphertexts are pseudorandom elements in some easily sampleable
range C and where each ciphertext has only one valid decryption for any public key. To commit to
a bit b, the sender computes Ccom = commitpkE

(b; rcom), Cb = EncpkX
(rcom; renc) and C1−b ← C

and send the commitment C = (Ccom, C0, C1).

To equivocate using the secret key skE we simply compute (Ccom, aux) ← ecommitpkE ,skE
(),

r
(0)
com ← equivocatepkE,skE

(Ccom, aux, 0), r
(1)
com ← equivocatepkE ,skE

(Ccom, aux, 1) and C0 =

Enc(r
(0)
com; r

(0)
enc), C1 = Enc(r

(1)
com; r

(1)
enc). To equivocate to a bit b send (b, r

(b)
com, r

(b)
enc). It is easy to

see that equivocality is preserved because of CPA-security of the encryption scheme and the pseu-
dorandomness of the ciphertexts.

The extractability property holds because the values C0, C1 define the encrypted messages

r
(0)
com, r

(1)
com which can be decrypted using the encryption secret key. If both equations Ccom =

commitpkE
(0; r

(0)
com) and Ccom = commitpkE

(1; r
(1)
com) hold, then the adversary breaks the computa-

tional binding property of the original equivocal commitment scheme. If only one such equation
holds, say for the bit b, then b is the extracted message and the committer cannot produce a de-
commitment for 1− b. This is true even if the adversary knows the decryption key skX . Similarly,
binding holds because of the computational binding property of the original strongly equivocal
commitment scheme.

B Simulation

In this section we give the full simulation proof for Theorem 1.
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B.1 Simulating Key Registration

The environment decides when a player should perform the registration phase. In the real world,
the party Pi receives a registration command (register, Pi, CAk) from the environment. The first
time it gets such a command, it chooses the equivocation keys (pk(E,i), sk(E,i)) ← genE(1κ). It
uses its secret key sk(E,i) to construct the PPT ITM M implementing the prover functionality.
Subsequently, it reuses the same public/secret keys when registering with other CAs. It sends
(isolate, sid, Pi, CAk,M) to the functionality Fisolate and (register, Pi, CAk, pk(E,i)) to CAk.

4

We have four cases to consider: CAk can be corrupted or honest and Pi can be corrupted or
honest. If CAk is corrupted then so are all of the players in the trust group of CAk. Hence if Pi and
CAk are both corrupted then the entire process of key registration is just internal communication
of A and can be simulated trivially. We need only consider the following cases:

Honest Pi, corrupted CAk: In the ideal world, when the simulator sees the message
(register, sid, Pi, CAk) sent to the ideal functionality FMCOM on behalf of an honest party Pi,
it acts just like an honest party would in the real world. Namely it chooses an equivocation pub-
lic/secret key pair (pk(E,i), sk(E,i)) ← genE(1κ) and constructs the prover M (and sets its random
tape) which it sends to Fisolate. Since registration is independent of any inputs chosen by the envi-
ronment, it is easy to simulate honest parties by just honestly following the protocol. The simulator
keeps a record of the public/secret key pairs it generates for each party during this stage of the
simulation. The adversary A acting on behalf of the corrupted CAk is then free to interact with the
encapsulated prover functionality M by interacting with the Fisolate. This gives the corrupt CAk

nothing more than protocol access to the prover functionality. The simulation here is identical to
the real world interaction.

Corrupted Pi, honest CAk: When the adversary A attempts key registration on behalf of
a corrupted party Pi, it sends (register, Pi, CAk, pk(E,i)) to CAk and (isolate, Pi, CAk,M) to
Fisolate. We note that the equivocation public key might be different from other such public keys
registered by Pi with other certificate authorities. This is not a problem. The simulator S intercepts
these messages and recovers the machine M and pk(E,i). It runs the verifier protocol with M . If the
protocol is rejecting then the simulator ignores the registration request. If the protocol is accepting
then it uses the ℓ-IPoK extractor X (Fig. 2) to extract a witness w(E,i) for the instance pk(E,i)

in the relation RE. If the extractor is successful then the simulator sends (register, Pi, CAk) to
FMCOM. If the extractor fails then then simulation fails. The simulation is equivalent to the real
world protocol up to the negligible probability of the extractor failing.

In both of the cases, the simulator possesses a witness w(E,i) for the equivocation public key
pk(E,i) registered by any party Pi with any certificate authority CAk.

The notion of ℓ-IPoK requires that for all cheating provers P ∗ there exists an extractor which
works for that cheating prover. Since the machines M submitted by corrupted Pi can be different
and are determined adaptively, we cannot assume that the simulator S has a build-in extractor for

4 As Pi only uses sk(E,i) during registration, it could delete sk(E,i) after registration (along with the randomness used
in giving the proofs of knowledge of sk(E,i)). This would give the additional security that if Pi is later transiently
and passively corrupted, then the commitment functionality remains secure for Pi when it becomes uncorrupted.
This is easy to see, as the internal state of Pi after deleting sk(E,i) contains only values which are publicly known.
As transient faults are not in the focus here, we do not elaborate further on this issue.
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each such M . We therefore need a little care. In the extraction game in Fig. 2, we can let the prover
P ∗ be a universal machine. In the setup phase where P ∗ and E can communicate arbitrarily it
expects an input M from E which it parses as a machine M . Then it runs M towards V , as Fisolate

runs M towards P ′ in Fig. 1. Since this involves running M at most a polynomial number of steps
(p(κ) steps per move in the proof, see Fig. 1) this P ∗ is a PPT ITM. Therefore there exists a PPT
extractor X which extracts all successful proofs given by P ∗. Note that by definition of ℓ-IPoK this
X is strict PPT and therefore can be run by a simulator in the UC framework. The simulator S
can use this X to extract witnesses: Whenever some P ′ accepts a proof from some P , S parses the
transcript as an interaction between the above P ∗ and V , as if they has run in Fig. 2. Then it gives
this transcript to X . Except with negligible probability X will produce a witness.

B.2 Simulating the Coin-Flipping Protocol

In the real world, the first time that a party Pi wants to send a commitment to a party Pj , it sends
an initiation request to Pj to run a coin-flipping protocol. In the ideal world, the first time that
the environment sends (commit, sid, ssid, Pi, Pj ,m) to FMCOM on behalf of an honest party Pi, the
simulator needs to simulate the coin-flipping. Alternatively, the adversary A can send a request on
behalf of a corrupted party Pi to initiate a coin-flip with another party Pj .

Honest Pj: If Pj is honest, then the coin-flip is simulated as follows:

1. In the first step, Pi sends an initiation request pk(E,i) to Pj to run a coin-flipping protocol. If
Pj accepts the request, then clearly Pi registered pk(E,i) at some CAk which has Pj in its trust
group. Since Pj was honest at the time the registration was made (as it is honest now), and
Pj is in the trust group of CAk, it follows that CAk was honest at the time of registration.
Therefore the simulator extracted a witness w(E,i) for pk(E,i).

2. In the second step, in the real world, Pj picks a random g1 ← {0, 1}
t and a random extraction key

pk(X,j) ← G and sends pk(X,j), C = commit
pk(X,j)

pk(E,i)
(g1; r) to Pi. In the simulation, S picks pk(X,j)

in the same manner, but computes C as (C, aux) = ecommit
pk(X,j)

pk(E,i),w(E,i)
(). It sends (pk(X,j), C)

to Pi.
3. In the third step, Pi sends a random g2 ← G to Pj .
4. In the fourth step of the protocol Pj sends the opening (g1, r) to Pi. In the simula-

tion, S generates (pk(X,i,j), sk(X,i,j)) ← gen(1κ), computes g1 := pk(X,i,j) ⊕ g2, r =

equivocate
pk(X,j)

pk(E,i),w(E,i)
(C, aux, g1), and sends (g1, r) to Pi. In addition, the simulator records

(pk(X,i,j), sk(X,i,j)).

The simulation has the following properties:

– The only places where the simulator veers from the real-execution is in Steps 2 and 4 where it
uses ecommit and equivocate instead of sending an honest commitment C and opening (g1, r).
Also, it chooses g1 as g1 = pk(X,i,j) ⊕ g2 for pk(X,i,j) generated using the key generation al-
gorithm, rather than picking g1 uniformly at random from G. By the fact that the the key
generation algorithm produces public keys which are statistically close to uniformly random
elements from G, we can ignore the last modification. By the equivocality, the first modification
is indistinguishable too.
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If the adversary corrupts Pj after it sends the commitment in Step 2 but before it sends
the opening in Step 4, then the simulator simply chooses a random g1 and computes r ←

equivocate
pk(X,j)

pk(E,i),w(E,i)
(C, aux, g1). It sets the internal state of Pj to look like the commitment C

in Step 2 was computed using (g1, r). If the adversary corrupts Pj after the end of Step 4, then
the simulator sets the internal state of Pj to look like C was generated using the pair (g1, r) sent
in Step 4. Hence the simulation is indistinguishable, even if the adversary corrupts Pj during
the coin-flip or later on.

– When Pj is honest through the end of the protocol, the simulator knows an extraction secret
key sk(X,i,j) for pk(X,i,j).

Corrupt Pj: If Pj is corrupt, then the coin-flip is simulated as follows:

1. In the first step, S, on the behalf of Pi, sends an initiation request pk(E,i) to Pj .
2. In the second step, the adversary A sends (pk(X,j), C) on behalf of Pj .
3. In the third step, the simulator, on behalf of Pi, sends a random g2 ← G to Pj .
4. In the fourth step the adversary, on behalf of Pj , sends the opening (g1, r) to Pi. If C =

commit
pk(X,j)

pk(E,i)
(g1; r) the simulator, on behalf of Pi, accepts the key pk(X,i,j) = g1 ⊕ g2 for future

commitments to Pj .

The simulation has the following properties:

– If Pi is honest through the end of the protocol, then the adversary does not know the equiv-

ocation secret key of pk(E,i) — it only saw a WI proof for this key. Since commit
pk(X,j)

pk(E,i)
is

computationally binding against an adversary which saw WI proof for the secret key of pk(E,i),

this means that commit
pk(X,j)

pk(E,i)
is computationally binding for A. Therefore pk(X,i,j) is the result

of a Blum coin-flip using a computationally binding commitment scheme when Pi is honest.

Intuitively, because pk(X,i,j) is the result of a Blum coin-flip, it is a random key. Unfortunately,
this is not necessarily true. For example Pj cam quit in step 3 depending on what the key is (e.g.
if the first bit is 0) and hence, given that Pj did not quit, the key is no longer random (e.g. the
first bit is always 1). This makes it difficult to argue that the Strong Equivocality/Hiding (Fig. 4)
properties still hold even when the extraction public key is chosen through a Blum coin-flip rather
than being chosen randomly by a challenger. We can use the “coin tossing lemma” from [CDPW] to
deal with this. The lemma says that any indistinguishability task that is hard for a random public
key, is also hard for a public key derived through a Blum coin-flip protocol using a computationally
binding commitment scheme. This means that the strong equivocality and hiding properties are
maintained for a corrupt Pj even if the extraction key pk(X,i,j) is generated by the above coin-flip
with Pj being corrupted.

B.3 Simulating “Commit” and “Reveal”

Simulating “Commit” and “Reveal” where Sender is Honest: In the ideal world, the
environment sends (commit, sid, ssid, Pj ,m) to FMCOM on behalf of an honest Pi. The simulator
sees the public part of the message, namely (commit, sid, ssid, Pj). Upon seeing this, the simu-

lator computes (C, aux) = ecommit
pk(X,i,j)

pk(E,j),w(E,j)
() and sends (commit, sid, ssid, Pi, Pj , C) to Pj on
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behalf of Pi. It remembers (sid, ssid, Pi, Pj , C, aux). It is possible to simulate like this, as no matter
whether Pj is honest or corrupted, the simulator knows w(E,j): If Pj is honest, then S generated
(pk(E,j), w(E,j)). If Pj is corrupted, then S extracted w(E,j) — since Pi is honest, it was honest
when it (certify, sid, CAk, Pi, Pj , pk(E,j)) from a CAk it trusts. Since Pi trusts CAk, also CAk was
honest at this point. So, Pj registered at pk(E,j) at an honest CAk. As described in Section B.1,
this means that the simulator extracted w(E,j).

Later, if the environment sends (reveal, sid, ssid, Pi, Pj) to FMCOM on behalf of a
(still) honest player Pi, the simulator receives the message m from FMCOM. The simula-
tor recalls the tuple (sid, ssid, Pi, Pj , C, aux) used for that commitment and computes r ←

equivocate
pk(X,i,j)

pk(E,j),w(E,j)
(C, aux,m). The simulator sends (reveal, sid, ssid, Pi,m, r) to Pj .

If the adversary A corrupts the player Pi, then the simulator receives the committed messages m
from FMCOM. It recalls the corresponding stored tuples (sid, ssid, Pi, Pj , C, aux). It computes r using
the equivocate functionality as above and sets the internal state of Pi as though the commitment
C was generated using (m, r).

The simulated commit/reveal actions are indistinguishable from the real world by the indis-
tinguishability of the commitment game and the equivocation game. Here we also rely on the
previously mentioned fact that these games remain indistinguishable even if the public key pk(X,i,j)

is chosen using a Blum coin-flip.

Simulating “Commit” Where Sender is Corrupted: When the internal copy of A generates
the commitment C on behalf of a corrupted player Pi by sending (commit, sid, ssid, Pj , C) and Pj is
corrupted then this is internal communication of A and can be simulated trivially. In the protocol
an honest Pj would now output (receipt, sid, ssid, Pi). The simulator must make FMCOM do the
same, on behalf of Pj . Since Pj is honest, it was honest through the end of the protocol flipping the
key pk(X,i,j) used to produce C. As discussed in Section B.2, then means that the simulator knows

the extraction secret key sk(X,i,j) of pk(X,i,j). The simulator computes m = extract
pk(X,i,j),sk(X,i,j)

pk(E,j)
(C)

and input (commit, sid, ssid,m) to the functionality FMCOM on behalf of the corrupted Pi.

Simulating “Reveal” Where Sender is Corrupted: When the internal copy of
A generates the decommitment (reveal, sid, ssid, Pj ,m

′, r′) on behalf of a corrupted Pi

and C = commit
pk(X,i,j)

pk(E,j)
(m′, r′), then and honest Pj in the real protocol would output

(reveal, sid, ssid, Pi,m
′). In the ideal world the simulator simply input (reveal, sid, ssid, Pj) to

FMCOM on behalf of the corrupted Pj . The functionality FMCOM will decommit to some message
m.

There are two possibilities. The commitment might have been made when the sender was honest,
and then the sender got corrupted later. In this case some message m was revealed to the simulator
when the sender got corrupted. Secondly, the sender might have been corrupted at the time the
commitment was made in which case the simulator used extract to recover a message m and input
(commit, sid, ssid,m) to the functionality FMCOM on behalf of Pj (this is the case we just described
above). In the second case, it follows from the definition of the extraction game and the assumption
that the scheme is extractable, that m = m′, except with negligible probability.

The first case, is more involved as the following might have happened: 1) First C was computed
by the simulator using ecommit (while the sender was honest). 2) Then the sender was corrupted,
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and the simulator used equivocate to open C to (m, r), where m is the message it received from
the ideal functionality. 3) The corruption of the sender was done before the decommitment to
C was computed by the simulator and delivered to the receiver. 4) The adversary instead sent
the decommitment (reveal, sid, ssid, Pj ,m

′, r′) to C. However, Steps 1 and 2 can be replaced by
an honest commitment by the indistinguishability of the commitment game and the equivocation
game. Then, by extractability, m = m′ except with negligible probability.

Indistinguishability of Simulation and Real World Interaction For each part of the simu-
lation, we gave an argument for why it is “legitimate”. We rely on the hybrid argument which can
be easily formalized from the arguments outlined in each of the above sections. Namely, we start
with the real world interaction. Then, in each of the above sections, we argued that the change
introduced by that portion of the simulation is indistinguishable from the simulation without that
change. Hence the hybrid argument ensures that the full simulation is indistinguishable from the
real world interaction.
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