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Abstract. We give a concise statement of a test for security of elliptic curves that
should be inserted into the standards for elliptic curve cryptography. In particular,
current validation for parameters related to the MOV condition that appears in the
latest draft of the IEEE P1363 standard [3, Section A.12.1, Section A.16.8] should
be replaced with our subfield-adjusted MOV condition. Similarly, the Standards for
Efficient Cryptography Group’s document SEC 1 [4] should make adjustments ac-
cordingly.
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1 Introduction

The security of an elliptic curve cryptosystem depends on the difficulty of solving the discrete
logarithm problem (DLP) on the curve. There are standard specifications that elliptic curves
used in cryptography are to meet in order to be accepted as secure. We are concerned with
a particular test to be checked, known as the MOV condition, when validating parameters
for elliptic curves over binary fields.

According to IEEE P1363 [3], the MOV condition “ensures that an elliptic curve is
not vulnerable to the reduction attack of Menezes, Okamoto and Vanstone [2].” The MOV
attack uses pairings to transport the DLP from the curve where it may be computationally
difficult to solve, to a finite field where there are more efficient methods for solving the
discrete logarithm.

We provide the conditions on the size of the finite field containing the MOV embedding
required in order for the DLP in this field to be of comparable difficulty to the elliptic
curve discrete logarithm over the field of definition. One may refer to [1] for mathematical
justification of these parameters. The main idea is that if q = pm for a prime p and positive
integer m, then the minimal embedding field is an extension of Fp, not necessarily of Fq, and
hence the DLP may be embedded into a field of significantly smaller size than previously
stated in the standards.

2 Suggested Text Modifications

We directly follow [3, Section A.12.1], with a few proposed corrections, emphasized by the
boldfaced text.



Before performing the algorithm to check the subfield-adjusted MOV condition,
it is necessary to select an MOV threshold. This is a positive integer B such that
taking discrete logarithms over GF (qB) is judged to be at least as difficult as
taking elliptic discrete logarithms over GF (q).

IEEE P1363 provides a suitable formula and table for determining the appropriate integer
B. Next we offer the following correction.

Once an appropriate B has been selected, the following algorithm checks the
subfield-adjusted MOV condition for the choice of field size q = pm and base
point order r by verifying that pi is not congruent to 1 modulo r for any i ≤mB.

Input: an MOV threshold B, a prime-power q, and a prime r.

Output: the message “True” if the subfield-adjusted MOV condition is satisfied
for an elliptic curve over GF (q) with a base point of order r; the message “False”
otherwise.

1. Determine the prime p dividing q.

2. Set t← 1.
3. For i from 1 to B logp q do

(a) Set t← tp mod r.
(b) If t = 1 then output “False” and stop.

4. Output “True.”

If the output of the above algorithm is “false,” then the curve should be excluded, as it
is vulnerable to the MOV reduction attack.

We recommend that other standards besides IEEE P1363 also make corrections with the
sub-field adjusted MOV condition in consideration. The following are suggested corrections
for SEC 1 [4, Section 3.1.2.1, bullet points under 3].

– b 6= 0 in F2m .
– #E(F2m) 6= 2m.

– 2B 6≡ 1 (mod n) for any 1 ≤ B < 20m.

– h ≤ 4.

The suggested corrections for [4, Section 3.1.2.2.1, Actions] are as follows.
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9. Check that 2B 6≡ 1 (mod n) for any 1 ≤ B < 20m, and that nh 6= 2m.

The commentary in Appendix B.1 of [4, Page 60, line -8] should be modified, such as
suggested below.

These attacks efficiently reduce the ECDLP on these curves to the traditional
discrete logarithm problem in a small degree extension of Fp.

3 Security Indicator

Let a be a positive integer and r be a prime, r ∤ a. The smallest positive integer x such that
ax ≡ 1 mod r is called the order of a modulo r, and will be denoted by ordra.

Let E be an elliptic curve defined over the finite field Fq, where q = pm. If r divides the
order of E(Fq), then pairings can embed a subgroup of E(Fq) of order r into the finite field
Fqordrp/m , as shown in [1]. We call this rational exponent of q the security indicator k′.

k′ = ordrp

m
.

One actually wants discrete logarithms in the minimal embedding field Fqk′ to be of
approximate difficulty as elliptic curve discrete logarithms over Fq. For example, if we have
a (sub)group of order r, and r is a 160-bit prime, then one would like

qk′

> 21024.

This is equivalent to requiring pordrp > 21024.
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