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Abstract. VHASH is an almost-delta-universal hash family, designed for exceptional performance on
computers that multiply 64-bit quantities efficiently. Changes to the algorithm detailed in this note
improve both security and performance over the original 2006 version. Speed is improved through a
newly analyzed hash construction which allows the use of lower-degree polynomials. Claimed security is
higher due primarily to improved analysis and a change in prime modulus. The result is a hash family
capable of hashing cache-resident one kilobyte messages on the Intel Core 2 architecture at a rate of
about one-half processor cycle per byte of message with a collision probability of less than 1/261.
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VMAC is a software-oriented Wegman-Carter message authentication algorithm (MAC) introduced in 2006 [3,
6, 8]. At VMAC’s heart is the VHASH hash family, which was introduced at the same time. In 2007, VMAC
and VHASH were codified into a formal specification, and during this process VHASH was improved with
speed and security optimizations, making the finally specified algorithm different from the original in small
but significant ways. This note points out where the newer algorithm differs from the older, and updates the
appropriate proofs.

Preliminaries. When s is a string, |s| is its length. The empty string is represented λ. When A is a finite
set, |A| is the number of elements in the set. The set {0, 1, . . . , p − 1} is written as Zp. All random choices
are made according to the uniform distribution.

Universal hash families. A hash family H is a finite set of functions with each h ∈ H having common
domain A and codomain B. The following define hash properties relevant to this note. The probabilities are
over the choice of h ∈ H.

1. H is ε-almost-universal (ε-AU) if Pr[h(m) = h(m′)] ≤ ε for every m 6= m′ ∈ A.
2. H is ε-almost-delta-universal (ε-ADU) if Pr[h(m) + x = h(m′)] ≤ ε for every m 6= m′ ∈ A and x ∈ B.

(B must be a group with operator +.)

Carter and Wegman introduced universal and strongly universal hashing and several applications [3, 8].
Stinson defined almost-universal, and Krawczyk and Stinson later each introduced almost-delta-universal [5,
7]. These definitions are relaxations of strongly universal and allow high speed implementations.

1 Revised VHASH Algorithm

As we developed optimized code for the original VHASH, a few changes were made to its specification.
Initially, the changes focussed on speed, especially on short messages. These optimizations reduced security,
and so subsequent modifications were introduced for both the analysis and the VHASH definition to restore
the final collision probability to better than the original. Figure 1 gives the revised VHASH algorithm. The
most significant changes to the VHASH algorithm are:

1. The value p (Line 7) is now the result of a degree n polynomial rather than degree n+1. This eliminates
one 128-bit multiplication and modular reduction for each message being hashed, and means very short
messages (those shorter than b bits) will require no multiplications or reductions during the polynomial
stage of hashing. Also, k is chosen from a slightly more restricted set, allowing a simpler implementation.



VHASH[b](M, K, k, k1, k2)
Inputs:

M , a string of any length
K, a string of length b bits, where b = 128i for some integer i > 1
k, an element of {w296 + x264 + y232 + z | w, x, y, z ∈ Z229}
k1, k2, integers in the range 0 . . . 264 − 258, inclusive

Output:
h, an integer in the range 0 . . . 264 − 258, inclusive

Algorithm:
1. n = max(⌈|M |/b⌉, 1)
2. Let M1, M2, . . . , Mn be strings so that M1||M2|| · · · ||Mn = M and

|Mi| = b for 1 ≤ i < n.
3. ℓn = |Mn|
4. Let Mn = Mn||0

j where j ≥ 0 is the smallest integer so
that |Mn| + j mod 128 = 0

5. Byte-reverse each 64-bit word in Mi for each 1 ≤ i ≤ n
6. ai = NH[b/64, 64](K, Mi) mod 2126 for each 1 ≤ i ≤ n
7. p = kn + a1k

n−1 + a2k
n−2 + · · · + ank0 + ℓn264 mod (2127 − 1)

8. p1 = p div (264 − 232)
9. p2 = p mod (264 − 232)
10. h = (p1 + k1) × (p2 + k2) mod (264 − 257)

Fig. 1. The hash family VHASH is (2−61)-ADU for all messages upto 262 bits, when K, k, k1, k2 are chosen randomly

and b = 1024.

2. The prime modulus used in the final hash stage (Line 10) is increased from 261−1 to 264−257. Although
slightly less convenient for divisionless modular reduction, the larger prime increases security. Also, the
hash computation changes from p1k1 + p2k2 in the original to (p1 + k1) × (p2 + k2), substituting one
addition for one multiplication.

3. No longer is VHASH-128 defined separately from VHASH-64. A single application of VHASH gives
VHASH-64, while two applications of VHASH (with different keys) gives VHASH-128. Although this
change introduces a third stage of hashing (Lines 7–10) to VHASH-128 that was not in the original, the
increased work is offset by the polynomial degree reduction of Item 1.

We now restate the main security theorem, reflecting these changes and improvements in analysis. For any
b that is a positive multiple of 128, Figure 1 specifies the hash family VHASH[b] where choosing a random
function h from the family is achieved by choosing K, k, k1 and k2 uniformly at random from their domains
and letting h(·) = VHASH[b](·,K, k, k1, k2).

Theorem 1. Let b be any positive multiple of 128, ℓ be any positive multiple of b and p = 264 − 257,
then VHASH[b] is ε-ADU (for addition modulo p) over all binary strings up to length ℓ bits where ε =
1/262 + 1/(264 − 257) + (ℓ/b)2−115.

A corollary changing the co-domain of the hash family to the more convenient Z264 follows by combining
this theorem with Lemma 4.

Corollary 2. Let b be any positive multiple of 128 and ℓ be any positive multiple of b, then VHASH[b] is
ε-ADU (for addition modulo 264) over all binary strings up to length ℓ bits where ε = 1/261 +2/(264−257)+
(ℓ/b)2−114.

The following section gives several hashing lemmas and shows how they fit into the proof of the theorem.

1.1 Basic VHASH Components

VHASH, in a three stage process, employs separate hash functions to do its work. The first stage of hashing
uses NH to compress the message being hashed by a fixed ratio, reducing time spent in later, slower stages.



A polynomial-evaluation hash then produces a fixed length output in the second stage. And finally, the
third stage uses a strong hash to shorten and strengthen the VHASH product. We review these basic hash
functions here.

NH. The hash family NH was designed as a parameterized hash function [2]. Given positive integer param-
eters n and w and a key K of length nw bits, then NH can hash any string M that is a multiple of 2w bits
in length but not longer than nw bits. First M and K are broken into w-bit blocks M1,M2, . . . ,Mℓ and
K1,K2, . . . Kn where ℓ = |M |/w. Then, each block is interpreted as a w-bit unsigned integer m1,m2, . . . ,mℓ

and k1, k2, . . . kn. Finally, the hash result is computed as

NH[n,w](K,M) =

ℓ/2
∑

i=1

((m2i−1 + k2i−1 mod 2w) × (m2i + k2i mod 2w)) mod 22w .

NH is a hash family, and choosing a random function h from the hash family is done by choosing a random
nw-bit key K and letting h(·) = NH[n,w](K, ·). NH is known to be (2−w)-ADU (for addition modulo 22w)
over messages of the same length (ie, M and M ′ are distinct, but |M | = |M ′|), and small modifications to
the original proof show that NH is (2−w)-ADU over messages that are any multiple of 2w bits in length (but
still no longer than nw bits). In the context of VHASH, w = 64 and nw = b = 1024, making NH[16, 64] a
(2−64)-ADU hash family. In VHASH, however, we always follow applications of NH with a modular reduction
by 2126. Let us consider NH[n,w, r] = NH[n,w] mod r to be a hash family (again, functions are selected from
the family via an nw bit string K). Corollary 5 tells us immediately that NH[16, 64, 2126] is (2−62)-ADU.

We can extend NH to messages longer than nw through repeated use of NH. Let M be a message with
length a multiple of 2w and let K be an nw-bit string. We hash M by breaking it into t = ⌈|M |/nw⌉ chunks
M1,M2, . . . ,Mt with |M1| = |M2| = · · · = |Mt−1| = nw, and computing (in the case of NH[n,w, r])

NH∗[n,w, r](K,M) =
(

NH[n,w, r](K,M1),NH[n,w, r](K,M2), . . . ,NH[n,w, r](K,Mt)
)

.

NH∗ is a hash family, and choosing a random function from the hash family is done by choosing a random
nw-bit key K. If NH is an ε-AU hash function, then so is NH∗.

Polynomial. Another simple and efficient hash method results from polynomial evaluation. Given fixed
prime p, message m = (m1, . . . ,mℓ) and key 0 ≤ k < p, the hash of m is computed as

Poly(k,m) = m1k
ℓ + m2k

ℓ−1 + · · · + mℓk
1 mod p .

Two different messages m,m′ of the same length ℓ differ by constant d when hashed by this function if

Poly(k,m) − Poly(k,m′) = (m1 − m′

1)k
ℓ + (m2 − m′

2)k
ℓ−1 + · · · + (mℓ − m′

ℓ)k
1 mod p = d .

Because m 6= m′, at least one of the coefficients in this polynomial is non-zero. This being a polynomial of
degree at most ℓ, at most ℓ values for k cause Poly(k,m)−Poly(k,m′)−d (mod p) to be zero. Poly is a hash
family, and choosing a random function h from the hash family is done by choosing a random 0 ≤ k < p and
letting h(·) = Poly(k, ·). Poly is (ℓ/p)-ADU (for the operation of addition modulo p) over messages in Z

ℓ
p.

One can easily extend this polynomial hash to messages of different lengths. Let m be a vector in Z
ℓ
p and t

be a number greater than the length of any message to be hashed. Message m can converted to an element of
Z

t
p by prepending t− (ℓ+1) zeroes and a 1. The resulting vector (0, 0, . . . , 0, 1,m1,m2,m3, . . . ,mℓ) is hashed

as above, resulting in kℓ+1 + m1k
ℓ + m2k

ℓ−1 + · · ·+ mℓk
1 mod p. This padding process is bijective, meaning

that any messages differing before padding also differ afterward, and produces equal length messages to be
hashed. The highest degree possible as a result of padding is t, and so the resulting polynomial hash family
is (t/p)-ADU.

NMH. Wegman and Carter invented a hash family that Halevi and Krawczyk named NMH∗ [4]. We do not
need the general version of NMH∗, which allows hashing long messages. We need only hash short fixed length
messages. Let p be a prime, and k1, k2,m1,m2 all be in Zp. Define

hk1,k2
(m1,m2) = (m1 + k1) × (m2 + k2) mod p ,

and define H = {hk1,k2
| k1, k2 ∈ Zp}. Halevi and Krawczyk claim the following, but give no proof.



Lemma 3. H is (1/p)-ADU (for addition modulo p).

Proof. Let p be prime and d,m1,m2,m
′

1,m
′

2 ∈ Zp with (m1,m2) 6= (m′

1,m
′

2). To show H is (1/p)-ADU for
addition modulo p, we need show that Prk1,k2

[hk1,k2
(m1,m2) + d = hk1,k2

(m′

1,m
′

2) mod p] ≤ 1/p. Without
loss of generality, assume m2 6= m′

2 and fix k2. Substituting the definition of h, our goal is achieved by
evaluating Prk1

[(m1+k1)×(m2+k2)+d = (m′

1+k1)×(m′

2 +k2) mod p], which, multiplying and rearranging
terms, is Prk1

[k1(m2 − m′

2) = m′

1m
′

2 + m′

1k2 − m1m2 − m1k2 − d mod p]. But c = m2 − m′

2 is nonzero and
d′ = m′

1m
′

2 + m′

1k2 − m1m2 − m1k2 − d is constant, so the probability simplifies to Prk1
[k1c = d′ mod p],

which is exactly 1/p. ⊓⊔

1.2 Analysis

Our next lemma gives a general result, describing what happens when an ε-ADU hash family, with the
operation being addition modulo a, is considered instead for the operation of addition modulo b.

Lemma 4. Let a and b be positive integers and H = {h : A → Za} be ε-ADU for addition modulo a. Define
Hb = {h mod b |h ∈ H}. Then, Hb is (⌈ 2a−1

b ⌉ǫ)-ADU for addition modulo b.

Proof: Let c be an element of Zb and m 6= m′ be elements of A. We need to show Prh[h(m) + c = h(m′)
(mod b)] ≤ ⌈ 2a−1

b ⌉ǫ. To do so, we must evaluate Prh[h(m) + c = h(m′) (mod b)] = Prh[h(m′) − h(m) = c
(mod b)] = Prh[h(m′) − h(m) = c + ib for some integer i]. The range of possible values for h(m′) − h(m)
is {−(a − 1), . . . , (a − 1)}, meaning at most ⌈ 2a−1

b ⌉ values for i make possible h(m′) − h(m) = c + ib. For
every i, the event h(m′) − h(m) = c + ib is a subset of the event h(m′) − h(m) = c + ib (mod a), so
Prh[h(m′) − h(m) = c + ib] ≤ Prh[h(m′) − h(m) = c + ib (mod a)] ≤ ǫ. Since there are at most ⌈ 2a−1

b ⌉
values of i for which h(m′) − h(m) = c + ib, and the probability of each collision is no more than ǫ, we may
conclude Prh[h(m) + c = h(m′) (mod b)] ≤ ⌈ 2a−1

b ⌉ǫ. ⊓⊔
Notice that choosing a to be a multiple of b can improve this bound. Consider a = 2128 and b = 2126.

The theorem says that at most ⌈ 2a−1

b ⌉ = 8 values for i make h(m′)− h(m) = c + ib (mod a), when in fact
no more than four such i values can exist. With a, b and c fixed and b|a, c + ib (mod a) = c + jb (mod a)
whenever i = j (mod a

b ). This is because a is a multiple of b, and so increasing i by a/b has no net effect
modulo a. The following corollary is a result of this observation.

Corollary 5. Let a and b be positive integers where b|a, and H = {h : A → Za} be ε-ADU for addition
modulo a. Define Hb = {h mod b |h ∈ H}. Then, Hb is (a

b ǫ)-ADU for addition modulo b.

Our final lemma allows us to look at the first two stages of VHASH hashing from a different perspective,
achieving tighter bounds in our analysis. Lines 1–5 of the VHASH definition (Figure 1) prepare message M
for hashing by transforming it into n = max(⌈|M |/b⌉, 1) strings M1,M2, . . . ,Mn with |M1| = |M2| = · · · =
|Mn−1| = b. (If M is the empty string then so is M1.) For purposes of analysis, we will group these substrings
as

Mfront = M1 ||M2 || . . . ||Mn−1 and Mback = Mn if |Mn| 6= 0,

Mfront = M1 ||M2 || . . . ||Mn and Mback = λ if |Mn| = b, and

Mfront = λ and Mback = λ if |M | = 0.

Notice that if M and M ′ are distinct messages, and each go through the process of Lines 1–5 and we
interpret the results as just described, producing Mfront, Mback, M ′

front and M ′

back, then (Mfront,Mback) 6=
(M ′

front,M
′

back) always. Lines 6–7 then compute

Poly(k,NH∗[16, 64, 2126](K,Mfront)) + NH[16, 64, 2126](K,Mback) mod (2127 − 1) ,

which the following lemma allows us to claim as an ε-ADU hash family (for addition modulo 2127 − 1) with
ε = 1/262 + (ℓ/b)2−115.

Theorem 6. Let A, B and C be non-empty sets; a, b, c and q be positive integers; and Ha = {h : A → Za},
Hb = {h : B → Zb} and Hc = {h : C → Zc} be families of functions. If Zb ⊆ A, Ha is εa-ADU
for addition modulo a, Hb is εb-AU and Hc is εc-ADU for addition modulo c, then H = {h |h(x, y) =
ha(hb(x)) + hc(y) (mod q) with ha ∈ Ha, hb ∈ Hb, hc ∈ Hc} is ε-ADU for addition modulo q where
ε = max(⌈ 2a−1

q ⌉εa + εb, ⌈
2c−1

q ⌉εc).



64-bit Tags 128-bit Tags
Architechture 64B 512B 4KB 64B 512B 4KB

64-bit Intel Core 2 “Merom” 6.0 → 6.0 1.2 → 1.2 0.6 → 0.6 6.7 → 7.0 1.7 → 1.7 1.2 → 1.1
32-bit PowerPC “G4” 15.2 → 13.9 6.6 → 6.4 5.7 → 5.6 22.5 → 21.3 11.3 → 11.9 10.3 → 11.1

32-bit ARM v5TE 41.5 → 38.6 12.9 → 13.1 9.8 → 10.1 52.6 → 51.9 22.9 → 22.1 20.0 → 19.9

Table 1. VMAC Performance. Changes in VMAC cycle-per-byte performance are listed as “old → new” for

various architectures and tag lengths over 64-, 512- and 4096-byte, cache-resident messages.

Proof: Let d be an element of Zq, and let (x, y) 6= (x′, y′) be elements of A × B. We need to show
Prh[h(x, y) + d = h(x′, y′) (mod q)] ≤ ε. To do so we must evaluate Prha,hb,hc

[ha(hb(x)) + hc(y) + d =
ha(hb(x

′)) + hc(y
′) (mod q)].

If x 6= x′, let hb ∈ Hb be chosen randomly and let hc ∈ Hc be chosen arbitrarily. (Letting hc be chosen
arbitrarily allows hb and hc to be dependent, if desired.) We know Prhb

[hb(x) = hb(x
′)] ≤ εb. Assuming

m = hb(x) and m′ = hb(x
′) differ and letting d′ = hc(y) + d− hc(y

′), our probability becomes Prha
[ha(m) +

d′ = ha(m′) (mod q)], which according to Lemma 4 is no more than (⌈ 2a−1

q ⌉εa). Because we assumed

hb(x) 6= hb(x
′), we must compensate for the possibility that they are equal, so Prha,hb,hc

[ha(hb(x))+hc(y)+
d = ha(hb(x

′))+hc(y
′) (mod q)] ≤ ⌈ 2a−1

q ⌉εa+εb. Then Prha,hb,hc
[ha(hb(x))+hc(y)+d = ha(hb(x

′))+hc(y
′)]

≤ Pr
ha,hb,hc

[ha(hb(x)) + hc(y) + d = ha(hb(x
′)) + hc(y

′) |hb(x) 6= hb(x
′)] + Pr

hb

[hb(x) = hb(x
′)]

≤ Pr
ha,hb,hc

[ha(hb(x)) + hc(y) + d = ha(hb(x
′)) + hc(y

′) |hb(x) 6= hb(x
′)] + εb

= Pr
ha

[ha(m) + d′ = ha(m′) |m 6= m′] + εb

≤ ⌈
2a − 1

q
⌉εa + εb

If x = x′ but y 6= y′, then Prha,hb,hc
[ha(hb(x)) + hc(y) + d = ha(hb(x

′)) + hc(y
′) (mod q)] = Prhc

[hc(y) +
d = hc(y

′) (mod q)] due to like-terms canceling. This probability according to Lemma 4 is no more than
(⌈ 2c−1

q ⌉εc). ⊓⊔

The remainder of the VHASH construction is straightforward. Lines 8–9 form a reversible mapping from
the product of Lines 1–7 to the input of Line 10. Standard theorems about the composition of hash functions
(eg, [1]) gives us the claimed bound of Theorem 1.

2 Performance

The changes detailed in this note have had a small effect on performance (see Table 1). Using the revised
VHASH in VMAC over a sample of architectures, we saw no performance changes of greater than ten
percent, but with a slight trend toward improved performance. Of the eighteen combinations of architecture,
tag length and message length listed in Table 1, eleven improve, five deteriorate and three are unchanged
when comparing the original VMAC with the revised version.

Why are performance changes not uniform? Conflicting forces are at work, each with its own architecture-
dependent influence. Degree reduction in the polynomial hash improves performance in all cases by elimi-
nating one or two 128-bit multiplications, but the gain is most marked on short messages (because constant
savings are most pronounced on short messages) and on 32-bit architectures (because 128-bit multiplications
are four times more expensive on 32-bit architectures than on 64-bit ones). On the negative side, defining
VMAC-128 as two iterations of VMAC-64 introduces an additional 32-bytes of key, a separate polynomial
computation and a third hashing stage, all of which are slowing influences. Also, the switch in the third stage
from a modulus of 261 − 1 to 264 − 257 adds a small constant amount of extra work.

The result is a hash function that is usually a bit faster, but always with better hash collision properties,
than the original.
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