
A Framework for Efficient and Composable Oblivious Transfer

Chris Peikert∗

SRI International
Vinod Vaikuntanathan

MIT†
Brent Waters‡

SRI International

February 18, 2008

Abstract

We propose a simple and general framework for constructing oblivious transfer (OT) proto-
cols that are efficient, universally composable, and generally realizable from a variety of stan-
dard number-theoretic assumptions, including the decisional Diffie-Hellman assumption, the
quadratic residuosity assumption, and worst-case lattice assumptions.

Our OT protocols are round-optimal (one message each way), quite efficient in computation
and communication, and can use a single common string for an unbounded number of executions.
Furthermore, the protocols can provide statistical security to either the sender or receiver, simply
by changing the distribution of the common string. For certain instantiations of the protocol,
even a common random string suffices.

Our key technical contribution is a simple abstraction that we call a dual-mode cryptosystem.
We implement dual-mode cryptosystems by taking a unified view of several cryptosystems that
have what we call “messy” public keys, whose defining property is that a ciphertext encrypted
under such a key carries no information (statistically) about the encrypted message.

As a contribution of independent interest, we also provide a multi-bit version of Regev’s
lattice-based cryptosystem (STOC 2005) whose time and space efficiency are improved by a
linear factor in the security parameter n. The amortized encryption and decryption time is only
Õ(n) bit operations per message bit, and the ciphertext expansion can be made as small as a
constant; the public key size and underlying lattice assumption remain essentially the same.

1 Introduction

Oblivious transfer (OT), first proposed by Rabin [Rab81], is a fundamental primitive in cryptog-
raphy, especially for secure two-party and multiparty computation [Yao86, GMW87]. Oblivious
transfer allows one party, called the receiver, to obtain exactly one of two (or more) values from
another other party, called the sender. The receiver remains oblivious to the other value(s), and the
∗This material is based upon work supported by the National Science Foundation under Grants CNS-0716786 and

CNS-0749931. Any opinions, findings, and conclusions or recommedations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.
†Work performed while at SRI International.
‡Supported by NSF CNS-0749931, CNS-0524252, CNS-0716199; the US Army Research Office under the CyberTA

Grant No. W911NF-06-1-0316; and the U.S. Department of Homeland Security under Grant Award Number 2006-
CS-001-000001. The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of
Homeland Security.

1

sender is oblivious to which value was received. Since its introduction, OT has received considerable
attention from the research community; see, e.g., [Kil88, Cré87, EGL85].

OT protocols that are secure against semi-honest adversaries can be constructed from (en-
hanced) trapdoor permutations and made robust to malicious adversaries using zero-knowledge
proofs for NP [GMW87]; however, this general approach is very inefficient and mainly of theoreti-
cal interest.

For practical use, it is desirable to have efficient OT protocols based on specific number-theoretic
assumptions. Naor and Pinkas [NP01] and independently, Aiello, Ishai and Reingold [AIR01] con-
structed efficient two-message protocols based on the decisional Diffie-Hellman (DDH) assumption.
Abstracting their approach via the the projective hash framework of Cramer and Shoup [CS02],
Tauman Kalai [Kal05] presented analogous protocols based on the Nth residuosity assumption and
the quadratic residuosity assumption (under the Extended Riemann Hypothesis). The primary
drawback of these constructions is that their security is proved only according to a “half-simulation”
definition, where an ideal world simulator is shown only for a cheating receiver. Therefore, they are
not necessarily secure when integrated into a larger protocol, such as a multiparty computation.
Indeed, as pointed out in [NP01], such protocols may fall to selective-failure attacks, where the
sender causes a failure that depends upon the receiver’s selection.

Very recently (and independently of our work), Lindell [Lin08] used a cut-and-choose technique
(in lieu of general zero knowledge) to construct a fully-simulatable OT protocol under the same set
of assumptions as in [NP01, AIR01, Kal05]. For this level of security, Lindell’s result is the most
efficient protocol that has appeared (that does not rely on random oracles), yet it still adds a few
communication rounds to prior protocols and amplifies their cost by a statistical security parameter
(e.g., by a factor of 40 or so). There are also some recent works on constructing fully-simulatable
protocols for other variants of OT, and on obtaining efficiency through the use of random oracles;
see Section 1.3 for details.

We point out that all of the above fully-simulatable protocols are proved secure in the plain
stand-alone model, which allows for secure sequential composition, but not necessarily parallel or
concurrent composition. For multiparty computation or in complex environments like the Inter-
net, composability can offer significant security and efficiency benefits (e.g., by saving rounds of
communication through parallel execution).

In addition, while there is now a significant body of literature that constructs cryptographic
primitives from worst-case lattice assumptions (e.g., [Ajt04, AD97, Reg04, MR07, Reg05, PW08,
GPV08]), essentially nothing is known about obtaining efficient OT. In particular, it appears tech-
nically difficult to instantiate the projective hash framework [CS02] under such assumptions, so a
different approach may be needed.

1.1 Our Approach

Our goal is to construct oblivious transfer protocols enjoying all three of the following desirable
properties:

1. Secure and composable: we seek OT protocols that are secure according to a full simulation-
based definition, and that compose securely (e.g., in parallel) with each other and with other
protocols.

2. Efficient: we desire protocols that are efficient in computation, communication, and usage
of any external resources.

2

3. Generally realizable: we endeavor to design an abstract framework that is realizable under
a variety of concrete assumptions, including those related to lattices. Such a framework would
illuminate the conceptual generality of the approach, and could protect against future ad-
vances in cryptanalysis (such as improved algorithms for specific problems or the development
of practical quantum computing).

We present a simple and novel framework for reaching all three of the above goals, working within
universal composability (UC) model of Canetti [Can01] (with static corruptions).

Our protocol is based on a new abstraction that we call a dual-mode cryptosystem. The system
is initialized in a setup phase that produces a common string CRS, which is made available to all
parties (we discuss this setup assumption in more detail below). Depending on the instantiation,
the common string may be uniformly random, or created according to some prescribed distribution.

The OT protocol is very simple: the receiver uses its selection bit (and the CRS) to generate a
“base” public key and secret key, and delivers the public key to the sender. The sender computes
two “derived” public keys (using the CRS), encrypts each value under the corresponding derived
key, and sends the ciphertexts to the receiver. Finally, the receiver uses its secret key to decrypt
the appropriate value. Note that the protocol consists of only two rounds (one message in each
direction), and that it is essentially as efficient as the underlying cryptosystem. The security of the
protocol comes directly from the properties of the dual-mode cryptosystem, which we describe in
more detail next.

Dual-mode cryptosystems. The setup phase for a dual-mode cryptosystem creates the CRS
according to one of two chosen modes, which we call the messy mode and the decryption mode.

The system has three main security properties. In messy mode, for every choice of the re-
ceiver’s base public key, at least one of the sender’s values is hidden statistically by the encryption.
Moreover, the CRS is generated along with a “trapdoor” that makes it easy to determine (given
the receiver’s base public key) which of the values is so hidden. These properties imply statistical
security (unconditionally) against even an unbounded cheating receiver.

In decryption mode, the honest receiver’s selection bit is likewise hidden statistically by its
choice of base key. In addition, there is a (different) trapdoor for the CRS that makes it easy
to generate a base public key together with two properly-distributed secret keys corresponding to
each potential selection bit. This makes it possible to decrypt both of the sender’s ciphertexts, and
implies statistical security against even an unbounded cheating sender.

Finally, a dual-mode system has the property that messy mode and decryption mode are com-
putationally indistinguishable; note that this is the only computational property in the definition.
The OT protocol can therefore provide statistical security for either the sender or the receiver,
depending on the chosen mode (we are not aware of any other OT protocol with this property).
Computational security for the other party follows directly from statistical security in the other
mode, and the indistinguishability of modes.1

The dual-mode abstraction has a number of nice properties. First, the definition is quite simple:
for any candidate construction, we need only show three simple security properties (two of which are
statistical). Second, the same CRS can be used for an unbounded number of OT executions between
the same sender and receiver (we are not aware of any other OT protocol with this property).

1We note that Groth, Ostrovsky, and Sahai [GOS06] used a similar “parameter-switching” argument in the context
of non-interactive zero knowledge.

3

Third, we can efficiently realize the dual-mode abstraction under several standard number-theoretic
assumptions, including the DDH assumption, the quadratic residuosity assumption (without relying
on the Extended Riemann Hypothesis), and standard lattice assumptions (under a slight relaxation
of the dual-mode definition).

Of course, the security of our protocol depends on a trusted setup of the CRS. We believe that
in context, this assumption is reasonable (or even quite mild). First, it is known that OT in the
plain UC model requires some type of trusted setup [CF01]. Second, as we have already mentioned,
a single CRS suffices for any number of OT executions between the same two parties. Third, several
of our instantiations require only a common uniformly random string, which may be obtainable
without relying on a trusted party via, e.g., natural processes.

1.2 Concrete Constructions

To construct dual-mode systems from various assumptions, we build upon several prior public-key
cryptosystems that admit what we call messy public keys (short for “message-lossy”). The defining
property of a messy key is that a ciphertext produced under it carries no information (statistically)
about the encrypted message. More precisely, the encryptions of any two messages m0,m1 under
a messy key are statistically close. Prior cryptosytems based on lattices [AD97, Reg04, Reg05],
Cocks’ identity-based cryptosystem [Coc01], and the original OT protocols of [NP01, AIR01] all
rely crucially on messy keys in their security proofs.

Messy keys play a similarly important role in our dual-mode constructions. As in prior OT
protocols [NP01, AIR01, Kal05], our constructions guarantee that for any base key (the receiver’s
message), at least one of the derived keys is messy. A novel part of our constructions is in the use
of a trapdoor for efficiently identifying messy keys (this is where the use of a CRS seems essential).

For our DDH-based construction, we obtain a dual-mode cryptosystem via relatively straight-
forward abstraction and modification of prior protocols. For quadratic residuosity, our techniques
are different from those of [CS02, Kal05]; specifically, we use a modification of Cocks’ identity-based
cryptosystem [Coc01]. In both constructions, we have a precise characterization of messy keys and
a trapdoor algorithm for identifying them.

Our lattice-based constructions are more technically involved. Our starting point is a cryp-
tosytem of Regev [Reg05], along with some recent trapdoor techniques for lattices due to Gentry,
Peikert, and Vaikuntanathan [GPV08]. We do not have an exact characterization of messy keys for
the cryptosystem. However, [GPV08] gives a trapdoor algorithm that (correctly) identifies almost
all public keys as messy. By a careful counting argument, we show that for almost all choices of
the CRS, every base public key has at least one derived key that is correctly identified as messy by
the trapdoor algorithm. See Section 7 for details.

Our DDH construction transfers strings, while the QR and lattice constructions essentially
allow only for single-bit transfers. It is an interesting open question whether multi-bit OT can be
achieved under the latter assumptions.

Finally, as an additional contribution of independent interest, we give a multi-bit version of
Regev’s lattice-based cryptosystem whose time and space efficiency are smaller by a linear factor
in the security parameter n. The resulting system is very efficient (asymptotically): the amortized
runtime per message bit is only Õ(n) bit operations, and the ciphertext expansion is as small as
a constant. The public key size and underlying lattice assumption are essentially the same as
in [Reg05].

4

1.3 Related Work

Using groups with efficient bilinear pairings, Camenisch, Neven, and shelat [CNS07] and Green and
Hohenberger [GH07] recently proposed fully-simulatable protocols in the standard model for k-out-
of-n OT with adaptive selection, as introduced by Naor and Pinkas [NP99]. Adaptive selection can
be useful for applications such as oblivious database retrieval.

Jarecki and Shamtikov [JS07] constructed UC-secure committed OT for strings relying on the
decisional composite residuosity assumption, in the common reference string model. Their protocol
is four rounds (or two in the random oracle model). We also note that there are other techniques to
achieving efficiency in oblivious transfer protocols that are complementary to ours. For example,
Ishai et al. [IKNP03] show in the random oracle model how to extend k oblivious transfers (for
some security parameter k) into many more, without much additional effort.

1.4 Organization

In Section 2 we give background that is relevant to the entire paper. In Section 3 we define our
new dual-mode abstraction, and in Section 4 we present our OT protocol prove it secure in the UC
framework. In Sections 5, 6, and 7 we instantiate the dual-mode abstraction under the DDH, QR,
and lattice assumptions, respectively. We also present our more efficient lattice-based cryptosystem
in Section 7.

2 Preliminaries

2.1 Notation

We let N denote the natural numbers. For n ∈ N, [n] denotes the set {1, . . . , n}. We use standard
O, Ω, o, and ω notation to classify the growth of functions. We say that f = Õ(g) if f = O(g logc n)
for some fixed constant c. We let poly(n) denote an unspecified function f(n) = O(nc) for some
constant c.

The security parameter will be denoted by n throughout the paper. We let negl(n) denote
some unspecified function f(n) such that f = o(n−c) for every fixed constant c, saying that such a
function is negligible (in n). We say that a probability is overwhelming if it is 1− negl(n).

2.2 The Universal Composability Framework (UC)

We work in the standard universal composability framework of Canetti [Can01] with static cor-
ruptions of parties. For consistency, we use the definition of computational indistinguishability,
denoted by

c
≈, from that work. The UC framework defines a probabilistic poly-time (PPT) en-

vironment machine Z that oversees the execution of a protocol in one of two worlds. The “ideal
world” execution involves “dummy parties” (some of whom may be corrupted by an ideal adversary
S) interacting with a functionality F . The “real world” execution involves PPT parties (some of
whom may be corrupted by a PPT real world adversary A) interacting only with each other in
some protocol π. We refer to [Can01] for a detailed description of the executions, and a definition
of the real world ensemble EXECπ,A,Z and the ideal world ensemble IDEALF ,S,Z . The notion of a
protocol π securely emulating a functionality F is as follows:

5

Definition 2.1. Let F be a functionality. A protocol π is said to UC-realize F if for any adversary
A, there exists a simulator S such that for all environments Z,

IDEALF ,S,Z
c
≈ EXECπ,A,Z .

The common reference string functionality FDCRS produces a string with a fixed distribution
that can be sampled by a PPT algorithm D. Its definition is given in Figure 1.

Functionality FDCRS

FDCRS runs with parties P1, . . . , Pn and is parametrized by an algorithm D.

• When receiving a message (sid, Pi, Pj) from Pi, let crs ← D(1n), send (sid, crs) to Pi and
send (crs, Pi, Pj) to the adversary. Next, when receiving (sid, Pi, Pj) from Pj (and only Pj),
send (sid, crs) to Pj and to the adversary, and halt.

Figure 1: The common reference string functionality FDCRS [CR03].

Oblivious Transfer (OT) is a two-party functionality, involving a sender S with input x0, x1

and a receiver R with an input σ ∈ {0, 1}. The receiver R learns xσ (and nothing else), and the
sender S learns nothing at all. These requirements are captured by the specification of the OT
functionality FOT from [CLOS02], given in Figure 2

Functionality FOT

FOT interacts with a sender S and a receiver R.

• Upon receiving a message (sid, sender, x0, x1) from S, where each xi ∈ {0, 1}`, store (x0, x1)
(The lengths of the strings ` is fixed and known to all parties).

• Upon receiving a message (sid, receiver, σ) from R, check if a (sid, sender, . . .) message was
previously sent. If yes, send (sid, xσ) to R and (sid) to the adversary S and halt. If not,
send nothing to R (but continue running).

Figure 2: The oblivious transfer functionality FOT [CLOS02].

Our OT protocols operate in the common reference string model, or, in the terminology
of [Can01], the FCRS-hybrid model. For efficiency, we would like to reuse the same common refer-
ence string for distinct invocations of oblivious transfer whenever possible. As described in [CR03],
this can be achieved by designing a protocol for the multi-session extension F̂OT of the OT func-
tionality FOT. Intuitively, F̂OT acts as a “wrapper” around any number of independent executions
of FOT, and coordinates their interactions with the parties via subsessions (specified by a parameter
ssid) of a single session (specified by sid).

The UC theorem with joint state (JUC theorem) [CR03] says that any protocol π operating
in the FOT-hybrid model can be securely emulated in the real world by appropriately composing
π with a single execution of a protocol ρ implementing F̂OT. This single instance of ρ might use
fewer resources (such as common reference strings) than several independent invocations of some
other protocol that only realizes FOT; in fact, the protocols ρ that we specify will do exactly this.

6

3 Dual-Mode Encryption

Here we describe our new abstraction, called a dual-mode cryptosystem. It is initialized in a
trusted setup phase, which produces a common string crs known to all parties along with some
auxiliary “trapdoor” information t (which is only used in the security proof). The string crs
may be either uniformly random or selected from a prescribed distribution, depending on the
concrete instantiation. The cryptosystem can be set up in one of two modes, called messy mode
and decryption mode. The first crucial security property of a dual-mode cryptosystem is that no
(efficient) adversary can distinguish, given the crs, between the modes.

Once the system has been set up, it operates much like a standard public-key cryptosystem,
but with an added notion that we call encryption branches. The key generation algorithm takes as
a parameter a chosen decryptable branch σ ∈ {0, 1}, and the resulting secret key sk corresponds
to branch σ of the public key pk. When encrypting a message under pk, the encrypter similarly
specifies a branch b ∈ {0, 1} on which to encrypt the message. Essentially, messages encrypted on
branch b = σ can be decrypted using sk, while those on the other branch cannot. Precisely what
this latter condition means depends on the mode of the system.

When the system is in messy mode, branch b 6= σ is what we call messy. That is, encrypting on
branch b loses all information about the encrypted message — not only in the sense of semantic
security, but even statistically. Moreover, the trapdoor for crs makes it easy to find a messy branch
of any given public key, even a malformed one that could never have been produced by the key
generator.

In decryption mode, the trapdoor circumvents the condition that only one branch is decryptable.
Specifically, it allows the generation of a public key pk and corresponding secret keys sk0, sk1 that
enable decryption on branches 0 and 1 (respectively). More precisely, for both values of σ ∈ {0, 1},
the distribution of the key pair (pk, skσ) is statistically close to that of an honestly-generated key
pair with decryption branch σ.

We now proceed more formally. A dual-mode cryptosystem with message space {0, 1}` consists
of a tuple of probabilistic algorithms (Setup,KeyGen,Enc,Dec,FindMessy,TrapKeyGen) having the
following interfaces:

• Setup(1n, µ), given security parameter n and mode µ ∈ {0, 1}, outputs (crs, t). The crs is a
common string for the remaining algorithms, and t is a trapdoor value that enables either
the FindMessy or TrapKeyGen algorithm, depending on the selected mode.

For notational convenience, we define a separate messy mode setup algorithm SetupMessy(·) :=
Setup(·, 0) and a decryption mode setup algorithm SetupDec(·) := Setup(·, 1).

All the remaining algorithms take crs as their first input, but for notational clarity, we usually
omit it from their lists of arguments.

• KeyGen(σ), given a desired decryptable branch value σ ∈ {0, 1}, outputs (pk, sk) where pk is a
public encryption key and sk is a corresponding secret decryption key for messages encrypted
on branch σ.

• Enc(pk, b,m), given a public key pk, a branch value b ∈ {0, 1}, and a message m ∈ {0, 1}`,
outputs a ciphertext c encrypted on branch b.

• Dec(sk, c), given a secret key sk and a ciphertext c, outputs a message m ∈ {0, 1}`.

7

• FindMessy(t, pk), given a trapdoor t and some (possibly even malformed) public key pk,
outputs a branch value b ∈ {0, 1} corresponding to a messy branch of pk.

• TrapKeyGen(t), given a trapdoor t, outputs (pk, sk0, sk1), where pk is a public encryption key
and sk0, sk1 are corresponding secret decryption keys for branches 0 and 1, respectively.

We now describe the required security properties.

Definition 3.1 (Dual-Mode Encryption). A dual-mode cryptosystem is a tuple of algorithms de-
scribed above that satisfy the following properties:

1. Completeness for decryptable branch: For every µ ∈ {0, 1}, every (crs, t)← Setup(1n, µ),
every σ ∈ {0, 1}, every (pk, sk)← KeyGen(σ), and every m ∈ {0, 1}`, decryption is correct on
branch σ, i.e., Dec(sk,Enc(pk, σ,m)) = m.

It also suffices for decryption to be correct with overwhelming probability over the randomness
of the entire experiment.

2. Indistinguishability of modes: the first outputs of SetupMessy and SetupDec are compu-
tationally indistinguishable, i.e., SetupMessy1(1n)

c
≈ SetupDec1(1n).

3. (Messy mode) Trapdoor identification of a messy branch: For every (crs, t) ←
SetupMessy(1n) and every (possibly malformed) pk, FindMessy(t, pk) outputs a branch value
b ∈ {0, 1} such that Enc(pk, b, ·) is messy. Namely, for every m0,m1 ∈ {0, 1}`, Enc(pk, b,m0)

s
≈

Enc(pk, b,m1).

4. (Decryption mode) Trapdoor generation of keys decryptable on both branches:
For every (crs, t) ← SetupDec(1n), TrapKeyGen(t) outputs (pk, sk0, sk1) such that for every
σ ∈ {0, 1}, (pk, skσ)

s
≈ KeyGen(σ).

It is straightforward to generalize these definitions to larger sets {0, 1}k of branches, for k > 1
(in this generalization, FindMessy would return 2k − 1 different branches that are all messy). Such
a dual-mode cryptosystem would yield a 1-out-of-2k oblivious transfer in an analogous way. All
of our constructions can be suitably modified to satisfy the generalized definition; for simplicity,
we will concentrate on the branch set {0, 1} throughout the paper, briefly noting inline how to
generalize each construction.

4 Oblivious Transfer Protocol

Here we construct a protocol dm that emulates the multi-session functionality F̂OT functionality
in the FCRS-hybrid model. Let (Setup,KeyGen,Enc,Dec,FindMessy,TrapKeyGen) be a dual-mode
cryptosystem. The dm protocol is given in Figure 3.

The protocol can actually operate in either mode of the dual-mode cryptosystem, which only
affects the distribution of the CRS that is used. In messy mode, the receiver’s security is computa-
tional and the sender’s security is statistical, i.e., security is guaranteed even against an unbounded
cheating receiver. In decryption mode, the security properties are reversed.

To implement the two modes, we define two different instantiations of FDCRS that produce
common strings according to the appropriate setup algorithm: Fext

CRS uses D = SetupMessy1, and
Fdec

CRS uses D = SetupDec1.

8

Protocol dmmode for Oblivious Transfer

The dmmode protocol is parameterized by mode ∈ {ext, dec} indicating the type of crs to be used.

Sender Input: (sid, ssid, x0, x1), where x0, x1 ∈ {0, 1}`.

Receiver Input: (sid, ssid, σ), where σ ∈ {0, 1}.

When activated with their inputs, the sender S queries Fmode
CRS with (sid,S,R) and gets back

(sid, crs). The receiver R then queries Fmode
CRS with (sid,S,R) and gets (sid, crs).

R computes (pk, sk)← KeyGen(crs, σ), sends (sid, ssid, pk) to S, and stores (sid, ssid, sk).

S gets (sid, ssid, pk) from R, computes yb ← Enc(pk, b, xb) for each b ∈ {0, 1}, and sends
(sid, ssid, y0, y1) to R.

R gets (sid, ssid, y0, y1) from S and outputs (sid, ssid,Dec(sk, yσ)), where (sid, ssid, sk) was stored
above.

Figure 3: The protocol for realizing F̂OT.

Theorem 4.1. Let mode ∈ {ext, dec}. Protocol dmmode securely realizes the functionality F̂OT in
the Fmode

CRS -hybrid model.
For mode = ext, the sender’s security is statistical and the receiver’s security is computational;

for mode = dec, the security properties are reversed.

Proof. Given all the properties of a dual-mode cryptosystem, the proof is conceptually quite
straightforward. There is a direct correspondence between completeness and the case that nei-
ther party is corrupted, between messy mode and statistical security for the sender, and between
decryption mode and statistical security for the receiver. The indinstinguishability of modes will
establish computational security for the appropriate party in the protocol.

Let A be a static adversary that interacts with the parties S and R running the dmmode protocol.
We will construct an ideal world adversary (simulator) S interacting with the ideal functionality
F̂OT, such that no environment Z can distinguish an interaction with A in the above protocol from
an interaction with S in the ideal world. Recall that S interacts with both the ideal functionality
F̂OT and the environment Z.
S starts by invoking a copy of A and running a simulated interaction of A with Z and the

players S and R. More specifically, S works as follows:

Simulating the communication with Z: Every input value that S receives from Z is written
into the adversary A’s input tape (as if coming from A’s environment). Every output value written
by A on its output tape is copied to S’s own output tape (to be read by the environment Z).

Simulating the case when only the receiver R is corrupted: Regardless of the mode
of the protocol, S does the following. Run the messy mode setup algorithm, letting (crs, t) ←
SetupMessy(1n). When the parties query the ideal functionality Fmode

CRS , return (sid, crs) to them.
(Note that when mode = ext, the crs thus returned is identically distributed to the one returned

9

by Fmode
CRS , whereas when mode = dec, the simulated crs has a different distribution from the one

returned by Fmode
CRS in the protocol).

When A produces a protocol message (sid, ssid, pk), S lets b ← FindMessy(crs, t, pk). S then
sends (sid, ssid, receiver, 1 − b) to the ideal functionality F̂OT, receives the output (sid, ssid, x1−b),
and stores it along with the value b.

When the dummy S is activated for subsession (sid, ssid), S looks up the corresponding b and
x1−b, computes y1−b ← Enc(pk, 1− b, x1−b) and yb ← Enc(pk, b, 0`) and sends the adversary A the
message (sid, ssid, y0, y1) as if it were from S.

Simulating the case when only the sender S is corrupted: Regardless of the mode of
the protocol, S does the following. Run the decryption mode setup algorithm, letting (crs, t) ←
SetupDec(1n). When the parties query the ideal functionality Fmode

CRS , return (sid, crs) to them.
When the dummy R is activated on (sid, ssid), S computes (pk, sk0, sk1)← TrapKeyGen(crs, t),

sends (sid, ssid, pk) to A as if from R, and stores (sid, ssid, pk, sk0, sk1). When A replies with a
message (sid, ssid, y0, y1), S looks up the corresponding (pk, sk0, sk1), computes xb ← Dec(skb, yb)
for each b ∈ {0, 1} and sends to F̂OT the message (sid, ssid, sender, x0, x1).

Simulating the remaining cases: When both parties are corrupted, the simulator S just runs
A internally (who itself generates the messages from both S and R).

When neither party is corrupted, S internally runs the honest R on input (sid, ssid, σ = 0)
and honest S on input (sid, ssid, x0 = 0`, x1 = 0`), activating the appropriate algorithm when the
corresponding dummy party is activated in the ideal execution, and delivering all messages between
its internal R and S to A.

The proof will be completed using the following claims, which are proved below:

1. (Claim 4.2, statistical security for S in messy mode.) When A corrupts the receiver R,

IDEALF̂OT,S,Z
s
≈ EXECdmext,A,Z .

2. (Claim 4.3, statistical security for R in decryption mode.) When A corrupts the receiver S,

IDEALF̂OT,S,Z
s
≈ EXECdmdec,A,Z .

3. (Claim 4.4, parameter switching.) For any protocol πmode in the Fmode
CRS -hybrid model, any

adversary A and any environment Z,

EXECπext,A,Z
c
≈ EXECπdec,A,Z .

We now complete the proof as follows. Consider the protocol dmext. When A corrupts R, by
item 1 above we have statistical security for S (whether or not S is corrupted). When A corrupts
S, by items 2 and 3 above we have

IDEALF̂OT,S,Z
s
≈ EXECdmdec,A,Z

c
≈ EXECdmext,A,Z ,

which implies computational security for R.

10

It remains to show computational security when neither the sender nor the receiver is corrupted.
Let EXECdmext,A,Z(x0, x1, b) (resp, EXECdmdec,A,Z(x0, x1, b)) denote the output of an environment in
the protocol dmext (resp, dmdec) that sets the inputs of the sender S to be (x0, x1) and the input of
the receiver R to be the bit b. The following sequence of hybrids establishes what we want.

EXECdmext,A,Z(x0, x1, 1)
s
≈ EXECdmext,A,Z(0`, x1, 1)

c
≈

EXECdmext,A,Z(0`, x1, 0)
s
≈ EXECdmext,A,Z(0`, 0`, 0)

The first two and the last two experiments are statistically indistinguishable because of the
messy property of encryption, and the second and third experiments are computationally indistin-
guishable because of the computational hiding of the receiver’s selection bit. The first experiment
corresponds to the real world execution, whereas the last experiment is what the simulator runs.
Furthermore, by the completeness of the dual-mode cryptosystem, the first experiment is statisti-
cally indistinguishable from the ideal world exection with inputs (x0, x1, b).

The proof of security for protocol dmdec follows symmetrically, and we are done.

It remains to prove the three claims made in the proof above.

Claim 4.2. If the adversary A corrupts the receiver R in an execution of dmext, then we have

IDEALF̂OT,S,Z
s
≈ EXECdmext,A,Z .

Proof. The real world execution can be seen as a game that proceeds as follows, interacting with
the environment Z(z): first, crs ← SetupMessy1(1n). Then the environment arbitrarily schedules
some number of subsessions, where in each subsession, Z chooses an arbitrary pk and arbitrary
inputs (x0, x1) for the honest sender S, who sends yb ← Enc(crs, pk, b, xb) for each b ∈ {0, 1} to Z.

The ideal world execution proceeds similarly; however, first (crs, t) ← SetupMessy(1n) (but
only crs is visible to Z). Then the environment arbitrarily schedules subsessions, where in each
subsession Z produces an arbitrary pk and arbitrary inputs (x0, x1) for the dummy S. The simulator
S runs b ← FindMessy(t, pk) and learns x1−b from the functionality F̂OT. It then sends yb ←
Enc(crs, pk, b, 0`) and y1−b = Enc(crs, pk, 1− b, x1−b) to Z.

The only difference between the two games is therefore in yb in each subsession. But by
trapdoor identification of a messy branch, we have in the ideal game that Enc(crs, pk, b, 0`)

s
≈

Enc(crs, pk, b, xb). Therefore the two games are statistically indistinguishable.

Claim 4.3. If the adversary A corrupts the sender S in an execution of dmdec, then we have

IDEALF̂OT,S,Z
s
≈ EXECdmdec,A,Z .

Proof. The real world execution can be seen as a game that proceeds as follows, interacting with the
environment Z(z): first, crs ← SetupDec1(1n). Then the environment arbitrarily schedules some
number of subsessions. In each subsession, Z chooses an input σ for the honest R, who generates
(pk, sk)← KeyGen(crs, σ) and sends pk to Z, then Z produces arbitrary (y0, y1) and the honest R
outputs Dec(crs, sk, yσ).

The ideal world execution proceeds similarly; however, first (crs, t)← SetupDec(1n) (but only crs
is visible to Z). Then the environment arbitrarily schedules subsessions, where in each subsession
Z produces arbitrary σ (not known to S), then S runs (pk, sk0, sk1)← TrapKeyGen(t) and gives pk

11

to Z, then S receives arbitrary (y0, y1) from Z. The dummy R outputs the value Dec(crs, skσ, yσ),
acquiring it from the functionality, which was provided the messages xb = Dec(crs, skb, yb) by S.

The only difference between the two games is therefore in the creation of the public and secret
keys. However, by trapdoor key generation, (pk, skσ)

s
≈ KeyGen(crs, σ) for any value of crs generated

by SetupDec. Therefore the two games are statistically indistinguishable.

Claim 4.4. For any protocol πmode in the Fmode
CRS -hybrid model, adversary A and environment Z,

EXECπext,A,Z
c
≈ EXECπdec,A,Z .

Proof. By the indistinguishability of modes in the dual-mode cryptosystem, the output of Fext
CRS

and Fdec
CRS are computationally indistinguishable. Environment Z running protocol πmode can be

seen as an efficient algorithm that receives a polynomial number of samples from either Fext
CRS or

Fdec
CRS. By a standard hybrid argument, the two executions are indistinguishable.

5 Realization from DDH

5.1 Background

Let G be a an algorithm that takes as input a security parameter 1n and outputs a group description
G = (G, p, g), where G is a cyclic group of prime order p and g is a generator of G.

Our construction will make use of groups for which the DDH problem is believed to be hard.
The version of the DDH assumption we use is the following: for random generators g, h ∈ G
and for distinct but otherwise random a, b ∈ Zp, the tuples (g, h, ga, ha) and (g, h, ga, hb) are
computationally indistinguishable.2 This version of the DDH assumption is equivalent to another
common form, namely, that (g, ga, gb, gab)

c
≈ (g, ga, gb, gc) for independent a, b, c← Zp, because ga

is a generator and c 6= ab with overwhelming probability.

5.2 Cryptosystem Based on DDH

We start by presenting a cryptosystem based on the hardness of the Decisional Diffie-Hellman
problem, which slightly differs from the usual ElGamal cryptosystem in a few ways. The cryptosys-
tem depends on a randomization procedure that we describe below. We note that the algorithm
Randomize we describe below is implicit in the OT protocol of Naor and Pinkas [NP01].

Lemma 5.1 (Randomization). Let G be an arbitrary multiplicative group of prime order p. For
each x ∈ Zp, define dlogG(x) = {(g, gx) : g ∈ G}. There is a probabilistic algorithm Randomize
that takes generators g, h ∈ G and elements g′, h′ ∈ G, and outputs a pair (u, v) ∈ G2 such that:

• If (g, g′), (h, h′) ∈ dlogG(x) for some x, then (u, v) is uniformly random in dlogG(x).

• If (g, g′) ∈ dlogG(x) and (h, h′) ∈ dlogG(y) for some x 6= y, then (u, v) is uniformly random
in G2.

2To be completely formal, the respective ensembles of the two distributions, indexed by the security parameter n,
are indistinguishable.

12

Proof. Define Randomize(g, h, g′, h′) to do the following: Choose s, t ← Zp independently and let
u = gsht and v = (g′)s(h′)t. Output (u, v).

Since g and h are generators of G, we can write h = gr for some nonzero r ∈ Zp. First suppose
(g, g′) and (h, h′) belong to dlogG(x) for some x. Now, u = gsht = gs+rt is uniformly random in
G, since g is a generator of G and s is random in Zp. Furthermore, v = (g′)s(h′)t = (gsht)x = ux

and thus, (u, v) ∈ dlogG(x).
Now suppose (g, g′) ∈ dlogG(x) and (h, h′) ∈ dlogG(y) for some x 6= y. Then u = gsht = gs+rt

and v = gxs+ryt. Because r(x − y) 6= 0 ∈ Zp, the expressions s + rt and xs + ryt are linearly
independent combinations of s and t. Therefore, over the choice of s, t ∈ Zp, u and v are uniform
and independent in G.

We now describe the basic cryptosystem.

• DDHKeyGen(1n): Choose G = (G, p, g)← G(1n). The message space of the system is G.

Choose another generator h ← G and exponent x ← Zp. Let pk = (g, h, gx, hx) and sk = x.
Output (pk, sk).

• DDHEnc(pk,m): Parse pk as (g, h, g′, h′). Let (u, v) ← Randomize(g, h, g′, h′). Output the
ciphertext (u, v ·m).

• DDHDec(sk, c): Parse c as (c0, c1). Output c1/c
sk
0 .

Now consider a public key pk of the form (g, h, gx, hy) for distinct x, y ∈ Zp (and where g, h
are generators of G). It follows directly from Lemma 5.1 that DDHEnc(pk, ·) is messy. Namely, for
every two messages m0,m1 ∈ Zp, DDHEnc(pk,m0)

s
≈ DDHEnc(pk,m1).

5.3 Dual-Mode Cryptosystem

We now construct a dual-mode encryption scheme based on the hardness of DDH.

• Both SetupMessy and SetupDec start by choosing G = (G, p, g)← G(1n).

SetupMessy(1n): Choose random generators g0, g1 ∈ G. Choose distinct nonzero exponents
x0, x1 ← Zp. Let hb = gxbb for b ∈ {0, 1}. Let crs = (g0, h0, g1, h1) and t = (x0, x1). Output
(crs, t).

SetupDec(1n): Choose a random generator g0 ∈ G, a random nonzero y ∈ Zp, and let g1 = gy0 .
Choose a random nonzero exponent x ∈ Zp. Let hb = gxb for b ∈ {0, 1}, let crs = (g0, h0, g1, h1)
and t = y. Output (crs, t).

In the following, all algorithms are implicitly provided the crs and parse it as (g0, h0, g1, h1).

• KeyGen(σ): Choose r ← Zp. Let g = grσ, h = hrσ and pk = (g, h). Let sk = r. Output
(pk, sk).

• Enc(pk, b,m): Parse pk as (g, h). Let pkb = (gb, hb, g, h). Output DDHEnc(pkb,m) as the
encryption of m on branch b.

• Dec(sk, c): Output DDHDec(sk, c).

13

• FindMessy(t, pk): Parse the messy mode trapdoor t as (x0, x1) where x0 6= x1. Parse the public
key pk as (g, h). If h 6= gx0 , then output b = 0 as a (candidate) messy branch. Otherwise, we
have h = gx0 6= gx1 because x0 6= x1, so output b = 1 as a (candidate) messy branch.

• TrapKeyGen(t): Parse the decryption mode trapdoor t as a nonzero y ∈ Zp. Pick a random
r ← Zp and compute pk = (gr0, h

r
0) and output (pk, r, r/y).

We remark that SetupMessy actually produces a crs that is statistically close to a common
random (not reference) string, because it consists of four generators that do not comprise a DDH
tuple.

Theorem 5.2. The above scheme is a dual-mode cryptosystem, assuming that DDH is hard for G.

Proof. Completeness follows by inspection from the correctness of the basic DDH cryptosystem.
We now show indistinguishability of the two modes. In messy mode, crs = (g0, h0 = gx0

0 , g1, h1 =
gx1

1), where g0, g1 are random generators of G and x0, x1 are distinct and nonzero in Zp. Let
a = logg0 g1, which is nonzero but otherwise uniform in Zp. Then b = logh0

(h1) = a · x1/x0

is nonzero and distinct from a, but otherwise uniform. Therefore crs is statistically close to a
random DDH non-tuple (g0, h0, g

a
0 , h

b
0), where a, b ← Zp are distinct but otherwise uniform. Now

in decryption mode, crs = (g0, h0 = gx0 , g1, h1 = gx1), where x is nonzero and random in Zp. Since
logh0

(h1) = logg0(g1) = y is nonzero and random in Zp, crs is statistically close to a random DDH
tuple. Under the DDH assumption, the two modes are indistinguishable.

We now demonstrate identification of a messy branch. By inspection, FindMessy(t, pk) computes
a branch b for which (gb, hb, g, h) (the key used when encrypting under pk on branch b) is not a
DDH tuple. By Lemma 5.1, this b is therefore a messy branch.

We conclude with trapdoor key generation. Let (crs, y)← SetupDec(1n). Note that crs is a DDH
tuple of the form (g0, h0 = gx0 , g1 = gy0 , h1 = gx1), where x and y are nonzero. TrapKeyGen(crs, y) out-
puts (pk, sk0, sk1) = ((gr0, h

r
0), r, r/y). The output of KeyGen(σ), on the other hand, is ((grσ, h

r
σ), r).

We will now show that (pk, skσ) and KeyGen(σ) are identically distributed.
Indeed, (pk, sk0) = (gr0, h

r
0, r) is identically distributed to KeyGen(0), by definition of KeyGen.

By a renaming of variables letting r = r′y, we have that (pk, sk1) = (gr0, h
r
0, r/y) is identical to

(gr
′y

0 , hr
′y

0 , r′) = (gr
′

1 , h
r′
1 , r

′), which is distributed identically to KeyGen(1), since r′ = r/y ∈ Zp is
uniformly distributed.

Larger branch sets. We briefly outline how the dual-mode cryptosystem is modified for larger
branch sets {0, 1}k. Essentially, the scheme involves k parallel and independent copies of the one
above, but all using the same group G. The encryption algorithm Enc computes a k-wise secret
sharing of the message, and encrypts each share under the corresponding copy of the scheme. This
ensures that decryption succeeds only for the one specific branch selected to be decryptable. The
FindMessy algorithm includes a branch b ∈ {0, 1}k in its output list of messy branches if any branch
bi is messy for its corresponding scheme.

6 Realization from QR

6.1 Cryptosystem Based on QR

We start by describing a (non-identity-based) variant of Cocks’ cryptosystem [Coc01], which is
based on the conjectured hardness of the Quadratic Residuosity problem.

14

For N ∈ N, let JN denote the set of all x ∈ Z∗N with Jacobi symbol 1. Let QRN ⊂ JN denote
the set of all quadratic residues (squares) in Z∗N . The message space is {±1}. Let

(
t
N

)
denote the

Jacobi symbol of t in Z∗N .

• CKeyGen(1n): Choose two random n-bit safe primes3 p and q and let N = pq. Choose r ← Z∗N
and let y ← r2. Let pk = (N, y), and sk = r. Output (pk, sk).

• CEnc(pk,m): Parse pk as (N, y). Choose s← Z∗N at random such that
(
s
N

)
= m, and output

c = s+ y/s.

• CDec(sk, c): Output the Jacobi symbol of c+ 2 · sk.

The following lemma is implicit in the security proof of the Cocks cryptosystem.

Lemma 6.1 (Messy Characterization). Let N be a product of two random n-bit safe primes p and
q, let y ∈ Z∗N and let pk = (N, y). If y 6∈ QRN , then CEnc(pk, b, ·) is messy. Namely,

CEnc(pk, b,+1)
s
≈ CEnc(pk, b,−1).

Proof. If y 6∈ QRN , then at least one of α1 =
(y
p

)
or α2 =

(y
q

)
is −1. Consider the equation

c = s + y/s mod N , and say s0 is one of the solutions. Then we have c = s0 + y/s0 mod p and
c = s0 + y/s0 mod q. The other solutions are s1, s2, and s3, where

s1 = s0 mod p s2 = y/s0 mod p s3 = y/s0 mod p
s1 = y/s0 mod q s2 = s0 mod q s3 = y/s0 mod q.

Then
(
s1
N

)
= α2

(
s0
N

)
,
(
s2
N

)
= α1

(
s0
N

)
and

(
s3
N

)
= α1α2

(
s0
N

)
. Thus, two of these are +1 and the other

two are −1. It follows that c hides
(
s
N

)
perfectly.

6.2 Dual-Mode Cryptosystem

We now describe a dual-mode cryptosystem that is based on the Cocks cryptosystem.

• SetupMessy(1n): Choose two random n-bit safe primes p and q and let N = pq. Choose
y ← JN \QRN . Let crs = (N, y), and t = (p, q). Output (crs, t).

SetupDec(1n): Let N = pq for random n-bit safe primes as above. Choose s ← Z∗N , and let
y = s2 mod N . Let crs = (N, y), amd t = s. Output (crs, t).

In the following, all algorithms are implicitly provided the crs and parse it as (N, y), and all
operations are performed in Z∗N .

• KeyGen(σ): Choose r ← Z∗N , and let pk = r2/yσ. Let sk = r. Output (pk, sk).

• Enc(pk, b,m): Let pkb = (N, pk · yb). Output CEnc(pkb,m).

• Dec(sk, c): Output CDec(sk, c).

• FindMessy(t, pk): Parse the trapdoor t as (p, q) where N = pq. If pk ∈ QRN (this can
be checked efficiently using p and q), then output b = 1 as the (candidate) messy branch;
otherwise, output b = 0.

3Safe primes are primes p such that p−1
2

is also prime.

15

• TrapKeyGen(t): Choose a random r ← Z∗N and let pk = r2 and skb = r · tb for each b ∈ {0, 1}.
Output (pk, sk0, sk1).

Theorem 6.2. The above scheme is a dual-mode cryptosystem, assuming the hardness of the
quadratic residuosity problem.

Proof. We first show completeness. Say (pk, sk) ← KeyGen(σ). Thus, pk = r2y−σ for some
r. Enc(pk, σ,m) runs CEnc(pk · yσ,m) = CEnc(r2,m). Thus, the public key used in the Cocks
encryption algorithm is a quadratic residue. By the completeness of the Cocks cryptosystem, the
decryption algorithm recovers m.

We now show indistinguishability of the two modes. In messy mode, crs = (N, y), where y is a
uniform element in JN \ QRN . In decryption mode, crs = (N, y), where y is a uniform element in
QRN . By the QR assumption, these are indistinguishable.

We now demonstrate identification of a messy branch. Let pk be the (possibly malformed)
public key. Since y 6∈ QRN , either pk or pk · y is not a quadratic residue. Lemma 6.1 implies that
one of the branches of pk is messy; it can be found using the factorization t = (p, q) of N .

We conclude with trapdoor key generation. Let y = t2. TrapKeyGen(crs, t) outputs (r2, r, r · t).
The output of KeyGen(σ), on the other hand, is (r2y−σ, r). Now, (pk, sk0) = (r2, r) is distributed
identically to KeyGen(0), by definition of KeyGen. By a renaming of variables letting r = r′/t, we
have (pk, sk1) = ((r′)2/t2, r′) = ((r′)2/y, r′), which is distributed identically to KeyGen(1), since
r′ = r/t ∈ Z∗N is uniformly distributed.

For larger branch sets {0, 1}k, the scheme is modified in a manner similar to the one from
Section 5.2, where all k parallel copies of the scheme use the same modulus N .

7 Realization from Lattices

Here we construct a dual-mode cryptosystem based on the hardness of the learning with errors
(LWE) problem, which is implied by the worst-case hardness of standard lattice problems for quan-
tum algorithms, as shown by Regev [Reg05]. We stress that although the underlying lattice as-
sumption relates to quantum algorithms, our constructions are entirely classical.

As an independent contribution, we present a much more efficient version of Regev’s CPA-secure
cryptosystem [Reg05] based on LWE. Our cryptosystem encrypts an n-bit message at essentially the
same cost (in both space and time) as a single-bit message in the system from [Reg05]. Specifically,
the ciphertext expansion factor (the ratio of the ciphertext length to message length) can be made
as small as O(1), as opposed to Õ(n). Our encryption and decryption algorithms require only
Õ(n) bit operations per encrypted bit, as opposed to Õ(n2). The overall public key size remains
asymptotically the same at Õ(n2) bits; however, assuming a trusted source of public randomness,
an optimization from [Reg05] allows the user-specific part of the public key to made only Õ(n) bits,
while ours remains Õ(n2) bits.

7.1 Background

We start by introducing the notation and computational problems that are relevant to this section,
for the most part following [Reg05].

16

For any x, y ∈ R with y > 0 we define x mod y to be x − bx/ycy. For x ∈ R, bxe = bx+ 1/2c
denotes the nearest integer to x (with ties broken upward). We define T = R/Z, i.e., the group of
reals [0, 1) with modulo 1 addition.

Probability distributions. The normal distribution with mean 0 and variance σ2 (or standard
deviation σ) is the distribution on R having density function 1

σ·
√

2π
exp(−x2/2σ2). It is a standard

fact that the sum of two independent normal variables with mean 0 and variances σ2
1 and σ2

2

(respectively) is a normal variable with mean 0 and variance σ2
1 +σ2

2. We also need a standard tail
inequality: a normal variable with variance σ2 is within distance t ·σ (i.e., t standard deviations) of
its mean, except with probability at most 1

t · exp(−t2/2). Finally, it is possible to efficiently sample
from a normal variable to any desired level of accuracy.

For α ∈ R+ we define Ψα to be the distribution on T of a normal variable with mean 0 and
standard deviation α/

√
2π, reduced modulo 1. For any probability distribution φ : T → R+ and

an integer q ∈ Z+ (often implicit) we define its discretization φ̄ : Zq → R+ to be the discrete
distribution over Zq of the random variable bq ·Xφe mod q, where Xφ has distribution φ.

For an integer q ≥ 2 and some probability distribution χ : Zq → R+, an integer dimension
n ∈ Z+ and a vector s ∈ Znq , define As,χ as the distribution on Znq ×Zq of the variable (a, 〈a, s〉+ e)
where a← Znq is uniform and e← χ are independent, and all operations are performed in Zq.

Learning with errors (LWE). For an integer q = q(n) and a distribution χ on Zq, the goal of the
(average-case) learning with errors problem LWEq,χ is to distinguish (with nonnegligible probability)
between an oracle that returns independent samples from As,χ for some uniform s ← Znq , and an
oracle that returns independent samples from the uniform distribution on Znq × Zq.

The conjectured hardness of LWE is parameterized chiefly by the dimension n. Therefore we let
all other parameters (e.g., q, χ, and others) be functions of n, often omitting the explicit dependence
for notational clarity.

Regev [Reg05] demonstrated that for certain moduli q and error distributions χ, LWEq,χ is as
hard as solving several standard worst-case lattice problems using a quantum algorithm. We state
a version of his result here:

Proposition 7.1 ([Reg05]). Let α = α(n) ∈ (0, 1) and let q = q(n) be a prime such that α·q > 2
√
n.

If there exists an efficient (possibly quantum) algorithm that solves LWEq,Ψ̄α, then there exists an
efficient quantum algorithm for solving the following worst-case lattice problems in the `2 norm:

• SIVP: In any lattice Λ of dimension n, find a set of n linearly independent lattice vectors of
length within at most Õ(n/α) of optimal.

• GapSVP: In any lattice Λ of dimension n, approximate the length of a shortest nonzero lattice
vector to within a Õ(n/α) factor.

Peikert [Pei07] extended this result to hold for lattice problems in any `p norm, p ≥ 2, for the
same Õ(n/α) approximation factors.

We define our cryptosystems purely in relation to the LWE problem, without explicitly taking
into account the connection to lattices (or their parameter restrictions). We then instantiate the
parameters appropriately, invoking Proposition 7.1 to ensure security assuming the (quantum)
hardness of lattice problems.

17

7.2 Efficient Cryptosystem Based on LWE

Our efficient cryptosystem closely resembles Regev’s [Reg05]. In the original scheme, public keys
consist of two components: a matrix A ∈ Zn×mq chosen uniformly at random, and a row vector
p = sTA + x ∈ Z1×m

q , where s ∈ Znq is the secret key chosen uniformly at random and each xi
is chosen independently from the error distribution χ for i ∈ [m]. That is, the pairs (ai, pi) are
independent samples from the LWE distribution As,χ. A ciphertext encrypting a single bit b ∈ {0, 1}
is computed as (u, c) = (Ae,pe + b · bq/2c) for a vector e ∈ {0, 1}m ⊆ Zmq chosen uniformly at
random. Decryption is performed by computing c− sTu ∈ Zq, and testing whether it is closer to 0
or bq/2c modulo q. In the former case, the decrypted message is 0, otherwise it is 1.

A simple inspection of the algorithms reveals that a large fraction of the public key and ci-
phertext, as well as the encryption and decryption time, is devoted to the large matrix A. Our
main new idea is that the matrix A and the encryption randomness e can be securely amortized
(reused) over as many as ` = O(n) different public key rows pi (corresponding to independent
secrets si and error vectors xi), without increasing the asymptotic complexity of the scheme. This
yields essentially an n factor improvement in nearly all aspects of the system. In addition, we can
save an additional logarithmic factor in the ciphertext expansion by taking the message symbols
from a space Zp slightly larger than {0, 1} without affecting correctness, under a slightly stronger
quantitative assumption on LWE (this idea was also used in [KTX07]).

We first describe the various parameters of the scheme and their roles, but defer giving concrete
values until later. The message space is Z`p for some integers p = poly(n) ≥ 2 and ` = poly(n) ≥ 1.
Let q = poly(n) > p be a prime modulus. Our public keys and ciphertexts consist of matrices and
vectors over Zq. For every v ∈ Zp (i.e., one entry of a message vector), define the “center” for v
as t(v) = bv · qpe ∈ Zq. Let χ denote an efficiently sampleable error distribution over Zq (generally
we take χ = Ψ̄α for some α in order to apply Proposition 7.1, but other error distributions could
potentially be used as well). All operations are performed over Zq.

• LWEKeyGen(1n): Choose a secret key matrix S← Zn×`q uniformly at random.

To create the public key, choose a matrix A ← Zn×mq uniformly at random. Choose an
error matrix X ∈ Z`×mq where each entry xi,j ← χ is chosen independently from the error
distribution χ. The public key consists of the matrices A ∈ Zn×mq and P = STA+X ∈ Z`×mq .

Note that the (i, j)th entry of P is pi,j = 〈aj , si〉 + xi,j , where si ∈ Znq is the (uniform and
secret) ith column of S, and aj ∈ Znq is the (uniform and public) jth column of A. That is,
(aj , pi,j) is a sample from the LWE distribution Asi,χ.

• LWEEnc(pk = (A,P),v): To encrypt a message v ∈ Z`p, define the “center” vector t = t(v) ∈
Z`q by applying t(·) coordinate-wise to v. Choose a vector e ← {0, 1}m ⊂ Zmq uniformly at
random. The ciphertext is the pair (u, c) = (Ae,Pe + t) ∈ Znq × Z`q.

• LWEDec(sk = S, (u, c)): Compute d = c − STu ∈ Z`q. Output the plaintext v ∈ Z`p, where
each vi is such that di − t(vi) ∈ Zq is closest to 0 mod q.

7.2.1 Some Supporting Lemmas

We now prove a few lemmas that will help establish correctness and security (for appropriate choices
of parameters). At first, the reader may wish to just read the statements of the lemmas and then

18

skip directly to Section 7.2.2, where we instantiate the parameters, analyze the efficiency, and prove
security.

Lemma 7.2 (Completeness). Let q ≥ 4pm, let α ≤ 1/(p ·
√
m · g(n)) for any g(n) = ω(

√
log n),

and let χ = Ψ̄α. Then LWEDec decrypts correctly with overwhelming probability, over the random
choice of X by LWEKeyGen (and for any possible random choices of the LWEEnc and LWEDec).

Proof. The proof essentially follows from the exponential tail bound on a sum of (rounded-off)
Gaussians.

Consider some secret key S and associated public key (A,P = STA + X) where A and S
are arbitary, and X is chosen according to the prescribed distribution. Now consider a ciphertext
(u, c) = (Ae,Pe + t) generated by LWEEnc using some e ∈ {0, 1}m, where t = t(v) is the offset
vector for the message v. The decryption algorithm LWEDec computes the vector

d = c− STu = (STA + X)e + t− STAe = Xe + t ∈ Z`q.

Now consider any coordinate j ∈ [`]. The distance from dj to tj (modulo q) is determined by the
value (Xe)j . Therefore it suffices to show that for every j, (Xe)j is at distance at most q/4p from
0 (modulo q) with overwhelming probability, because this guarantees that dj is closest to t(vj).

Now by definition of χ = Ψ̄α, X = bq ·Ye mod q, where each yi,j is an independent normal
variable with mean 0 and variance α2. Then by the triangle inequality, (Xe)j is at most m/2 ≤ q/8p
away from q(Ye)j , modulo q. Therefore it suffices to show that |(Ye)j | ≤ 1/8p with overwhelming
probability.

Because the yi,j are independent, (Ye)j is distributed as a normal variable with mean 0 and
standard deviation ‖e‖ · α ≤

√
m · α ≤ 1/(p · g(n)). Therefore by the tail inequality on normal

variables,
Pr
Y

[|(Ye)j | > 1/8p] ≤ 8
g(n) · exp(−g(n)2/128).

Because g(n) = ω(
√

log n), this probability is negligible, and by a union bound over all j ∈ [m], we
are done.

Lemma 7.3 (Pseudorandom public keys). The distribution of the public key pk = (A,P) generated
by LWEKeyGen is computationally indistinguishable from uniform over Zn×mq × Z`×mq , assuming
LWEq,χ is hard.

Proof. The proof is virtually identical to one from [PW08] for a similar statement. It amounts to
showing that LWE remains hard even when reusing the same public aj vectors with multiple inde-
pendent secrets si (and independent error terms for every sample). Consider hybrid distributions
H0, . . . ,H` for the pair (A,P): in distribution Hk, the entire matrix A and the first k rows of P
are all uniform, while the remaining rows of P are chosen exactly according to LWEKeyGen, using
independent secrets si and error terms xi,j for all i > k and all j ∈ [m]. Then H0 is the distribution
generated by LWEKeyGen, and H` is completely uniform.

We now show that distributions Hk−1 and Hk are computationally indistinguishable (assuming
LWEq,χ is hard), from which the lemma follows. Consider a simulator S ·, which is given an oracle
O that returns samples either from As,χ (for some secret s ← Znq chosen uniformly at random)
or from the uniform distribution over Znq × Zq. First, S makes m queries to O, yielding samples
(aj , bj) for j ∈ [m]. Then for all i > k and j ∈ [m], S chooses independent si ← Znq and error
terms xi,j ← χ. S outputs the pair (A,P) constructed in the following way: the jth column aj of

19

A is the vector aj , the first k − 1 rows of P are uniform, the kth row of P consists of the entries
pk,j = bj , and the remaining entries of P are pi,j = sTi aj + xi,j for i > k and j ∈ [m].

It is apparent that if O samples from As,χ, then S’s output is distributed according to Hk−1,
whereas if O samples from the uniform distribution, S’s output is distributed according to Hk. It
follows that Hk−1 and Hk are indistinguishable, and we are done.

Messy public keys. For an arbitrary fixed public key pk = (A,P), define δ(pk) to be the
statistical distance between the uniform distribution over Znq ×Z`q and the distribution of (Ae,Pe),
where e← {0, 1}m is chosen uniformly at random. Then for any two messages v0,v1 ∈ Z`q,

∆(LWEEnc(pk,v0), LWEEnc(pk,v1)) ≤ 2δ(pk),

because both distributions are within δ(pk) of uniform. (Of course, the correctness of LWEDec
implies that the public keys pk generated by LWEKeyGen have large δ(pk).)

The following lemma (due to [Reg05], inheriting from ideas in [Ajt04, IZ89]), shows that for
large enough m, a public key (A,P) chosen uniformly at random is very likely to be messy. We
include a proof for completeness.

Lemma 7.4 (Most keys are messy). Let m ≥ 3(n+ `) lg q. Then we have

Pr
pk

[
δ(pk) > q−(n+`)/2

]
≤ 1/qn+`,

where the probability is taken over pk = (A,P)← Zn×mq × Z`×mq chosen uniformly at random.
In particular, δ(pk) is exponentially small in n, except with exponentially-small probability.

Proof. Let G = Zn+`
q be the finite abelian group of size |G| = qn+`, from which each pair of columns

(ai,pi) is chosen uniformly at random. For some arbitrary pk = (A,P), let Dpk be the distribution
of (Ae,Pe), where e← {0, 1}m is chosen uniformly at random. More precisely, for each g ∈ G,

Dpk(g) =
1

2m
|{e ∈ {0, 1}m : (Ae,Pe) = g}| .

We now show that (over a random choice of pk) the squared `2 norm of this distributon is likely
to be very close to 1/ |G|, from which it will follow that the distibution is close to uniform. The
squared `2 norm ‖Dpk‖2 of Dpk is

‖Dpk‖2 =
∑
g∈G

Dpk(g)2 = Pr
e,e′

[
(Ae,Pe) = (Ae′,Pe′)

]
≤ 1

2m
+ Pr

e,e′

[
(Ae,P, e) = (Ae′,Pe′) | e 6= e′

]
Taking the expectation over a uniformly random pk and using the fact that for any fixed e 6= e′,
Pr(A,P)[(Ae,Pe) = (Ae′,Pe′)] = 1/ |G|, we obtain

E
pk

[
‖Dpk‖2

]
≤ 1

2m
+

1
|G|

.

20

Note that ‖Dpk‖2 ≥ 1/ |G| because Dpk is a probability distribution. Then by Markov’s in-
equality, for any K > 0 we have ‖Dpk‖2−1/ |G| ≤ K/2m except with probability at most 1/K over
the choice of pk. For such pk, the statistical distance between Dpk and uniform is∑

g∈G
|Dpk(g)− 1/ |G|| ≤

√
|G|
(∑

g∈G
(Dpk(g)− 1/ |G|)2

)1/2

=
√
|G|
(
‖Dpk‖2 − 1/ |G|

)1/2

≤
√
|G| · (K/2m)1/2.

Setting K = qn+`, and using m ≥ 3(n+ `) lg q, |G| = qn+`, the claim follows.

7.2.2 Instantiation and Analysis

We now instantiate all the parameters of our LWE cryptosystem to ensure correctness and security.
Other instantiations are also possible, yielding tradeoffs between efficiency and the strength of the
underlying lattice assumptions. We have not attempted to optimize constant factors.

Recall that Zp is the message space. Let p = nc for some positive c = c(n) that is bounded
above by a constant (e.g., c may itself be a constant, or a decreasing function of n, such as
c(n) = 1/ lg n). For concreteness, let the amortization factor ` = n (any ` = Θ(n) would also
work). Let m = (12 + 6c)n lg n = O(n lg n). Let q be a prime in [10, 20] · pm lg n = Õ(nc+1).
Finally, let the error distribution χ = Ψ̄α for α = 1/(p ·

√
m · lg n) = 1/Õ(nc+1/2).

We first analyze the efficiency of the system. For concreteness, say that c > 0 is a constant.
Then with the parameters above, a public key contains 2mn elements of Zq, for a total size of Õ(n2)
bits. The message space is Znp , so to encrypt n lg p = Θ(n lg n) bits requires O(mn) operations in
Zq, costing O(n2 lg2 n) bit operations in total, i.e., O(n lg n) bit operations per message bit. The
ciphertext contains 2n elements of Zq, so it is only an O(1) factor larger than the message.

We now prove that the system is secure under appropriate lattice assumptions.

Theorem 7.5. For the parameters described above, our LWE cryptosystem is secure under chosen
plaintext attack, unless SIVP and GapSVP are easy for quantum algorithms to approximate to
within some Õ(nc+3/2) factor.

Proof. We first show completeness. By Lemma 7.2, LWEDec decrypts correctly (with overwhelming
probability) for our choice of α, as long as q ≥ 4pm. Indeed, 4pm < 10pm lg n ≤ q.

We now demonstrate security. By Lemma 7.3, a public key pk generated by LWEKeyGen is
indistinguishable from a truly uniform public key, assuming LWEq,χ is hard. Now observe that for
all sufficiently large n,

3(n+ `) lg q ≤ 6n lg(nc+2) = (12 + 6c)n lg n ≤ m.

Then by Lemma 7.4, no adversary (even an unbounded one) has advantage more than 2q−n+q−2n =
negl(n) in a chosen-plaintext attack when pk is chosen uniformly. Therefore, any adversary having
a non-negligible advantage when pk is chosen according to LWEKeyGen can also solve LWEq,χ.

We conclude by justifying the hardness of LWEq,χ. Using the fact that q ≥ 4pm · lg n, we have
qα ≥ 4

√
m > 2

√
n, as required by Proposition 7.1. Therefore LWEq,χ is hard unless approximating

SIVP and GapSVP to within some Õ(n/α) = Õ(nc+3/2) factor is easy for quantum algorithms.

21

7.3 Dual-Mode Cryptosystem

Here we construct a dual-mode cryptosystem based on the hardness of LWE. We do not know
how to construct a scheme that exactly satisfies Definition 3.1; however, we can construct one
that satisfies a slightly relaxed definition, which suffices for running a bounded number of oblivious
transfers for a single common string. Details follow.

Remarks on decryption mode. We relax trapdoor key generation in decryption mode (Prop-
erty 4 of Definition 3.1). In the relaxed definition, the keypairs generated by TrapKeyGen need
only be computationally indistinguishable from those generated by KeyGen. Moreover, the indistin-
guishable distributions are defined over the entire experiment of creating a crs and several keypairs,
rather than for every choice of crs generated by SetupDec (as in the original Definition 3.1). This
is the reason why the number of executions per crs is bounded by a predetermined quantity.

More precisely, let ` = poly(n) be some fixed polynomial in the security parameter n. We add an
additional parameter i ∈ [`] to the inputs of all the algorithms (except the Setup algorithms), which
is used to specify their ith executions with a certain crs. We then relax Property 4 of Definition 3.1
to the following:

4′. Let (crs, t) ← SetupDec(1n) and (pk(i), sk
(i)
0 , sk

(i)
1) ← TrapKeyGen(t, i) for each i ∈ [`]. Then

for every σi ∈ {0, 1} for i ∈ [`], we require

(crs, (pk(1), sk(1)
σ1

), . . . , (pk(`), sk(`)
σ`

))
c
≈ (SetupDec1(1n),KeyGen(σ1, 1), . . . ,KeyGen(σ`, `)).

Our dm protocol (Figure 3) for emulating the multi-session OT functionality F̂OT and its proof of
security from Section 4 can be easily modified to use this relaxed definition. The protocol simply
limits itself to ` separate uses of a single crs, then it starts over with a new crs by invoking another
copy of the FCRS functionality. The proof of security follows similarly, though it provides only
computational security for both sender and receiver in decryption mode. It is therefore preferable
in the OT protocol to generate the crs in messy mode, which in our construction will also have the
advantage of being a uniformly random (not reference) string.

Remarks on messy mode. We also slightly relax the identification of a messy branch in messy
mode (Property 3 of Definition 3.1). Instead of quantifying over all (crs, t)← SetupMessy(1n), we
require only that FindMessy work for an overwhelming fraction of such (crs, t). Furthermore, we
require only that FindMessy is correct with overwhelming probability over its own randomness, i.e.,
if a branch b is not messy, then FindMessy outputs b with negligible probability. These relaxations
do not affect the security proof, because the failure events are negligible. We stress that FindMessy
still must find a messy branch for every (possibly malformed) public key pk, because pk is generated
by a possibly malicious receiver.

To implement FindMessy efficiently, our construction relies on recent techniques of Gentry,
Peikert, and Vaikuntanathan [GPV08]. Among other things, they constructed an LWE-based cryp-
tosystem in which the public matrix A is shared among all users, and showed how to securely
embed a trapdoor in A so that an efficient algorithm (called IsMessy) can identify messy public
keys given the trapdoor.

The cryptosystem and IsMessy algorithm given in [GPV08, Section 6] are somewhat subtle, so
we summarize their main features here (precise claims are given in Proposition 7.8). The cryp-
tosystem is a slight variant of Regev’s original system [Reg05]. First, A← Zn×mq is chosen under a

22

distribution that is statistically close to uniform, together with a trapdoor (called S in that work).
The matrix A is fixed for all users of the system. Just as in our construction, the key generator
LWEKeyGen generates a public key p = sTA + x, where s ∈ Znq is the secret key chosen uniformly
at random and x← χm is chosen from the error distribution χ = Ψ̄α for some parameter α.

The encryption algorithm LWEEnc is slightly different: instead of choosing e ∈ {0, 1}m, it
chooses e ∈ Zm from a certain distribution Dr parameterized by a value r. Roughly speaking, Dr

is a Gaussian-like distribution over Zm having standard deviation approximately r. The decryption
algorithm LWEDec is exactly the same as ours.

The cryptosystem is correct as long as the LWE noise parameter α is small enough (and q is large
enough) to compensate for the size of r (recall that the value of α determines the approximation
factor in the underlying worst-case lattice assumptions). A key property of LWEEnc is that a larger
value of r means that a larger fraction of public keys p are messy. In our dual-mode construction,
we need this fraction to be extremely close to 1, so we use a moderately large value of r.

The IsMessy algorithm that identifies messy public keys (using the trapdoor S for A) is a
probabilistic algorithm that has two main properties, which we describe here informally. First,
if it declares some key p to be messy, then p is indeed messy. Second, IsMessy declares a very
large fraction (close to 1) of keys p to be messy. (Both properties actually hold with overwhelming
probability over the algorithm’s randomness.) Note that IsMessy may make one-sided error, i.e.,
it might output “not sure” on a key that is in fact messy. Nevertheless, it identifies most messy
public keys as such, and this will be good enough for our purposes. In particular, we can show that
it correctly identifies a messy branch for any (adversarially-chosen) public key in our dual-mode
cryptosystem (for almost all values of the crs). The proof of this fact (Lemma 7.9) uses a careful
counting argument that depends crucially on the fraction of keys that IsMessy declares to be messy.

Construction. We now present our construction of a dual-mode cryptosystem. For clarity, we
present a construction for ` = 1 and omit the extra parameter i ∈ [`], later noting the changes
needed in the general case. We retain all the notation from Section 7.2, and for simplicity let p = 2,
so the message space Zp = {0, 1}. We stress that the dual-mode cryptosystem itself does not do
any amortization. Instead, the amortization technique applies to the ` individual OT executions
using the same crs, which each transfer a single message bit to the receiver.

• SetupMessy(1n): choose a matrix A← Zn×mq uniformly at random, together with a trapdoor
t = (S,A) as described in [GPV08]. For each b ∈ {0, 1}, choose an independent row vector
vb ← Z1×m

q uniformly at random. Let crs = (A,v0,v1), and output (crs, t).

SetupDec(1n): choose a matrix A ← Zn×mq uniformly at random. Choose a row vector
w ← Z1×m

q uniformly at random. For each b ∈ {0, 1}, choose a secret sb ← Znq uniformly
at random and an error row vector xb ← χ1×m (i.e., the m entries are chosen independently
from error distribution χ). Let vb = sTb A + xb −w. Let crs = (A,v0,v1), let t = (w, s0, s1),
and output (crs, t).

In the following, all algorithms are implicitly provided the crs and parse it as (A,v0,v1).

• KeyGen(σ): choose a secret s ← Znq uniformly at random and a row vector x ← χ1×m. Let
pk = sTA + x− vσ, let sk = s, and output (pk, sk).

• Enc(pk, b,m): output c← LWEEnc((A, pk + vb),m).4

4The LWEEnc algorithm here is the one from [GPV08, Section 6], which chooses the randomness e from the

23

• Dec(sk, c): output m← LWEDec(sk, c).

• FindMessy(t, pk): parse t as (S,A), run IsMessy(S,A, pk+vb) for each b ∈ {0, 1}, and output a
b such that IsMessy outputs “messy.” (Lemma 7.9 below shows that IsMessy outputs “messy”
on at least one branch, and is correct with overwhelming probability.)

Alternately, we may let FindMessy be an exponential-time algorithm that computes δ(A, pk+
ub) by brute-force enumeration for each b ∈ {0, 1}. In the OT protocol, this translates to an
exponential-time statistically-close simulation for a cheating receiver. While not sufficient for
UC security, this is good enough for (say) concurrent composition of many OT executions
(and no other protocols) between the same sender and receiver.

• TrapKeyGen(t): Parse the trapdoor t as (w, s0, s1), and output (pk, sk0, sk1) = (w, s0, s1).

For general `, we make the following simple modifications: the setup algorithms choose a single
matrix A, and independently choose v(i)

b (in SetupMessy) or w(i), s(i)
b (in SetupDec) for each i ∈ [`]

and b ∈ {0, 1} as above, placing the appropriate values in crs and t. On their ith executions, the
algorithms use w(i) instead of w, etc., use independent randomness, but use the same matrix A
throughout. In particular, we stress that Enc reuses only A; it does not reuse the randomness of
LWEEnc (as is done in the amortized cryptosystem of Section 7.2). The reason is that an adversarial
receiver chooses the public keys that are used for encryption. If randomness is reused, this may
allow the receiver to introduce correlations between the ciphertexts from different executions. Using
fresh randomness in every execution avoids this issue and is provably secure.

We can also generalize the above system to a larger branch set {0, 1}k for a 1-out-of-2k OT
protocol, by including vectors vb for every b ∈ {0, 1}k in the crs, chosen in an analogous way. The
only difference in the proof of security is in Lemma 7.9, where the probability of the “bad” event
increases by a polynomial factor (but remains negligible), due to a union bound over all pairs of
branches.

7.3.1 Dual-Mode Properties

The proof that the above system comprises a dual-mode cryptosystem (according to our relaxed
definition) is somewhat involved. Therefore we break it into separate lemmas relating to the
indistinguishability of the two modes (Lemma 7.6), the trapdoor generation of keys in decryption
mode (Lemma 7.7), and the guaranteed existence and identification of messy branches in messy
mode (Lemma 7.9).

Lemma 7.6. In the above dual-mode system construction, the messy and decryption modes are
indistinguishable, i.e., SetupMessy1(1n)

c
≈ SetupDec1(1n), assuming LWEq,χ is hard.

Proof. Consider the output of SetupDec1, which is of the form (A, (sT0 A+x0)−w, (sT1 A+x1)−w).
By the hardness of LWEq,χ, we have (A, sT1 A + x1)

c
≈ (A,w′), where row vector w′ ← Z1×m

q is
uniformly random and independent. Therefore the output of SetupDec1 is indistinguishable from
a tuple (A, (sT0 A + x0)−w,w′ −w). This tuple is totally uniform, because w and w′ are uniform
and independent. Because the output of SetupMessy1 is entirely uniform, the claim follows.

distribution Dr, for a value of r we specify later.

24

Lemma 7.7. The above dual-mode construction satisfies our relaxed Property 4′, assuming LWEq,χ
is hard.

Proof. For simplicity, we will prove the lemma for ` = 1; the general case follows by a hybrid
argument over the ` independent pairs of variables in the crs and the ` calls to KeyGen/TrapKeyGen
that use these variables. Without loss of generality, we consider only the case σ = 0; the other case
follows symmetrically.

Our goal is to prove that

(SetupDec1(1n),KeyGen(0))
c
≈ (crs, (pk, sk0)), (1)

where in the right-hand side (crs, t) ← SetupDec(1n) and (pk, sk0, sk1) ← TrapKeyGen(t). We do
so via a sequence of hybrid games.

First consider a hybrid game that outputs (SetupMessy1(1n),KeyGen(0)); this is indistinguish-
able from the left-hand side of (1) by indistinguishability of modes (proved above in Lemma 7.6).
The output of this hybrid game expands as

(A, v0, v1, sTA + x− v0, s),

where A, v0, v1, and s are uniform (in their respective domains) and x← χ1×m.
Now rename variables in the above game, defining w = sTA + x− v0 and renaming s and x as

s0 and x0 (respectively). The above game is therefore equivalent to one that outputs

(A, sT0 A + x0 −w, v1, w, s0),

where w is uniform. Now because v1 is uniform and independent of the other variables, the
preceding game is equivalent to one that outputs

(A, sT0 A + x0 −w, v1 −w, w, s0).

Finally, the hardness of LWEq,χ implies that (A,v1) is indistinguishable from (A, sT1 A+x1), where
s1 ← Znq and x1 ← χ1×m. Therefore the prior game is indistinguishable from one that outputs

(A, sT0 A + x0 −w, sT1 A + x1 −w, w, s0).

This game is, by definition, equivalent to the right-hand side of (1), and we are done.

In order to show that FindMessy works properly, we require the following facts which summarize
the properties of the LWE-based cryptosystem and IsMessy algorithm constructed in [GPV08].5

Proposition 7.8 ([GPV08, Section 6 summary]). Let m ≥ 2(n+ 1) lg q and let r ≥ √qm · log2m.
There is a negligible function ε(m) such that with overwhelming probability over the choice of A,S,
the following are true:

• For all but an at most (1/2
√
q)m fraction of vectors p ∈ Z1×m

q , IsMessy(S,A,p) outputs
“messy” with overwhelming probability (over its own randomness).

5To be specific, Proposition 7.8 instantiates the lemmas from Section 6.2 of [GPV08] with the value s =
10
√

log m/
√

q.

25

• For any p ∈ Z1×m
q such that δ(p) > 2ε, IsMessy(S,A,p) outputs “not sure” with overwhelming

probability (over its own randomness).

Furthermore, if q ≥ 5rm and α ≤ 1/(r
√
m logm), then LWEDec decrypts correctly with over-

whelming probability.

Lemma 7.9. In the above dual-mode construction using the parameters from Proposition 7.8, the
following is true for an overwhelming fraction of (crs, t) ← SetupMessy(1n): for every key pk,
there exists at least one messy branch for pk, and FindMessy(t, pk) outputs such a branch with
overwhelming probability (over its own randomness).

Proof. Fix A (and S) to be among the 1 − 2q−n fraction of matrices for which the two items in
Proposition 7.8 hold. Define M ⊆ Z1×m

q to be the set of vectors p described in the first item, for
which IsMessy(S,A,p) outputs “messy” with overwhelming probability. Then we have

Pr
v∈Z1×m

q

[v 6∈M] ≤ (1/2
√
q)m.

First we show that every pk ∈ Z1×m
q has some branch pk + vb ∈ M , with overwhelming

probability over the remaining random choices of v0,v1 ∈ Z1×m
q in the crs. For any fixed pk, we

have
Pr

v0,v1

[pk + v0 6∈M and pk + v1 6∈M] = (Pr
v

[v 6∈M])2 ≤ (1/4q)m.

Applying the union bound over all qm distinct values of pk, the probability over v0,v1 that there
exists a pk for which both branches lie outside M is at most (1/4)m = negl(n). In other words, for
almost every choice of crs, every value of pk causes IsMessy to output “messy” with overwhelming
probability on at least one branch of pk. Finally, the second item of Proposition 7.8 guarantees that
if δ(pk + vb) > 2ε, then IsMessy outputs “messy” with negligible probability. In other words, with
overwhelming probability the branch b chosen by FindMessy(t, pk) has δ(pk+vb) ≤ 2ε = negl(n).

7.3.2 Putting Everything Together

We now instantiate all the parameters of the dual-mode cryptosystem to satisfy the hypotheses of
Proposition 7.8, and compute the underlying concrete approximation factors for lattice problems.

First we instantiate the parameters (we have made no effort to optimize the various constant
or polylog(n) factors). Let m = 8(n+ 1) lg n = O(n lg n). Let q be a prime in [25, 100] ·m3 lg6m =
Õ(n3). Let r =

√
qm · log2m = Õ(m2). Finally, let the error distribution χ = Ψ̄α for α =

1/(r
√
m logm) = 1/Õ(n5/2).

Theorem 7.10. The above system is a dual-mode cryptosystem (according to the relaxed defini-
tion), unless both SIVP and GapSIVP are easy for quantum algorithms to approximate to within
some Õ(n7/2) factor.

Proof. As long as LWEq,χ is hard (which we show below), indistinguishability of modes follows
directly from Lemma 7.6, and trapdoor key generation follows directly from Lemma 7.7.

Completeness and trapdoor messy-branch identification follow from Proposition 7.8 and Lemma 7.9
(respectively), as long as the hypotheses of Proposition 7.8 are met. We now show that this is the
case.

26

First, observe that

2(n+ 1) lg q ≤ 2(n+ 1) lg n4 ≤ 8(n+ 1) lg n = m

for all sufficiently large n. Next, we have r ≥ √qm · log2m by definition of r. Next, observe (by
substituting for r) that

q ≥ 5rm ⇐⇒ √
q ≥ 5m3/2 log3m ⇐⇒ q ≥ 25m3 log6m,

which is true by definition of q. Finally, α ≤ 1/(r
√
m logm) by definition of α.

We conclude by justifying the hardness of LWEq,χ. Using the fact that q ≥ 5rm and the
definition of α, we have have qα > 5

√
m ≥ 2

√
n, as required by Proposition 7.1. Therefore LWEq,χ

is hard unless approximating SIVP and GapSVP to within some Õ(n/α) = Õ(n7/2) factor is easy
for quantum algorithms.

8 Acknowledgments

We thank Susan Hohenberger, Yuval Ishai, and Oded Regev for helpful comments on earlier drafts
of this paper.

References

[AD97] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-
case equivalence. In STOC, pages 284–293, 1997.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In EUROCRYPT, pages 119–135, 2001.

[Ajt04] Miklós Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica,
13:1–32, 2004. Preliminary version in STOC 1996.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In FOCS, pages 136–145, 2001.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO,
pages 19–40, 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In STOC, pages 494–503, 2002.

[CNS07] Jan Camenisch, Gregory Neven, and Abhi Shelat. Simulatable adaptive oblivious trans-
fer. In EUROCRYPT, pages 573–590, 2007.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
IMA Int. Conf., pages 360–363, 2001.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO, pages
265–281, 2003.

27

[Cré87] Claude Crépeau. Equivalence between two flavours of oblivious transfers. In CRYPTO,
pages 350–354, 1987.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing
contracts. Commun. ACM, 28(6):637–647, 1985.

[GH07] Matthew Green and Susan Hohenberger. Blind identity-based encryption and simulat-
able oblivious transfer. In ASIACRYPT, pages 265–282, 2007.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge
for NP. In EUROCRYPT, pages 339–358, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, 2008. To appear. Full version available
at http://eprint.iacr.org/2007/432.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In CRYPTO, pages 145–161, 2003.

[IZ89] Russell Impagliazzo and David Zuckerman. How to recycle random bits. In FOCS, pages
248–253, 1989.

[JS07] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on
committed inputs. In EUROCRYPT, pages 97–114, 2007.

[Kal05] Yael Tauman Kalai. Smooth projective hashing and two-message oblivious transfer. In
EUROCRYPT, pages 78–95, 2005.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.

[KTX07] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Multi-bit cryptosystems based
on lattice problems. In Public Key Cryptography, pages 315–329, 2007.

[Lin08] Yehuda Lindell. Efficient fully simulatable oblivious transfer. In CT-RSA, 2008.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
Gaussian measures. SIAM J. Comput., 37(1):267–302, 2007. Preliminary version in
FOCS 2004.

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer with adaptive queries. In CRYPTO,
pages 573–590, 1999.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA, pages
448–457, 2001.

28

http://eprint.iacr.org/2007/432

[Pei07] Chris Peikert. Limits on the hardness of lattice problems in `p norms. In IEEE Confer-
ence on Computational Complexity, pages 333–346, 2007.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
STOC, 2008. To appear. Full version available at http://eprint.iacr.org/2007/279.

[Rab81] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical report,
Harvard University, 1981.

[Reg04] Oded Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899–942,
2004.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84–93, 2005.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

29

http://eprint.iacr.org/2007/279

	Introduction
	Our Approach
	Concrete Constructions
	Related Work
	Organization

	Preliminaries
	Notation
	The Universal Composability Framework (UC)

	Dual-Mode Encryption
	Oblivious Transfer Protocol
	Realization from DDH
	Background
	Cryptosystem Based on DDH
	Dual-Mode Cryptosystem

	Realization from QR
	Cryptosystem Based on QR
	Dual-Mode Cryptosystem

	Realization from Lattices
	Background
	Efficient Cryptosystem Based on LWE
	Some Supporting Lemmas
	Instantiation and Analysis

	Dual-Mode Cryptosystem
	Dual-Mode Properties
	Putting Everything Together

	Acknowledgments

