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Abstract

We study the communication complexity of single-server Private Information Retrieval (PIR) protocols
that are based on fundamental cryptographic primitives in ablack-box manner. In this setting, we establish
a tight lower bound on the number of bits communicated by the server in any polynomially-preserving
construction that relies on trapdoor permutations. More specifically, our main result states that in such
constructionsΩ(n) bits must be communicated by the server, wheren is the size of the server’s database,
and this improves theΩ(n/ logn) lower bound due to Haitner, Hoch, Reingold and Segev (FOCS ’07).
Therefore, in the setting under consideration, the naive solution in which the user downloads the entire
database turns out to be optimal up to constant multiplicative factors. We note that the lower bound
we establish holds for the most generic form of trapdoor permutations, including in particular enhanced
trapdoor permutations.

Technically speaking, this paper consists of two main contributions from which our lower bound is
obtained. First, we derive a tight lower bound on the number of bits communicated by the sender during
the commit stage of any black-box construction of a statistically-hiding bit-commitment scheme from a
family of trapdoor permutations. This lower bound asymptotically matches the upper bound provided by
the scheme of Naor, Ostrovsky, Venkatesan and Yung (CRYPTO ’92). Second, we improve the efficiency
of the reduction of statistically-hiding commitment schemes to low-communication single-server PIR, due
to Beimel, Ishai, Kushilevitz and Malkin (STOC ’99). In particular, we present a reduction that essentially
preserves the communication complexity of the underlying single-server PIR protocol.
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1 Introduction

A single-server Private Information Retrieval (PIR) scheme is a protocol between a server and a user. The
server holds a databasex ∈ {0,1}n and the user holds an indexi ∈ [n] to an entry of the database. Informally,
the user wishes to retrieve theith entry of the database, without revealing the indexi to the server. The notion
of PIR was introduced by Chor, Goldreich, Kushilevitz and Sudan [4] to model applications that enable
users to query public databases without revealing any information on the specific data that the users wish to
retrieve. Chor et al. showed that in the information-theoretic setting any single-server PIR protocol has the
server communicating at leastn bits. Therefore in this setting the naive solution in which the user downloads
the entire database is optimal.

Kushilevitz and Ostrovsky [26] were the first to construct a non-trivial single-server PIR protocolrelying
on computational assumptions. Their result initiated a sequence of papers showing that there exist single-
server PIR protocols with poly-logarithmic communication complexity based onspecificnumber-theoretic
assumptions (see, for example, [2, 3, 12, 26, 28, 41], and a recent survey by Ostrovsky and Skeith [35]). The
only non-trivial construction based ongeneralcomputational assumptions is due to Kushilevitz and Ostrovsky
[27], and is based on enhanced trapdoor permutations. In their construction, however, the server is required
to communicaten− o(n) bits to the user.

Motivated by this ever-growing line of work, we study the communication complexity of single-server
PIR protocols that are based on fundamental primitives. We establish a linear lower bound on the number
of bits communicated by the server in constructions that rely on enhanced trapdoor permutations in a black-
box manner. Therefore, in the setting under consideration in this paper, the naive solution in which the user
downloads the entire database turns out to be optimal up to constant multiplicative factors. In the following
paragraphs, we briefly describe the setting in which our lower bound is proved (a more formal description is
provided in Section2).

Black-box reductions. As previously mentioned, under widely believed specific number-theoretic assump-
tions, there are very efficient single-server PIR protocols. Therefore, if any of these assumptions holds, the
existence of trapdoor permutations implies the existence of efficient single-server PIR protocols in a trivial
sense. Faced with similar difficulties, Impagliazzo and Rudich [22] presented a paradigm for proving im-
possibility results under a restricted, yet very natural and important, subclass of reductions calledblack-box
reductions. Informally, a black-box reduction of a primitiveP to a primitive Q is a construction ofP out
of Q that ignores the internal structure of the implementation ofQ and uses it as a “subroutine” (i.e., as a
black-box). In addition, in the case of fully-black-box reductions (see, for example, [36]), the proof of se-
curity (showing that an adversary that breaks the implementation ofP implies an adversary that breaks the
implementation ofQ), is black-box as well, that is, the internal structure of the adversary that breaks the
implementation ofP is ignored.

The strength of cryptographic reductions. Luby [30] provides a classification of the strength of crypto-
graphic reductions into three classes: linearly-preserving, polynomially-preserving and weakly-preserving.
In our setting, this classification comes into play when comparing the size of the server’s database and the do-
main of the trapdoor permutations. Very informally, a reduction of single-server PIR for ann-bit database to a
family of trapdoor permutations is linearly-preserving or polynomially-preserving if it uses trapdoor permuta-
tions overΩ(n) bits. Such a reduction is weakly-preserving if it uses trapdoor permutations overΩ(nǫ) bits for
some constant 0< ǫ ≤ 1. In linearly-preserving and polynomially-preserving reductions we are guaranteed
that breaking the constructed primitive is essentially as hard as breaking theunderlying primitive. However,
in weakly-preserving reductions, we are only guaranteed that breaking the constructed primitive is as hard as
breaking the underlying primitive for polynomially smaller security parameters.We refer the reader to [30]
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for a more comprehensive and complete discussion.

1.1 Related Work

Single-server PIR is one of the fundamental primitives in the foundations ofcryptography. For example, non-
trivial single-server PIR was shown to imply the existence of Oblivious Transfer protocols [5], and 2-move
low-communication single-server PIR was shown to imply collision-resistant hash functions [23]. Single-
server PIR was also shown to be tightly related to several other aspects ofcryptography and complexity
theory (see, for example, [6, 20, 24]). We note that it is far beyond the scope of this paper to present an
exhaustive overview of the ever-growing line of work on single-server PIR, and we refer the reader to the
recent survey of Ostrovsky and Skeith [35] for a more comprehensive discussion.

In the context of black-box reductions, Impagliazzo and Rudich [22] showed that there are no black-
box reductions of key-agrement protocols to one-way permutations, andsubstantial additional work in this
line followed (see, for example, [7, 13, 14, 37, 39]). Kim, Simon and Tetali [25] initiated a new line of
impossibility results, by providing a lower bound on theefficiencyof black-box reductions (rather than on their
feasibility). They proved a lower bound on the efficiency, in terms of the number of calls to the underlying
primitive, of any black-box reduction of universal one-way hash functions to one-way permutations. This
result was later improved, to match the known upper bound, by Gennaro and Trevisan [11], which together
with Gennaro et al. [8, 9] provided tight lower bounds on the efficiency of several other black-box reductions.
Building upon the technique developed by [11], Horvitz and Katz [21] provided lower bounds on the efficiency
of black-box reductions of statistically-hiding and computationally-binding commitment schemes to one-way
permutations. In the above results the measure of efficiency under consideration is the number of calls to the
underlying primitives.

Di Crescenzo, Malkin and Ostrovsky [5] showed that any single-server PIR protocol in which the server
communicates at mostn− 1 bits (wheren is the size of the server’s database) can be transformed in a fully-
black-box manner to an Oblivious Transfer protocol. Gennaro, Lindelland Malkin [10] (refining Gertner
et al. [13]) ruled out any black-box reduction of Oblivious Transfer to plain (i.e.,non-enhanced) trapdoor
permutations. The combination of these two results yields that there are no non-trivial black-box constructions
of single-server PIR from non-enhanced trapdoor permutations. We note that although in this paper we rule
out a more restricted class of constructions (that is, the class of fully-black-box constructions), our result holds
for the most generic form of trapdoor permutations, including in particular enhanced trapdoor permutations.

Very recently, Haitner et al. [18], improving upon the work of Wee [42], proved that any polynomially-
preserving fully-black-box reduction of a statistically-hiding bit-commitment scheme to trapdoor permuta-
tions hasΩ(n/ logn) communication rounds (wheren is the security parameter). As a corollary, they showed
that any polynomially-preserving fully-black-box reduction of single-server PIR to trapdoor permutations has
Ω(n/ logn) communication rounds, wheren is the size of the server’s database. In particular, the server is
required to communicateΩ(n/ logn) bits to the user. Haitner et al. also established similar lower bounds on
the communication complexity of Oblivious Transfer that guarantees statisticalsecurity for one of the parties
and for Interactive Hashing.

In a slightly different setting, Ostrovsky and Skeith [34] proved a lower bound on the communication
complexity of single-server PIR protocols with certain algebraic properties. For a class of PIR protocols,
referred to asabelian group algebraic PIR protocols, with user-side communication complexityg(n) and
server-side communication complexityh(n) they proved thatg(n)h(n) = Ω(n).

1.2 Our Results

We study the class of black-box constructions of single-server PIR from trapdoor permutations, and establish
a tight lower bound on the number of bits communicated by the server in such constructions. Our main result
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is the following:

Main Theorem (Informal). In any polynomially-preserving fully-black-box construction of a single-server
PIR protocol from trapdoor permutations the server communicatesΩ(n) bits, where n is the size of the server’s
database.

As mentioned above, the combination of the results of Di Crescenzo et al. [5] and of Gennaro et al. [10]
rules out the more general class of black-box reductions of single-server PIR withn−1 bits of communication
to trapdoor permutations. This result, however, does not apply to enhanced trapdoor permutations. We note
that our lower bound holds for the most generic form of trapdoor permutations, and in particular for enhanced
trapdoor permutations.1

In addition, we note that our lower bound holds only for constructions which are polynomially-preserving.
The construction of Kushilevitz and Ostrovsky [27], which is based on enhanced trapdoor permutations in a
fully-black-box manner and in which the server communicatesn− o(n) bits, is only weakly-preserving (i.e.,
it is significantly easier to break their protocol than to break the security of the underlying family of trapdoor
permutations2). Thus, the question of whether a tight linear lower bound can be established for weakly-
preserving constructions as well remains open.

The main technical contributions. This paper consists of two main contributions from which our lower
bound is immediately obtained. First, we derive a tight lower bound on the communication complexity of
black-box constructions of statistically-hiding bit-commitment schemes from trapdoor permutations. Very re-
cently, Haitner et al. [18] proved that any polynomially-preserving fully-black-box constructionof statistically-
hiding bit-commitment scheme from a family of trapdoor permutations hasΩ(n/ logn) communication rounds,
wheren is the security parameter of the scheme. In particular, this implies a lower boundon the number of bits
communicated by the sender. In this paper we manage to improve their lower bound and prove the following
theorem:

Theorem (Informal) 1.1. In any polynomially-preserving fully-black-box construction of a statistically-
hiding bit-commitment scheme from a family of trapdoor permutations the sender communicatesΩ(n) bits
during the commit stage, where n is the security parameter of the scheme.

This lower bound asymptotically matches the upper bound given by the statistically-hiding commitment
scheme of Naor et al. [31].

In addition, we improve the efficiency of the reduction of statistically-hiding commitment schemes to
single-server PIR, presented by Beimel et al. [1]. Our reduction essentially uses the reduction of Beimel et
al. instantiated with a better extractor, which enables us to preserve the communication complexity of the
underlying single-server PIR protocol. As stating this result turns out to involve subtle technical details, here
we only state a very informal statement:

Theorem (Informal) 1.2. There is a linearly-preserving fully-black-box reduction of statistically-hiding com-
mitment schemes to low-communication single-server PIR, which essentially preserves the communication
complexity of the underlying single-server PIR protocol.

1Note that enhanced trapdoor permutations are, seemingly, stronger than plain trapdoor permutations. Therefore, although our
result is weaker in terms of the class of reductions and the bound on the communication complexity, it provides the first evidence
that enhanced trapdoor permutations are not sufficient to construct single-server PIR with sublinear communication (at least from a
black-box perspective).

2Though the security guarantees of the two primitives are still polynomially-related.
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1.3 Paper Organization

In Section2 we briefly present the notations and formal definitions used in this paper. In Section3 we
prove our tight lower bound on the number of bits communicated by the senderduring the commit stage of
statistically-hiding commitment schemes. In Section4 we describe an improved reduction of statistically-
hiding commitment scheme to low-communication single-server PIR. Finally, in Section 5 we establish the
lower bound for single-server PIR by combining our main technical contributions.

2 Preliminaries

We denote byΠn the set of all permutations over{0,1}n. For an integern, we denote byUn the uniform
distribution over the set{0,1}n. For a finite setX, we denote byx← X the experiment of choosing an element
of X according to the uniform distribution. Similarly, for a distributionD over a setX, we denote byx← D
the experiment of choosing an element ofX according to the distributionD. For a distributionD we denote
by supp(D) set of elements having non-zero probability underD. The min-entropy ofD is defined as:

H∞(D) = min
x∈supp(D)

(
log

1
PrD [x]

)
.

The statistical distance between two distributionsX andY overΩ is denoted SD(X,Y), and defined as

SD(X,Y) =
1
2

∑

ω∈Ω
|PrX [ω] − PrY [ω]| .

Definition 2.1. A function E : {0,1}n × {0,1}d → {0,1}m is a (k, ǫ)-extractor if for every distributionX over
{0,1}n with H∞(X) ≥ k the distributionE(X,Ud) is ǫ-close to uniform.E is a strong (k, ǫ)-extractor if the
functionE′(x, y) = y ◦ E(x, y) is a (k, ǫ)-extractor (where◦ denotes concatenation).

In our construction of a statistically-hiding commitment scheme from single-server PIR we will be using
the following explicit construction of strong extractors, which is obtained asa corollary of [40, Corollary 3.4].

Proposition 2.2. For anyk ∈ ω(log(n)), there exists an explicit strong (k,21−k)-extractor EXT : {0,1}n ×
{0,1}3k → {0,1}k/2.

The following standard fact (see, for example [38, Fact 2.6]) will be useful for us in analyzing statistically-
close distributions.

Fact 2.3. If X and Y are two distributions such thatSD(X,Y) < ǫ, then with probability at least1− 2
√
ǫ over

x← X it holds that
(
1−
√
ǫ
)
· Pr[X = x] < Pr[Y = x] <

(
1+
√
ǫ
)
· Pr[X = x] .

2.1 Trapdoor Permutations

We briefly present the notion of trapdoor permutations, and refer the reader to [15] for a more comprehensive
discussion. A collection of trapdoor permutations is represented by a tripletof the formτ =

(
G, F, F−1

)
.

Informally, G corresponds to a key generation procedure, which is queried on a string td (intended as the
“trapdoor”) and produces a corresponding public keypk. The procedureF is the actual collection of permu-
tations, which is queried on a public keypk and an inputx. Finally, the procedureF−1 is the inverse ofF:
If G(td) = pk andF(pk, x) = y, thenF−1(td, y) = x. In this paper, since we are concerned with providing a
lower bound, we do not consider the most general definition of a collectionof trapdoor permutations. Instead,
we denote byTn the set of all tripletsτn =

(
Gn, Fn, F−1

n

)
of the following form:
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1. Gn ∈ Πn.

2. Fn : {0,1}n × {0,1}n→ {0,1}n is a function such thatFn(pk, ·) ∈ Πn for everypk ∈ {0,1}n.

3. F−1
n : {0,1}n×{0,1}n→ {0,1}n is a function such thatF−1

n (td, y) returns the uniquex ∈ {0,1}n for which
Fn(Gn(td), x) = y.

Our lower bound proof is based on analyzing random instances of suchcollections. A uniformly dis-
tributedτn ∈ Tn can be chosen as follows:Gn is chosen uniformly at random fromΠn, and for eachpk ∈ {0,1}n
a permutationFn(pk, ·) is chosen uniformly and independently at random fromΠn.

Definition 2.4. A family τ =
{
τn =

(
Gn, Fn, F−1

n

)}∞
n=1

of trapdoor permutations iss(n)-hard if for every prob-
abilistic Turing-machineA that runs in times(n), and for all sufficiently largen,

Pr
[
Aτ(1n,Gn(td), y) = F−1

n (td, y)
]
≤ 1

s(n)
,

where the probability is taken uniformly over all the possible choices oftd ∈ {0,1}n andy ∈ {0,1}n, and over
all the possible outcomes of the internal coin tosses ofA.

Definition2.4refers to the difficulty of inverting a random permutationF(pk, ·) on a uniformly distributed
imagey, when given onlypk = G(td) andy. Some applications, however, require enhanced hardness con-
ditions. For example, it may be required (cf. [16, Appendix C]) that it is hard to invertF(pk, ·) on y even
given the random coins used in the generation ofy. Note that our formulation captures such hardness con-
dition as well and therefore the impossibility results proved in this paper hold also for enhanced trapdoor
permutations.3

2.2 Single-Server Private Information Retrieval

A single-server Private Information Retrieval (PIR) scheme is a protocol between a server and a user. The
server holds a databasex ∈ {0,1}n and the user holds an indexi ∈ [n] to an entry of the database. Very
informally, the user wishes to retrieve theith entry of the database, without revealing the indexi to the server.
More formally, a single-server PIR scheme is defined via a pair of probabilistic polynomial-time Turing-
machines (S,U) such that:

• S receives as input a stringx ∈ {0,1}n. Following its interaction it does not have any output.

• U receives as input an indexi ∈ [n]. Following its interaction it outputs a valueb ∈ {0,1,⊥}.

Denote byb ← 〈S(x),U(i)〉 the experiment in whichS andU interact (using the given inputs and
uniformly chosen random coins), and thenU outputs the valueb. It is required that there exists a negligible
functionν(n), such that for all sufficiently largen, and for every stringx = x1 ◦ · · · ◦ xn ∈ {0,1}n, it holds that
xi ← 〈S(x),U(i)〉 with probability at least 1− ν(n) over the random coins of bothS andR.

In order to define the security properties of such schemes, we first introduce the following notation. Given
a single-server PIR scheme (S,U) and a Turing-machineS∗ (a malicious server), we denote byview〈S∗,U(i)〉(n)
the distribution on the view ofS∗ when interacting withU(i) wherei ∈ [n]. This view consists of its random
coins and of the sequence of messages it receives fromU, where the distribution is taken over the random
coins of bothS∗ andU.

3A different enhancement, used by [17], requires the permutations’ domain to be polynomially dense in{0,1}n. Clearly, our
impossibility result holds for such an enhancement as well.
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Definition 2.5. A single-server PIR scheme (S,U) is secure if for every probabilistic polynomial-time Turing-
machinesS∗ andD, and for every two sequences of indices{in}∞i=1 and{ jn}∞i=1 wherein, jn ∈ [n] for everyn,
it holds that

∣∣∣∣Pr
[
v← view〈S∗,U(in)〉(n) : D(v) = 1

]
− Pr

[
v← view〈S∗,U( jn)〉(n) : D(v) = 1

]∣∣∣∣ ≤ ν(n) ,

for some negligible functionν(n) and for all sufficiently largen.

2.3 Commitment Schemes

A commitment scheme is a two-stage interactive protocol between a sender anda receiver. Informally, after
the first stage of the protocol, which is referred to as thecommit stage, the sender is bound to at most one
value, not yet revealed to the receiver. In the second stage, which is referred to as thereveal stage, the sender
reveals its committed value to the receiver. More formally, a commitment scheme is defined via a triplet of
probabilistic polynomial-time Turing-machines (S,R,V) such that:

• S receives as input the security parameter 1n and a stringx ∈ {0,1}k. Following its interaction, it outputs
some informationdecom (the decommitment).

• R receives as input the security parameter 1n. Following its interaction, it outputs a state information
com (the commitment).

• V (acting as the receiver in the reveal stage4) receives as input the security parameter 1n, a commitment
com and a decommitmentdecom. It outputs either a stringx′ ∈ {0,1}k or⊥.

Denote by (decom|com) ← 〈S(1n, x),R(1n)〉 the experiment in whichS andR interact (using the given
inputs and uniformly chosen random coins), and thenS outputsdecom while R outputscom. It is required
that for alln, every stringx ∈ {0,1}k, and every pair (decom|com) that may be output by〈S(1n, x),R(1n)〉, it
holds thatV(com, decom) = x.5 In the remainder of the paper, it will often be convenient for us to identify
V with R, and refer to a commitment scheme as a pair (S,R).

The security of a commitment scheme can be defined in two complementary ways, protecting against ei-
ther an all-powerful sender or an all-powerful receiver. In this paper, we deal with commitment schemes of the
latter type, which are referred to asstatistically-hidingcommitment schemes. In order to define the security
properties of such schemes, we first introduce the following notation. Given a commitment scheme (S,R)
and a Turing-machineR∗, we denote byview〈S(x),R∗〉(n) the distribution on the view ofR∗ when interacting
with S(1n, x). This view consists ofR∗’s random coins and of the sequence of messages it receives from
S. The distribution is taken over the random coins of bothS andR∗. Note that whenever no computational
restrictions are assumed onR∗, without loss of generality we can assume thatR∗ is deterministic.

Definition 2.6. A commitment scheme (S,R) is ρ(n)-hiding if for every deterministic Turing-machineR∗,
and for every two sequences of strings{xn}∞i=1 and{x′n}∞i=1 wherexn, x′n ∈ {0,1}k(n) for everyn the ensembles
{view〈S(xn),R∗〉(n)} and{view〈S(x′n),R∗〉(n)} have statistical difference at mostρ(n) for all sufficiently largen. Such
a scheme isstatistically-hidingif it is ρ(n)-hiding for some negligible functionρ(n).

Our lower bound for commitment schemes holds in fact under a weaker hidingrequirement. We derive
our results even for commitment schemes in which the sender is statistically protected only against an honest
receiver. Such schemes are referred to asstatistically-hiding honest-receivercommitment schemes. Formally,

4Note that there is no loss of generality in assuming that the reveal stage is non-interactive. This is since any such interactive
stage can be replaced with a non-interactive one as follows: The sendersends its internal state to the receiver, who then simulates the
sender in the interactive stage.

5Although we assume perfect completeness, it is not essential for our results.
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it is only required that the statistical difference between the ensembles{view〈S(xn),R〉(n)} and{view〈S(x′n),R〉(n)}
is some negligible function ofn.

Definition 2.7. A commitment scheme (S,R,V) is µ(n)-binding if for every probabilistic polynomial-time
Turing-machineS∗ it holds that the probability that ((decom, decom′)|com) ← 〈S∗(1n),R(1n)〉 (where the
probability is over the random coins of bothS∗ andR) such thatV(com, decom) , V(com, decom′) and
V(com, decom),V(com, decom′) , ⊥ is negligible inn for all sufficiently largen. Such a scheme is
computationally-bindingif it is µ(n)-binding for some negligible functionµ(n), and isweakly-bindingif it
is (1− 1/p(n))-binding for some polynomialp(n).

2.4 Black-Box Reductions

A reduction of a primitiveP to a primitiveQ is a construction ofP out of Q. Such a construction consists of
showing that if there exists an implementationC of Q, then there exists an implementationMC of P. This is
equivalent to showing that for every adversary that breaksMC, there exists an adversary that breaksC. Such a
reduction issemi-black-boxif it ignores the internal structure ofQ’s implementation, and it isfully-black-box
if the proof of correctness is black-box as well, i.e., the adversary for breakingQ ignores the internal structure
of both Q’s implementation and of the (alleged) adversary breakingP. Semi-black-box reductions are less
restricted and thus more powerful than fully-black-box reductions. A taxonomy of black-box reductions was
provided by Reingold, Trevisan and Vadhan [36], and the reader is referred to their paper for a more complete
and formal view of these notions.

We now formally define the class of constructions considered in this paper.Our results in the current
paper are concerned with the particular setting of fully-black-box constructions of single-server PIR and of
statistically-hiding commitment schemes from trapdoor permutations. We focus here on specific definitions
for these particular primitives and we refer the reader to [36] for a more general definition.

When examining efficiency measures of fully-black-box constructions, an essential parameter for such
characterizations, as introduced by Haitner et al. [18], is thesecurity-parameter-expansionof the construc-
tion. Consider, for example, a fully-black-construction of a commitment scheme from a family of trapdoor
permutations. One ingredient of such a construction is a machineA that attempts to break the security of
the trapdoor permutation family given oracle access to any malicious senderS∗ that breaks the security of
the commitment scheme. Then,A receives a security parameter 1n (and possibly some additional inputs) and
invokesS∗ in a black-box manner. The standard definition does not restrict the range of security parame-
ters thatA is allowed to invokeS∗ on. For example,A may invokeS∗ on security parameter 1n2

, or even
on security parameter 1Θ(s(n)), wheres(n) is the running time ofA. In this paper, we will use the notion
ℓ(n)-expanding for short, and note that according to Luby’s classification[30], any polynomially-preserving
reduction isO(n)-expanding in our terminology.

Definition 2.8. A fully-black-box ℓ(n)-expanding construction of a single-server PIR scheme from ans(n)-
hard family of trapdoor permutations is a triplet of probabilistic oracle Turing-machines (S,U,A) for which
the following hold:

1. Correctness:For every familyτ of trapdoor permutations, (Sτ,Uτ) is a single-server PIR scheme.

2. Black-box proof of security: For every familyτ =
{
τn =

(
Gn, Fn, F−1

n

)}∞
n=1

of trapdoor permutations
and for every probabilistic polynomial-time Turing-machineS∗, if S∗ with oracle access toτ breaks the
security of (Sτ,Uτ), then

Pr
[
Aτ,S

∗
(1n,Gn(td), y) = F−1

n (td, y)
]
>

1
s(n)

,
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for infinitely many values ofn, whereA runs in times(n) and invokesS∗ on security parameters which
are at most 1ℓ(n). The probability is taken uniformly over all the possible choices oftd ∈ {0,1}n and
y ∈ {0,1}n, and over all the possible outcomes of the internal coin tosses ofA.

Definition 2.9. A fully-black-box ℓ(n)-expanding construction of a weakly-binding and statistically-hiding
honest-receiver commitment scheme from ans(n)-hard family of trapdoor permutations is a triplet of proba-
bilistic oracle Turing-machines (S,R,A) for which the following hold:

1. Correctness: For every familyτ of trapdoor permutations, (Sτ,Rτ) is a statistically-hiding honest-
receiver commitment scheme.

2. Black-box proof of binding: For every familyτ =
{
τn =

(
Gn, Fn, F−1

n

)}∞
n=1

of trapdoor permutations
and for every probabilistic polynomial-time Turing-machineS∗, if S∗ with oracle access toτ breaks the
binding of (Sτ,Rτ), then

Pr
[
Aτ,S

∗
(1n,Gn(td), y) = F−1

n (td, y)
]
>

1
s(n)

,

for infinitely many values ofn, whereA runs in times(n) and invokesS∗ on security parameters which
are at most 1ℓ(n). The probability is taken uniformly over all the possible choices oftd ∈ {0,1}n and
y ∈ {0,1}n, and over all the possible outcomes of the internal coin tosses ofA.

We remark that the above correctness requirements are very strict and are not essential for our results. For
example, in the setting of commitment schemes, for everyτ such that the protocol (Sτ,Rτ) is a weakly-binding
statistically-hiding honest-receiver commitment scheme, we construct a malicious senderS∗ which breaks the
binding property of the scheme. Therefore, we could have dealt with weaker correctness requirements as well,
but stating such a weaker requirement in a meaningful way turns out to be quite subtle.

3 Communication Lower Bound for Statistically-Hiding Commit ment Schemes

In this section we prove a lower bound on the communication complexity of fully-black-box constructions
of statistically-hiding commitment schemes from trapdoor permutations. We establish a lower bound on the
number of bits communicated by the sender during the commit stage of any such scheme. Since we are
interested in proving an impossibility result for commitment schemes, it will be sufficient for us to deal with
bit-commitment schemes. We prove the following theorem:

Theorem 3.1. In any fully-black-box O(n)-expanding construction of a weakly-binding statistically-hiding
honest-receiver bit-commitment scheme from a family of trapdoor permutations, the sender communicates
Ω(n) bits during the commit stage.

The proof of Theorem3.1 follows the approach and technique of Haitner at el. [18] who constructed
a “collision-finding” oracle in order to derive a lower bound on the roundcomplexity of statistically-hiding
commitment schemes. Given any fully-black-boxO(n)-expanding construction (S,R,A) of a weakly-binding
statistically-hiding honest-receiver bit-commitment scheme from a family of trapdoor permutationsτ, we
show that relative to their oracle the following holds: (1) there exists a malicious senderS∗ that breaks the
binding of the scheme (Sτ,Rτ), and (2) if the sender communicateso(n) bits during the commit stage of
(Sτ,Rτ), then the machineA (with oracle access toS∗) fails to break the security ofτ.
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3.1 The Oracle

We briefly describe the oracle constructed by Haitner et al. [18] and state its main property. The oracle is of
the formO = (τ,Samτ), whereτ is a family of trapdoor permutations (i.e.,τ = {τn}∞n=1, whereτn ∈ Tn for
everyn), andSamτ is an oracle that, very informally, receives as input a description of a circuit C (which may
containτ-gates) and a stringz, and outputs a uniformly distributed preimage ofz under the mapping defined
by C. As discussed in [18], several essential restrictions are imposed on the querying ofSam that prevent it
from assisting in invertingτ.

Description of Sam. The oracleSam receives as input a query of the formQ = (Cτnext,C
τ, z), and outputs

a pair (w′, z′) wherew′ is a uniformly distributed preimage ofz under the mapping defined by the circuitCτ,
andz′ = Cτnext(w

′). We impose the following restrictions:

1. zwas the result of a previous query withCτ as the next-query circuit (note that this imposes a forest-like
structure on the queries).

2. The circuitCτnext is a refinementof the circuitCτ, where by a refinement we mean thatCτnext(w) =
(Cτ(w), C̃τ(w)) for some circuitC̃τ and for everyw. In particular, this implies thatCτ andCτnext have
the same input length. Given a queryQ, we denote this input length bym(Q), and when the queryQ is
clear from the context we will write onlym.

3. Each query contains a security parameter 1n, andSam answers queries only up to depthdepth(n), for
some “depth restriction” functiondepth : N → N which is a part of the description ofSam. The
security parameter is set such that a query with security parameter 1n is allowed to contain circuits with
queries to permutations on up ton bits. Note that although different queries may have different security
parameters, we ask that in the same “query-tree”, all queries will have thesame security parameter
(hence the depth of the tree is already determined by the root query).

In order to impose these restrictions,Sam is equipped with a familysign = {signk}∞k=1 of (random)
functionssignk : {0,1}k → {0,1}2k that will be used as “signatures” for identifying legal queries as follows:
in addition to outputting (w′, z′), Sam will also output the valuesign(1n,Cτnext, z

′,dep+ 1), wheredep is
the depth of the query, 1n is the security parameter of the query, and by applying the “function”sign we
actually mean that we apply the functionsignk for the correct input length. Each query of the formQ =
(1n,Cτnext,C

τ, z,dep, sig) is answered bySam if and only if Cτnext is a refinement ofCτ, dep≤ depth(n) and
sig= sign(1n,Cτ, z,dep).

Finally,Sam is provided with a family of (random) permutationsF = { fQ}, where for every possible query
Q a permutationfQ is chosen uniformly at random fromΠm(Q). Given a queryQ = (1n,Cτnext,C

τ, z,dep, sig),
the oracleSam uses the permutationfQ ∈ F in order to samplew′ as follows: it outputsw′ = fQ(t) for
the lexicographically smallestt ∈ {0,1}m such thatCτ( fQ(t)) = z. Note that whenever the permutationfQ is
chosen fromΠm uniformly at random, and independently of all other permutations inF , thenw′ is indeed
a uniformly distributed preimage ofz. In this paper, whenever we consider the probability of an event over
the choice of the familyF , we mean that for each queryQ a permutationfQ is chosen uniformly at random
from Πm(Q) and independently of all other permutations. A complete and formal description of the oracle is
provided in Figure1.

Definition 3.2. We say that a circuitA queries the oracleSamτ,F ,sign
depth up to depthd, if for every Sam-query

Q = (1n,Cπnext,C
π, z,dep, sig) thatA makes, it holds thatdep≤ d.

One of the main properties of the oracleSam, as proved in [18], is the following: any circuit with oracle
access toSam that tries to invert a random trapdoor permutation, fails with high probability. More specifically,
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On input Q = (1n
,Cτ

next
,Cτ, z, dep, sig), Samτ,F ,sign

depth
acts as follows:

1. If Cτ = ⊥, then output (w′, z′, sig′) wherew′ = fQ(0m), z′ = Cτnext(w
′), andsig′ = sign(1n,Cτnext, z

′,1).

2. Else, ifCτnext is a refinement ofCτ, dep≤ depth(n) andsig= sign(1n,Cτ, z,dep), then

(a) Find the lexicographically smallestt ∈ {0,1}m such thatCτ( fQ(t)) = z.

(b) Output (w′, z′, sig′) wherew′ = fQ(t), z′ = Cτnext(w
′), andsig′ = sign(1n,Cτnext, z

′,dep+ 1).

3. Else, output⊥.

Figure 1: The oracleSam.

Haitner et al. managed to relate this success probability to the maximal depth of theSam-queries made by the
circuit, and to the size of the circuit. They proved the following theorem:

Theorem 3.3([18]). For every circuit A of size s(n) that queriesSam up to depth d(n) such that s(n)3d(n)+2 <

2n/8, for every depth restriction functiondepth and for all sufficiently large n, it holds that

Prtd←{0,1}n,τ,F
y←{0,1}n,sign

[
Aτ,Samτ,F ,sign

depth (Gn(td), y) = F−1
n (td, y)

]
≤ 2

s(n)
.

3.2 Breaking Low-Communication Statistically-Hiding Commitment Schemes

We show that a random instance of the oracleSam can be used to break the binding of any statistically-hiding
commitment scheme. Specifically, for every bit-commitment scheme(S,R) which is (1) weakly-biding, (2)
statistically-hiding against an honest-receiver, and (3) has oracle access to a familyτ of trapdoor permutations,
we construct a malicious senderS∗ which has oracle access toSamτ,F ,sign

depth , and breaks the binding of(Sτ,Rτ)
with sufficiently high probability over the choices ofτ,F andsign. Formally, the following theorem is proved:

Theorem 3.4. For any statistically-hiding honest-receiver bit-commitment scheme(S,R,V) with oracle ac-
cess to a family of trapdoor permutations in which the sender communicates at most c(n) bits during the
commit stage, and for any polynomial p(n), there exists a polynomial-time malicious senderS∗ such that

Prτ,F ,sign,rR


((decom, decom′)|com)←

〈
S∗ Samτ,F ,sign

depth (1n),Rτ(1n, rR)
〉

:

Vτ(com, decom) = 0,Vτ(com, decom′) = 1

 > 1− 1
p(n)

,

for all sufficiently large n, wheredepth(n) =
⌈

c(n)
logn

⌉
+ 1.

In what follows we introduce the notation used in this section. We proceed witha brief presentation of
the main ideas underlying the proof of Theorem3.4. Then, we formally describe the malicious senderS∗ and
analyze its success probability in order to prove Theorem3.4.

Notations. Let (S,R) be a bit-commitment scheme with oracle access to a family of trapdoor permutations.
We denote byb ∈ {0,1} andrS, rR ∈ {0,1}∗ the input bit of the sender and the random coins of the sender
and the receiver, respectively. We denote byc(n) the maximal number of bits communicated from the sender
to the receiver in the commit stage with security parameter 1n. In addition we denote byd(n) the number of
communication rounds in the scheme with security parameter 1n, and without loss of generality we assume
that the receiver makes the first move. Each communication round consists of a message sent from the receiver
to the sender followed by a message sent from the sender to the receiver. We denote byqi andai the messages
sent by the receiver and the sender in thei-th round, respectively, and denote byad+1 the message sent by
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1q

1a

Input: (b, r )

S R
S Input: rR

dq

da

d+1a

Figure 2: A d-round bit-commitment scheme.

the sender in the reveal stage. Finally, we let ¯ai = (a1, . . . ,ai) and q̄i = (q1, . . . ,qi). A genericd-round
bit-commitment scheme is described in Figure2.

Although the sender is a probabilistic polynomial-timeTuring-machine, in order to interact with the oracle
Sam we need to identify the sender with a sequence of polynomial-sizecircuits S1, . . . ,Sd+1 as follows. In
the first round,S sendsa1 by computinga1 = S1(b, rS,q1). Similarly, in the following rounds,S sendsai by
computingai = Si(b, rS, q̄i).

Finally, in order to simplify the notation regarding the input and output of the oracleSam, in this section
we ignore parts of the input and output ofSam: we ignore the security parameter and the “signatures”
(since our malicious senderS∗ will only ask legal queries), and consider queries of a simplified formQ =
(Cτnext,C

τ, z), and answers that consist only ofw′ (i.e., an answer consists only of a uniformly distributed
preimage ofz under the mapping defined byCτ). In addition, in what follows it will be more intuitive to
replacez in the queries by its preimagew, but this is clearly not essential.

A brief overview. Informally, recall that the oracleSam described in Section3.1 acts as follows:Sam is
given as input a queryQ = (Cnext,C, z), and outputs a pair (w′, z′) wherew′ is a uniformly distributed preimage
of zunder the mapping defined by the circuitC, andz′ = Cnext(w′). In addition, we imposed the restriction that
there was a previous query (C, ·, ·) that was answered by (w, z) (note that this imposes a forest-like structure
on the queries), and we only allow queryingSam up to depthO(n/ logn).

Given a statistically-hiding bit-commitment scheme in which the sender communicatesc(n) bits during
the commit stage, we assume without loss of generality that the commit stage of the scheme hasc(n) com-
munication rounds, where in each round the sender communicates a single bitto the receiver. The malicious
senderS∗ operates as follows: it chooses a random inputw (consisting of random coins and a random com-
mitted bit), and during the first logn rounds it simulates the honest sender. In these logn rounds, it receives
logn messagesq1, . . . ,qlogn from the receiver. Then,S∗ constructs the circuitCq1,...,qlogn that receives as in-
put the sender’s inputw and outputs the logn sender’s messages corresponding to the receiver’s messages
q1, . . . ,qlogn. This circuit is used to querySam for a random inputw1. It may be the case, however, thatw1

is not consistent with the actual messagesa1, . . . ,alogn thatS∗ sent in the first logn rounds. In this case,S∗
“rewinds” Sam for a polynomial number of times, and since the total length of the sender’s messages in these
logn rounds is only logn bits, then with sufficiently high probabilityS∗ will obtain a consistentw1. Now,
in the next logn rounds the malicious senderS∗ simulates the honest sender with inputw1, and at the end
of these logn rounds it will query (and rewind)Sam again for another consistent inputwlogn+1, and so on.
Finally, after completing the commit stage,S∗ queriesSam to obtain two random inputswc(n) andw′c(n) which
are consistent with the transcript of the commit stage. Since the commitment schemeis statistically-hiding,
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with probability roughly half they can be used to break the binding of the protocol. A crucial point in this
description, is thatS∗ queriesSam only up to depthc(n)/ logn (S∗ usedSam to obtainc(n)/ logn values
w1,wlogn+1, . . . ,wc(n)). Therefore, ifc(n) = o(n), then an oracleSam that answers queries only up to depth
c(n)/ logn cannot be used to invert a random trapdoor permutation, according to Theorem3.3.

A formal description of S∗. Given a bit-commitment scheme(S,R) in which the sender communicatesc(n)
bits during the commit stage, we assume without loss of generality (and for simplicity of the presentation)
that the scheme hasc(n) communication rounds (i.e.,d(n) = c(n)) where in each round during the commit
stage the sender communicates a single bit to the receiver (i.e., each ofa1, . . . ,ad(n) is one bit). Furthermore,
in order to simplify the description ofS∗, we assume that logn is an integral value (where 1n is the security
parameter given as input toS∗) and thatc(n) = M · logn+ 1 for some integerM = M(n). We stress that these
assumptions are not at all essential, but avoiding them will result in a more complicated description. On input
1n, the malicious senderS∗ with oracle access toSamτ,F ,sign

depth interacts with the honest receiverR as follows.

1. The commit stage:

(a) In the first roundS∗ receivesR’s messageq1, and computes the description of the circuitC1 =

S1(·, ·,q1) obtained from the circuitS1 by fixing q1 as its third input. Then,S∗ queriesSamτ,F ,sign
depth

with (C1,⊥,⊥), receives an answerw1 = (b1, r1) and sendsa1 = S1(b1, r1,q1) toR.

(b) In every roundi ∈ {2, . . . , logn}, S∗ simulates the honest senderS with input w1. That is,S∗
receivesR’s messageqi and replies withai = Si(b1, r1, q̄i).

(c) In round logn + 1, S∗ receivesR’s messageqlogn+1, and computes the description of the circuit
Clogn+1 = Slogn+1(·, ·, q̄logn+1) obtained from the circuitSlogn+1 by fixing q̄logn+1 as its third in-

put. Then,S∗ queriesSamτ,F ,sign
depth with (Clogn+1,C1,w1) for t = 2n5c(n)p(n) times and receives

t answers. If one of these answers is consistent with the transcript of theprotocol so far, then
denote the first such answer bywlogn+1 = (blogn+1, r logn+1), and in this caseS∗ sends the mes-
sagealogn+1 = Slogn+1(blogn+1, r logn+1, q̄logn+1) to R. Otherwise,S∗ aborts the execution of the
protocol.

(d) In the remainder of the commit stageS∗ acts as follows:

i. For everyk and in every roundi ∈ {(k − 1) logn + 2, . . . , k logn}, the malicious senderS∗
simulates the honest senderS with inputw(k−1) logn+1.

ii. For every integerk and in every roundk logn+ 1 the malicious senderS∗ receivesR’s mes-
sageqk logn+1, and computes the description of the circuitCk logn+1 = Sk logn+1(·, ·, q̄k logn+1)
obtained from the circuitSk logn+1 by fixing q̄k logn+1 as its third input. Then,S∗ queries

Samτ,F ,sign
depth with (Ck logn+1,C(k−1) logn+1,w(k−1) logn+1) for t = 2n5c(n)p(n) times and receives

t answers. If one of these answers is consistent with the transcript of theprotocol so far,
then denote the first such answer bywk logn+1 = (bk logn+1, rk logn+1), and in this caseS∗ sends
ak logn+1 = Sk logn+1(bk logn+1, rk logn+1, q̄k logn+1) to R. Otherwise,S∗ aborts the execution of
the protocol.

2. The reveal stage:

(a) S∗ queriesSamτ,F ,sign
depth with (⊥,Cd(n),wd(n)) for n times, and receivesn pairs

{(
b( j)

d(n)+1, r
( j)
d(n)+1

)}n
j=1

.

If there existj0, j1 ∈ [n] such thatb( j0)
d(n)+1 = 0 andb( j1)

d(n)+1 = 1, thenS∗ outputs the two values

decom = Sd(n)+1

(
b( j0)

d(n)+1, r
( j0)
d(n)+1, q̄d(n)

)

decom′ = Sd(n)+1

(
b( j1)

d(n)+1, r
( j1)
d(n)+1, q̄d(n)

)
.
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Otherwise,S∗ aborts the execution of the protocol.

Two minor technical details were omitted from the description. First, accordingto the description of
Sam (Section3.1), wheneverSam is queried multiple times with the same input, it returns the exact same
answer. Thus, wheneverS∗ queriesSam more than once with the same input,S∗ has to make sure that the
queries are all different (for example, by artificially embedding the query number to one of the circuits in the
query). Second, in order forS∗’s queries to be legal, it should hold that the circuitCk logn+1 is a refinement
of the circuitC(k−1) logn+1 for every integerk (as discussed in Section3.1). This can be done very easily by
embedding the description of eachC(k−1) logn+1 inside eachCk logn+1 (i.e., the output ofCi is the sequence of
bits āi instead of only the bitai).

We proceed by arguing that the malicious senderS∗ successfully completes the commit stage with high
probability. Then, given thatS∗ has successfully completed the commit stage, we prove that the transcript of
the commit stage is distributed identically to the transcript of the commit stage in an honest execution of the
protocol. This enables us to use the fact that the commitment scheme is statistically-hiding, and therefore a
random transcript can be revealed both as a commitment tob = 0 and as a commitment tob = 1, with almost
equal probabilities.

Lemma 3.5. The malicious senderS∗ successfully completes the commit stage with probability at least1 −
1/(n3p(n)) over the choices ofτ,F , sign and rR.

Proof. The malicious senderS∗ may abort the commit stage only in rounds of the formk logn+ 1. For every
integer 1≤ k ≤ c(n)−1

logn we denote byEk the event in whichS∗ aborts in roundk logn+ 1 of the commit stage.
Then, the probability thatS∗ fails to complete the commit stage is

Pr



c(n)−1
logn⋃

k=1

Ek


≤

c(n)−1
logn∑

k=1

Pr[Ek] ,

where the probability is taken over the choices ofτ,F , sign andrR. We show that for every 1≤ k ≤ c(n)−1
logn it

holds that Pr[Ek] ≤ 1/(n3c(n)p(n)), which yields the correctness of the lemma. For simplicity, we first con-
sider the casek = 1, and then show that the exact same argument generalizes for generalk in a straightforward
manner.

At the beginning of the protocol, after receivingq1 from the receiver,S∗ queriesSam with Q1 = (C1,⊥,⊥)
and receives an answerw1 = (b1, r1). The description ofSam implies thatw1 is uniformly distributed among
all possible inputs of the sender.S∗ then usesw1 to simulate the honest sender during the first logn rounds by
sending the bitai = Si(b1, r1, q̄i) in each of these rounds. In round logn+ 1, the malicious senderS∗ queries
Sam with (Clogn+1,C1,w1) for t = 2n5c(n)p(n) times and receivest answers. We claim that since eachai

is a bit and we consider here only logn of them, then at least one of these answers will be consistent with
the transcript of the protocol so far with high probability. Moreover, we show that this holds for any random
coins of the receiver, and therefore from this point on we fix the random coins of the receiver. Note that by
the description ofSam and the circuitC1, theset answers are chosen independently and uniformly at random
from all possible inputs of the sender (Sam outputs each of theset answers using a different permutation from
the familyF provided toSam, and each permutations in this family is chosen independently and uniformly
at random). Since the random coins of the receiver are fixed, the values a1, . . . ,alogn can be viewed as a
deterministic function of the inputw1. Let us denote this function byh : {0,1}q(n) → {0,1}logn, whereq(n)
is the bit-length of the sender’s input. Then, it remains to analyze success probability ofS∗ in the following
experiment:

• t + 1 valuesw1,w
(1)
logn+1, . . . ,w

(t)
logn+1 ∈ {0,1}

q(n) are chosen independently and uniformly at random.
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• S∗ is successful ifh(w1) = h
(
w(i)

logn+1

)
for somei ∈ [t].

In order to analyze this experiment, we consider a set of “bad” inputs forh. This set consists of all inputsw
for which the seth−1(h(w)) is very small relative to{0,1}q(n) (less than some polynomial fraction). In case that
w1 is not in this bad set, thenS∗ has a very high success probability, and the probability thatw1 is in this set
is rather low. More formally, let

BAD =

w ∈ {0,1}q(n) :

∣∣∣h−1(h(w))
∣∣∣

2q(n)
≤ 1

2n4c(n)p(n)

 ,

then since the range ofh contains at mostn elements, we have that

Pr[w1 ∈ BAD] ≤ n · 1
2n4c(n)p(n)

=
1

2n3c(n)p(n)
.

Therefore, the probability thatS∗ aborts in round logn+ 1 can be upper bounded as follows

Pr[E1] ≤ Pr[w1 ∈ BAD] + Pr[E1 | w1 < BAD]

≤ 1
2n3c(n)p(n)

+

(
1− 1

2n4c(n)p(n)

)t

=
1

2n3c(n)p(n)
+

(
1− 1

2n4c(n)p(n)

)2n5c(n)p(n)

≤ 1
2n3c(n)p(n)

+ exp(−n)

≤ 1
n3c(n)p(n)

.

More generally, in every round of formk logn + 1 for k > 1, the malicious senderS∗ holds some input
w(k−1) logn+1, which is uniformly distributed among all inputs of the sender. Thisw(k−1) logn+1 was used byS∗ to
simulate the honest sender in rounds (k−1) logn+1, . . . , k logn. Then,S∗ usesSam to sample independently
and uniformly at randomt elements from the set of all inputs that are consistent with the transcript of the
protocol in the first (k−1) logn rounds. Therefore, it is only required that one of these inputs will be consistent
with w(k−1) logn+1 on the answers it provided in rounds (k− 1) logn+ 1, . . . , k logn and the same argument as
before goes through, with the only difference that in this case the functionh is defined only over the set of
inputs which are consistent with the first (k− 1) logn rounds (and not over the whole set{0,1}q(n)).

In the following lemma we show that given thatS∗ has successfully completed the commit stage, the
transcript of the commit stage is distributed identically to the transcript of the commitstage in an honest
execution of the protocol. Formally, we define two the following two distributions:

• D∗n = view〈S∗,R〉(n) is the distribution of the view ofR in the commit stage when interacting with the
malicious senderS∗(1n). This view consists ofR’s random coins and of the sequence of messages it
receives fromS∗. The distribution is taken overR’s random coins and over the uniform choice ofτ,F
andsign.

• Dn = view〈S,R〉(n) is the distribution of the view ofR in the commit stage when interacting with the
honest senderS(1n,b, rS). This view consists ofR’s random coins and of the sequence of messages
it receives fromS. The distribution is taken over the random coins ofR andS, and over the uniform
choice ofb ∈ {0,1} andτ.
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Lemma 3.6. Given thatS∗ successfully completed the commit stage, the distributionsDn andD∗n are identi-
cal.

Proof. We show that the distributionsDn andD∗n assign equal probabilities to every triplet (rR, q̄d, ād) given
thatS∗ did not abort during the commit stage. More specifically, we prove by induction on 1≤ i ≤ d that
PrDn

[
rR, q̄d, ād

]
= PrD∗n

[
rR, q̄d, ād

]
.

For i = 1, clearly we have that PrDn

[
rR,q1

]
= PrD∗n

[
rR,q1

]
sincerR is distributed exactly the same in the

two cases, andq1 is a deterministic function ofrR. Therefore we only have to show that PrDn

[
a1|rR,q1

]
=

PrD∗n
[
a1|rR,q1

]
. In the first round, the malicious senderS∗ queriesSamτ,F ,sign

depth with Q = (C1,⊥,⊥), and

receivesw1 = (b1, r1). Note that by the description ofSamτ,F ,sign
depth and ofF , there is a random permutation

fQ which corresponds toQ, andSamτ,F ,sign
depth outputs (b1, r1) = fQ(0m), which is a uniformly distributed value.

That is,S∗ sendsa1 = S1(b1, r1,q1) for a uniformly distributed pair (b1, r1) exactly as the honest senderS
should do.

Assume now that the claim holds fori − 1, i.e., PrDn

[
rR, q̄i−1, āi−1

]
= PrD∗n

[
rR, q̄i−1, āi−1

]
. Again, we

have that PrDn

[
qi |rR, q̄i−1, āi−1

]
= PrD∗n

[
qi |rR, q̄i−1, āi−1

]
, since in both casesqi is a deterministic function

of rR, q̄i−1 and āi−1. It remains to show that PrDn

[
ai |rR, q̄i , āi−1

]
= PrD∗n

[
ai |rR, q̄i , āi−1

]
. At this point we

have to distinguish between two possible cases. The first case is that in the current roundS∗ computesai by
simulating the honest sender using an inputw which has already been sampled in an earlier round. Therefore
the distribution of the resultingai is exactly as if the honest senderS had inputw to begin with, and the
lemma follows inductively. The second case is that in the current roundS∗ queriesSamτ,F ,sign

depth multiple times
with some queryQ and obtains somew which is consistent with the transcript of the protocol up to this
point. Note that by the description ofSamτ,F ,sign

depth and ofF , the permutationfQ which corresponds toQ was
chosen uniformly at random fromΠm and independently of all the other permutations inF . Therefore,w is
uniformly distributed among all inputs which are consistent with the protocol’s transcript until this point, and
therefore the distribution of the resultingai is exactly as if the honest senderS had inputw to begin with.
Thus, PrDn

[
ai |rR, q̄i , āi−1

]
= PrD∗n

[
ai |rR, q̄i , āi−1

]
, which yields the correctness of the lemma.

We conclude the proof of Theorem3.4 by combining Lemmata3.5 and 3.6, and by exploiting the
statistical-hiding property of the commitment scheme.

Proof of Theorem 3.4. Assuming that the malicious senderS∗ has successfully completed the commit
stage, then in the reveal stageS∗ usesSamτ,F ,sign

depth in order to sample uniformly and independently at random

n input pairs
{(

b( j)
d+1, r

( j)
d+1

)}n
j=1

from the set of all input pairs which are consistent with the transcript of the

commit stage. We prove that with overwhelming probability these inputs enableS∗ to reveal both tob = 0
and tob = 1.

Denote byD0
n = view〈S(0),R〉(n) the distribution of the honest receiver’s view in the commit stage when

interacting with the honest senderS(1n,0, rS). This view consists of its random coins and of the sequence
of messages it receives fromS, and the distribution is taken over the random coins ofR andS and over
the choice ofτ. Similarly, letD1

n = view〈S(1),R〉(n). Then, the assumption that the commitment scheme is
statistically-hiding against an honest receiver, implies that the statistical difference between the distributions
D0

n andD1
n is some negligible functionρ(n).

We define a set of “good” transcripts. This set consists of all transcripts of the commit stage which enable
S∗ to reveal both tob = 0 and tob = 1 with overwhelming probability. We show that with overwhelming
probability the transcript is in this set. Formally, we define

GOOD =
{
trans :

(
1−

√
ρ(n)

)
· PrD0

n
[trans] < PrD1

n
[trans] <

(
1+

√
ρ(n)

)
· PrD0

n
[trans]

}
.
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Note that for every transcripttrans of the commit stage and for everyj ∈ [n], it holds that

Prτ,F ,rR

[
b( j)

d+1 = 0
∣∣∣∣ trans

]

Prτ,F ,rR

[
b( j)

d+1 = 1
∣∣∣∣ trans

] =
Prτ,F ,rR

[
b( j)

d+1 = 0 ∧ trans
]

Prτ,F ,rR
[
b( j)

d+1 = 1 ∧ trans
] =

PrD0
n
[trans]

PrD1
n
[trans]

,

where the second equality follows from Lemma3.6. The definition of the setGOOD implies that iftrans ∈
GOOD, then for all sufficiently largen it holds that

min
{
Prτ,F ,rR

[
b( j)

d+1 = 0
∣∣∣∣ trans

]
,Prτ,F ,rR

[
b( j)

d+1 = 1
∣∣∣∣ trans

]}
> 1/3 .

Therefore,

Prτ,F ,rR
[
S∗ fails in the reveal stage

∣∣∣ trans ∈ GOOD
]
< 2 ·

(
2
3

)n

,

since a failure occurs only in the case that alln input pairs sampled in the reveal stage haveb( j)
d+1 = 0, or that

they all haveb( j)
d+1 = 1. It remains to show that the transcript is inGOOD with overwhelming probability.

Lemma3.6and the fact that the statistical distance between the distributionsD0
n andD1

n is at mostρ(n) imply
that

Prτ,F ,rR [trans ∈ GOOD] = PrDn [trans ∈ GOOD]

=
1
2
·
(
PrD0

n
[trans ∈ GOOD] + PrD1

n
[trans ∈ GOOD]

)

≥ 1
2
·
(
2 · PrD0

n
[trans ∈ GOOD] − ρ(n)

)

> 1− 2
√
ρ(n) − ρ(n)

2
,

where the last inequality follows from Fact2.3. Therefore,

Pr
[S∗ fails in the reveal stage

] ≤ Pr[trans < GOOD] + Pr
[
S∗ fails in the reveal stage

∣∣∣ trans ∈ GOOD
]

≤ 2
√
ρ(n) +

ρ(n)
2
+ 2 ·

(
2
3

)n

.

Finally, Lemma3.5 states thatS∗ successfully completes the commit stage with probability at least 1−
1/(n3p(n)), and therefore

Prτ,F ,sign,rR


((decom, decom′)|com)←

〈
S∗ Samτ,F ,sign

depth (1n),Rτ(1n, rR)
〉

:

Vτ(com, decom) = 0,Vτ(com, decom′) = 1



> 1−
(

1
n3p(n)

+ 2
√
ρ(n) +

ρ(n)
2
+ 2 ·

(
2
3

)n)

> 1− 1
p(n)

,

for all sufficiently largen.
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3.3 Proof of Theorem3.1

In this short section we combine Theorems3.3and3.4and derive the proof of Theorem3.1. Let (S,R,V,A)
be a fully-black-boxO(n)-expanding construction of a weakly-binding statistically-hiding honest-receiver bit-
commitment scheme from ans(n)-hard family of trapdoor permutations, in which the sender communicates at
mostc(n) bits during the commit stage. Denote byp(n) the polynomial for which the scheme is (1− 1/p(n))-
binding. From this point on, we fix the depth restriction functiondepth : N→ N of the oracleSam to be the
functiondepth(n) =

⌈
c(n)
logn

⌉
+ 1. Theorem3.4 states that there exists a polynomial-time malicious senderS∗

such that

Prτ,F ,sign,rR


((decom, decom′)|com)←

〈
S∗ Samτ,F ,sign

depth (1n),Rτ(1n, rR)
〉

:

Vτ(com, decom) = 0,Vτ(com, decom′) = 1

 > 1− 1
p(n)

,

for all sufficiently largen. Thus, the fully-black-box construction guarantees that

Prtd←{0,1}n,τ,F
y←{0,1}n,sign

[
Aτ,S

∗,Samτ,F ,sign
depth (Gn(td), y) = F−1

n (td, y)
]
>

1
s(n)

,

for infinitely many values ofn, whereA runs in times(n), and the probability is taken also over all the
possible outcomes of the internal coin tosses ofA. By converting the Turing-machineA to a circuit family,
and by incorporating the description ofS∗ into this family, we obtain that there exists a circuitA∗ of size at
most, say,s∗(n) = (s(n))2 such that

Prtd←{0,1}n,τ,F
y←{0,1}n,sign

[
A∗ τ,Samτ,F ,sign

depth (Gn(td), y) = F−1
n (td, y)

]
>

1
s(n)
>

2
s∗(n)

,

for infinitely many values ofn. The assumption that the construction isO(n)-expanding (i.e., thatAwhen given
security parameter 1n invokesS∗ on security parameters which are at most 1O(n)), guarantees thatA usesS∗
in a way such thatSam is queried up to depth at mostdepth(n) = O

(
c(n)
logn

)
. This means that also the circuitA∗

queriesSam up to depth at mostdepth(n). We conclude the proof by observing that ifs∗(n)3depth(n)+2 < 2n/8,
then the existence of the circuitA∗ contradicts Theorem3.3, and therefores∗(n)3depth(n)+2 ≥ 2n/8, i.e.,c(n) =
Ω

(
n logn
log s(n)

)
= Ω(n).

4 Refining the Relation Between Single-Server PIR and Commitment Schemes

The relation between single-server PIR and commitment schemes was first explored by Beimel et al. [1],
who showed that any single-server PIR protocol in which the server communicates at mostn/2 bits to the user
(wheren is the size of the server’s database), can be used to construct a weakly-binding statistically-hiding bit-
commitment scheme. In particular, this served as the first indication that the existence of low-communication
PIR protocols implies the existence of one-way functions. In this section, werefine the relation between these
two fundamental primitives by improving their reduction. Informally speaking,our reduction essentially uses
the reduction of Beimel et al. instantiated with a better extractor. This enables the following improvements:
(1) the communication complexity of the PIR protocol is essentially preserved,(2) given a single-server PIR
protocol in which the server communicatesn − k bits, it is possible to commit toΩ(k) bits while executing
the underlying single-server PIR protocol only once, and (3) whereas the construction of Beimel et al. was
presented for single-server PIR protocols in which the server communicates at mostn/2 bits, our construction
can rely on single-server PIR in which the server communicates up ton− ω(logn) bits.

In what follows we state our main theorem in the current section, and then turn to formally describe the
construction and prove Theorem4.1.
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Theorem 4.1. Let d(n) ∈ ω(logn), k(n) ≥ 2d(n), and letP be a single-server PIR protocol in which the
server communicates n− k(n) bits, where n is the size of the server’s database. Then, there exists a weakly-
binding statistically-hiding commitment schemeCOMP for d(n)/6 bits, in which the sender communicates
less than n− k(n) + 2d(n) bits during the commit stage. Moreover, the construction is fully-black-boxand
linearly-preserving.

The construction. Fix d(n), k(n) andP as in Theorem4.1. Figure2 describes our construction of the
commitment schemeCOMP = (S,R). In the construction we use a strong

(
d(n)/3,21−d(n)/3

)
-extractor EXT :

{0,1}n × {0,1}d(n) → {0,1}d(n)/6 whose existence is guaranteed by Proposition2.2. The correctness ofCOMP
follows directly from the correctness ofP. In addition, notice that the total number of bits communicated by
the sender in the commit stage is the total number of bits that the server communicates in P plus the seed
length and the output length of the extractor EXT. Thus, the sender communicates less thann− k(n) + 2d(n)
bits during the commit stage.

Protocol COMP
= (S,R)

Joint input: security parameter 1n.
Sender’s input: s ∈ {0,1}d(n)/6.

Commit stage:

1. S chooses a uniformly distributedx ∈ {0,1}n.

2. R chooses a uniformly distributed indexi ∈ [n].

3. S andR execute the single-server PIR protocolP for database of lengthn, whereS acts as the server
with input x andR acts as the user with inputi. As a result,R obtains a bitxi ∈ {0,1}.

4. S chooses a uniformly distributed seedt ∈ {0,1}d(n), computesy = EXT(x, t) ⊕ s, and sends (t, y) toR.

Reveal stage:

1. S sends (s, x) toR.

2. If the ith bit of x equalsxi andy = EXT(x, t) ⊕ s, thenR outputss. Otherwise,R outputs⊥.

Figure 2: A construction of a commitment scheme from any low-communication single-server PIR protocol.

Proof intuition. The commit stage consists of the sender and the receiver choosing random inputs x ∈
{0,1}n and i ∈ [n], respectively, and executing the PIR protocolP on these inputs. As a consequence, the
receiver obtains a bitxi , which by the correctness ofP is the ith bit of x. Now, notice that since the sender
communicated onlyn − ω(logn) bits, then the random variable corresponding tox still hasω(logn) min-
entropy from the receiver’s point of view (with high probability). We takeadvantage of this fact, and exploit
the remaining min-entropy ofx in order to hide the committed strings in a statistical manner (note that since it
is required to reveal the seed of the extractor during the commit stage, we need astrongextractor). The formal
proof of the hiding property is similar to that of Lu [29] in the bounded storage model, which is in turn based
on ideas that were used for constructing pseudorandom generators for space bounded computations [33]. We
note that the proof of hiding does not rely on any computational propertiesof the underlying PIR protocolP,
but only on the assumed bound on the number of bits communicated by the server in P. The binding property
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follows from the security of the PIR protocol: in the reveal stage, the sender must send a valuex whoseith bit
is consistent with the bit obtained by the receiver during the commit stage – butthis bit is not known to the
sender.

Lemma 4.2. The schemeCOMP is statistically hiding.

Proof. We have to show that for any computationally unbounded receiverR∗ and for any two stringss0 ands1,
the statistical distance between the distributions{view〈S(s0),R∗〉(n)} and{view〈S(s1),R∗〉(n)} (see Definition2.6)
is negligible inn. The transcript of the commit stage consists of the transcripttransP of the execution ofP
and of the pair (t,EXT(x, t)⊕ s), wheres is the committed string. Note that sincetransP is independent of the
committed string, it is sufficient to prove that the statistical distance between the distribution of (t,EXT(x, t))
given transP and the uniform distribution is negligible inn.

We argue that due to the bound on the number of bits communicated by the server in P, even after exe-
cutingP, the databasex still has sufficient min-entropy in order to guarantee that (t,EXT(x, t)) is sufficiently
close to uniform. More specifically, letR∗ be an all-powerful receiver (recall that without loss of generality
such anR∗ is deterministic), and denote byX the random variable corresponding to the valuex in the scheme
COMP. The following claim states the with high probabilityX has high min-entropy fromR∗’s point of view.

Claim 4.3. It holds that

PrtransP←COMP

[
H∞(X | transP) <

k(n)
6

]
< 2−

k(n)
4 ,

wheretransP is the transcript of the embedded execution ofP in COMP.

Proof. For any value ofr, the random coins used byS in the execution ofP, let fr : {0,1}n 7→ {0,1}n−k(n) be
the function that mapsx to the value oftransP generated by the interaction of (S(x, r),R∗), and let Col(x, r)

def
=

{x′ ∈ {0,1}n : fr (x′) = fr (x)}. Since fr has at most 2n−k(n) possible outputs, it follows that

Prx,r
[
|Col(x, r)| < 2

k(n)
2 +1

]
<

2n−k(n) · 2k(n)
2 +1

2n = 21− k(n)
2 . (4.1)

Let
BAD =

{
transP : Prx,r

[
|Col(x, r)| < 2

k(n)
2 +1

∣∣∣∣ transP
]
> 2

k(n)
4 · 21− k(n)

2

}
,

then a standard averaging argument yields

PrtransP←COMP [transP ∈ BAD] ≤ 2−
k(n)

4 .

Denote byUr the random variable corresponding tor in the execution ofCOMP. Then, the following
holds for every value ofx andtransP:

Pr[X = x | transP] (4.2)

= Pr
[
X = x∧ |Col(X,Ur )| < 2

k(n)
2 +1

∣∣∣∣ transP
]
+ Pr

[
X = x∧ |Col(X,Ur )| ≥ 2

k(n)
2 +1

∣∣∣∣ transP
]

≤ Pr
[
|Col(X,Ur )| < 2

k(n)
2 +1

∣∣∣∣ transP
]
+ 2−

(
k(n)

2 +1
)
.

Note that ifH∞(X | transP) < k(n)/6 for sometransP, then there exists anx for which

Pr[X = x | transP] ≥ 2−
k(n)

6 ,

19



and therefore Equation4.2 implies that

Pr
[
|Col(X,Ur )| < 2

k(n)
2 +1

∣∣∣∣ transP
]
> 2−

k(n)
6 − 2−

(
k(n)

2 +1
)
> 21− k(n)

4 .

Thus,

PrtransP←COMP

[
H∞(X | transP) <

k(n)
6

]

≤ PrtransP←COMP
[
Pr

[
|Col(X,Ur )| < 2

k(n)
2 +1

∣∣∣∣ transP
]
> 21− k(n)

4

]

≤ PrtransP←COMP [transP ∈ BAD]

≤ 2−
k(n)

4 .

Now, sinced(n) ∈ ω(logn) andk(n)/6 ≥ d(n)/3, Claim4.3 implies that with probability 1− neg(n), the
extractor EXT guarantees that the statistical distance between the pair (t,EXT(x, t)) (given transP) and the
uniform distribution is at most 21−d(n)/3 (which is again negligible inn). Therefore the schemeCOMP is
statistically-hiding. More specifically, for every strings ∈ {0,1}d(n)/6 it holds that

SD
({transP, t,EXT(X, t) ⊕ s}, {transP,U7d(n)/6}

)

≤ Pr

[
H∞(X | transP) <

k(n)
6

]

+SD

(
{transP, t,EXT(X, t) ⊕ s}, {transP,U7d(n)/6}

∣∣∣∣∣ H∞(X | transP) ≥ k(n)
6

)

≤ 2−
k(n)

4 + 21− d(n)
3 .

Therefore, for any two stringss0, s1 ∈ {0,1}d(n)/6 we have

SD
({

view〈S(s0),R∗〉(n)
}
,
{
view〈S(s1),R∗〉(n)

})
= SD({transP, t,EXT(X, t) ⊕ s0}, {transP, t,EXT(X, t) ⊕ s1})

≤ 2 ·
(
2−

k(n)
4 + 21− d(n)

3

)
,

which is negligible inn as required.

Lemma 4.4. The schemeCOMP is weakly binding.

Proof. We show that the schemeCOMP is (1−1/n2)-binding. Given any malicious senderSnd∗ that violates
the binding of the commitment schemeCOMP with probability at least 1− 1/n2, we construct a malicious
serverSrv∗ that breaks the security of the single-server PIR protocolP.

As an intermediate step, we first construct a malicious server that has a non-negligible advantage in
predicting a uniformly chosen index held by the user inP. More specifically, we construct a malicious
serverSrv∗ and a predictorD′ such that

Pr
[
v← view〈Srv∗,U(i)〉(n) : D′(v) = i

]
≥ 1

n
+

1
n2
,

where the probability is taken over the uniform choice ofi ∈ [n] and over the coin tosses ofSrv∗,D′ andU.
Recall thatview〈Srv∗,U(i)〉(n) denotes the distribution on the view ofSrv∗ when interacting withU(i) where
i ∈ [n]. This view consists of its random coins and of the sequence of messagesit receives fromU.
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The malicious serverSrv∗ follows the malicious senderSnd∗ in the embedded execution ofP in COMP.
Following the interaction,Srv∗ proceeds the execution ofSnd∗ to obtain a pair (t, y) and two decommitments
(x1, s1) and (x2, s2). If x1 = x2, thenSrv∗ fails. Otherwise, denote byj ∈ [n] the minimal index such that
x1[ j] , x2[ j]. Now, the predictorD′ outputs a uniformly distributed valuei′ from the set [n] \ { j}.

In order to analyze the success probability in predictingi, note that if (x1, s1) and (x2, s2) are valid decom-
mitments ands1 , s2 (i.e.,S∗ broke the binding ofCOMP), then it must hold thatx1 , x2. In this case, let
j ∈ [n] be the minimal index such thatx1[ j] , x2[ j], then it must be the case thati , j, as otherwiseR will not
accept the two decommitments. Therefore, when the predictorD′ outputs a uniformly distributedi′ ∈ [n] \ { j}
it will output i with probability 1/(n− 1). Thus,

Pr
[
v← view〈Srv∗,U(i)〉(n) : D′(v) = i

]
≥

(
1− 1

n2

)
· 1

n− 1

=
n+ 1

n2

=
1
n
+

1
n2
.

In the remainder of the proof, we apply a rather standard argument in order to be fully consistent with
Definition 2.5of the security of single-server PIR. That is, we need to show that thereexists a pair of indices
i, j ∈ [n], a malicious serverSrv∗ and a distinguisherD such that

∣∣∣∣Pr
[
v← view〈Srv∗,U(i)〉(n) : D(v) = 1

]
− Pr

[
v← view〈Srv∗,U(j)〉(n) : D(v) = 1

]∣∣∣∣ ≥
1

p(n)
,

for some polynomialp(n). We prove that this holds for independently and uniformly choseni, j ∈ [n] (and
therefore there existi and j for which this holds) whereSrv∗ is the malicious server described above, and
D = Di, j is a distinguisher that usesD′ as follows:

• If D′ outputsi, thenD outputs 1.

• If D′ outputsj, thenD outputs 0.

• Otherwise,D outputs a uniformly distributedb ∈ {0,1}.

Then,

Pr
[
v← view〈Srv∗,U(i)〉(n) : D(v) = 1

]

= Pr
[
v← view〈Srv∗,U(i)〉(n) : D′(v) = i

]
+

1
2
· Pr

[
v← view〈Srv∗,U(i)〉(n) : D′(v) < {i, j}

]

≥ 1
n
+

1
n2
+

1
2
· Pr

[
v← view〈Srv∗,U(i)〉(n) : D′(v) < {i, j}

]
,

and

Pr
[
v← view〈Srv∗,U(j)〉(n) : D(v) = 1

]

= Pr
[
v← view〈Srv∗,U(j)〉(n) : D′(v) = i

]
+

1
2
· Pr

[
v← view〈Srv∗,U(j)〉(n) : D′(v) < {i, j}

]

=
1
n
+

1
2
· Pr

[
v← view〈Srv∗,U(j)〉(n) : D′(v) < {i, j}

]
,

where the last equality holds since bothi and j are independently chosen. Finally, note that

Pr
[
v← view〈Srv∗,U(i)〉(n) : D′(v) < {i, j}

]
= Pr

[
v← view〈Srv∗,U(j)〉(n) : D′(v) < {i, j}

]
,
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and therefore
∣∣∣∣Pr

[
v← view〈Srv∗,U(i)〉(n) : D(v) = 1

]
− Pr

[
v← view〈Srv∗,U(j)〉(n) : D(v) = 1

]∣∣∣∣ ≥
1
n2
.

5 Communication Lower Bound for Single-Server PIR

Is this section we combine the results from sections3 and4, and derive an immediate proof of our main result,
formally stated as follows:

Theorem 5.1. In any fully-black-box O(n)-expanding construction of a single-server PIR protocol from a
family of trapdoor permutations, the server communicatesΩ(n) bits to the user, where n is the size of the
server’s database.

Proof. Assume towards a contradiction that there exists a fully-black-boxO(n)-expanding construction of a
single-server PIR protocol from a family of trapdoor permutations in whichthe server communicateso(n)
bits, wheren is the size of the server’s database. By applying Theorem4.1 with parametersk(n) = n − o(n)
andd(n) = log2 n (actually anyd(n) = ω(logn) suffices) we obtain a fully-black-boxO(n)-expanding weakly-
binding statistically-hiding bit-commitment scheme from a family of trapdoor permutations, in which the
sender communicateso(n) bits during the commit stage, wheren is the security parameter of the scheme.
However, the existence of such a scheme contradicts Theorem3.1.

5.1 On extending the lower bound to weakly-preserving constructions

Our result does not rule out weakly-preserving (fully-black-box) constructions of single-server PIR from
trapdoor permutations in which the sender communicateso(n) bits to the user. We note that although weakly-
preserving reductions guarantee much weaker security than polynomially-preserving reductions, investigating
lower bounds for such reductions is still a very interesting research topic. Even more so as the sole construc-
tion to date of a single-server PIR protocol from trapdoor permutations uses such a reduction. A possible
step towards tightening our bound is to first provide an improved lower boundon the communication com-
plexity of statistically-hiding commitment schemes that allow the sender to commit to more than a single bit.
Whereas in Section4 we proved that any low-communication single-server PIR implies a statistically-hiding
commitment scheme that allows the sender to commit to a relatively long string, our lower bound on the
communication complexity of statistically-hiding commitment schemes in Section3 serves as a bottleneck: it
does not take into consideration the number of committed bits (the lower bound is only in terms of the security
parameter).

It is quite possible that a much tighter lower bound can be proved for string-commitment schemes. Such
a lower bound may extend the result of the current paper to the setting of weakly-preserving reductions, and
prove the optimality of the single-server PIR protocol of Kushilevitz and Ostrovsky [27]. We note that the
statistically-hiding commitment scheme of Naor et al. [31] (which is constructed from one-way permutations
in a fully-black-box manner) can be used to commit toO(logn) bits while the sender communicatesO(n) bits
(see, for example, [32]).
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