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Abstract. Tweakable blockciphers, first formalized by Liskov, Rivest, and Wagner [13], are blockci-
phers with an additional input, the tweak, which allows for variability. An open problem proposed by
Liskov et al. is how to construct tweakable blockciphers without using a pre-existing blockcipher. This
problem has yet to receive any significant study. There are many natural questions in this area: is it
significantly more efficient to incorporate a tweak directly? How do direct constructions compare to
existing techniques? Are these direct constructions optimal and for what levels of security? How large
of a tweak can be securely added? In this work, we address these questions for Luby-Rackoff blockci-
phers. We show that tweakable blockciphers can be created directly from Feistel ciphers, and in some
cases show that direct constructions of tweakable blockciphers are more efficient than previously known
constructions.

1 Introduction

A blockcipher, also known as a pseudorandom permutation, is a pair of algorithms E and D. The
encryption algorithm E takes two inputs – a key K and a message block M , and produces a
ciphertext block C of the same length as M , while the decryption algorithm D reverses this process.
A blockcipher is considered secure if, for a random secret key K, the cipher is indistinguishable
from a random permutation.

A tweakable blockcipher takes an extra input, the tweak ,(T ), that is used only to provide
variation and is not kept secret. Unlike changing the key, changing the tweak should involve minimal
extra cost. A tweakable blockcipher is considered secure if it is indistinguishable from a family of
random permutations indexed by the tweak. The Hasty Pudding Cipher by Schroeppel [23] was the
first to introduce an auxiliary blockcipher input called a “spice” and Liskov, Rivest, and Wagner [13]
later formalized the notion of tweakable blockciphers. Liskov et al. describe two levels of security:
a secure (CPA) tweakable blockcipher is one that is indistinguishable from a random permutation
family to any adversary that may make chosen plaintext queries, while a strongly secure (CCA)
tweakable blockcipher is pseudorandom even to an adversary that may also make chosen ciphertext
queries.

Tweakable blockciphers have many practical applications. Liskov et al. describe how they can
be used to implement secure symmetric encryption and authenticated encryption. Halevi and Ro-
gaway [10, 11] suggest an immediate application to private storage where the tweak is set to be the
memory address of an enciphered block; and thus, the encryptions of two blocks with the same
plaintext are not likely to look the same and yet decryption remains straightforward. Tweakable
blockciphers have also been studied in a variety of other contexts [1, 12, 22, 2, 16].
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Feistel Blockciphers. Feistel blockciphers [7] have been an actively studied class of constructions,
since Horst Feistel invented them in 1973. In particular, Luby and Rackoff showed how to construct
a pseudorandom permutation from a pseudorandom function by composing three (or four in the case
of CCA security) Feistel permutations [14]. We call this construction the Luby-Rackoff blockcipher.
In 1996, Lucks [15] described an optimization for the secure 3-round version by replacing the
first round with a universal hash function. Shortly afterwards, Naor and Reingold [17] provided
the analogous optimization for the strongly secure 4-round cipher, replacing both the first and
last rounds with a more general type of function. In 2001, Ramzan [20] formally studied many
variations on the Luby-Rackoff cipher. Patarin gave proofs of security for certain constructions
against unbounded adversaries with access to exponentially many queries, albeit assuming the
individual round functions are random functions rather than pseudorandom. Specifically, Patarin
proved security for 7 rounds against q ≪ 2k queries, where the blockcipher input is of size 2k [18],
and later improved this to show that 5 rounds is sufficient, both for chosen-plaintext and chosen-
ciphertext attacks [19], which remains the best proven security level for Feistel ciphers. Dodis
and Puniya recently provided a combinatorial understanding of Feistel networks when the round
functions are unpredictable rather than pseudorandom [6].

Our Work. Liskov, Rivest, and Wagner [13] give two constructions for tweakable blockciphers, each
one constructed from an underlying blockcipher. Subsequent work has also taken this approach;
Halevi and Rogaway’s EMD and EME modes [10, 11] and Rogaway’s XEX mode [22] were all
blockcipher modes of operation. The only examples of specific tweakable blockciphers are the Hasty
Pudding [23] and the Mercy [4] ciphers.

One open problem proposed by Liskov et al. was to study how to incorporate tweaks into existing
blockciphers, or design tweakable blockciphers directly. In this work, we perform a systematic
study of issues relating to directly tweaking Luby-Rackoff blockciphers. We analyze the approach
of including a tweak by XOR-ing the tweak value into one or more places in the dataflow. This
natural model for adding a tweak changes the cipher minimally. Also, approaches involving more
direct cryptographic processing of the tweak (e.g. hashing the tweak) have a significant additional
cost associated with changing the tweak.

Our Contributions. We present tweakable Luby-Rackoff blockciphers, for both CPA and CCA se-
curity, and against both polynomial-time adversaries, and against unbounded adversaries with
q ≪ 2k queries1, where k is half the size of the input (matching the best result for ordinary
blockciphers [19]). Specifically, we construct tweakable blockciphers:

– CPA-secure against polynomial adversaries in 4 rounds (Theorem 3)
– CCA-secure against polynomial adversaries in 6 rounds (Theorem 8)
– CPA-secure against q ≪ 2k queries in 7 rounds (Theorem 4)
– CCA-secure against q ≪ 2k queries in 10 rounds (Theorem 11)

Recall that for polynomial adversaries CPA-security requires only 3 rounds whereas CCA-security
requires 4. It is thus natural to wonder if our constructions are optimal. We prove our constructions
against polynomial adversaries are indeed round-optimal in our model (Theorems 1 and 7). Fur-
thermore, we show that any construction of 6 or fewer rounds in our model can be attacked with
O(2k/2) queries (Table 1), so our construction of Theorem 4 is also round-optimal. In addition,
the attacks used to prove the round-optimality of our constructions, as well as our extension of

1 That is, any non-negative q < 2k such that q2−k is negligible.
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the proof methods of Naor and Reingold, help to form the theoretical foundation necessary for the
secure design of tweakable blockciphers regardless of construction, as well as shedding light on the
difficulties in adding a tweak to Feistel-based blockciphers such as RC6 [21] and MARS [3].

We also explicitly address the problem of incorporating tweaks of arbitrary length, an important
issue not addressed in the literature.2 We show that our CPA-secure constructions can incorporate
additional blocks of tweak at the cost of 1 round per block (Theorems 13 and 16), and that our
CCA-secure constructions may be similarly extended at the cost of 2 rounds per block of tweak
(Theorems 14 and 17).

2 Definitions

A tweakable blockcipher is a triple of algorithms (G̃, Ẽ, D̃) for key generation, encryption, and
decryption, respectively. We restrict our attention to tweakable blockciphers where G̃(·), ẼK(·, ·),
and D̃K(·, ·) are all efficiently computable algorithms; and where the correctness property holds;
that is, for all M,T, and for all keys K ∈ G̃(1k), D̃K(ẼK(M,T ), T ) = M . We also generally assume
that G̃(1k) draws keys uniformly at random from {0, 1}p(k) for some polynomial p.

We have two notions of security: (1) chosen-plaintext secure (CPA) and (2) chosen-ciphertext
secure (CCA). Security is defined in terms of both a polynomial and an exponential adversary;
polynomial adversaries are limited to a number of queries and computations polynomial in the
message size, whereas an exponential adversary is allowed unlimited computation, but is bounded
by an exponential number of queries relative to the message size.

Definition 1. Over all adversaries with access to an encryption oracle, the maximum advantage
is defined as:

ADV-TBCK( eE, eD, q, t) = max
A

: |Pr[A
eEK (·,·)(1k) = 1] − Pr[AΠ(·,·)(1k) = 1]|

where (1) for all k, K is generated by G̃(1k), (2) Π(·, ·) is a random permutation family param-
eterized by its second input, and (3) A is allowed to run for t steps and make at most q oracle
queries.

Definition 2. Over all adversaries with access to an encryption and decryption oracle, the maxi-
mum advantage is defined as:

ADV-STBCK( eE, eD, q, t) = max
A

: |Pr[A
eEK (·,·), eDK(·,·)(1k) = 1] − Pr[AΠ(·,·),Π−1(·,·)(1k) = 1]|

where (1) for all k, K is generated by G̃(1k), (2) Π,Π−1 are a pseudorandom permutation family
and its inverse, and (3) A is allowed to run for t steps and make at most q oracle queries.

A tweakable blockcipher is CPA secure if for all k, for q queries and time t, ADV-TBCK(Ẽ, D̃, q,
t) is negligible in k. A tweakable cipher is said to be polynomially-secure if q and t are polynomial
in k. If t is unspecified, then it may be unbounded. We define CCA security in the same manner.

2 Using tweaks of arbitrary length has been considered for tweakable symmetric encryption [9], but not for one-block
constructions. Certain applications require different, specific tweak sizes. It may make sense for the tweak size to
be the same as the input or output. In TAE mode [13] each tweak holds a variety of information such that each
tweak is unique. Thus, one may want to allow longer tweaks to include more information. Indeed, this was the
motivation for Schroeppel to allow spice values of 512 bits in the Hasty Pudding Cipher [23].
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3 The Feistel Blockcipher

Recall the formula for the Feistel blockcipher [7] on input M = (L0, R0):

Li+1 = Ri

Ri+1 = fi+1(R
i) ⊕ Li

where the output after n rounds is (Ln, Rn), and each fi is a pseudorandom function specified
by the key. Further recall that the 3-round Feistel construction is secure against chosen plaintext
attacks, and the 4-round construction is secure against chosen ciphertext attack [14].

3.1 Notation
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Fig. 1. An illustration of Λ3;
the locations at which to XOR
a tweak of length |M |/2 for 3-
round LR.

In order to talk about where to add a tweak, we must first establish
some notation. Unless otherwise specified, the tweaks we refer to are a
half-block in length; that is, on input M of size 2k, the tweak is of size
k. As we will later see, a blockcipher may allow for longer tweaks; we
think of these as “multiple tweaks,” as conceptually, the longer tweak
can be thought of as being composed of multiple tweaks, each of the
same size.

For an n-round Luby-Rackoff construction, a single half-block of
tweak can conceivably be XOR-ed in at any of the following unique
locations: L0, L1, . . ., Ln, R0,R0.5, R1, . . . ,Rn−0.5,Rn. Let this set be
denoted by Λn. We illustrate the Λ3 (3-round) locations in Figure 1.

Let T λ be the XOR of all the tweaks used at location λ ∈ Λn. The
formula for our construction is:

Li+1 = Ri ⊕ TRi

Ri+1 = fi+1(R
i ⊕ TRi ⊕ TRi+0.5) ⊕ Li ⊕ TLi

We use “BC(n, λ)” to refer to the tweakable blockcipher construction
where the number of Luby-Rackoff rounds is n and a tweak T λ is XOR-
ed in at some location λ ∈ Λn. To denote adding multiple tweaks, we
write “BC(n, λ1, . . . , λt)”, where T λi = Ti is the tweak for location λi

and different locations each have their own independent tweak. Thus,
in such a construction, the tweak size is tk.

We might also want to denote adding the same tweak value at two
or more locations. We write this as “BC(n, λ1 + λ2)”, where the implication of using the compound
location λ1 + λ2 is that T λ1 = T λ2 . Of course, we may also consider a construction with multiple
tweaks, each of which may be a compound location; we use the obvious notation for this. We use
the symbol Γ to denote a (possibly) compound tweak location.

In Λn, we have listed all tweaks at “.5” locations, i.e., Rl+0.5 for some l. However, we do not
have to consider these locations.

Lemma 1. For all m, Rm+0.5 is equivalent to Rm + Lm+1.

Lemma 2. For all 0 ≤ m < n, Lm is equivalent to Rm+1.
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Since Lm and Rm+1 are equivalent, we will use them interchangeably. This starts us off with a
reduced set of tweakable constructions to study including tweaks at locations Ln, R0, . . ., Rn and
all combinations thereof.

4 Tweakable Blockciphers With CPA Security

In this section, we focus on achieving CPA security. In the next section, we will discuss the stronger
CCA notion of security.

We begin by presenting some general results that hold for an arbitrary number of rounds.
These results will help us to narrow down the possibilities for secure constructions and to prove the
optimality of our final construction. As stated in Section 3, the set of possibly secure constructions
includes those with tweaks at locations Ln, R0, . . ., Rn and all combinations thereof. However, we
remark in Lemma 3 that we do not need to consider all possible locations, and that some locations
can be simulated without directly tweaking the blockcipher; this important observation is used
frequently throughout the paper.

Lemma 3. For all n, without loss of generality, we can consider only constructions that never use
the tweak locations Ln Rn, R0, or R1, even in compound locations, and even when considering
CCA security.

Proof. We can simulate oracle queries with or without the tweaks in Ln Rn, R0, or R1. To simulate
a query (L0, R0, T1, . . . , Tt) to a construction with these tweaks, we make a query (L0 ⊕ TR1 , R0 ⊕
TR0 , T1, . . . , Tt) to the construction without these tweaks to obtain (Ln, Rn), and we return (Ln ⊕
TLn , Rn ⊕ TRn). Decryption queries can be simulated similarly. ⊓⊔

The set of tweak locations we need to consider is thus reduced to {R2 . . . ,Rn−1}. From here
on, we consider Λn to be {R2, . . . ,Rn−1}.

Lemma 4. For all n, BC(n,Rn−1) is not CPA-secure.

Proof. We use a 2-query attack. If we query (L,R, T ) to get (Ln
1 , Rn

1 ), and then query (L,R, T ′) to
get (Ln

2 , Rn
2 ), then Ln

1 ⊕ Ln
2 = T ⊕ T ′. ⊓⊔

Thus, we arrive at our first round-specific conclusion.

Theorem 1 (No Tweakable 3-Round Constructions). For all n < 4 and all compound loca-
tions Γ of elements in Λn, BC(n, Γ ) is not CPA-secure.

Proof. This follows from Lemmas 3 and 4, and the set {R2, . . . ,Rn−2} being empty for n = 3. ⊓⊔

4.1 Secure Locations

We have reduced the set of possible secure single tweak locations to {R2, . . . ,Rn−2}. We now show
that each of these locations are secure for n ≥ 4. However, first we must define ǫ − ARCU2 hash
functions and introduce some related work.

Definition 3. An ǫ− ARCU2 (“Almost Right-Collision-avoiding Universal”) hash function family
is a hash function family given a range of {0, 1}2k with the property that for all x 6= y, the probability
that hR(x) = hR(y) is at most 2−k + ǫ, over the choice of h, where hR denotes the right half of the
output of h.
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Naor and Reingold [17] create a secure blockcipher using two Luby-Rackoff rounds in combination
with a potentially less expensive function.

Theorem 2 (Naor-Reingold). If E denotes two Luby-Rackoff rounds with truly random round
functions, and h is drawn from an ǫ−ARCU2 hash function family, then E ◦ h is indistinguishable
(in a CPA attack) from a random function.

Using Definition 3 and Theorem 2, we are able construct CPA-secure tweakable blockciphers.

Theorem 3 (Several Tweakable n-Round Constructions (for n ≥ 4)). For all n ≥ 4 and
m ∈ {2, . . . , n − 2}, BC(n,Rm) is CPA-secure against polynomially bounded adversaries.

Proof. We can capitalize on Theorem 2 as follows. We will prove that when we let h(L,R, T ) =
(L ⊕ fm−1(R)||R ⊕ T ⊕ fm(L ⊕ fm−1(R))) over random choice of fm−1 and fm, these conditions
hold. Here, h is comprised of the last two rounds of the construction before the tweak, including the
tweak. Once we prove this, the result will follow: the first m−2 rounds are a permutation, so if h′ is
comprised of the first m rounds, it will be ǫ−ARCU2 if h is. Furthermore, since m ≤ n−2, there are
at least 2 more rounds to follow; any further rounds are another permutation and pseudorandomness
will be maintained.

Lemma 5. The family h(L,R, T ) = (L ⊕ f1(R)||R ⊕ T ⊕ f2(L ⊕ f1(R))), where f1 and f2 are
randomly chosen over the domain of all functions from k bits to k bits, is ǫ − ARCU2, for ǫ =
2−k + 2−2k.

Proof. Let x = (L,R, T ) and y = (L′, R′, T ′), where x 6= y. Note that if R 6= R′ then the probability
that L ⊕ f1(R) = L′ ⊕ f1(R

′) is the probability that f1(R) = L ⊕ L′ ⊕ f1(R
′) which is 2−k.

Similarly, if R = R′ but L 6= L′ then L ⊕ f1(R) 6= L′ ⊕ f1(R
′). In either case, the probability

that L ⊕ f1(R) = L′ ⊕ f1(R
′) is at most 2−k. Finally, if R = R′ and L = L′ then T 6= T ′ so

hR(L,R, T ) = hR(L,R, T ′) ⊕ T ⊕ T ′ 6= hR(L,R, T ′).

The probability that hR(L,R, T ) = hR(L′, R′, T ′) given that L ⊕ f1(R) 6= L′ ⊕ f1(R
′) is the

probability that f2(L⊕ f1(R)) = R⊕R′ ⊕ f2(L
′ ⊕ f1(R

′), which is 2−k, so the probability we hit a
collision is at most (1 − 2−k)(2−k) + 2−k = 2−k + 2−2k + 2−k = 2−k + ǫ. ⊓⊔

From the Lemma, if all the round functions are random, then the h we are interested in is ǫ −
ARCU2. By Theorem 2, BC(n,Rm) is indistinguishable from a random function if all round functions
are random. Therefore, BC(n,Rm) must be CPA secure if its round functions are pseudorandom
(since random functions are indistinguishable from random permutation families). This completes
the proof of Theorem 3. ⊓⊔

Corollary 1 (CPA Security In 4 Rounds). BC(4,R2) is CPA-secure and round-optimal.

Proof. This follows directly from Theorems 1 and 3. ⊓⊔

4.2 Exponential Attacks

In this section, we investigate the security of tweakable blockcipher constructions against an adver-
sary who is capable of making an exponential number of queries. We provide general attacks against
several types of tweakable constructions built from Luby-Rackoff permutations. In this section, we
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assume all round functions are ideal, in other words, that they are uniform random functions.3 We
consider a construction secure against exponentially many queries if the probability of any com-
putationally unbounded adversary allowed q ≪ 2k queries to distinguish the construction from a
random permutation family is negligible in k. These attacks appertain to constructions with both
single and compound tweak locations (where the same tweak value is XOR-ed in multiple loca-
tions) and are used to prove that all constructions of less than 7 rounds can be distinguished from

a random permutation family in O(2
k
2 ) queries.

Lemma 6. For any 0 ≤ r < n, BC(n,Rr+0.5) is insecure against O(2
k
2 ) queries.

Proof. The attack is as follows: fix the message and query with 2
k
2 different tweaks. The probability

that two different queries lead to the same output is negligible for a random permutation family.
However, the probability that two queries lead to a collision in this construction is not negligible.

On each query, the internal values stay constant until the input to fr+1. Since we have made 2
k
2

queries to an ideal round function, we can expect with non-negligible probability to get a collision
on the output of fr+1 for two distinct queries. If we get such a collision, notice the entire output
ciphertext will collide. ⊓⊔

Corollary 2. For any 0 ≤ r < n, BC(n,Rr+0.5 + Rr+1) is insecure against O(2
k
2 ) queries.

Proof. The attack is identical to that used in Lemma 6, except that instead of expecting a collision
of the type fr+1(R

r ⊕ T ) = fr+1(R
r ⊕ T ′), we expect a collision of the type fr+1(R

r ⊕ T ) ⊕ T =
fr+1(R

r ⊕ T ′) ⊕ T ′. ⊓⊔

Lemma 7. For any 0 ≤ r < n, BC(n,Rr+0.5 + Rn−1) is insecure against O(2
k
2 ) queries.

Proof. For this proof we will first need a result from probability.

Lemma 8 (Strong Birthday Lemma). For all k > 1, there exists an m < 1.2 × 2
k
2 such that

if p is the probability of picking an element twice when selecting m elements from a 2k-element set
with replacement uniformly at random, then p and 1 − p are both non-negligible in k.

Proof. Let pi be the probability that some element is picked twice in i tries.

We know that for m ≥ 1.2 × 2k/2, 1 − pm < .5 (since the birthday threshold is approximately
1.1774 × 2k/2). Let m be the first value for which 1 − pm is less than .5, and let p = pm. Then,

.5(1 −
1.2 × 2k/2

2k
) ≤ 1 − p ≤ .5

Since, similarly to our above analysis, 1 − p will be equal to (1 − pm−1)(1 − m−1
2k ). Since m is

the first value for which 1 − p is less than .5, 1 − pm−1 ≤ .5 and m − 1 ≤ 1.2 × 2k/2.

Since 1− p ≤ .5, we know that p ≥ .5, so p is non-negligible. But since 1− p ≥ .5(1 − 1.2
2k/2 ), we

know that 1 − p is non-negligible, as required. ⊓⊔

3 This is the standard assumption when we want to prove security in a setting where the adversary has beyond-
polynomial capabilities [18, 19].
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The attack is as follows: Compute the m described in Lemma 8. Keep the message constant and
query with m different tweaks. The probability that two ciphertexts are such that Ln⊕T = L′n⊕T ′

is significantly higher for the actual construction than for a random permutation family. Since

m ≤ 1.2 × 2
k
2 , this attack can be performed by an exponential adversary.

Notice that the internal values of any pair of queries are the same up to the input of fr+1. For
every query, fr+1 receives a different input (as the input is a fixed value XOR-ed by the tweak).
Since the round functions are ideal, the event of getting a collision on two outputs of fr+1 with m
different queries reduces to the event of picking the same element twice as described in Lemma 8;
say that probability is p. Notice that if such a collision happens, we always get a collision of the
type, Ln ⊕ T = L′n ⊕ T ′.

Assume that the outputs of fr+1 are distinct for each of the m queries. Notice that in order to
have a collision of two Rn−2 values, it must be true that the Ln−2 values differ for both queries,
because the intervening rounds act as a permutation. Therefore, we will get a collision on Rn−2 if
and only if we have a collision of the type:

fn−2(L
n−2) ⊕ Ln−3 = fn−2(L

′n−2) ⊕ L′n−3.

Since the probability of such a collision for any two queries is either 2−k or 0 (in the case
that the Ln−2 values coincide), we can bound the probability of having such a collision above by
(1.2)22k

2×2k = .72 since m ≤ 1.2 × 2
k
2 . Therefore, in this case, with probability greater equal to .28, we

can assume all Rn−2 values are distinct. Notice:

Ln ⊕ T = L′n ⊕ T ′ ⇔ fn−1(R
n−2) ⊕ Ln−2 ⊕ T = fn−1(R

′n−2) ⊕ L′n−2 ⊕ T ′.

The probability of such an event occurring over m queries with distinct Rn−2 and ideal round
functions is, again, p. Therefore, the overall probability of getting at least two ciphertexts with the
described property is at least p + (1 − p)(.28p) .

If the construction we are given is the random permutation family, the probability of getting the
coincidence described is clearly p. Therefore the difference in probabilities of this event happening
for the tweakable construction and the random permutation family is at least p + .28p(1− p)− p =
.28p(1−p). Since p and 1−p are non-negligible in k (by Lemma 8), this value is also non-negligible,
and therefore our attack successfully distinguishes the two constructions. ⊓⊔

Corollary 3. BC(n,Rr+0.5 + Rr+1 + Rn−1) is insecure against O(2
k
2 ) queries.

Proof. The generalization of Lemma 7 to Lemma 3 is identical to the extension of Lemma 6 to
Lemma 2. ⊓⊔

These four attacks can be used to attack every tweakable Luby-Rackoff blockcipher of 6 or fewer
rounds. A rundown of which general attack applies for each construction can be found in Table 1.
We do not include L1,R1,L6 or R6 in the possible locations, or their equivalent constructions of
Table 1 since they can be simulated away by Lemma 3.

8



4.3 A Tweakable Construction Secure for q ≪ 2k Queries

Tweak Locations
Location Equivalent Attack

R2 R0.5 Lemma 6
R3 R1.5 Lemma 6
R4 R4.5 Lemma 6
R5 N/A Lemma 4
R2 + R3 R1.5 + R2 Corollary 2
R2 + R4 R2.5 Lemma 6
R2 + R5 R0.5 + R5 Lemma 7
R3 + R4 R3.5 + R4 + R5 Corollary 3
R3 + R5 R3.5 Lemma 6
R4 + R5 R4.5 + R5 Corollary 2
R2 + R3 + R4 R2.5 + R3 Corollary 2
R2 + R3 + R5 R1.5 + R2 + R5 Corollary 3
R2 + R4 + R5 R2.5 + R5 Lemma 7
R3 + R4 + R5 R3.5 + R4 Corollary 2
R2 + R3 + R4 + R5 R2.5 + R3 + R5 Corollary 3

Table 1. All possible 6-round tweakable blockci-
pher constructions and the corresponding lemmas that
prove the constructions are insecure.

We now show a 7-round Luby-Rackoff construction
that is secure against an adversary allowed q ≪ 2k

queries.

Theorem 4. BC(7,R3+L3) is CPA-secure for q ≪
2k queries.

Proof. To prove that this construction is a secure
tweakable blockcipher we utilize the following the-
orem from Patarin [18]:

Theorem 5 (Patarin). Let F be a function from
2k bits to 2k bits. If F has the property that for q ≪
2k queries, the probability of having l > O(k) indices
such that Ri1 = Ri2 = Ri3 = ...Ril is negligible,
(where Rij is the right half of the j’th output of
F ), and on distinct inputs F has only a negligible
probability of a full collision on its outputs, then E◦
F ,(where E is a four-round Luby-Rackoff function),
is indistinguishable from random for q ≪ 2k input queries.

We decompose our 7-round construction into two functions, F and E, where F is the first three
rounds, including the XOR-ed tweak at both L3 and R3,

4 and E is the last four rounds. It is obvious
that E is a four-round Luby-Rackoff function. To prove that F has the properties enumerated in
Theorem 5, we need to prove the following two properties about F .

Lemma 9. F is such that for any two distinct queries, the probability of the outputs being equal is
O(2−2k) and the probability of the right halves of the outputs being equal is O(2−k).

Proof. We show here that given two queries, the probability of an equality in the right half of the
output is at most 2−k+1, and that the probability of both outputs being equal is at most 2−2k+1.

We call the two queries L0, R0, T and L′0, R′0, T ′ respectively. We also assume that these
queries are distinct, that is that either L0 6= L′0 or R0 6= R′0 or T 6= T ′. For ease of notation, we
define δRn as Rn ⊕ R′n, and δfi(R

n) = fi(R
n) ⊕ fi(R

′n). We divide this proof down into three
cases, δR0 6= 0, δR0 = 0 but δL0 6= 0, and finally, δR0 = δL0 = 0 and but δT 6= 0.

Case 1: δR0 6= 0. In order for δR3 ⊕ δT = 0 to be true, (i.e. the right halves of the outputs
are equal), we must have that δf1(R

0) = δL0 ⊕ δf3(R
2) ⊕ δT . Since δR0 6= 0, δf1(R

0) is a random
value. Therefore the probability that the equation is true, which is the probability that the right
half of any two outputs are equal, is 2−k.

In order for δL3 ⊕ δT = 0, (i.e. the left halves of the outputs are equal), we must have that
δf2(L

0 ⊕ f1(R
0)) = δR0 ⊕ δT . If δL0 ⊕ δf1(R

0) 6= 0, this occurs with probability 2−k. Furthermore,
given this, because δL0 ⊕ δf1(R

0) = δR2, the probability that δf3(R
2) = δf1(R

0) ⊕ δL0 ⊕ δT is
2−k, and therefore, the probability of a full collision is 2−2k.

4 Although L3 is equivalent to R4, we think of this construction as using L3, so that we can conceptually split the
function this way.
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However, δL0⊕δf1(R
0) = 0 occurs with probability 2−k. In that case, in order to have δL3⊕δT =

0, we must have δT = δR0. If δR3 ⊕ δT = 0 as well, we know δf1(R
0) = δL0 ⊕ δf3(R

2) ⊕ δT ,
but since δL0 = δf1(R

0) in this case, this implies that δf3(R
2) = δT = δR0 6= 0, yet, this can

occur with probability at most 2−k. Therefore, the probability of an overall collision is at most
2(2−2k) = 2−2k+1.

Case 2: δR0 = 0 and δL0 6= 0. In order for δR3 ⊕ δT = 0 to hold, we must have that
δf3(R

2) = δf1(R
0) ⊕ δL0 ⊕ δT holds. Note that δR2 = δR0 ⊕ δf2(R

1) = δf2(R
1), and δR1 =

δL0 ⊕ δf1(R
0) = δL0 6= 0. If δR2 6= 0, there is a collision on the right only with probability 2−k.

However, the probability that δR2 = 0 is 2−k, so the probability of a collision on the right is at
most 2 · 2−k.

In order for the δL3 ⊕ δT = 0 to be true, we must have δf2(L
0 ⊕ f1(R

0)) = δR0 ⊕ δT = δT .
Because δL0 6= 0 and δf1(R

0) = 0, δf2(L
0 ⊕ f1(R

0)) is random. Therefore the equation is true with
probability 2−k. So the probability of the left halves of the output being equal is 2−k.

If the left halves are equal, we know that δf2(R
1) = δT . Recall that δR2 = δf2(R

1), so if δT = 0,
then δR2 = 0 so δR3 ⊕ δT = δL0 6= 0. However, if δT 6= 0 then the probability that δR3 = δT is at
most 2−k. Therefore, the overall probability of a collision in this case is at most 2−2k.

Case 3: δR0 = 0 and δL0 = 0. This case is trivial. Since the message queries are equal,
δR3 = δL3 = 0. However, δT 6= 0, therefore δR3 ⊕ δT = δL3 ⊕ δT 6= 0. Therefore the outputs are
never equal in either half of the output.

The overall probability that two distinct queries will have the same output is at most O(2−2k)
and the probability that the right half of the outputs will be equal is at most O(2−k). Thus, we
have proven Lemma 9. ⊓⊔

So long as the queries the adversary makes do not produce a full collision on F or a multi-collision
on the right half of the output of F , the responses are indistinguishable from random. Therefore, the
queries of the adversary are independent of the outputs of F so long as the required conditions hold.
By Lemma 9, the probability of an overall collision in q ≪ 2k queries is O(q22−2k) which is negligible.
Similarly, the probability of an l-way multicollision on the right is O(ql2−(l−1)k) = O(2k(q2−k)l).
Since q < 2k(1−ǫ) for some ǫ, we know that (q2−k)l < (2−kǫ)l = 2−klǫ. If l ≥ k ≥ 2/ǫ, which will
be true for sufficiently large k, this probability is bounded by 2−k. Thus, F satisfies the necessary
properties with all but a negligible probability, which completes our proof of Theorem 4. ⊓⊔

5 Tweakable Blockciphers With CCA Security

In this section, we study the problem of achieving CCA security. An important observation to
make in constructing a CCA-secure tweakable blockcipher is a distinguishing attack we will call the
four-message attack, which is a type of Boomerang attack [25]. The attack can be performed by
any adversary with access to encryption and decryption oracles, E and D respectively. To perform
the attack, the adversary makes four queries:

1. For an arbitrary message M and tweak T , obtain C = E(M,T ).
2. For an arbitrary tweak T ′ 6= T , obtain C ′ = E(M,T ′).
3. Obtain M ′ = D(C ′, T ).
4. Obtain C ′′ = E(M ′, T ′). If C = C ′′; output 1, otherwise output 0.

A wide class of tweakable blockciphers fall to the four-message attack:
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Theorem 6 (Four Message Attack). Suppose that g1 : {0, 1}n → {0, 1}l is an injective function
that is invertible on its domain, that g2 : {0, 1}t → {0, 1}l is any deterministic function, and that
g3 : {0, 1}l → {0, 1}n is a function such that for all C and T there exists a unique A such that
g3(A ⊕ g2(T )) = C. Then the construction ẼK(M,T ) = g3(g2(T ) ⊕ g1(M)) is not CCA-secure.

Proof. Note that C = g3(g2(T ) ⊕ g1(M)), C ′ = g3(g2(T
′) ⊕ g1(M)). Now if we decrypt C ′ with

tweak T , we obtain M ′ = g−1
1 (g2(T

′) ⊕ g2(T ) ⊕ g1(M)). When we encrypt M ′ under tweak T ′, we
get C ′′ = g3(g2(T

′) ⊕ g1(g
−1
1 (g2(T

′) ⊕ g2(T ) ⊕ g1(M))) = g3(g2(T
′) ⊕ g2(T

′) ⊕ g2(T ) ⊕ g1(M)) =
g3(g2(T ) ⊕ g1(M)) = C. ⊓⊔

Note in particular that if both g1 and g3 are permutations, the conditions are satisfied. This
has immediate consequences:

Corollary 4. For all n,Rm ∈ Λn, both BC(n,Rm) and BC(n,Rm + Rm+1) are not CCA-secure.

Proof. Here, g1 is the permutation described by the m rounds of Luby-Rackoff before the tweak,
g2(T ) = 0k||T for BC(n,Rm) and g2(T ) = T ||T for BC(n,Rm + Rm+1), and g3 is the remaining
n − m rounds. Clearly g1 and g3 are permutations, so the four message attack applies. ⊓⊔

This shows that if we are to be able to add a half-block of tweak to the construction anywhere,
it must be used at multiple locations, and those locations must be separated by at least one round.5

In fact, however, a one round distance will not suffice:

Lemma 10. For all n,Rm ∈ Λn, BC(n,Rm +Rm+2) is not CCA-secure, and BC(n,Rm +Rm+1 +
Rm+2) is also not CCA-secure.

Proof. To simplify, recall that Rm + Rm+2 is equivalent to Rm+0.5 by Lemma 1. Noticing this
makes it clear why this is unlikely to be secure, in light of the previous two corollaries, but we still
have some work to do.

Here, we use the four-message attack again, but this time, suppose g1 and g3 are not permuta-
tions. Rather, if (L,R) is the output of the first m rounds of the Luby-Rackoff permutations, then
g1(M) is the 3k bit response (L,R,R). Notice that g2(T ) is 02k||T , and g3(A,B,C) computes the
remaining rounds, computing Lm+1 = B and Rm+1 = fm(C)⊕A, and continuing from there. Note
that g3(g2(T )⊕ g1(M)) is the output we get from applying BC(n,Rm+0.5) to M with tweak T . For
the BC(n,Rm + Rm+1 + Rm+2) construction, this is just the same as BC(n,Rm+0.5 +Lm), and
change g2 so that it produces T ||0k||T rather than 02k||T . Clearly g1 is injective and invertible, and
g3 has unique inverses of the proper form, which we can find by inverting the tweakable blockcipher
and noting the values in the proper place. Doing so requires the tweak T , but the answer is unique
regardless, or we wouldn’t have unique decryption. By Theorem 6, neither of these constructions
are CCA-secure. ⊓⊔

Theorem 7. For all n < 6 and all compound locations Γ of elements in Λn, BC(n, Γ ) is not
CCA-secure.

Proof. In order to construct a CCA-secure tweakable blockcipher, we must use the tweak at (mini-
mally) Rm and Rm+d for some d ≥ 3. And naturally, m and m+d must be in the range 2, . . . , n−1
since all other locations can be simulated. For n ≤ 5 no such pair of locations exists. ⊓⊔

5 This shows, along with Lemma 10, that an adversary making a CCA attack with XOR injection will be able to
succeed, regardless of the location of the XOR.
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Therefore, the first construction that can be CCA-secure is BC(6,R2 + R5), and is in fact a
secure construction!

Theorem 8. BC(6,R2 + R5) is a CCA-secure tweakable blockcipher.

Proof. We will actually prove a slightly stronger version of this theorem:

Theorem 9. If 2 ≤ m1 ≤ m2 − 3 ≤ n − 4 then BC(n,Rm1 + Rm2) is a CCA-secure tweakable
blockcipher.

Proof. Again, we will modify the proof from Naor and Reingold to prove that our construction is
CCA-secure. First, we define the following.

Definition 4. An ǫ− ALICU2 (“Almost Left-Inverse-Collision-avoiding Universal”) hash function
family is a hash function family with the property that for all x 6= y, the probability that h−1

L (x) =
h−1

L (y) is at most 2−k + ǫ, where h is chosen randomly from the family, and h−1
L denotes the left

half of the output of h−1.

The following theorem is proven by Naor and Reingold:

Theorem 10. If h1 is drawn from an ǫ − ARCU2 family of hash functions and h2 is drawn from
an ǫ − ALICU2 family of hash functions, and E is two rounds Luby-Rackoff with a random round
function, then the pair of oracles (h2 ◦E ◦ h1, h

−1
1 ◦E−1 ◦ h−1

2 ) are indistinguishable from random.

Since we know that 2 rounds of Luby-Rackoff with a random round function followed by a tweak
is ǫ−ARCU2 (by Lemma 5), all we need to prove is that two rounds with a random round function
preceded by a tweak is ǫ − ALICU2.

Lemma 11. The function family defined by h(L,R, T ) = (L ⊕ T ⊕ f(R), R ⊕ f ′(L ⊕ T ⊕ f(R))),
where f and f ′ are random functions, is ǫ − ALICU2, for ǫ = 2−n + 2−2n

Proof. Let (L,R, T ) be inputs to h−1. The outputs will be h−1
L = L ⊕ T ⊕ f(R ⊕ f ′(L)), and

h−1
R = R ⊕ f ′(L). In other words, h−1 is actually just like the h function from Lemma 5, except

with f ′ as the first random function and f as the second one, and with the right and left halves
switched. Thus, h is ǫ − ALICU2 from Lemma 5. ⊓⊔

Once we have this, we merely note that we have the properties needed by the Naor and Reingold
proof to establish that our construction, with random functions in place of pseudorandom ones, is
indistinguishable from a random function.

If we think of h1 as the first m2 − 2 rounds of BC(n,Rm1 +Rm2) for 2 ≤ m1 ≤ m2 − 3, then h1

is π1 ◦h′
1 ◦π2 where π1 and π2 are permutations, and h′

1 is an ǫ−ARCU2 hash function, so h1 is also
ǫ−ARCU2. If we think of h2 as the last n−m2 rounds of BC(n,Rm1 +Rm2) for m2 ≤ n−1, then h2

is π3 ◦h′
2 where h′

2 is an ǫ−ALICU2 hash function, so h2 is also ǫ−ALICU2. Since BC(n,Rm1 +Rm2)
for 2 ≤ m1 ≤ m2 − 3 ≤ n − 4 is equal to h2 ⊕ h1, where h1 is an ǫ − ARCU2 function and h2 is an
ǫ − ALICU2 function, this construction is CCA-secure. ⊓⊔

In particular, 2 ≤ 2 ≤ 5 − 3 ≤ 6 − 4, so BC(6,R2 + R5) is CCA-secure. ⊓⊔
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5.1 CCA Security Against Exponential Attacks

Theorem 11. BC(10,L3 + R3 + L7 + R7) is CCA-secure for q ≪ 2k queries.

Proof. In order to construct a tweakable blockcipher secure against CCA exponential attacks, we
use a theorem of Patarin [19]:

Theorem 12 (Patarin). Let F and F ′ be functions from 2k bits to 2k bits. If F and F ′−1 each
have the property that for q ≪ 2k queries, the probability of having l > O(k) indices such that
Ri1 = Ri2 = Ri3 = ...Ril is negligible, (where Rij is the right half of the j’th output of F or F ′−1),
and on distinct inputs F (and F ′−1) has only a negligible probability of a full collision on its outputs,
then F ′ ◦E ◦F ,(where E is a four-round Luby-Rackoff function), is indistinguishable from random
against chosen-ciphertext attack for q ≪ 2k input queries.

In our construction, the first three rounds, including the tweaks at L3 and R3, form F , and
the last three rounds, including the tweaks at L7 and R7, form F ′. F ′−1 is just the same as F ,
except with distinct round functions. Both F and F ′−1 meet the properties of Theorem 12, as we
have shown in our proof of Lemma 9. BC(10,L3 + R3 + L7 + R7) = F ′ ◦ E ◦ F , and is therefore
CCA-secure against q ≪ 2k queries. ⊓⊔

6 Allowing Longer Tweaks

In our previous results, all tweaks were assumed to be a half block in length. It may be desirable
however, to have tweaks of arbitrary lengths. We can always lengthen a tweak that is less than a
half block, by padding it in a deterministic way. However, increasing the length of a tweak beyond
a half block in length does not follow easily. It may be useful to have constructions that are still
secure with longer tweaks, as one usual way of choosing a tweak is to include data with it that
makes it unique [23]. The longer the tweak, the more data can be included.

In this section, we demonstrate that secure (CPA-secure) tweakable blockciphers exist with
arbitrary tweak length at the cost of one additional round per half-block of tweak, and that the
constructions we give are round-optimal. We then demonstrate in Section 6.2 that CCA-secure
tweakable blockciphers exist with arbitrary tweak length at the cost of two additional rounds per
half-block of tweak. (The optimality of this construction is an open problem.)

First, we prove several lemmas about multiple tweak and compound tweak locations. We adopt
the notation that Λ∗

n is the set of all compound tweak locations over Λn.

Lemma 12. For all n and Γ1, . . . , Γt ∈ Λ∗
n, if BC(n, Γ1, . . . , Γt) is secure, then for all i = 1 to t,

BC(n, Γi) is secure.

Proof. Suppose not; let j ∈ [1, t] be such that BC(n, Γj) is insecure. We can attack BC(n, Γ1, . . . , Γt)
by following the attack on BC(n, Γj), but setting all tweaks other than Tj to 0k. ⊓⊔

We can define Γ =
∑

i∈SΓ
λi, where SΓ is the set of locations used in Γ . If we do so, then clearly

Γ + Γ ′ =
∑

i∈SΓ ∆SΓ ′
λi where ∆ represents symmetric difference. We now show a generalization of

Lemma 12.

Lemma 13. For all n and Γ1, . . . , Γt ∈ Λ∗
n, if BC(n, Γ1, . . . , Γt) is secure, then for all ∅ 6= S ⊂

{1, . . . , t}, BC(n,
∑

i∈S Γi) is secure.
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Proof. If not, let S be such that BC(n,
∑

i∈S Γi) is insecure. We can attack BC(n, Γ1, . . . , Γt) by
following the attack on BC(n,

∑
i∈S Γi) by setting all tweaks Tj for j /∈ S equal to 0, and all tweaks

Ti for i ∈ S equal to each other. ⊓⊔

Lemma 14 (Combinations With The Same Tweak). For all n and λ1, . . . , λr ∈ Λn, BC(n,
λ1 + . . . + λr) is secure, then λi ∈ {R2, . . . ,Rn−2} for some 1 ≤ i ≤ r.

Proof. Since without loss of generality, all λi are in {R2, . . . ,Rn−1}, the only way the condition is
not met is if all λi are Rn−1. If r is even, the construction is equivalent to BC(n, ∅), while if r is
odd, the construction is equivalent to BC(n,Rn−1), both of which are insecure. ⊓⊔

These three lemmas apply for any type of security.

6.1 CPA-Secure Tweakable Blockciphers with Longer Tweaks

Now we prove our result.

Theorem 13. For all n, one can use n−3 half-blocks of tweak but no more. Specifically, BC(n,R2,
. . . ,Rn−2) is secure, but any construction BC(n, Γ1, . . . , Γt) for t > n − 3 is not secure.

Proof. First we prove that no construction with more than n−3 half-blocks of tweak can be secure.
Consider the construction BC(n, Γ1, . . . , Γt). Following from the proof of Lemma 14, we can assume
without loss of generality that each Γi contains each location in Λn at most once. Therefore, we
can think of each Γi as a vector of boolean coefficients ai = (a2,i, . . . an−1,i) where am,i = 1 implies
that Rm is included in Γi. Since there are more than n−3 of these vectors, we can find a nontrivial
linear combination of vectors

∑t
i=1 biai such that the sum is zero everywhere except the last term,

and such that not all bi are 0. Let S be the subset of {1, . . . , t} such that bi = 1 for all i ∈ S.
If the sum

∑t
i=1 biai is 0, we can break the cipher by querying (L,R, 0tk) and (L,R, T ) where T

is a tweak that uses the same half-block tweak T0 for each of the compound locations corresponding
to S, but is 0k for all other tweaks. The outputs will be the same in either case. If the sum is 1, we
can make the same two queries to obtain (Ln

1 , Rn
1 ) and (Ln

2 , Rn
2 ). In this case, Ln

1 ⊕ Ln
2 will be T0.

Next we prove that BC(n,R2,R3, . . . ,Rn−2) is secure. Following our proof of Theorem 3, we
let h be the function that represents the first n− 2 rounds, including all the tweaks. We need only
prove that h generated this way is ǫ−ARCU2. We can prove this by induction, regarding Lemma 5
as the base case. The inductive step will be:

Lemma 15. If h(L,R, T ) denotes a random member of an ǫ − ARCU2 family, where hL and hR

denote the left and right half of h, respectively, then h′(L,R, T, U) = (hR(L,R, T ), hL(L,R, T ) ⊕
f(hR(L,R, T ) ⊕U) is also δ − ARCU2 for randomly chosen function f , for δ = (ǫ + 2−n)(1 − 2−n)

Proof. Let x = (L,R, T, U) and let y = (L′, R′, T ′, U ′) such that x 6= y.
If (L,R, T ) 6= (L′, R′, T ′) then the probability that hR(L,R, T ) = hR(L′, R′, T ′) is at most 2−n+

ǫ. Given that hR(L,R, T ) 6= hR(L′, R′, T ′), the probability that h′
R(x) = h′

R(y) is the probability
that f(hR(L,R, T )) = U ⊕ U ′ ⊕ f(hR(L′, R′, T ′)), which is 2−n. On the other hand, if (L,R, T ) =
(L′, R′, T ′) then hR(x) = hR(y) ⊕ U ⊕ U ′ 6= hR(y).

Thus the probability of a collision is at most (2−n + ǫ) + (1 − (2−n + ǫ))(2−n) = 2−n + δ. ⊓⊔

Thus, the h we are interested in is ǫ−ARCU2, for ǫ < n2−n. By the proof of Naor and Reingold,
BC(n,R2, . . . ,Rn−2) is secure. ⊓⊔
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6.2 CCA-Secure Tweakable Blockciphers with Longer Tweaks

It is not hard to increase the length of tweaks by generalizing the BC(6,R2 + R5) construction.

Theorem 14. For all n, the tweakable blockcipher BC(2n,R2 + R2n−1,R3 + R2n−2, . . . ,Rn−1 +
Rn+2) is a CCA-secure tweakable blockcipher.

Proof. The key point in the proof is that we can still conceptually divide the construction into
three phases: h2 ◦E ◦h1, where this time, h1 represents the first n−1 rounds, including the tweaks,
and h2 represents the last n − 1 rounds, and E represents the middle 2 rounds.

We know that h1 is ǫ−ARCU2 from Lemma 15, and proving that h2 is ǫ−ALICU2 follows from
much the same proof as is given for Lemma 11. ⊓⊔

6.3 Longer Tweaks with Exponential Security

In this section we focus on the problem of constructing a Luby-Rackoff tweakable blockcipher secure
against an unbounded adversary with q ≪ 2k queries. For t half-blocks of tweak, we show how to
construct a Luby-Rackoff based tweakable blockcipher in t+6 rounds that meets this security goal.
The construction is based on a t + 2-round function F designed to meet the properties required by
Patarin.

Theorem 15. Let µi = Li+2 if i ≡ 1 or i ≡ 2 mod 4, let µi = Li+2 + L1 if i ≡ 3 mod 4, and
µi = Li+2 + L2 if i ≡ 0 mod 4. Let µ′

i = µi + Ri if i 6≡ 2 mod 4, and µ′
i = µi + Ri + L1 otherwise.

Then let F be BC(n + 2, µ1, . . . , µn−1, µ
′
n). F is a function such that for q ≪ 2k queries, the

probability of having l = O(k) indices such that Ri1 = Ri2 = Ri3 = ...Ril is negligible, (where Rij is
the right half of the j’th output of F ), and on q distinct inputs F has only a negligible probability
of a full collision on its outputs.

Proof. To clarify, the construction of F for all i ≤ t, uses tweak Ti at Li+2, and also at the following
locations:

– If i = t, then at Rt+2,
– If i ≡ 3 mod 4, then at L1.
– If i ≡ 0 mod 4, then at L2.
– If i = t and i ≡ 2 mod 4, then at L1.

Before we give the proof, it will be helpful to explain a little of the intuition behind our con-
struction. The basic idea is that each tweak is included at its own round; they are included on the
left only for simplicity of presentation: apart from the tweak included at Lt+2, all tweaks could be
included on the right instead.

Tweaks included at locations involving only L1 and L2 allow for a full collision attack, as we
explain in Section 6.4, so those locations are not useful as the sole location of a tweak. However, if
two tweaks were to appear at Li and Li+2, respectively, we could set them equal to each other; this
would be equivalent to having one fewer tweak, but with one tweak at Ri+1.5, which leads to the
attack described in Lemma 6. So, to avoid that kind of attack, we use L1 and L2 to ensure that
no two tweaks are used only at two individual locations that are two apart. We include every other
odd tweak (starting with T3) at L1 and every other even tweak (starting with T4) at L2.

With those locations, F would be successful at preventing full collisions, but large multi-
collisions on the right could be forced: simply put, the last tweak may not affect the right half
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of the output. Therefore, we include Tt at Rt+2, so that every block of tweak affects the right half
of the output. However, this leads to an attack if we aren’t careful: if Tt is used at Rt+2 alone, and
Tt−1 is used at Lt+1 alone, they effectively occur at the same spot. Our solution is to force one of
the two to appear at either L1 or L2 while the other does not: we do this by adjusting the only
case that is a problem, namely when t ≡ 2 mod 4. ⊓⊔

We now prove that the F we have given above has the properties we need. Define T0 to be
⊕i≡0 mod 4Ti. If t ≡ 2 mod 4 then define T−1 to be Tt ⊕i≡3 mod 4 Ti; otherwise, define T−1 to be

⊕i≡3 mod 4Ti. Define Tev = ⊕
⌊t/2⌋
i=0 T2i, and define Tod = ⊕

⌊(t+1)/2⌋
i=−1 T2i+1. Define Tte to be Tt if t is

even, and 0 otherwise; similarly, define Tto to be Tt if t is odd, and 0 otherwise. We are also using the
δ notation where δRi = Ri ⊕ R′i. δfi(R

i) = fi(R
i) ⊕ fi(R

′i) and δLi and δT i are defined similarly.
First, we focus on the probability of a full collision on two distinct queries.

Lemma 16. On any pair of distinct inputs, the probability that F will produce the same output on
each is O(2−2k).

Proof. In order for two queries to yield a collision of F , we must have the following two equations.6

0 = δR0 ⊕ δTte ⊕ δTod ⊕ δf2(R
1) ⊕ δf4(R

3) ⊕ . . . ⊕ δf2⌊t/2⌋+2(R
2⌊t/2⌋+1)

0 = δL0 ⊕ δTto ⊕ δTev ⊕ δf1(R
0) ⊕ δf3(R

2) ⊕ . . . ⊕ δf2⌊(t+1)/2⌋+1(R
2⌊(t+1)/2⌋)

Note that Ri is involved in one of the two equations above for every 0 ≤ i ≤ t − 1; Ri for odd
i are involved in the first equation, while Ri for even i are involved in the second equation. We
consider three cases.

Case i: There is an even i < t + 2 such that δRi 6= 0, and there is an odd j < t + 2 such that
δRj 6= 0. In this case, the probability of both equations holding is 2−2k.

Case ii: For all i < t+ 2, δRi = 0. If this is the case, it is easy to see that δR0 = 0, and δL0 = 0
(since δR1 = δf1(R

0) ⊕ δL0). Furthermore, for each 1 ≤ i ≤ t + 1, 0 = δRi+1 = δfi+1(R
i) ⊕ δLi =

0 ⊕ δLi = δRi−1 ⊕ δTi−2 = δTi−2. Therefore, all the tweak values must also remain constant up to
Tt−1. But if both L0 and R0 are the same, and all the tweak values up to Tt−1 are the same, then
the difference on the right of the output will be the difference in Tt, so if there is a collision, Tt = 0.
Therefore, both queries will be the same. So the probability of a collision in this case is 1, but the
probability of two distinct queries leading to this case is 0.

Case iii: Either for all odd i < t + 2 or for all even i < t + 2, δRi = 0, but there is some j < t
such that δRj 6= 0. This covers all remaining cases, but this case is one to worry about. A priori,
one of the two equations may be true with probability 1, while the other is true with probability
2−k. However, as we will see, either one of a small number of unlikely events occurs, or an overall
collision cannot occur unless the two inputs were identical.

Lemma 17. In two distinct queries to F for which either for all odd i < t + 2 or for all even
i < t + 2, δRi = 0, the probability of a full collision on F is O(2−2k).

Proof. Let j be such that δRj 6= 0 but for all i > j of the same parity, δRi = 0. Suppose, without
loss of generality, that j is even; the case when j is odd is very similar.

6 Recall our notation: if X represents an internal value computed during a query, then δX denotes the difference in
X values between two specific queries.
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Since for all odd i < t + 2, δRi = 0, we learn that if i ≥ 2 is odd, then

0 = δRi

= δfi(R
i−1) ⊕ δLi−1

= δfi(R
i−1) ⊕ δTi−3 ⊕ δRi−2

= δfi(R
i−1) ⊕ δTi−3

And therefore, δfi(R
i−1) = δTi−3. If i − 1 < j, then for this equation to be satisfied, we either

must have a rare event (that δRi−1 6= 0 but the random outputs happen to have a pre-specified
difference), or δRi−1 = 0. If i− 1 > j, then by our choice of j, δRi−1 = 0. Therefore, all for all even
i − 1 other than j or 0, δRi−1 = 0, or two rare events must occur. We also know that δR0 = 0,
because

0 = δR1

= δf1(R
0) ⊕ δL0,

so δf1(R
0) = δL0. Again, this can only occur without a rare event if δR0 = 0.

If none of these rare events occur, then δL0 = 0, and δTi−3 = 0 for all odd 2 ≤ i < t + 2 other
than j − 2. Furthermore, if i is even such that δRi = 0 and δRi−2 = 0, then we can conclude that
δTi−3 = δfi(R

i−1) ⊕ δRi−2 = 0, by the above deduction, and because i − 1 is odd.
Thus we have learned that for most i, δTi = 0. The exceptions are for i ∈ {j−3, j−2, j−1, t−1, t}.

For those, we still know something:

– Since δRj = δfj(R
j−1) ⊕ δRj−2 ⊕ δTj−3, and δRj−1 = δRj−2 = 0, we know δTj−3 = δRj .

– Since 0 = δRj+2 = δfj+2(R
j+1) ⊕ δRj ⊕ δTj−1, we know δTj−1 = δRj .

– Similarly, we know that 0 = δRj+1 = δfj+1(R
j) ⊕ δRj−1 ⊕ δTj−2 so δTj−2 = δfj+1(R

j).

We also know that δL0 = 0 since δL0 = δR1 ⊕ δf1(R
0) (except if j = 0, which we will handle

as a special case.)
Note that because the two output halves are equal, this lets us conclude that δTt = 0 and that

δTt−1 = 0. Recall that:

0 = δR0 ⊕ δTte ⊕ δTod ⊕ δf2(R
1) ⊕ δf4(R

3) ⊕ . . . ⊕ δf2⌊t/2⌋+2(R
2⌊t/2⌋+1)

0 = δL0 ⊕ δTto ⊕ δTev ⊕ δf1(R
0) ⊕ δf3(R

2) ⊕ . . . ⊕ δf2⌊(t+1)/2⌋+1(R
2⌊(t+1)/2⌋)

In one of these two equations, both δTt and δTt−1 appear (the one for which Tte or Tto is
nonzero); in the other, only δTt does. All other terms come out to zero; in one equation, only δTj−3

and δTj−1 are not guaranteed to be 0, but these are equal to each other. In the other, δTj−2 is not
guaranteed to be 0, and neither is fj+1(R

j), which appears in the same equation, but again, these
two are equal. Thus, from the equation in which Tt appears alone, we conclude δTt = 0, and from
the other one we then conclude that δTt−1 = 0.

If we assume that j ≥ 4 then we know that both δT0 = 0 and δT−1 = 0. One of those two
terms includes one of Tj−3 and Tj−1, but not both, and all other tweaks included must remain
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unchanged. Therefore, both δTj−3 and δTj−1 are 0. But we know that 0 6= δRj = δTj−1, so this is
a contradiction.

If j = 3, then δT0 = δT2, but all other even-numbered tweaks are unchanged. Since T2 is not
part of T0, we note that all the other terms in T0 are known to have no difference between the
two queries. Therefore, δT0 = 0 and so δT2 = 0, which then implies that δR3 = 0, which is a
contradiction.

If j = 2, then δT−1 = δT1, but all other odd-numbered tweaks are unchanged. Since T1 is not
part of T−1, we can conclude that δT−1 = 0, which is a contradiction.

If j = 1, then we conclude that δL0 = δT0, via a similar deduction. Because all even-numbered
tweaks are 0, we get δT0 = 0 = δL0. Since δR0 = 0, we know that δR1 = δL0 ⊕ δf1(R

0) = 0, which
is a contradiction.

If j = 0, we know that δT = 0 for all i. Since 0 = δR2 = δf2(R
1) ⊕ δR0 ⊕ δT−1 and δT−1 =

δR1 = 0, we get that δR0 = 0, which is a contradiction.
Therefore, if two distinct queries are such that either for all odd i < t+2 or for all even i < t+2,

δRi = 0, but there is some j < t + 2 such that δRj 6= 0 then at least two rare events must occur
in order for an overall collision to occur: therefore, the probability of a collision in this case is at
most O(2−2k). This completes the proof of Lemma 17. ⊓⊔

Since in cases i and iii, the probability of a collision is at most O(2−2k), and the probability of
case ii is 0, the overall probability of a full collision is at most O(2−2k). ⊓⊔

Next, we prove that for any pair of distinct queries, the probability of a collision on the right is
at most O(2−k).

Lemma 18. On any pair of distinct inputs, the probability that F will produce the same output on
the right in each is O(2−k).

Proof. Assume without loss of generality that t is odd; if not, the proof is similar. If t is odd, then
whenever two queries lead to a collision on the right, we have

δL0 ⊕ δTt ⊕ δTev ⊕ δf1(R
0) ⊕ . . . ⊕ δft+2(R

t+1) = 0

If for some even i < t + 2 we have δRi 6= 0, then the probability of a collision occurring is 2−k.

Let us assume, then, that for all even i < t + 2, we have δRi = 0. If 2 ≤ i < t + 2 is even, then
0 = δRi = δfi(R

i−1) ⊕ δLi−1 ⊕ δTi−3 = δfi(R
i−1) ⊕ δTi−3 ⊕ δRi−2, so δfi(R

i−1) = δTi−3, since
δRi−2 = 0. Thus, either δRi−1 = 0 or this equation is true with probability 2−k. Let us assume
that in all such cases, δRi−1 = 0; if not, the overall probability of a collision is at most O(2−k).

If δRi−1 = 0 then δfi(R
i−1) = 0, so δTi−3 = 0. Thus we know that all the odd-numbered

tweaks up to Tt−2 do not change between the two queries, including the value T0. But similarly, if
1 ≤ i < t + 1 is odd then δTi−3 = 0.

If a collision occurs, we also have that δTt = δRt+2 = δft(R
t+1) ⊕ δRt ⊕ δTt−1 = δTt−1.

We have been able to deduce that δT = 0 for −1 ≤ i ≤ t − 2. We have included Tt in T0 and
T−1 in such a way that regardless of t mod 4, Tt is involved in one that Tt−1 is not involved in,
or vice-versa. Since δT0 = δT−1 = 1, this allows us to conclude that both δTt and δTt−1 are 0.
Therefore, at least one “coincidence” must occur in order to produce a collision on the right half of
the output, if the two queries are distinct. Therefore, the probability of such a collision is at most
O(2−k). ⊓⊔
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Proof. The proof follows from Lemma 16 and Lemma 18. We can once again apply the principle of
deferred decisions, and furthermore, q ≪ 2k queries will not allow a non-negligible probability for
the failure of either condition. The reasoning is parallel to that given in the proof of Theorem 4. ⊓⊔

This now allows us to prove two quick theorems:

Theorem 16. E ◦F is a tweakable blockcipher with t tweaks that is secure against any unbounded
adversary with at most q ≪ 2k queries, where E is a four-round Luby-Rackoff cipher.

Proof. This follows from Theorem 15 and Theorem 5. Note that E ◦ F requires a total of t + 6
rounds.

Theorem 17. F ′ ◦ E ◦ F is a tweakable blockcipher with t tweaks that is CCA-secure against any
unbounded adversary with at most q ≪ 2k queries, where E is a four-round Luby-Rackoff cipher,
F ′ is the inverse of the F described above, with new independent round functions.

Proof. This follows from Theorem 15 and Theorem 12. Here, F ′ ◦E ◦F requires 2(t+2)+4 = 2t+8
rounds.

6.4 Minimality of F

Here, we show that the F we have given is minimal in terms of rounds in order to meet the properties
required by 5.

Lemma 19. If F is a Luby-Rackoff based blockcipher incorporating t tweaks, and F has n <
t + 2 rounds, then certain pairs of queries can lead to an overall collision on the output of F with
probability O(2−k).

Proof. Without loss of generality, the location for each tweak can be expressed in terms of com-
pound locations based on the locations L1, . . . ,Ln. (Again, L0 and R0 can be simulated away). Let
Γ1, . . . , Γt be the compound locations for T1, . . . , Tt, respectively. Let Γ ′

i be defined as the portion
of Γ made up of only L3, . . . ,Ln, for each i.

Since n < t + 2, there are fewer than t locations in L3, . . . ,Ln. Therefore, there will be some
linear dependency among the Γ ′ values, that is, there will be some i such that for some S ⊂ {1, ...n}
such that

0 =
∑

j∈S

Γ ′
j.

Therefore, by Lemma 13, such a construction is insecure; the compound location
∑

j∈S Γj will
consist of only locations from L1 and L2.

Note that L1 and L2 on their own can be thought of as equivalent to L1 + R0 and L2 + L0,
respectively. Those constructions fall to the attack of Lemma 6. L1 + L2 can be thought of as
equivalent to L0 +L1 +L2 which is the same as R1.5 +R2, which falls to the attack of Corollary 2.

⊓⊔
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Security Level Blockciphers Prior TBCs [13] This paper

CPA with polynomial queries 3 rounds [14] 3 + 2 rounds/tweak 3 + 1 round/tweak
CPA with ≪ 2k queries 5 rounds [19] 5 + 2 rounds/tweak 6 + 1 round/tweak
CCA with polynomial queries 4 rounds [14] 4 + 2 rounds/tweak 4 + 2 rounds/tweak
CCA with ≪ 2k queries 5 rounds [19] 5 + 2 rounds/tweak 8 + 2 rounds/tweak

Table 2. Number of rounds required for each construction. The prior tweakable construction we consider is

ẼK,h(M, T ) = h(T ) ⊕ EK(M ⊕ h(T )), where h is an ǫ−AXU2 hash function. Subsequent tweakable blockcipher
constructions are conceptually similar. The natural way to realize the hash function would be to simply use two
random functions on the tweak, one for each half of the data stream. Although Liskov et al. do not explicitly consider
arbitrary tweak length, their construction and proof can be easily extended to do so.

7 Conclusion

Table 2 summarizes our constructions, compared to regular blockciphers and the second construc-
tion of Liskov et al. [13]. This table shows that our results are better for CPA constructions,
equivalent for CCA against polynomial attacks, and worse for CCA against exponential ones.

We have presented a systematic study of issues relating to directly tweaking the large class
of Luby-Rackoff blockciphers. Specifically, we have given constructions for both CPA and CCA
security, and against both polynomial and exponential attacks, and have considered the problem of
incorporating long tweaks. We have proven some of our constructions to be round-optimal in our
model.

We conclude with some open problems: (1) incorporating tweaks securely into other blockcipher
structures, (2) direct, specific design of tweakable blockciphers (Luby-Rackoff or otherwise) and (3)
improving the provable level of security for tweakable blockciphers in general.

Acknowledgments. We thank Ronald L. Rivest and several anonymous reviewers for their helpful
comments.
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