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Abstract. Recently, Acıiçmez, Koç, and Seifert have introduced new side-channel analysis types,
namely Branch Prediction Analysis (BPA) and Simple Branch Prediction Analysis (SBPA), which
take advantage of branch mispredictions occur during the operations of cryptosystems [4, 5]. Even
more recently, Acıiçmez has developed another attack type, I-cache analysis, which exploits the inter-
nal functionalities of instruction/trace caches [1]. These MicroArchitectural Analysis (MA) techniques,
more specifically SBPA and I-cache Analysis, have the potential of disclosing the entire execution flow
of a cryptosystem as stated in [4, 1]. Our focus of interest in this paper is that these attacks can reveal
whether an extra reduction step is performed in each Montgomery multiplication operation. First Wal-
ter et al. and then Schindler developed attacks on RSA, which result in total break of the system if the
occurrences of extra reduction steps can be determined with a reasonable error rate [39, 30, 29]. These
attacks may be viewed as theoretical in the sense that neither Walter et. al. nor Schindler implemented
actual attacks on real systems but instead they assumed that side-channel information obtained via
power and timing analysis would reveal such occurrences of extra reduction step. In this paper we ad-
justed the attack from [30] to the current OpenSSL standard and put this attack into practice, proving
its practicality via MA. The second part of the attack exploits the previously gathered information on
the required extra reductions in an optimal way, using advanced stochastic methods as the formulation
and analysis of stochastic processes.
Our results show the feasibility of compromising current RSA implementations such as OpenSSL. After
we shared our result with OpenSSL development team, they included a patch into the stable branch
([45]), which allows users to compile an OpenSSL version that is resistent against our attack ([46]). In
particular, this patch will affect the upcoming version of 0.9.8f. We also contacted the US CERT who
informed software vendors. The US CERT assigned the vulnerability explained in this paper CVE name
CVE-2007-3108 and CERT vulnerability number VU#724968, and they issued a vulnerability note
([47–49]). We point out that this publication appeared in accordance with the OpenSSL development
team.
Several countermeasures have been developed and employed in widely used cryptographic libraries like
OpenSSL to mitigate such side-channel analysis threats. However the current implementations still
do not provide sufficient protection against MicroArchitectural Analysis, despite of all the sophisti-
cated mitigation techniques employed in these implementations. In this paper, we will show that one
can completely break the RSA implementation of the current OpenSSL version (v.0.9.8e) even if the
most secure configuration, including all of the countermeasures against side-channel and MicroArchi-
tectural analysis, is in place. We have only analyzed OpenSSL, thus we currently do not know the
strength of other cryptographic libraries. Other libraries and software products need to be thoroughly
analyzed and appropriately modified if it is necessary. At least, developers of the current software
applications that rely on OpenSSL RSA implementation need to update their products based on the
recent OpenSSL changes. Our results indicate that MicroArchitectural Analysis threatens at least 60%
of the internet traffic worldwide and the current systems should be analyzed thoroughly to evaluate
their overall strength against MicroArchitectural Analysis ([44]). We will eventually discuss appropriate
countermeasures that must be employed in security systems.
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1 Introduction

MicroArchitectural Attacks (MA), which exploit the microarchitectural behavior of modern com-
puter systems, form a new group of side-channel analysis. Cache, Branch Prediction, and Instruction
Cache Analysis are three types of MA that are “publicly” known so far. 3 Branch Prediction Anal-
ysis (BPA) and its very powerful variant Simple Branch Prediction Analysis (SBPA) have been
introduced by Acıiçmez et. al. [4, 5]. They showed that a carefully written spy-process running
simultaneously with an RSA-process, is able to collect during one single RSA signing execution
almost all of the secret key bits. They call such an attack, analyzing the CPU’s Branch Predictor
states through spying on a single quasi-parallel computation process, a Simple Branch Prediction
Analysis (SBPA) attack — sharply differentiating it from those one relying on statistical methods
and requiring many computation measurements under the same key. Following this interesting re-
search vector, Acıiçmez has developed another MA attack based on the functionality of instruction
cache (I-cache), which is another major processor component [1]. This new attack, called I-cache
Analysis, is also aiming to reveal the instruction flow of cryptosystems just like SBPA.

The major cryptographic libraries, especially OpenSSL which is widely utilized in most of the
security software today (according to an estimation from NTT made in November 2006, more than
60% of the web servers worldwide has OpenSSL toolkit installed [44]), have gone under several
revisions to mitigate different MA attacks immediately after the announcements of their feasibilities.
Unfortunately, despite of all these efforts spent to provide better protections against MA attacks,
the current version of OpenSSL 4 still has a major vulnerability. One can completely break this RSA
implementation even if all the currently implemented countermeasures are turned on5. The most
secure configuration of the current OpenSSL version employs Fixed-window exponentiation6, base
blinding7, and various other countermeasures for MA vulnerabilities. However, the most important
algorithm for our purpose in this paper is Montgomery Multiplication (MM). The implementation
of MM in OpenSSL still has the extra reduction step in version 0.9.8e, although it has been shown
many times that this particular step cause serious security vulnerabilities, cf. [8, 12, 13, 33, 32, 39,
30, 29]. It also has been known for a long time that MM can be easily implemented without extra
3 There is, in fact, a new paper describing a recently discovered MA type [2]. The details of it were not publicly

available by the time we wrote this current paper. Therefore we omit this attack here and prefer not to disclose
the details.

4 Even the upcoming OpenSSL version (v.0.9.8f) which will contain several SBPA countermeasures would still be
vulnerable to the attack we describe in this paper. After we shared our result with OpenSSL development team,
they have prepared a patch which has been included in the stable version ([46]) and in particular will affect the
upcoming version 0.9.8f.

5 The side-channel related countermeasures in OpenSSL are optional. Some of them are turned on by default, while
others are not. The systems built upon OpenSSL can choose which countermeasures to be active by setting the
corresponding OpenSSL flags. It is possible for a system to activate all of these countermeasures, which naturally
come with some performance loss, or totally ignore/deactivate all of them

6 Fixed-window exponentiation was implemented as a mitigation technique against cache analysis presented in [27].
OpenSSL also handles the RSA structures in a special way to avoid cache based threats. These two techniques
come in a bundle, i.e. used together to protect enhanced security against cache analysis

7 OpenSSL uses a technique called base-blinding which prevents in particular pure timing attacks. This method was
first implemented as an optional protection against chosen- and known-text attacks and later on became a default
protection mechanism after the publication of Brumley and Boneh Attack [12], see also [8].
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reduction step, cf. [40, 41, 14]. In this paper, we will show that even if we utilize all of these mitigation
techniques in OpenSSL, we can still completely break the RSA implementation.

It is important to note that OpenSSL implementation has recently been modified to eliminate
extra reduction step in MM after we showed the feasiblity of completely breaking even the most
secure configuration of the library ([45]). These changes will in particular affect the upcoming
OpenSSL version 0.9.8f. We also contacted the US CERT who informed software vendors. The US
CERT assigned the vulnerability explained in this paper CVE name CVE-2007-3108 and CERT
vulnerability number VU#724968, and they issued a vulnerability note ([47–49]).

Although SBPA and I-cache Analysis have the potential to reveal the entire execution flow of an
RSA cipher, our focus in this paper is only on the extra reduction step of the Montgomery multi-
plication algorithm. We show that MA can be used to determine which Montgomery multiplication
operations perform an extra reduction during the entire execution of RSA. The importance of this
information is due to [39, 30, 29]. Walter et. al. developed an attack on RSA (for a fixed window
size of 2 bits) which allow to extract the secret exponent if the occurrences of extra reduction steps
for a sample of RSA decryption/signing under the same RSA key are known to the attacker [39].
Later, Schindler generalized and optimized this attack for arbitrary window sizes ([30]), and then
Schindler and Walter extended this attack to a variant of Montgomery’s multiplication algorithm
([29]). We need to mention that these attacks may be considered as “theoretical” because neither
Walter et. al. nor Schindler implemented actual attacks on real systems but instead they assumed
that side-channel information obtained via power and timing analysis would reveal such occurrences
of extra reduction step.

In this paper, we combine the practicality of MicroArchitectural Analysis (Instruction Cache
Analysis in particular) and the theory of [30] to show that the use of extra reduction step in
Montgomery multiplication leads to a total break of current RSA software implementations. We
also suggest several countermeasure that must be employed in software implementations of RSA.

2 MicroArchitectural Analysis: History, Fundamentals, and Potentials

MicroArchitectural Analysis (MA), which is a newly evolving area of side-channel cryptanalysis,
studies the effects of common processor components and their functionalities on the security of
software cryptosystems. As a natural consequence of strictly throughput, performance, and “per-
formance per watt” oriented goals of modern processor designs and also highly “time-to-market”
driven business philosophy, the resulting products, i.e. commodity processor architectures in the
market, lack a thorough security analysis. The main element that gave birth to MicroArchitectural
Analysis area is indeed this particular gap between the current processor architectures and the ideal
secure computing environment.

The actual roots of MA goes a long way back to [16, 34]. Although the security risks of proces-
sor components like cache were implicitly pointed out in these publications, concrete and widely
applicable security attacks based upon processor functionalities have recently been worked out and
immediately attracted significant public interest. There are currently 3 different types of MA that
had been identified so far: Cache, Branch Prediction, and I-cache Analysis.

The typical targets of side-channel analysis have been and still are smart cards. However, we
have seen a significant increase in research efforts spent on the side-channel analysis of commodity
PC platforms for the last few years. It was especially realized that the functionality of some mi-
croprocessor components like data and instruction cache and branch prediction units cause serious
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side-channel leakage. These efforts led to the development of MicroArchitectural Analysis area. MA
attacks exploit the microarchitectural components of a processor to reveal cryptographic keys.

Side-channel analysis can be defined as the study of data dependent variations in side-channel
information such as execution time and power consumption. These variations either directly give
the key value out during a single cipher execution or leak information which can be gathered during
many executions and analyzed to compromise the system. The functionality of the aforementioned
processor components generates such data dependent variations in execution time and power con-
sumption, which are the subjects of MA.

A cache-based attack, abbreviated to “cache attack” or “cache analysis” from here on, exploits
the cache behavior of a cryptosystem by obtaining the execution time and/or power consumption
variations generated via cache hits and misses, cf. [25, 23, 27, 6, 7, 9, 20, 26, 10, 36, 11, 37, 38, 24]. The
cache vulnerability of computer systems has been known for a long time, c.f. [16, 19, 17], however
actual realistic and practical cache attacks were not developed until recent years. Cache analysis
techniques enable an unprivileged process to attack another process, e.g., a cipher process, running
in parallel on the same processor as done in [25, 23, 27]. Furthermore, some of the cache attacks can
even be carried out remotely, i.e., over a local network [6].

The previous cache attacks, excluding instruction-cache attacks which are fundamentally dif-
ferent than data-cache attacks, are data-path attacks, i.e., exploit the data access patterns of a
cipher. The memory accesses of S-box based ciphers are key-dependent. Cache attacks try to reveal
these memory access patterns by analyzing the cache statistics of the cipher execution. These cache
statistics include the number of cache hits and misses, the cache lines modified by the cipher, and
such. An unprivileged malicious party cannot directly obtain these statistics 8, but can observe
side-channel leakage to estimate these values. For example, the execution time of AES software
implementations is directly related to the total number of cache hits and misses that occur during
the encryption, cf. [35], and can be measured to determine these statistics.

The second type of MA we have seen is the Branch Prediction Analysis (BPA), which also
includes a powerful variant called Simple Branch Prediction Analysis (SBPA) [4, 5]. It was proven
that “a carefully written spy-process running simultaneously with an RSA-process, is able to collect
during one single RSA signing execution almost all of the secret key bits”. They could successfully
apply an attack on the exponentiation phase of a simple RSA implementation as a case study. They
ran an independent process to spy on RSA execution relying on the simultaneous-multithreading
(SMT) capability of the platform. The concept introduced in [4] has recently been verified by Andre
Seznec, who is a famous expert on branch prediction [43]. As stated in [3, 4], the actual power of
SBPA is not limited to this basic application on RSA exponentiation. SBPA has a potential to
determine the entire execution flow of a target process on almost any execution environment, i.e.,
with or without SMT. The reasons of this powerful claim, which are based on the results of previous
studies on MA, were given in [3].

Following this interesting research vector, Acıiçmez has also introduced another MA type: I-
cache Analysis [1]. Similar to BPA, I-cache analysis is used to reveal the execution flow of a target
process. An adversary runs a spy process simultaneously or quasi-parallel with the cipher and
detects the changes occur in the instruction cache.

8 In fact, current processors have special registers inside the chip that count and store such statistics. These registers
are intended to be used for performance monitoring purposes and fortunately require special privileges to be read.
Without this requirement of high privilege, the potential power of a malicious party would be devastating. For
further information on performance counters and performance monitoring events, see [42]
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The spy process oriented MA attacks rely on the fact that the execution of cipher processes
leaves persistent changes in the state of shared resources like cache and branch target buffer. In
other words, the cipher execution leaves “footprints” on the observable state, i.e. the so-called
metadata, of these resources and an unprivileged spy process can keep track of these footprints if
it runs on the same processor in parallel with the cipher. Being able to spy on these states and
especially the ability to detect the changes of these states as a function of time, the adversary can
reveal the execution flow (and also the memory access patterns) of cryptosystems.

The most threatening feature of MA is its broad application range. These attacks can compro-
mise security systems even in the presence of sophisticated protection mechanisms like sandboxing
and virtualization because all of these attacks exploit deep processor functionalities which are be-
low the trust architecture boundary of these security mechanisms. All of the aforementioned MA
attacks are pure-software based and do not require any privilege on the system which makes them
easy to deploy but hard to detect. Anyone with malicious intentions (and of course, the required
skill set to implement such spy processes) can apply these attacks on multi-user systems, VPNs,
virtual machines, and such systems that allow the parallel execution of processes of different par-
ties. Due to the limited space, we cannot give further details of MA in this paper. We refer the
interested readers to [5, 4, 3, 22, 9, 25, 6] for further information.

3 Actual Practical Implementations of the Attack on Extra Reduction via MA

Motivated from the attacks given in [39, 30, 29], we decided to realize these attacks via MicroAr-
chitectural Analysis. It was already proven in [4, 1] that SBPA and I-cache Analysis can reveal the
execution flow of RSA, which is exactly what we need in order to bring these theoretical extra
reduction attacks into practice. We preferred to use OpenSSL as our target software RSA imple-
mentation and I-cache analysis as our tool to detect the occurrences of extra reduction steps. The
results of our experiments are given in the following section. In this section, we outline the basics of
I-cache analysis and describe our approach of using I-cache analysis on OpenSSL to gather er-vector
values.

3.1 Overview of I-cache Analysis

I-cache analysis rely on the fact that instruction cache misses increase the execution time of code
section. Instruction cache (a.k.a. I-cache) is a small buffer between the main memory and the
processor core which provides the processor fast and easy access to the most frequently executed
instructions. When the processor needs to read some instructions from the main memory, it first
checks to see if they are already in I-cache. If they are already in I-cache (a.k.a. cache hit), the
processor immediately uses these “cached” instructions instead of accessing the main memory,
which has a significantly longer latency compared to an I-cache. Otherwise (a.k.a. cache miss), the
instructions are read from the memory and a copy of them are stored in I-cache. Each I-cache miss
mandates an access to a higher level memory, i.e., a higher level cache or main memory, and thus
results in additional execution time delays.

In I-cache analysis, an adversary needs to execute a spy code, which keeps track of the changes
in the state of I-cache, i.e., metadata, during the execution of a cipher process. A spy code / process
can run simultaneously or quasi-parallel with the cipher process and determine which instructions
are executed by the cipher. To give a concrete example, we can consider the exponentiation algo-
rithm of OpenSSL. Reference [1] takes advantage of the fact that OpenSSL employs sliding window
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exponentiation which generates a key dependent sequence of modular operations in RSA 9. Further-
more, OpenSSL uses different functions to compute modular multiplications and square operations.
[1] shows that if an adversary can run a spy routine and evict either one of these functions, he can
easily determine the operation sequence of RSA.

In his attack scenario, a ”protected” crypto process executes RSA signing/decryption operations
and an adversary executes a spy process simultaneously or quasi-parallel with this cipher. The spy
routine

1. continuously executes a number of dummy instructions, and
2. measures the overall execution time of all of these instructions

in such a way that these dummy instructions precisely maps to the same I-cache location with the
instructions of multiplication function. In other words, the adversary creates a conflict between the
instructions of the multiplication function and the spy routine. Because of this I-cache conflict, either
the spy or multiplication instructions can be stored in I-cache at any time. Therefore, whenever
the cipher process executes the multiplication function, the instructions of the spy routine have to
be evicted from I-cache. This eviction can easily be detected by the spy routine because when it
reexecutes its instructions the overall execution time will suffer from I-cache misses. Thus, the spy
can determine when the multiplication function is executed. This information directly reveals the
operation sequence of RSA if the square & multiply exponentiation algorithm is used. For further
details of I-cache analysis and this particular attack, we refer the reader to [1].

3.2 Our Approach

Our approach in this paper is similar to the approach presented in [1]. If an adversary can determine
the occurrences of modular multiplications by creating I-cache conflicts between the spy routine
and multiplication function, he can also create conflicts with the instruction executed during extra
reduction step and reveal the er-vectors 10.

OpenSSL library employs Montgomery multiplication algorithm as stated above. During a
Montgomery operation, OpenSSL first calls either multiplication or square functions from BIGNUM
library11 and then reduces the result to the modulus via Montgomery reduction function12. At the
end of the reduction after each Montgomery operation, whether it is a multiplication or square, the
intermediate result is compared with the modulus to decide if an extra reduction is needed.

The extra reduction step consists of a multiprecision subtraction and OpenSSL realizes it
as a call to BIGNUM library’s unsigned multiprecision subtraction function13. This function is
used/called only for the extra reduction step during the course of the RSA signing/decryption
operation. In other words, there is not any other location in OpenSSL’s code for RSA decryption
9 OpenSSL implements both sliding window and fixed window exponentiations. Sliding window exponentiation is

the default algorithm in OpenSSL. Fixed window exponentiation (which is slower than the sliding window) were
implemented as an optional protection to cache attacks (and now it also provides protection against branch
prediction attacks). The choice whether to turn the cache attack and/or branch prediction attack countermeasures
on (including the fixed window exponentiation) is given to the user.

10 An er-vector is an ordered tuple of 1 and 0 values, e.g., (0, 0, 1, 0, 1, ..., 0), which shows the occurences of extra
reduction steps. We denote the occurrence of an extra reduction step with a 1 in er-vectors and the value 0 indicates
that extra reduction is not performed for that Montgomery operation. See further [30] and Section 4.2.

11 BIGNUM is a software library integrated into OpenSSL and it is responsible for multiprecision operations.
12 BN from montgomery() function
13 BN usub() function
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that calls this function. Therefore, whenever a cipher process executes this function, it must be
performing extra reduction step. Hence, it is sufficient to create a spy routine that has I-cache
conflicts with this function in order to detect the occurrences of extra reduction steps14.

Following this basic approach, we implemented such a spy function as described in [1] and
also considering the above difference. Our spy function executes some dummy instructions and
measures their overall running time. These dummy instructions have a conflict with the extra
reduction routine of OpenSSL, which allows the spy to detect the occurrences of extra reduction
steps, i.e., er-vector values. After enough er-vector vectors are gathered, it becomes feasible to break
the cipher. One has to transfer the attack from [30], which has already been proven to be correct
there, to the concrete situation and apply it on the gathered er-vectors.

However, the spy measurements are not perfectly clear and there is a noise factor to consider.
It is already shown in [4] that a carefully-written spy process can get very clean results. But [4]
also states that such clean results cannot always be collected and an adversary needs to make some
trials to get clean results. Therefore, an adversary will have to deal with this noise factor, but the
theoretical attacks explained above tolerates some error rates. Thus the problem for an adversary
becomes how clearly he can detect the extra reduction steps, i.e., gathering er-vectors with a low
enough error rate. A high error rate affects the necessary sample size of the attacks and may make
it infeasible to compromise the cipher in some cases. However, we will show in the next section that
the measurements collected by a spy function is clean enough to practically apply these attacks
with a relatively small sample size.

4 Experimental Details, Mathematical Background and Empirical Results

We performed two different phases of experiments in this project. The objective of the first phase
was to gather er-vectors via MA, i.e., I-cache Analysis in this case. The second phase consisted of
determining the success rate of our attack for different sample sizes and different error rates.

4.1 Experimental Details

We compiled the RSA decryption function of OpenSSL (the latest version) with all the available
countermeasures enabled. We disassembled the executable file to determine the logical addresses of
BIGNUM multiprecision unsigned subtraction function instructions. GNU Project debugger (i.e.
gdb) has two functions, ”info line” and ”disas”, that we used for this task. Then we implemented
our spy routine according to these logical addresses and also considered the parameters of the
I-cache architecture on our platform.

Then we carried out the first experimental phase by letting the spy function run during the
execution of RSA signing operation. To simplify our setup and reduce the necessary experimental
efforts, we used a simple trick in this phase. Instead of using a stand-alone spy process and relying
on Operating System functionalities as done in [23] or exploiting SMT-capability of processor
architectures as done in [27, 25, 4], we called the spy routine inside the RSA process with a certain
14 In fact, an adversary also needs to be sure that instructions of the spy routine do not get completely evicted by other

functions such as BIGNUM’s multiplication and square functions. This possible situation was not a problem in our
case, because the executable code did not have such conflicts between these functions when we compiled OpenSSL
using gcc compiler. A compiler is expected to remove possible internal cache conflicts to increase the performance
of the code. Internal cache conflicts, in this context, indicate the conflicts occur between the instructions that
belong to the same process.
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frequency, i.e., after each exponentiation step. The other options would require special manual
handling of each single measurement and would drastically increase the necessary efforts spent in
this experiment, because we needed to analyze a large number of measurements to get an accurate
estimation of the error rates. In more realistic attack scenarios that use stand-alone spy processes,
an adversary may (and most likely will) encounter an error rate higher than our experimental
results. However, according to an analysis on cache attacks from Neve which is given in [22], the
theoretical and actual results taken from such a spy process are indeed very close to each other.
Therefore, we expect the actual error rates in a spy process’s measurements to be only slightly
higher than our estimated error rates.

We must also mention that these error rates depend on several parameters including the actual
platform, operating system and other software components of the system, the implementation of
the spy process as well as the cipher. Higher error rates do not necessarily nullify the validity of
these attacks since the optimal guessing strategy for correctly observed er-vectors (cf. Theorem 1)
seems to tolerate error rates up to about 4 - 5%, and even guessing strategies exist that take
classification errors explicitly into account (cf. Theorem 2). Thus, we do not claim that our results
perfectly reflect the performance of these attacks in every possible scenario. We only prove in this
paper that er-vector attacks coupled with MA techniques create a valid and severe threat to software
systems.

We used the possibility of performing the same exact measurement many times and taking the
average to decrease the measurement noise, i.e., error rate. OpenSSL uses the same blinding factor
32 times by default before updating it. Therefore, an adversary can force the system to perform
RSA decryption for the same base and identical blinding values t ≤ 32 many times and measure
each of these t operations. For example, he can exploit SSL handshake protocol as done in [12, 8].
Using the average of more than 1 measurement decreases the noise and thus reduces the error rate
as we will show in the next subsection.

The second phase of our experiments was to determine the success rate of er-vector attack for
several sample sizes and to estimate the effect of different error rates.

We performed our experiments with the latest version of OpenSSL (v.0.9.8e), which uses Chinese
Remainder Theorem (CRT), Montgomery’s multiplication algorithm ([21], 14.36) and base blinding
to compute the modular exponentiation x 7→ xd(mod n). We consider both of the exponentiation
algorithms implemented in current OpenSSL version: fixed windows and sliding windows exponen-
tiation ([21], 14.82 and 14.85). The fixed-window exponentiation algorithm (which is slower than
the sliding window) were implemented as an optional protection to cache attacks (and now it also
provides protection against branch prediction attacks). The choice whether to turn the cache attack
and/or branch prediction attack countermeasures on (including the fixed window exponentiation)
is given to the user. The size of the windows used in both exponentiation algorithms depends on
the key size in OpenSSL. For common key sizes (1024 and 2048 bits), the windows are 5-bit long,
and thus we will focus on this particular case in our paper.

4.2 Mathematical Background and Experimental Results

In this section we explain the mathematical background and present our experimental results.

Fixed Window Exponentiation Algorithm As usual, n = p1p2 and R denotes the Montgomery
constant while MM(a, b;n) := abR−1(mod n) stands for the Montgomery multiplication of a and
b. The computation of xd(mod n) is carried out in several phases:
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1. Base blinding: xb := xA(modn) where A and B := A−d(mod n) are the current blinding val-
ues.

2. Compute xd
b(mod p1)

a) group the binary representation of d(1) := d(mod(p1 − 1)) = (d′w−1, . . . , d
′
0)2 into non-

overlapping blocks of length wsize, starting from the least significant bit d′0. This gives
wsize-bit integers Dv−1, . . . , D0 with v := dw/wsizee.

b) xb,1 :≡ xb(mod p1)
c) Exponentiation algorithm 1: Fixed windows

u0 := MM(1, R2(mod p1);p1) (= R (mod p1))
u1 := MM(xb;1, R2(mod p1);p1) (= xb;1R (mod p1))
for j := 2 to 2wsize − 1 do uj:=MM(uj−1,u1;p1)
temp := u0

for i := v − 1 downto 0 do {
for j := 1 to wsize do temp:=MM(temp,temp;p1)
temp := MM(temp,uDi;p1)}

return MM(temp,1) (= xd
b;1(mod p1) = xd

b(mod p1))
Note: u0, . . . , u2wsize−1 denote the table values.

3. Compute xd
b(mod p2) analogous to Step 2

4. Compute xd(mod n)
a) CRT step: Compute xd

b(mod n) from xd
b(mod p1) and xd

b(mod p2).
b) “Remove” blinding: y := xd

bB(mod n)
5. (eventually) update A and B

Remark 1. We point out that fixed windows exponentiation algorithm from above can somewhat be
speeded up. In fact, MM(temp, u0; p1) = temp has no computational effect, and also the beginning
of the exponentiation phase can be implemented more efficiently. We treat a related variant of this
exponentiation algorithm in the next subsubsection.

The adversary’s goal is clearly to determine the secret exponent d. We first note that it is sufficient
to determine d(1) since

y − xd(1) ≡ 0(mod p1), i.e. gcd(y − xd(1)(mod n), n) = p1 (1)

for any known plaintext / ciphertext pair (x, y = xd( mod n)). The attacker has to recover the types
of operation T (1), T (2), . . . , T (M) of the Montgomery operations during the exponentiation phase.
To increase the readability of the paper we concentrate on wsize = 5, the case we are interested in.
Of course, all assertions can immediately be transferred to any arbitrary window size. Essentially,
it remains to substitute 31 by 2wsize − 1.

Clearly, T (i) ∈ Θ = {‘S ’, ‘M0’, ‘M1’, . . . , ‘M31’} where ‘S’ says that the ith Montgomery op-
eration in the exponentiation phase is a squaring while ‘Mk’ stands for the multiplication with
table entry uk. The adversary grounds his decisions on the exponentiation of bases x1, . . . , xN . For
now, assume that the adversary knows which operations in the table initialization phase and in
the exponentiation phase require extra reductions (ERs). More formally, w′

i(k) = 1, resp. w′
i(k) = 0

mean that the ith operation in the table initialization phase (= computation of ui for base xk)
requires an extra reduction, resp. requires no extra reduction. Similarly, wi(k) = 1, resp. wi(k) = 0
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mean that the ith operation in the exponentiation phase requires an extra reduction, resp. requires
no extra reduction. In the following we outline the general procedure, explain the main steps.

As usually, we interpret the observations w′
i(k) and wi(k) as realizations of suitably defined

random variables W ′
i(k) and Wi(k). As already shown in [33] and [31] we have

Prob(Wi(k) = 1) =

{
1
3

p1

R if T (i) = ‘S ’
uj

2p1

p1

R if T (i) = ‘Mj ’.
(2)

We note that both probabilities depend on the ratio p1/R which is yet unknown to the attacker.
Recall that the positions of the #sq = 5dlog2(d(1))/5e many squarings are well-known in this fixed
windows variant since they do not depend on d(1), and hence the first line of (2) can be used to
estimate p1/R. (For all bases x1, . . . , xN count the ERs for all squarings in the sample and multiply
this number by 3(N#sq)−1.) Using also the second line of (2) the game was easy if the adversary
knew the ratios uj(1)/p1, . . . , uj(N)/p1 for each 0 ≤ j ≤ 31. Due to base blinding (and the use of
CRT) the adversary yet does not know these values.

The key is a formal treatment which analyzes the distribution of the random variables W ′
1(k), . . . ,W

′
31(k)

and W1(k),W2(k), . . .. We point out that s′0(k) := xb,1/p1, s′i(k) := ui(k)/p1 for i ∈ {1, . . . , 31} and
si(k) := tempi(k)/p1 assume values in the unit interval [0, 1) where tempi(k) stands for the ith

temp value in the exponentiation phase for the base xk. In particular,s0(k) = u0(k)/p1. We assume
that the values s′0(k), . . . , s

′
31(k) and s1(k), s2(k), . . . are taken on by [0, 1)-valued random variables

S′
0(k), . . . , S

′
31(k) and S1(k), . . . , SM(k). Lemma 1(iii) in [30] says that the random variables

S′
0(k), . . . , S

′
31(k), S1(k), . . . , SM(k) are independent and uniformly distributed on [0, 1) (3)

which matches with the intuition that the intermediate temp values ‘spread’ wildly over Zp1 . It
is even more interesting that the random variables W ′

i(k) and Wi(k) can be expressed in terms of
S′

i−1(k) and S′
i(k), resp in terms of Si−1(k) and Si(k). More precisely, Lemma 1(iii) in [30] implies

W ′
i(k) :=

1S′
1(k)

<S′
0(R2 ( mod p1)/p1)(p1/R) for i = 1

1S′
i(k)

<S′
i−1(k)

S′
1(k)

p1/R for 2 ≤ i ≤ 31 and
(4)

Wi(k) :=

 1Si(k)<S2
i−1(k)

p1/R if T (i) = ‘S ’

1Si(k)<Si−1(k)S
′
j(k)

p1/R if T (i) = ‘Mj ’.
(5)

Here 1A(x) denotes the indicator function, i.e. 1A(x) = 1 iff x ∈ A and = 0 otherwise. The stochas-
tic process W1(k),W2(k), . . . ,WM(k) is non-stationary and dependent which clearly complicates its
analysis. However, it allows an exact solution of our problem. The next goal is to compute the joint
probabilities

pθ(w′
1(k), . . . , w

′
31(k), wi(k)) := Probθ(W ′

1(k) = w′
1(k), . . . ,W

′
31(k) = w′

31(k),Wi(k) = wi(k)) (6)

for all possible types of operation θ ∈ Θ = {‘S ’, ‘M0’, ‘M1’, . . . , ‘M31’}. Due to (4) and (5)
the values w′

1(k), . . . , w
′
31(k) and wi(k) can be characterized by conditions on s′0(k), . . . , s

′
31(k) and

si−1(k), si(k). For instance, w′
j(k) = 1 iff s′j(k) < s′j−1(k)s

′
1(k)p1/R, independent of θ while the im-

pact of wi(k) on si−1(k) and si(k) clearly depends on θ (cf. (5)). Altogether, if T (i) = θ, observing
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(w′
1(k), . . . , w

′
31(k), wi(k)) is equivalent to (s′0(k), s

′
1(k), . . . , s

′
31(k), si−1(k), si(k)) ∈ Aθ(w′

1(k), . . . , w
′
31(k), wi(k))

for a well-defined subset Aθ(w′
1(k), . . . , w

′
31(k), wi(k)) ⊂ [0, 1)34 that only depends on (w′

1(k), . . . , w
′
31(k), wi(k))

and the hypothesis θ. The table entry u0 plays an exceptional role as it does not depend on the
basis xk but is constant for all bases (see (9) below). Due to (3) the joint probability in (6) is given
by the volume of the set Aθ(w′

1(k), . . . , w
′
31(k), wi(k)).

pθ(w′
1(k), . . . , w

′
31(k), wi(k)) =

∫ 1

0

∫ b′1

a′1

· · ·
∫ b′31

a′31

∫ 1

0

∫ bθ,i

aθ,i

1 dsidsi−1ds′31 · · · ds′0 (7)

with integration boundaries

(a′1, b
′
1) =

{
(0, s′0(R

2(mod p1))/R) if w′
1(k) = 1

(s′0(R
2(mod p1))/R, 1) if w′

1(k) = 0.
(8)

i ∈ {2, . . . , 31} : (a′i, b
′
i) =

{
(0, s′i−1s

′
1p1/R) if w′

i(k) = 1
(s′i−1s

′
1p1/R, 1) if w′

i(k) = 0.

(aθ,i, bθ,i) =


(0, s2

i−1p1/R) if θ = ‘S ’ and wi(k) = 1
(s2

i−1p1/R, 1) if θ = ‘S ’ and wi(k) = 0
(0, si−1s

′
jp1/R) if θ = ‘Mj ’, j > 0 and wi(k) = 1

(si−1s
′
jp1/R, 1) if θ = ‘Mj ’, j > 0, and wi(k) = 0.

We note that the hypothesis θ =′ S′ is only relevant for the exponentiation algorithms treated in
the next subsections. Moreover, p′M ′

0
(w′

1(k), . . . , w
′
31(k), wi(k)) does not depend on w′

1(k), . . . , w
′
31(k).

More precisely,

p′M ′
0
(w′

1(k), . . . , w
′
31(k), wi(k)) = Prob(W ′

j(k) = w′
j(k) for 1 ≤ j ≤ 31) · Prob′M ′

0
(Wi(k) = wi(k)) (9)

with

Prob(W ′
j(k) = w′

j(k) for 1 ≤ j ≤ 31) =
∫ 1

0

∫ b′1

a′1

· · ·
∫ b′31

a′31

1 ds′31 · · · ds′0 , (10)

and from (2) we obtain Prob′M ′
0
(Wi(k) = 1) = R(modp1)/2R = 1(mod(p1/R))/2. We have al-

ready explained how to estimate the ratio p1/R.
Since all table entries are equally likely, and since all guessing errors are equally harmful the

optimal decision strategy is given by the maximum likelihood estimator (cf. next subsection where
this is definitely not the case). Recall that for Exponentiation algorithm 1 the adversary knows
where the squarings are performed.

Theorem 1. [Exponentiation algorithm 1, wsize=5] Let wi(k) := (w′
1(k), . . . , w

′
31(k), wi(k)). Assume

that all observed vectors wi(1), . . . ,wi(N) are correct and that in Montgomery operation i the temp
value is multiplied by any table value uj. The optimal strategy to guess T (i) is to decide for that
hypothesis θ′ ∈ Θ0 := Θ \ {‘S’} that maximizes

N∏
k=1

pθ(wi(k)). (11)
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Recall that the er-vectors ER(k) = (w′
1(k), . . . , w

′
31(k), w1(k), . . . , wM(k)) are the adversary’s only

information (k = 1, . . . , N). Unlike in [30, 28], in our attack we are faced with erroneous observa-
tions, i.e. with flipped components of the er-vector. The terms µ(0 | 1) and µ(1 | 0) denote the
probabilities to observe wi(k) = 0 although an extra reduction is performed, resp. the probability
to observe wi(k) = 1 although no extra reduction is necessary. Practical experiments showed that
the misclassification rate does not depend on the position of the respective Montgomery operation.
The default setting in the current OpenSSL library v.0.9.8e keeps the blinding values A and B con-
stant for consecutive 32 exponentiations. Consequently, for any base xk the adversary may repeat
measurements t ≤ 32 times under identical blinding values, i.e. under identical conditions. The
results shown in Table 1 are average error rates calculated based on the measurements collected
during 1000 decryptions with random ciphertext under each of 10 different random 1024-bit RSA
keys Increasing the value of t reduces the error rates, which become very close to 0 when t reaches
32.

t µ(0 | 1) µ(1 | 0)

1 0.1052 0.0021
2 0.0872 0.0010
4 0.0536 0.0582
8 0.0294 0.0239
16 0.0080 0.0063
32 0.0026 0.0062

Table 1. The average error rates for different values of t

With t = 16 we generated N = 2000 er-vectors (i.e., we perfomed tN = 16 · 20000 = 32000
measurements), belonging to different bases x1, . . . , x2000. We randomly selected subsets of size
N1 < N and performed our attack on basis of the er-vectors that were contained in these subsets.
Table 2 shows our results, underlining the practical feasibility of our attack even with only 10000
measurements (N1 = 600). Of course, 1 guessing error (also 2 or maybe even 3) can be corrected
by exhaustive search, checking the correctness of all guesses by (1). Note that if a false candidate
θ∗ maximizes (11) the corresponding correct hypothesis θ is usually also highly ranked.

N1 guessing errors (average) # attacks with ≤ 1 guessing errors

500 1.90 44/100
600 0.83 85/100
700 0.25 99/100
800 0.12 99/100
900 0.01 100/100
1000 0.02 100/100

Table 2. Practical experiments (Guessing strategy according to Theorem 1)

For window size 5 the adversary needs |Θ \ {′S′}| ·N · 2 = 32 ·N · 2 joint probabilities
pθ(w′

1(k), . . . , w
′
31(k), j) (with j ∈ {0, 1}) Since Probθ(Wi(k) = 0 | ·) = 1 − Probθ(Wi(k) = 1 | ·) this
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essentially requires the computation of 32·N conditional probabilities pθ(0 | w′
1(k), . . . , w

′
31(k)), i.e. of

32N many 34-dimensional integrals of type (7) and of N 32-dimensional integrals of type (10). For
window size 5 these computations constitute the essential part of the workload. Principally, these
computations are not difficult since (7) and (10) split into 34, resp. 32-dimensional, consecutive
one-dimensional integrations of polynomials. Since each w′

j = 0 principally doubles the number of
monomials for window size 5 the computations are yet memory- and time-consuming. In particular,
identical monomials should be summarized regularly.

The simulation studies from the next subsection (cf. Table 3 and Table 4) indicate that the
optimal decision strategy from Theorem 1 tolerates misclassification rates up to 4 to 5 per cent. We
point out that the situation is even better than for Exponentiation algorithm 2 since the adversary
need not guess the positions of the squarings. Surprisingly, if the adversary (roughly) knows the
misclassification rates he can take them explicitly into account.

Theorem 2. [Exponentiation algorithm 1, wsize=5] Assume that in Montgomery operation i the
temp value is multiplied by any table value uj. Assume further that µ(0 | 1) = µ01, µ(1 | 0) = µ10 ≥
0. For a = (a1, . . . , a32) ∈ {0, 1}32 define C0(a) := {j ≤ 32 | aj = 0} and C1(a) := {j ≤ 32 | aj = 1}
The optimal strategy to guess T (i) is to decide for that hypothesis θ′ ∈ Θ \ {′S′} that maximizes

N∏
k=1

∑
w∗∈{0,1}32

pθ(w∗) × (12)

× µ
|C0(wi(k))\C0(w∗)|
10 (1− µ10)|C0(wi(k))∩C0(w∗)|µ

|C1(wi(k))\C1(w∗)|
01 (1− µ01)|C1(wi(k))∩C1(w∗)|.

Proof. Due to the properties of the stochastic process S′
1(k), . . . , SM(k), k = 1, . . . , N , we may assume

that er-vectors which belong to different bases or to different blinding values are independent. The
optimal decision strategy maximizes

N∏
k=1

Probθ(wi(k) observed) with

Probθ(wi(k) observed) =
∑

w∗∈{0,1}32

Probθ(w∗ correct)Probθ(wi(k) observed | w∗ correct).

Clearly, Probθ(w∗ correct) = pθ(w∗) while the second term does not depend on θ but only on wi(k),
w∗, µ01 and µ10. Elementary considerations complete the proof of (12).

We first note that for µ01 = µ10 = 0 formulae (11) and (12) coincide. The drawback of the (12) is
that it requires the computation of 32 · 232 probabilities pθ(w∗) which is gigantic. Recall that we
concentrated on wsize = 5 to increase the readability of the document. Clearly, Theorem 1 and
Theorem 2 can immediately be adjusted to arbitrary window size (31 corresponds to 2wsize−1 in the
general case). We point out that for window size 4, for instance, the situation is much better since it
requires only 16 · 216 probabilities, and each probability can be calculated much faster. For window
size 2 only 4 · 24 such probabilities are necessary. On the other hand, if the misclassification rates
µ01, µ10 are moderate those w∗ with large Hamming distance to wi(k) give only little contribution
since Prob(wi(k) observed | w∗ correct ) is very small. Consequently, the adversary may only
consider those w∗ in (12) that have Hamming distance 1 or 2, giving an approximately optimal
decision strategy .
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Of course, in ‘real-life’ attacks the adversary does not know the values µ01 and µ10. However,
this does not constitute a serious problem. As already pointed out the computational bottleneck
is the computation of the probabilities pθ(w∗). Once these probabilities have been computed the
adversary can experiment with different values µ̃01 and µ̃10 since only the conditional probabilities
Prob(wi(k) is correct | w∗ correct) have to re-calculated which is an easy task. (This concerns both
(12) and the approximate decision strategy proposed in the previous paragraph.) The number of
errors may serve as a simple quality measure for the suitability of the guessed values µ̃01 and µ̃10,
i.e. whether these values are sufficiently close to µ01 and µ10.

Fixed Window Exponentiation Algorithm (related variant) In this subsection we treat a
related variant of the fixed windows algorithm which is used in many implementations. It differs
from the fixed windows algorithm variant implemented in OpenSSL v.0.9.8e in Step 2.c).

2. Compute xd
b(mod p1)

c) Exponentiation Algorithm 2: Fixed windows (related variant)
u1 := MM(xb;1, R2(mod p1);p1) (= xb;1R (mod p1))
for j := 2 to 2wsize − 1 do uj:=MM(uj−1,u1;p1)
temp := uDv−1

for i := v − 2 downto 0 do {
for j := 1 to wsize do temp:=MM(temp,temp;p1)
if (Di > 0) temp := MM(temp,uDi;p1)}

return MM(temp,1) (= xd
b;1(mod p1) = xd

b(mod p1))
Note: u1, . . . , u2wsize−1 denote the table values.

This exponentiation algorithm is closely related to the OpenSSL implementation. However,
when performing an attack some important differences have to be considered. In the following we
explain these differences. As in the previous section we concentrate on the case wsize=5.

For zero windows (00000) no multiplication with a table entry is performed. Consequently, the
adversary does not know the positions of the squarings, i.e. he has to guess T (i) ∈ Θ(2) = {‘S
’, ‘M1’, . . . , ‘M31’} for all i ≤ M . Certainly, T (1) = · · · = T (5) = T (M − 4) = · · · = T (M − 1) = ‘S
’ which gives an estimator for the ratio p1/R. The equations (2), (3), (4), (5), (6), (7) and (10) also
hold in this case. However, the maximum-likelihood estimator is not optimal in this case.

As already pointed out in [30] there are yet further criteria which should be taken into account.
First of all, for randomly selected position i it is much more likely that T (i) is a squaring than
a multiplication with any table value uj . Approximately, the probability for T (i) = θ is given by
η(‘M1’) = · · · = η(‘M31’) = 1/191 and η(‘S ’) = 160/191 where η denotes the so-called a priori
distribution (cf. [30], Sect. 5).

The adversary guesses the types of operations T (1), T (2), . . . independently. (Note that [30] al-
lows the adversary also to guess several types of operations simultaneously, increasing the efficiency
of the attack at cost of increasing computational workload (being too large for window size 5).)
Then he has to correct eventual guessing errors. Clearly, between two multiplications with table
entries must always be a number of squarings that is a multiple of 5. In other words: A guessing
sequence . . . , ‘S ’, ‘S ’, ‘M6’, ‘S ’, ‘S ’, ‘S ’, ‘S ’, ‘M7’, ‘M21’, ‘S ’, ‘S ’, ‘S ’, ‘S ’, ‘S ’, ‘M9’, ‘S ’, ‘S ’, . . .
cannot be correct. The guessing error can easily be detected and corrected (replace ‘M7’ by ‘S ’).
In [30] we distinguished between three types of guessing errors with regard to the workload which
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is necessary to detect and correct them (type-a error: ‘Mj ’ in place of ‘S’, type-b error: ‘S ’ in
place of ‘Mj ’, type-c error: ‘Mj ’ in place of ‘Mτ ’). Of course, type-a and type-b errors can easily
be detected just by checking the guessed ‘pattern’ of hypotheses unless these errors occur in bulks
(→ local errors). Moreover, type-a errors can easily be corrected while this not obvious for type-b
errors (although it usually suffices to take the second likely hypothesis following ‘S ’). In contrast
even the detection of type-c errors is not easy. Failed confirmations of the guessed hypotheses (→
estimator d̃(1), using (1)) point to type-c errors. The adversary will replace those decisions for ′M ′

j

that were ‘close’ (→ global errors). The loss function s(θ, a) quantifies the efforts that are necessary
to correct a wrong decision a ∈ Θ if θ is the true hypothesis (= true type of operation). Of course,
s(θ, θ) = 0 (no loss for a correct guess). In our simulations below we used the function values s(‘S
’, ‘Mj ’) = 1.0, s(‘Mj ’, ‘S ’) = 2.0, s(‘Mj ’, ‘Mτ ’) = 8.0 for j 6= τ .

Theorem 3. [Exponentiation algorithm 2, wsize=5] (i) Assume that all observed vectors wi(1), . . . ,wi(N)

are correct. The optimal strategy to guess T (i) is to decide for that hypothesis θ′ ∈ Θ(2) that mini-
mizes ∑

θ∈Θ(2)

s(θ, θ′)η(θ)
N∏

k=1

pθ(wi(k)). (13)

(ii) Assume that µ(0 | 1) = µ01, µ(1 | 0) = µ10 ≥ 0. For a = (a1, . . . , a32) ∈ {0, 1}32 define
C0(a) := {j ≤ 32 | aj = 0} and C1(a) := {j ≤ 32 | aj = 1} The optimal strategy to guess T (i) is to
decide for that hypothesis θ′ ∈ Θ that minimizes

∑
θ∈Θ(2)

s(θ, θ′)η(θ)
N∏

k=1

∑
w∗∈{0,1}32

pθ(w∗) × (14)

× µ
|C0(wi(k))\C0(w∗)|
10 (1− µ10)|C0(wi(k))∩C0(w∗)|µ

|C1(wi(k))\C1(w∗)|
01 (1− µ01)|C1(wi(k))∩C1(w∗)|.

Remark 2. (i) The second part of Theorem 1 in [30] can be used to guess the initial value Dv−1.
(ii) Theorem 3 is the pendant to Theorem 1 and Theorem 2. Of course, we could handle the
attack on the OpenSSL implementation in the same formal way. Setting η(‘Mj ’) = 1/32 and
s(‘Mj ’, ‘Mτ ’) = 1.0 for j 6= τ we obtain equivalent estimators to (11) and (12).
(iii) Note that (13) differs from (15) in [30] by the fact that p(wi(k)) substitutes the conditional
probability Prob(Wi(k) = wi(k) | W ′

j(k) = w′
j(k) for j ≤ 31). Since the condition does not depend on

θ it follows from Theorem 1(iii) in [28] that both terms give equivalent estimators.
(iv) The loss function and the a priori distribution have considerable impact on the effectiveness of
the guessing strategy, at least for small sample size N . In [28] the success rates for 4-bit windows
(with known ratio modulus/R ≈ 0.7, no CRT) were compared for sample sizes N = 550 and
N = 450. The optimal guessing strategy (11) in [28] yielded success rates of 94% and 67% which
dropped down to 74% resp. to 12% for the maximum-likelihood estimator.

We performed extensive simulations with randomly selected bases and randomly selected ER
classification errors according to assumed misclassification rates. (Note that the correct er-vector
only depends on xk, p1, R but not on the concrete implementation. The success rates are shown in
Table 3. The simulation studies underline that the optimal guessing strategy from Theorem 3 is to
some extent tolerant against ER classification errors. Misclassification rates ≤ 3% can apparently
be compensated by increasing the sample size. We point out that the exact success probabilities
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depend to some degree on the ratio p1/R. In our simulation studies we considered p1 ≈ 0.7 · 2512

and R = 2512. In Table 3 an attack was counted successful if the most likely correction of the local
errors yields the correct position of the local errors, and if at most one global error occurred. For
µ(0 | 1) = µ(1 | 0) = 0.0 and N = 650, for instance, we committed 2.2 type-a errors, 1.2 type-b
errors, 0.2 type-c errors in average.

µ(0 | 1) µ(1 | 0) Sample Size Success Rate

0.00 0.00 650 5/5
0.00 0.00 750 15/15
0.01 0.01 1000 3/3
0.01 0.01 1200 7/7
0.02 0.02 2000 4/4
0.03 0.03 3000 3/3

Table 3. Success rates for Exponentiation algorithm 2 with window size 5 (simulation studies)

In our experiments we also considered 4-bit fixed windows. Compared to 5-bit windows, the
calculations required only about 3% of the computation time. For 4-bit windows the optimal guess-
ing strategy compensates misclassification rates up to 5% (Table 4). Comparing the figures with
µ(0 | 1) = µ(1 | 0) = 0.03 for window size 5 we may expect that also for window size 5 misclassifi-
cation rates up to 4-5%, can be compensated, possibly requiring somewhat larger sample size N .

µ(0 | 1) µ(1 | 0) Sample Size Success Rate

0.03 0.03 1000 5/15
0.03 0.03 2000 138/141
0.04 0.04 3000 7/11
0.05 0.05 5000 28/52
0.05 0.05 10000 27/30

Table 4. Success rates for Exponentiation algorithm 2 with window size 4 (simulation studies)

Sliding Windows Exponentiation In the following we treat the sliding windows exponentiation
algorithm (cf. [21], 14.85), combined with CRT and Montgomery’s multiplication algorithm. We
note that the Steps 1, 4, and 5 are identical to fixed windows. Since Step 3 is analogous to Step 2
it remains to describe Step 2. As in the fixed windows case we concentrate on wsize=5.

2. Compute xd
b(mod p1)

a) xb,1 :≡ xb(mod p1)
b) Exponentiation Algorithm 3: Sliding windows (window size 5)

u1 := MM(xb;1,R
2(mod p1);p1) (= xb;1R (mod p1))

u2 := MM(u1,u1;p1)
for i = 1 to 15 do u2i+1 := MM(u2i−1,u2;p1)
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temp := MM(1,R2(mod p1);p1) (= R (mod p1))
k:=w − 1
while k >= 0 do{
if (dk = 0) {temp:=MM(temp,temp;p1); k −−;}
else {
select the smallest u ∈ {k, ..., k − 4} with du = 1
for j = k downto u do temp:=MM(temp,temp;p1)
temp:=MM(temp,u(dk,...,du)2;p1)
k:=u− 1 } }

return MM(temp,1) (= xd
b;1(mod p1) = xd

b(mod p1))
Note: u1, u3, u5, . . . , u31 denote the table values.

The central line is the same as for fixed windows. Hence we only point out the differences. In anal-
ogy to (3) we first conclude that the random variables S′

1(k), S
′
2(k), S

′
3(k), S

′
5(k), . . . , S′

31(k), S0(k), S1(k), . . . , SM(k)

are independent and uniformly distributed on [0, 1). Further,

W ′
i(k) :=


1S′

1(k)
<S′

0(R2 ( mod p1)/p1)(p1/R) for i = 1

1S′
2(k)

<S′2
1(k)p1/R for i = 2

1S′
2i+1(k)

<S′
2i−1(k)

S′
2(k)

p1/R for 1 ≤ i ≤ 15 and

(15)

Wi(k) :=

 1Si(k)<S2
i−1(k)

p1/R if T (i) = ‘S ’

1Si(k)<Si−1(k)S
′
2j+1(k)

p1/R if T (i) = ‘M ′
2j+1 for j=0,. . . ,15.

(16)

In particular, in the exponentiation phase we only have to distinguish between 17 alternatives
ΘSW = {‘S ’, ‘M1’, ‘M3’, . . . , ‘M31’} instead of 32. Similarly to (6) we define

qθ(w′
1(k), . . . , w

′
31(k), wi(k)) := (17)

Probθ(W ′
2j+1(k) = w′

2j+1(k) for 0 ≤ j ≤ 15,W ′
2(k) = w′

2(k),Wi(k) = wi(k))

for all θ ∈ ΘSW . In analogy to (7) we have

qθ(w′
1(k), . . . , w

′
31(k), wi(k)) =

∫ 1

0

∫ b′1

a′1

∫ b′2

a′2

∫ b′3

a′3

∫ b′5

a′5

· · ·
∫ b′31

a′31

∫ 1

0

∫ bθ,i

aθ,i

1 dsidsi−1ds′31 · · · ds′0 (18)

defining an integral over the (1 + 17 + 1 + 1) = 20-dimensional unit cube. (Recall that (7) defines
34-dimensional integrals.) The integration boundaries are

(a′1, b
′
1) =

{
(0, s′0(R

2(mod p1))/R) if w′
1(k) = 1

(s′0(R
2(mod p1))/R, 1) if w′

1(k) = 0.
(19)

(a′2, b
′
2) =

{
(0, s′1

2p1/R) if w′
2(k) = 1

(s′1
2p1/R, 1) if w′

2(k) = 0.

i ∈ {1, 2, . . . , 15} : (a′2i+1, b
′
2i+1) =

{
(0, s′2i−1s

′
2p1/R) if w′

2i+1(k) = 1
(s′2i−1s

′
2p1/R, 1) if w′

2i+1(k) = 0.

(aθ,i, bθ,i) =


(0, s2

i−1p1/R) if θ = ‘S ’ and wi(k) = 1
(s2

i−1p1/R, 1) if θ = ‘S ’ and wi(k) = 0
(0, si−1s

′
2j+1p1/R) if θ = ‘M2j+1’ and wi(k) = 1

(si−1s
′
2j+1p1/R, 1) if θ = ‘M2j+1’ and wi(k) = 0.
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We may assume that in the sliding windows exponentiation algorithm both dk = 0 and dk = 1
occur with probability 0.5. In the second case all table values u2j+1 (determined by the following
bits (dk−1, dk−2, dk−3, dk−4)), are equally likely. The next window does not ‘start’ for any k′ ≥ k−4.
Consequently, a multiplication with table value u2j+1 should occur about ≈ (512−4)/(6 ·16) = 5.3.
We expect about 508 + 508/6 = 593 Montgomery operations in the exponentiation phase of which
508 are squarings, and we use the a priori distribution ηSW (‘M2j+1’) = (508/96)/(508·7/6) = 1/112
for each table value and ηSW (‘S ’) = 96/112. Clearly, multiplications with table entries are isolated,
and the lengths of two consecutive subsequences of squarings must sum up at to least window size
5. Error detection and correction are obviously less efficient than for fixed windows. On the positive
side we only have to decide between 17 instead of 32 alternatives. A proposal for the loss function
is sSW (‘S ’, ‘Mj ’) = 1.0, sSW (‘Mj ’, ‘S ’) = 2.0, sSW (‘Mj ’, ‘Mτ ’) = 2.0 for j 6= τ .

Theorem 3 remains true if we replace (pθ, η, s(·, ·)) by (qθ, ηSW , sSW (·, ·)), and consider that
wi(k),w

∗ ∈ {0, 1}18.

5 Possible Countermeasure Suggestions

There are several ways to achieve a “protected” RSA implementation against our MicroArchi-
tectural Analysis presented in this paper. Instruction Cache Analysis and also Branch Prediction
Analysis techniques exploit input-dependent execution flows of cryptosystems. Therefore, the im-
plementations with fixed execution flows are intrinsically secure against these potential threats;
hence they constitute a “risk-free” way of protection for these attacks.

[3] proposes a fixed execution flow implementation of RSA, which removes the extra reduction
step completely. This method does not only provide an enhanced security, but also improves the
performance of the RSA software compared to the current OpenSSL implementation. The idea of
avoiding extra reduction steps is not novel to [3] and it was first given in [40, 41].

Walter proved in [40] that if the Montgomery parameters were chosen appropriately, we could
avoid every extra reduction during an RSA exponentiation. He proved this property by analyzing
the upper bounds on the values of intermediate Montgomery Multiplication results throughout the
exponentiation. The parameters suggested by Walter necessitate to use more machine-words to
hold the operands than necessary. In other words, his method increases the number of words in
the operands and sets the Montgomery constant, which is usually denoted by R, accordingly and
performs the multiplications in larger sizes. 15

Later, Hachez & Quisquater improved the results of Walter [15]. They proved the same concept
with tighter bounds and thus showed that the increase in the word size could be relatively smaller.
Their method improves the speed of the Montgomery Multiplication and therefore the overall
exponentiation compared to Walter’s method.

Although we think it is a better practice to remove extra reduction step from the RSA compu-
tations, we need to mention that these attacks can also be avoided using alternative methods. For
example, exponent blinding, which is a well-known countermeasure against side-channel analysis,
is among these alternatives. This method adds a random multiple of the group-order, i.e., a ran-
dom multiple of φ(n), where n is the public RSA modulus, to the secret exponent. This random
multiple needs to be updated frequently, preferably for each RSA operation. The disadvantage of
this method is the increased number of Montgomery operations due to the increase in the exponent
size. We also need to mention that this method is covered by a patent, c.f. [18].
15 the most significant word will initially be zero
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6 Conclusions

We have identified a potential major weakness in the RSA implementations. We have developed
an attack by leveraging MicroArchitectural analysis techniques and the early studies on extra-
reduction based attacks. We have demonstrated this attack on OpenSSL and shown that the RSA
implementation in the current version 0.9.8e can be completely broken. OpenSSL already imple-
ments several countermeasures against side-channel and MicroArchitectural analysis, some of which
are operational by default while the others needs to be turned on by the user. However, even if we
turn on all of these countermeasures that are available in v0.9.8e, the RSA implementation may
still be completely broken with our attack strategy. We have conceptually and empirically proven
this vulnerability in this paper. The OpenSSL development team already generated a patch, which
has been included in the stable version and in particular will affect the upcoming version 0.9.8f.
US CERT informed software vendors, assigned the vulnerability CVE name CVE-2007-3108 and
CERT vulnerability number VU#724968, and issued a vulnerability note.

We have showed that the occurrences of extra reduction steps of Montgomery Multiplication
during RSA operations could be extracted by malicious parties via the use of MicroArchitectural
Analysis. In particular, we used Instruction Cache Analysis, which was introduced in [1], in our
experimental setup and we could successfully construct the so-called er-vectors with reasonable
error rates.

It was already proven in earlier studies ([39, 30, 29]) that the extraction of er-vectors with a small
error rate let an adversary reveal the secret exponent. In this paper, we have lifted the theoretical
works presented in [39, 30, 29] and put them into practice. Furthermore, we have adapted the theory
of [30] to the specific implementation of OpenSSL v.0.9.8e and analyzed both fixed-window and
sliding-window exponentiation methods used in this implementation.

We have also suggested several countermeasures that can be integrated into cryptographic
libraries. We believe that the gravity of the vulnerability we identified here mandates revisions of
the affected RSA implementations, which had already been done in OpenSSL. We have only focused
on OpenSSL library in this paper due to its wide acceptance, however, other libraries and RSA
implementations may also be vulnerable to our attack. Due to resource and time limitations, we
could not conduct a comprehensive investigation on current security systems. We leave this task to
other researchers.
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2002, B. S. Kaliski, Ç.K. Koç and C. Paar, editors, pages 46–56, Springer-Verlag, LNCS 2523, 2002.

15. G. Hachez and J.-J. Quisquater. Montgomery Exponentiation with no Final Subtractions: Improved Results.
Cryptographic Hardware and Embedded Systems — CHES 2000, Ç.K. Koç and C. Paar, editors, pages 91–100,
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