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Abstract

We study the communication complexity of single-servevdte Information Retrieval (PIR) protocols
that are based on fundamental cryptographic primitiveshlaek-box manner. In this setting, we establish
a tight lower bound on the number of bits communicated by #rges in any polynomially-preserving
construction that relies on trapdoor permutations. MowcHjgally, our main result states that in such
construction€2(n) bits must be communicated by the server, wheigthe size of the server’s database,
and this improves th€(n/logn) lower bound due to Haitner, Hoch, Reingold and Segev (FQIZ$ '
Therefore, in the setting under consideration, the nailatiso in which the user downloads the entire
database turns out to be optimal up to constant multiplieatactors. We note that the lower bound
we establish holds for the most generic form of trapdoor pgations, including in particular enhanced
trapdoor permutations.

Technically speaking, this paper consists of two main douations from which our lower bound is
obtained. First, we derive a tight lower bound on the numlbdite communicated by the sender during
the commit stage of any black-box construction of a stadiii-hiding bit-commitment scheme from a
family of trapdoor permutations. This lower bound asymptily matches the upper bound provided by
the scheme of Naor, Ostrovsky, Venkatesan and Yung (CRYRRD Second, we improve théfieiency
of the reduction of statistically-hiding commitment schesnto low-communication single-server PIR, due
to Beimel, Ishai, Kushilevitz and Malkin (STOC '99). In piarilar, we present a reduction that essentially
preserves the communication complexity of the underlyingle-server PIR protocol.

*A preliminary version of this work appears d9J.
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1 Introduction

A single-server Private Information Retrieval (PIR) scheme is a protoetween a server and a user. The
server holds a databages {0, 1}" and the user holds an indéx [n] to an entry of the database. Informally,
the user wishes to retrieve tiie entry of the database, without revealing the indexthe server. The notion
of PIR was introduced by Chor, Goldreich, Kushilevitz and Sudgrid model applications that enable
users to query public databases without revealing any information on ¢edispglata that the users wish to
retrieve. Chor et al. showed that in the information-theoretic setting anlesssgver PIR protocol has the
server communicating at leasbits. Therefore in this setting the naive solution in which the user downloads
the entire database is optimal.

Kushilevitz and OstrovskyZ6] were the first to construct a non-trivial single-server PIR protoelyling
on computational assumptions. Their result initiated a sequence of pdyosveg that there exist single-
server PIR protocols with poly-logarithmic communication complexity basedpatificnumber-theoretic
assumptions (see, for examplg, B, 12, 26, 28, 41], and a recent survey by Ostrovsky and Ske&§). The
only non-trivial construction based generalcomputational assumptions is due to Kushilevitz and Ostrovsky
[27], and is based on enhanced trapdoor permutations. In their construutiaver, the server is required
to communicate — o(n) bits to the user.

Motivated by this ever-growing line of work, we study the communication coxityl®f single-server
PIR protocols that are based on fundamental primitives. We establish a limez bound on the number
of bits communicated by the server in constructions that rely on enhangethtiapermutations in a black-
box manner. Therefore, in the setting under consideration in this paparathe solution in which the user
downloads the entire database turns out to be optimal up to constant multiglifaatiers. In the following
paragraphs, we briefly describe the setting in which our lower bounaiggr(a more formal description is
provided in Sectior).

Black-box reductions. As previously mentioned, under widely believed specific number-theossimap-
tions, there are veryfcient single-server PIR protocols. Therefore, if any of these assomspholds, the
existence of trapdoor permutations implies the existencdfmient single-server PIR protocols in a trivial
sense. Faced with similarfficulties, Impagliazzo and Rudicl2?] presented a paradigm for proving im-
possibility results under a restricted, yet very natural and importantjaasof reductions calledlack-box
reductions Informally, a black-box reduction of a primitive@ to a primitive Q is a construction oP out

of Q that ignores the internal structure of the implementatio@aind uses it as a “subroutine” (i.e., as a
black-box). In addition, in the case of fully-black-box reductions ($eeexample, 36]), the proof of se-
curity (showing that an adversary that breaks the implementatidhiwiplies an adversary that breaks the
implementation ofQ), is black-box as well, that is, the internal structure of the adversatybtieaks the
implementation oP is ignored.

The strength of cryptographic reductions. Luby [30] provides a classification of the strength of crypto-
graphic reductions into three classes: linearly-preserving, polynonpediserving and weakly-preserving.
In our setting, this classification comes into play when comparing the size oéther's database and the do-
main of the trapdoor permutations. Very informally, a reduction of singleesétIR for am-bit database to a
family of trapdoor permutations is linearly-preserving or polynomially-pnéeg if it uses trapdoor permuta-
tions overQ)(n) bits. Such a reduction is weakly-preserving if it uses trapdoor permogadieerQ(nc) bits for
some constant & € < 1. In linearly-preserving and polynomially-preserving reductions veegalaranteed
that breaking the constructed primitive is essentially as hard as breakingdleelying primitive. However,
in weakly-preserving reductions, we are only guaranteed that bigetkénconstructed primitive is as hard as
breaking the underlying primitive for polynomially smaller security parametfs.refer the reader tB[]



for a more comprehensive and complete discussion.

1.1 Related Work

Single-server PIR is one of the fundamental primitives in the foundatioaypfography. For example, non-
trivial single-server PIR was shown to imply the existence of Obliviousdfiex protocols%], and 2-move
low-communication single-server PIR was shown to imply collision-resistastt hanctions 23]. Single-
server PIR was also shown to be tightly related to several other aspectgpdbgraphy and complexity
theory (see, for example6[ 20, 24]). We note that it is far beyond the scope of this paper to present an
exhaustive overview of the ever-growing line of work on single-seRI&, and we refer the reader to the
recent survey of Ostrovsky and Skei35] for a more comprehensive discussion.

In the context of black-box reductions, Impagliazzo and Rudi®j $howed that there are no black-
box reductions of key-agrement protocols to one-way permutationssiargtantial additional work in this
line followed (see, for example/] 13, 14, 37, 39]). Kim, Simon and Tetali 25 initiated a new line of
impossibility results, by providing a lower bound on #fgciencyof black-box reductions (rather than on their
feasibility). They proved a lower bound on thiieency, in terms of the number of calls to the underlying
primitive, of any black-box reduction of universal one-way hastcfioms to one-way permutations. This
result was later improved, to match the known upper bound, by Genndr@ramisan 11], which together
with Gennaro et al.{g, 9] provided tight lower bounds on théfeiency of several other black-box reductions.
Building upon the technique developed [y], Horvitz and Katz 1] provided lower bounds on théfeiency
of black-box reductions of statistically-hiding and computationally-bindingmitment schemes to one-way
permutations. In the above results the measurdtmiency under consideration is the number of calls to the
underlying primitives.

Di Crescenzo, Malkin and Ostrovskg][showed that any single-server PIR protocol in which the server
communicates at most— 1 bits (wheren is the size of the server’'s database) can be transformed in a fully-
black-box manner to an Oblivious Transfer protocol. Gennaro, Liratall Malkin [LO] (refining Gertner
et al. [L3]) ruled out any black-box reduction of Oblivious Transfer to plain (ir@n-enhanced) trapdoor
permutations. The combination of these two results yields that there are fiovialblack-box constructions
of single-server PIR from non-enhanced trapdoor permutations. dféethat although in this paper we rule
out a more restricted class of constructions (that is, the class of fullblex constructions), our result holds
for the most generic form of trapdoor permutations, including in particulbaeced trapdoor permutations.

Very recently, Haitner et al1§g], improving upon the work of Weed)], proved that any polynomially-
preserving fully-black-box reduction of a statistically-hiding bit-commitmettesae to trapdoor permuta-
tions has2(n/ log n) communication rounds (whereis the security parameter). As a corollary, they showed
that any polynomially-preserving fully-black-box reduction of singleveePIR to trapdoor permutations has
Q(n/logn) communication rounds, whereis the size of the server’s database. In particular, the server is
required to communicat@(n/ logn) bits to the user. Haitner et al. also established similar lower bounds on
the communication complexity of Oblivious Transfer that guarantees statiséicafity for one of the parties
and for Interactive Hashing.

In a slightly diterent setting, Ostrovsky and SkeitB4] proved a lower bound on the communication
complexity of single-server PIR protocols with certain algebraic properties a class of PIR protocols,
referred to asabelian group algebraic PIR protocqlsvith user-side communication complexityn) and
server-side communication complexhgn) they proved thagy(n)h(n) = Q(n).

1.2 Our Results

We study the class of black-box constructions of single-server PIR frapdoor permutations, and establish
a tight lower bound on the number of bits communicated by the server in sastrgctions. Our main result



is the following:

Main Theorem (Informal). In any polynomially-preserving fully-black-box construction of a siragever
PIR protocol from trapdoor permutations the server communic@(@} bits, where n is the size of the server’s
database.

As mentioned above, the combination of the results of Di Crescenzo &} ahd of Gennaro et all1[]
rules out the more general class of black-box reductions of singlerseiR withn— 1 bits of communication
to trapdoor permutations. This result, however, does not apply to eattarapdoor permutations. We note
that our lower bound holds for the most generic form of trapdoor petionta and in particular for enhanced
trapdoor permutations.

In addition, we note that our lower bound holds only for constructionshviie polynomially-preserving.
The construction of Kushilevitz and Ostrovsi&/7], which is based on enhanced trapdoor permutations in a
fully-black-box manner and in which the server communicateso(n) bits, is only weakly-preserving (i.e.,
it is significantly easier to break their protocol than to break the securityeafitidlerlying family of trapdoor
permutations’). Thus, the question of whether a tight linear lower bound can be estathlish weakly-
preserving constructions as well remains open.

The main technical contributions. This paper consists of two main contributions from which our lower
bound is immediately obtained. First, we derive a tight lower bound on the coratiam complexity of
black-box constructions of statistically-hiding bit-commitment schemes frordd@permutations. Very re-
cently, Haitner et al.I8] proved that any polynomially-preserving fully-black-box constructibstatistically-
hiding bit-commitment scheme from a family of trapdoor permutationgXfaglogn) communication rounds,
wherenis the security parameter of the scheme. In particular, this implies a lower loowthé number of bits
communicated by the sender. In this paper we manage to improve their lowed bod prove the following
theorem:

Theorem (Informal) 1.1. In any polynomially-preserving fully-black-box construction of a statiflifiea
hiding bit-commitment scheme from a family of trapdoor permutations theeseoednmunicates2(n) bits
during the commit stage, where n is the security parameter of the scheme.

This lower bound asymptotically matches the upper bound given by the stdliyskiching commitment
scheme of Naor et al3[l].

In addition, we improve theflciency of the reduction of statistically-hiding commitment schemes to
single-server PIR, presented by Beimel et &]. [Our reduction essentially uses the reduction of Beimel et
al. instantiated with a better extractor, which enables us to preserve the caratrmmcomplexity of the
underlying single-server PIR protocol. As stating this result turns outvtuhia subtle technical details, here
we only state a very informal statement:

Theorem (Informal) 1.2. There is a linearly-preserving fully-black-box reduction of statisticallyigccom-
mitment schemes to low-communication single-server PIR, which edlseptéserves the communication
complexity of the underlying single-server PIR protocol.

Note that enhanced trapdoor permutations are, seemingly, strongepléia trapdoor permutations. Therefore, although our
result is weaker in terms of the class of reductions and the bound on th@waication complexity, it provides the first evidence
that enhanced trapdoor permutations are nfitcent to construct single-server PIR with sublinear communication (at feam a
black-box perspective).

2Though the security guarantees of the two primitives are still polynomialbted.



1.3 Paper Organization

In Section2 we briefly present the notations and formal definitions used in this papeSettion3 we
prove our tight lower bound on the number of bits communicated by the sdodeag the commit stage of
statistically-hiding commitment schemes. In Sectibwe describe an improved reduction of statistically-
hiding commitment scheme to low-communication single-server PIR. Finally, in 8egtie establish the
lower bound for single-server PIR by combining our main technical carntabs.

2 Preliminaries

We denote by, the set of all permutations ov¢®, 1}". For an integen, we denote byJ, the uniform
distribution over the s€D, 1}". For a finite seX, we denote by « X the experiment of choosing an element
of X according to the uniform distribution. Similarly, for a distributiéhover a seX, we denote by « D
the experiment of choosing an elemendoéccording to the distributio®. For a distribution® we denote
by supp) set of elements having non-zero probability unflerThe min-entropy ofD is defined as:

Ho(D) = Xesrn;g@)(log

1
Prp [X]) '

The statistical distance between two distributidhandY overQ is denoted SDX, Y), and defined as

SD(X.Y) = % > 1P [w] - Pry [w]]

weQ

Definition 2.1. A function E : {0,1}" x {0, 1}¢ — {0, 1}™ is a (, €)-extractor if for every distributiorX over
{0, 1}" with H.(X) > k the distributionE(X, Uq) is e-close to uniform.E is astrong (k, €)-extractor if the
functionE’(x,y) = yo E(X,Yy) is a K, €)-extractor (where denotes concatenation).

In our construction of a statistically-hiding commitment scheme from singlees@hR we will be using
the following explicit construction of strong extractors, which is obtainesl @srollary of B0, Corollary 3.4].

Proposition 2.2. For anyk € w(log(n)), there exists an explicit stronds, @ ¥)-extractor EXT :{0, 1}" x
{0,1}3 - {0, 1}¥2,

The following standard fact (see, for exam@@&[Fact 2.6]) will be useful for us in analyzing statistically-
close distributions.

Fact 2.3.1f X and Y are two distributions such th&D(X, Y) < ¢, then with probability at least — 2 /e over
X « X it holds that

(1- Ve)-PrX=x] <Pr[Y=x < (1+ ve) - Pr{X=x] .

2.1 Trapdoor Permutations

We briefly present the notion of trapdoor permutations, and refer tideréa [L5) for a more comprehensive
discussion. A collection of trapdoor permutations is represented by a toptee formr = (G, F, F‘l).
Informally, G corresponds to a key generation procedure, which is queried on g &irimtended as the
“trapdoor”) and produces a corresponding public k&y The proceduré is the actual collection of permu-
tations, which is queried on a public kgk and an inputx. Finally, the procedur& ! is the inverse of:

If G(td) = pkandF(pk x) =y, thenF~L(td,y) = x. In this paper, since we are concerned with providing a
lower bound, we do not consider the most general definition of a collecfitapdoor permutations. Instead,
we denote byT, the set of all triplets, = (Gn, Fr, Fr;l) of the following form:

4



1. G e Il,.
2. Fr:{0,1}" x {0,1}" — {0, 1}" is a function such tha&,(pk, -) € IT, for everypk € {0, 1}".

3. F;1:{0,1)"x{0,1}" — {0, 1}"is a function such tha;(td, y) returns the uniqua € {0, 1}" for which
Fn(Gn(td), X) = y.

Our lower bound proof is based on analyzing random instances of@llgctions. A uniformly dis-
tributedr,, € T,, can be chosen as follow&;, is chosen uniformly at random frohy,, and for eaclpk € {0, 1}"
a permutatiori-»(pk, -) is chosen uniformly and independently at random fidm

Definition 2.4. A family 7 = {r, = (Gn, Fn, F- 1)} of trapdoor permutations in)-hard if for every prob-
abilistic Turing-machiné that runs in times(n), and for all stificiently largen,

Pr|A"(1", Gn(td), y) = F5*(td, )
[ n ] s( )
where the probability is taken uniformly over all the possible choiced af{0, 1}" andy € {0, 1}", and over
all the possible outcomes of the internal coin tosses. of

Definition 2.4refers to the diiculty of inverting a random permutatidf(pk, -) on a uniformly distributed
imagey, when given onlypk = G(td) andy. Some applications, however, require enhanced hardness con-
ditions. For example, it may be required (ct6] Appendix C]) that it is hard to inveffe(pk, -) ony even
given the random coins used in the generatio.olNote that our formulation captures such hardness con-
dition as well and therefore the impossibility results proved in this paper hatdfatsenhanced trapdoor
permutations.

2.2 Single-Server Private Information Retrieval

A single-server Private Information Retrieval (PIR) scheme is a prbtostween a server and a user. The
server holds a databasee {0,1}" and the user holds an indéxe [n] to an entry of the database. Very
informally, the user wishes to retrieve thentry of the database, without revealing the indexthe server.
More formally, a single-server PIR scheme is defined via a pair of pilidtabpolynomial-time Turing-
machines§, U) such that:

e Sreceives as input a stringe {0, 1}". Following its interaction it does not have any output.
e U receives as input an indéx [n]. Following its interaction it outputs a valdee {0, 1, L }.

Denote byb « (S(x), U(i)) the experiment in whictS and U interact (using the given inputs and
uniformly chosen random coins), and thiéhoutputs the valué. It is required that there exists a negligible
functionv(n), such that for all sfiiciently largen, and for every stringgc = X o - - - o X, € {0, 1}", it holds that

— (S8(x), U(i)) with probability at least X v(n) over the random coins of both andR.

In order to define the security properties of such schemes, we firatirdeche following notation. Given
asingle-server PIR schems, (I/) and a Turing-machin8” (a malicious server), we denote bgws- 44y (n)
the distribution on the view af* when interacting witt{(i) wherei € [n]. This view consists of its random
coins and of the sequence of messages it receives tonvhere the distribution is taken over the random
coins of bothS* and{.

3A different enhancement, used 7], requires the permutations’ domain to be polynomially dens@ja}". Clearly, our
impossibility result holds for such an enhancement as well.




Definition 2.5. A single-server PIR schem& () is secure if for every probabilistic polynomial-time Turing-
machinesS* and D, and for every two sequences of indideg;>; and{jn};°, whereiy, j, € [n] for everyn,
it holds that

’Pr[v — views: g (N) - D(V) = 1] - Pr[v — view s g/ (N) 1 D(V) = l” <v(n) ,

for some negligible functiom(n) and for all sdificiently largen.

2.3 Commitment Schemes

A commitment scheme is a two-stage interactive protocol between a sendereceiver. Informally, after
the first stage of the protocol, which is referred to asabemit stagethe sender is bound to at most one
value, not yet revealed to the receiver. In the second stage, whiefersad to as theeveal stagethe sender
reveals its committed value to the receiver. More formally, a commitment schemgnisdieia a triplet of
probabilistic polynomial-time Turing-machines,(R, V) such that:

e Sreceives as input the security parameteanid a string € {0, 1}*. Following its interaction, it outputs
some informationlecom (the decommitment).

e R receives as input the security parametér Bollowing its interaction, it outputs a state information
com (the commitment).

e V (acting as the receiver in the reveal stjgeceives as input the security parametericommitment
com and a decommitmemtecom. It outputs either a string’ € {0, 1} or L.

Denote by ecom|com) « (S(1", x), R(1")) the experiment in whickS andR interact (using the given
inputs and uniformly chosen random coins), and tSesutputsdecom while R outputscom. It is required
that for alln, every stringx € {0, 1}¥, and every pairdecom|com) that may be output byS(1", x), R(1")), it
holds that'V(com, decom) = x.° In the remainder of the paper, it will often be convenient for us to identify
V with R, and refer to a commitment scheme as a pSir).

The security of a commitment scheme can be defined in two complementary watgsting against ei-
ther an all-powerful sender or an all-powerful receiver. In thisgpape deal with commitment schemes of the
latter type, which are referred to agatistically-hidingcommitment schemes. In order to define the security
properties of such schemes, we first introduce the following notationerGavcommitment schemé,(R)
and a Turing-machin®”, we denote byiew s z-y(n) the distribution on the view oR* when interacting
with S(1", x). This view consists ofR*’s random coins and of the sequence of messages it receives from
S. The distribution is taken over the random coins of b8tandR*. Note that whenever no computational
restrictions are assumed &, without loss of generality we can assume tR&is deterministic.

Definition 2.6. A commitment schemeS, R) is p(n)-hiding if for every deterministic Turing-maching*,
and for every two sequences of strings};”; and{x};>;, wherexn, X; € {0, 1}XM" for everyn the ensembles
{views(x).®+(N)} and{view s, =-y(n)} have statistical dierence at mogi(n) for all sufficiently largen. Such
a scheme istatistically-hidingif it is p(n)-hiding for some negligible functiopn(n).

Our lower bound for commitment schemes holds in fact under a weaker higlijugrement. We derive
our results even for commitment schemes in which the sender is statisticallytpcbbety against an honest
receiver. Such schemes are referred tstasistically-hiding honest-receiveommitment schemes. Formally,

“Note that there is no loss of generality in assuming that the reveal staga-istecactive. This is since any such interactive
stage can be replaced with a non-interactive one as follows: The sssmtés its internal state to the receiver, who then simulates the
sender in the interactive stage.

SAlthough we assume perfect completeness, it is not essential foesuits.



it is only required that the statisticalfterence between the ensembeisw s, z)(N)} and{view s, (N}
is some negligible function af.

Definition 2.7. A commitment schemeS, R, V) is u(n)-bindingif for every probabilistic polynomial-time
Turing-machineS* it holds that the probability that décom, decom’)icom) « (S*(1"), R(1")) (where the
probability is over the random coins of baif andR) such thatV(com, decom) # V(com, decom’) and
V(com, decom), V(com,decom’) # L is negligible inn for all suficiently largen. Such a scheme is
computationally-bindingf it is u(n)-binding for some negligible function(n), and isweakly-bindingif it

is (1 - 1/p(n))-binding for some polynomigb(n).

2.4 Black-Box Reductions

A reduction of a primitiveP to a primitiveQ is a construction oP out of Q. Such a construction consists of
showing that if there exists an implementatiormf Q, then there exists an implementatibty of P. This is
equivalent to showing that for every adversary that brédgsthere exists an adversary that bre@ksSuch a
reduction issemi-black-boX it ignores the internal structure @’'s implementation, and it igully-black-box

if the proof of correctness is black-box as well, i.e., the adversaryr&akingQ ignores the internal structure

of both Q's implementation and of the (alleged) adversary brealkngemi-black-box reductions are less
restricted and thus more powerful than fully-black-box reductions. Artaxy of black-box reductions was
provided by Reingold, Trevisan and Vadh&6]| and the reader is referred to their paper for a more complete
and formal view of these notions.

We now formally define the class of constructions considered in this p&par.results in the current
paper are concerned with the particular setting of fully-black-box cocistns of single-server PIR and of
statistically-hiding commitment schemes from trapdoor permutations. We foce®hespecific definitions
for these particular primitives and we refer the readeB@&) for a more general definition.

When examining #iciency measures of fully-black-box constructions, an essential pteafoe such
characterizations, as introduced by Haitner et H],[is the security-parameter-expansiaf the construc-
tion. Consider, for example, a fully-black-construction of a commitmentraehigom a family of trapdoor
permutations. One ingredient of such a construction is a machithat attempts to break the security of
the trapdoor permutation family given oracle access to any malicious séhdbat breaks the security of
the commitment scheme. Thelareceives a security parametér(and possibly some additional inputs) and
invokesS* in a black-box manner. The standard definition does not restrict the raingecurity parame-
ters thatA is allowed to invokeS* on. For exampleA may invokeS* on security parameter“ﬁ, or even
on security parameter®$S") wheres(n) is the running time ofA. In this paper, we will use the notion
¢(n)-expanding for short, and note that according to Luby'’s classificd86j) any polynomially-preserving
reduction isO(n)-expanding in our terminology.

Definition 2.8. A fully-black-box ¢(n)-expanding construction of a single-server PIR scheme fros(ign
hard family of trapdoor permutations is a triplet of probabilistic oracle Tunraghines§, U, A) for which
the following hold:

1. Correctness:For every familyr of trapdoor permutationsS(, U7) is a single-server PIR scheme.

2. Black-box proof of security: For every familyr = {r = (Gp, Fn, F;l)}::l of trapdoor permutations
and for every probabilistic polynomial-time Turing-machi$ig if S* with oracle access tobreaks the
security of S7, U™), then

1

Pr[A™¥ (1", Gn(td).y) = Fr(td, y)| > R



for infinitely many values oh, whereA runs in times(n) and invokesS* on security parameters which
are at most 47. The probability is taken uniformly over all the possible choicesdo& {0,1)" and
y € {0, 1}", and over all the possible outcomes of the internal coin tossAs of

Definition 2.9. A fully-black-box ¢(n)-expanding construction of a weakly-binding and statistically-hiding
honest-receiver commitment scheme fromsér)-hard family of trapdoor permutations is a triplet of proba-
bilistic oracle Turing-machinesS( R, A) for which the following hold:

1. Correctness: For every familyr of trapdoor permutations,S(, R") is a statistically-hiding honest-
receiver commitment scheme.

2. Black-box proof of binding: For every familyr = {r = (Gp, Fn, F;l)}::l of trapdoor permutations
and for every probabilistic polynomial-time Turing-machiig if S* with oracle access tobreaks the
binding of (S, R"), then

& 1
7,8 74N _rc-1 -
Pr[A™%' (1", Gn(td).y) = Fr(td,y)| > 5
for infinitely many values oh, whereA runs in times(n) and invokesS* on security parameters which
are at most 47. The probability is taken uniformly over all the possible choicesdo€ {0,1}" and
y € {0, 1}", and over all the possible outcomes of the internal coin tossAs of

We remark that the above correctness requirements are very striateamot @ssential for our results. For
example, in the setting of commitment schemes, for everych that the protocolY(, R7) is a weakly-binding
statistically-hiding honest-receiver commitment scheme, we construct a malggadeS* which breaks the
binding property of the scheme. Therefore, we could have dealt witkevearrectness requirements as well,
but stating such a weaker requirement in a meaningful way turns out toiteesgbtle.

3 Communication Lower Bound for Statistically-Hiding Commit ment Schemes

In this section we prove a lower bound on the communication complexity of fldlgkbbox constructions
of statistically-hiding commitment schemes from trapdoor permutations. We ebktalibgver bound on the
number of bits communicated by the sender during the commit stage of any chmines Since we are
interested in proving an impossibility result for commitment schemes, it will lecgnt for us to deal with

bit-commitment schemes. We prove the following theorem:

Theorem 3.1. In any fully-black-box @n)-expanding construction of a weakly-binding statistically-hiding
honest-receiver bit-commitment scheme from a family of trapdoor petiongathe sender communicates
Q(n) bits during the commit stage.

The proof of Theoren8.1 follows the approach and technique of Haitner at dl8] who constructed
a “collision-finding” oracle in order to derive a lower bound on the roanthplexity of statistically-hiding
commitment schemes. Given any fully-black-0¢n)-expanding constructiorsS( R, A) of a weakly-binding
statistically-hiding honest-receiver bit-commitment scheme from a family of t@pgdermutationg, we
show that relative to their oracle the following holds: (1) there exists a matidgendeS* that breaks the
binding of the schemed’, R"), and (2) if the sender communicate@) bits during the commit stage of
(87, R7), then the machiné (with oracle access t8*) fails to break the security af.



3.1 The Oracle

We briefly describe the oracle constructed by Haitner etl§].4nd state its main property. The oracle is of
the formO = (r, Sam"), wherer is a family of trapdoor permutations (i.e.,= {rn},_,, Wherer, € T, for
everyn), andSam?® is an oracle that, very informally, receives as input a description of aitEqwhich may
containr-gates) and a string and outputs a uniformly distributed preimagezafnder the mapping defined
by C. As discussed in1[g], several essential restrictions are imposed on the queryisguofthat prevent it
from assisting in inverting.

Description of Sam. The oracleSam receives as input a query of the foigh= (Cf,, C", 2), and outputs

a pair (v, Z) wherew’ is a uniformly distributed preimage afunder the mapping defined by the circatt,
andz = Cj.(w’). We impose the following restrictions:

1. zwas the result of a previous query witfi as the next-query circuit (note that this imposes a forest-like
structure on the queries).

2. The circuitCy,, is arefinementof the circuitC’, where by a refinement we mean ti@f,(w) =
(C7(w),C7(w)) for some circuitC™ and for everyw. In particular, this implies tha€™ andC[,, have

the same input length. Given a quépywe denote this input length by(Q), and when the querg is
clear from the context we will write onlgn.

3. Each query contains a security paramefeabhdSam answers queries only up to demtbpth(n), for
some “depth restriction” functiodepth : N — N which is a part of the description &am. The
security parameter is set such that a query with security paranigteallowed to contain circuits with
gueries to permutations on upridits. Note that although ffierent queries may haveftrent security
parameters, we ask that in the same “query-tree”, all queries will havsatie security parameter
(hence the depth of the tree is already determined by the root query).

In order to impose these restrictiorSam is equipped with a familysign = {sign,},>, of (random)
functionssign, : {0, 1}* — {0, 1} that will be used as “signatures” for identifying legal queries as follows:
in addition to outputting ', z’), Sam will also output the valuesign(1",C,, Z,dep+ 1), wheredepis
the depth of the query,"lis the security parameter of the query, and by applying the “functsigri we
actually mean that we apply the functigign, for the correct input length. Each query of the fo@n=
(1", Cle» C". z dep sig) is answered byam if and only if CT . is a refinement o€", dep < depth(n) and
sig = sign(1",C", z dep.

Finally, Sam is provided with a family of (random) permutatiofis= { fo}, where for every possible query
Q a permutatiorfq is chosen uniformly at random frofiiny ). Given a quen@Q = (1", CJ.,, C", z dep sig),
the oracleSam uses the permutatiofy € ¥ in order to samplav' as follows: it outputsy’ = fg(t) for
the lexicographically smalleste {0, 1}™ such thalC*(fg(t)) = z. Note that whenever the permutatiég is
chosen fromy, uniformly at random, and independently of all other permutationg jthenw’ is indeed
a uniformly distributed preimage @ In this paper, whenever we consider the probability of an event over
the choice of the family~, we mean that for each quefya permutationfq is chosen uniformly at random
from Il q) and independently of all other permutations. A complete and formal desaoripitithe oracle is

provided in Figurel.

.. . . . 7,7 .,sign
Definition 3.2. We say that a circuif queries the oracISamdepth

Q=@1"cr, . C" zdep sig) thatA makes, it holds thalep< d.

next

up to depthd, if for every Sam-query

One of the main properties of the ora8em, as proved in18§], is the following: any circuit with oracle
access t@am that tries to invert a random trapdoor permutation, fails with high probabiligrevpecifically,



Oninput Q = (1",C"_ ,CT, 7 dep, sig), SamT’(f’s'gn acts as follows:

1. If C™ = 1, then outputW, Z, sig) wherevv' = fo(0M), Z = Cl, (W), andsig’ = sign(1",Cl.. Z. 1).
2. Else, ifCl, is a refinement o€", dep< depth(n) andsig = sign(1", C", z dep), then

(a) Find the lexicographically smallest {0, 1})™ such thaC*(fo(t)) = z

(b) Output (v, Z, sig’) wherew = fn(t), Z = Cl (W), andsig’ = sign(1", Cl,, Z. dep+ 1).

3. Else, outputL.

Figure 1. The oracleSam.

Haitner et al. managed to relate this success probability to the maximal depthSafrthqueries made by the
circuit, and to the size of the circuit. They proved the following theorem:

Theorem 3.3([18]). For every circuit A of size(s) that queriesSam up to depth ¢n) such that gn)3dM+2 <
2"/8 for every depth restriction functicsepth and for all syficiently large n, it holds that

7,7 ,sign
Priacoyn.r ATSa M’ (Gn(td),y) = Fp'(td,y)| <
y—{0,1)",sign S( )

3.2 Breaking Low-Communication Statistically-Hiding Commitment Schenes

We show that a random instance of the or&8aen can be used to break the binding of any statistically-hiding
commitment scheme. Specifically, for every bit-commitment sch@&n®) which is (1) weakly-biding, (2)
statistically-hiding against an honest-receiver, and (3) has oragsstwa family of trapdoor permutations,
we construct a malicious send§t which has oracle accessmmdeptﬂg”, and breaks the binding ¢87, R7)
with sufficiently high probability over the choicesaf# andsign. Formally, the following theorem is proved:

Theorem 3.4. For any statistically-hiding honest-receiver bit-commitment sch&$n®, V) with oracle ac-
cess to a family of trapdoor permutations in which the sender communicatesst ¢n) bits during the
commit stage, and for any polynomigin, there exists a polynomial-time malicious sen8éisuch that

Pr‘r,?‘,sign,rﬂ

()

7,7 ,sign
((decom, decom’)|com) « <S* SaMmiapn (1M, R7(1", rR)> : 1
>
V7(com, decom) = 0, V7(com,decom’) = 1

for all suficiently large n, wherelepth(n) = [ £ ] + 1.

logn

In what follows we introduce the notation used in this section. We proceedantief presentation of
the main ideas underlying the proof of Theor8m. Then, we formally describe the malicious sen8&and
analyze its success probability in order to prove TheoBein

Notations. Let (S, R) be a bit-commitment scheme with oracle access to a family of trapdoor permutations.
We denote byb € {0,1} andrgs,rg € {0,1}" the input bit of the sender and the random coins of the sender
and the receiver, respectively. We denotecfry) the maximal number of bits communicated from the sender
to the receiver in the commit stage with security parametetriaddition we denote bgi(n) the number of
communication rounds in the scheme with security paramétearid without loss of generality we assume
that the receiver makes the first move. Each communication round corigisteessage sent from the receiver

to the sender followed by a message sent from the sender to the re¥éivdenote by anda; the messages
sent by the receiver and the sender in ithle round, respectively, and denote &y, the message sent by

10



S R

Input: (b, r5) Input: rp

Figure 2: A d-round bit-commitment scheme.

the sender in the reveal stage. Finally, wedet= (as,...,&) andqg = (gi,....q). A genericd-round
bit-commitment scheme is described in Fig@re

Although the sender is a probabilistic polynomial-tifne@ing-machinein order to interact with the oracle
Sam we need to identify the sender with a sequence of polynomialesigeits S, .. ., Sq.1 as follows. In
the first round,S sendsa; by computinga; = S1(b, rs, q1). Similarly, in the following roundsS sendsy; by
computinga; = Si(b,rs, qi).

Finally, in order to simplify the notation regarding the input and output of tleleSam, in this section
we ignore parts of the input and output 8&m: we ignore the security parameter and the “signatures”
(since our malicious send&* will only ask legal queries), and consider queries of a simplified Qs
(Crexs €7, 2), and answers that consist only wf (i.e., an answer consists only of a uniformly distributed
preimage ofz under the mapping defined I8). In addition, in what follows it will be more intuitive to
replacezin the queries by its preimage but this is clearly not essential.

A brief overview. Informally, recall that the oracl8am described in SectioB.1 acts as followsSam is
given as input a quer® = (Cnexs, C, 2), and outputs a painf, ) wherew’ is a uniformly distributed preimage
of zunder the mapping defined by the cirdQitandz = Cnex{W'). In addition, we imposed the restriction that
there was a previous querg,(, -) that was answered byv(z) (note that this imposes a forest-like structure
on the queries), and we only allow queryigm up to depthO(n/ logn).

Given a statistically-hiding bit-commitment scheme in which the sender communafajdsits during
the commit stage, we assume without loss of generality that the commit stage chémeeshag(n) com-
munication rounds, where in each round the sender communicates a sirtgléheitreceiver. The malicious
senderS* operates as follows: it chooses a random inpitonsisting of random coins and a random com-
mitted bit), and during the first lagrounds it simulates the honest sender. In thesa lmginds, it receives
logn messages, . .., Qogn from the receiver. Then$* constructs the circuiCq,, Glogn that receives as in-
put the sender’s inpulv and outputs the log sender's messages corresponding to the receiver's messages
d1. .- -, Cogn- This circuit is used to quergam for a random inputv;. It may be the case, however, thvat
is not consistent with the actual messaggs. . , aogn thatS* sent in the first logn rounds. In this case§”
“rewinds” Sam for a polynomial number of times, and since the total length of the sendersagesin these
logn rounds is only logn bits, then with sticiently high probabilityS* will obtain a consistentv;. Now,
in the next logh rounds the malicious sendé&r simulates the honest sender with inpyt and at the end
of these log rounds it will query (and rewind$am again for another consistent inpaiogn.1, and so on.
Finally, after completing the commit stag®’, queriesSam to obtain two random inputse,) andw;, ) which
are consistent with the transcript of the commit stage. Since the commitment sishemﬁsticaliy—hiding,
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with probability roughly half they can be used to break the binding of the pobtoA crucial point in this
description, is thaS* queriesSam only up to depthc(n)/ logn (S* usedSam to obtainc(n)/logn values
Wi, Wiogn+1, - - - » We(ny).  Therefore, ifc(n) = o(n), then an oracl&am that answers queries only up to depth
c(n)/ logn cannot be used to invert a random trapdoor permutation, accordingetwdin3.3.

A formal description of 8*.  Given a bit-commitment scheng§, R) in which the sender communicates)
bits during the commit stage, we assume without loss of generality (and for siypliche presentation)
that the scheme hagn) communication rounds (i.ed(n) = c(n)) where in each round during the commit
stage the sender communicates a single bit to the receiver (i.e., eagh.of agpn) is one bit). Furthermore,
in order to simplify the description a$*, we assume that lagis an integral value (wher€'1s the security
parameter given as input &) and thatc(n) = M - logn + 1 for some integeM = M(n). We stress that these
assumptions are not at all essential, but avoiding them will result in a morplimated description. On input

1", the malicious sende$* with oracle access tﬁamg’;’tﬂg” interacts with the honest receivRras follows.

1. The commit stage:

(a) In the first roundS* receivesR’s messagej;, and computes the description of the cirddit =
S1(-, -, q1) obtained from the circuiB; by fixing g, as its third input. ThenS$* querieSSamg;’tf]'g”
with (C4, L, 1), receives an answer; = (by,r1) and sendsy = S1(by,r1,q1) toR.

(b) In every round € {2,...,logn}, 8* simulates the honest send8rwith inputw;. That is,S*
receivesR’s messagej and replies withg; = Sj(by,r1, Gi).

(¢) Inround logn + 1, 8* receivesRk’s message]ogn.+1, and computes the description of the circuit
Ciogn+1 = Siogn+1(*» -, Ologn+1) Obtained from the circuiSiogn.1 by fixing Qiogn+1 as its third in-
put. Then,S* queriesSamg’ei’ti'g” with (Ciogn+1, C1, W) for t = 2n>c(n)p(n) times and receives
t answers. If one of these answers is consistent with the transcript @irdhecol so far, then
denote the first such answer Bygni1 = (Blogn+1, Nogn+1), and in this case&s™ sends the mes-
sageadjogn+1 = Siogn+1(Plogn+1: Nogn+1, Qiogn+1) t0 R. Otherwise S* aborts the execution of the
protocol.

(d) In the remainder of the commit sta§é acts as follows:

i. For everyk and in every round € {(k — 1)logn + 2,...,klogn}, the malicious sende$*
simulates the honest sendgwith input Wk_1)iogn-1-

ii. For every integek and in every roundlogn + 1 the malicious sende$* receivesk’s mes-
sagegkiogn+1, @and computes the description of the Cirdiiogn+1 = Skiogn+1(> *, Oklogn+1)
obtained from the circuiByjogn+1 by fiXing Okiogn+1 @s its third input. ThenS* queries

Samg’;’;'g” with (Cklogn+1> Ck-1) logn+1» W(k-1) |ogn+1) forF = 2n°c(n) p(n} times and receives
t answers. If one of these answers is consistent with the transcript giréhecol so far,
then denote the first such answeniayogn+1 = (Dkiogn+1, 'kiogn+1), and in this cas&™ sends
Aklogn+1 = Sklogn+1(Pklogn+1, Mklogn+1, Oklogn+1) 0 R. Otherwise,S* aborts the execution of

the protocol.

2. The reveal stage:

7,7,sign

S with (L, Ca(r), W) for ntimes, and receivespairs((b{f), ;. r{ )N

_ _ d(n)+1’ "d(n)+1/)j=1"
If there existjo, j1 € [n] such thaibé’(‘r?)+1 =0 andbé‘(;))+1 = 1, thenS* outputs the two values

(a) S* queriesSam

_ (jo) (lo =
decom = Sq(n)+1 (bd(%)+1’ o1 el

decom’ = Sd(n)+1(bg’(ﬂ) 1 réj(;)) +1,CTd(n)) .
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Otherwise S* aborts the execution of the protocol.

Two minor technical details were omitted from the description. First, accoririge description of
Sam (Section3.1), wheneverSam is queried multiple times with the same input, it returns the exact same
answer. Thus, wheneveé¥* queriesSam more than once with the same inp&t, has to make sure that the
queries are all dierent (for example, by artificially embedding the query number to one ofitbeits in the
query). Second, in order f&*’s queries to be legal, it should hold that the cirdDifogn.1 is a refinement
of the circuitCy-1i0gn+1 for every integek (as discussed in Sectidhl). This can be done very easily by
embedding the description of eaC{k-1)iogn+1 inside eaclCyogn+1 (i.€., the output oC; is the sequence of
bits a; instead of only the big).

We proceed by arguing that the malicious senffesuccessfully completes the commit stage with high
probability. Then, given tha$* has successfully completed the commit stage, we prove that the transcript of
the commit stage is distributed identically to the transcript of the commit stage in asthexecution of the
protocol. This enables us to use the fact that the commitment scheme is statistidalty-and therefore a
random transcript can be revealed both as a commitmdntd and as a commitment to= 1, with almost
equal probabilities.

Lemma 3.5. The malicious sende$* successfully completes the commit stage with probability at least
1/(n3p(n)) over the choices af, F, sign and tz.

Proof. The malicious sende$* may abort the commit stage only in rounds of the fdelogn + 1. For every
integer 1< k < Cl(génl we denote by the event in whiclS* aborts in roundklogn + 1 of the commit stage.
Then, the probability tha$* fails to complete the commit stage is

c(n) 1 c(n) 1
Togn~ Togn~

Pr U & < Z Pri&d .
o(n)-1

where the probability is taken over the choices.of , sign andrz. We show that for every & k < 357 it

holds that Pf&] < 1/(n%c(n)p(n)), which yields the correctness of the lemma. For simplicity, we first con-
sider the cask = 1, and then show that the exact same argument generalizes for deimematraightforward
manner.

At the beginning of the protocaol, after receiviggfrom the receiverS* queriesSam with Q; = (Cq, 1, 1)
and receives an answef = (by, r1). The description oSam implies thatw; is uniformly distributed among
all possible inputs of the sende¥’ then usesv; to simulate the honest sender during the firstlogunds by
sending the big; = Sj(by,r1, ) in each of these rounds. In round log 1, the malicious sende$* queries
Sam with (Ciogn+1, C1,W1) for t = 2n°c(n)p(n) times and receivesanswers. We claim that since eaah
is a bit and we consider here only lnogf them, then at least one of these answers will be consistent with
the transcript of the protocol so far with high probability. Moreover, Wwevs that this holds for any random
coins of the receiver, and therefore from this point on we fix the randoins of the receiver. Note that by
the description oSam and the circuiC,, theset answers are chosen independently and uniformly at random
from all possible inputs of the send&am outputs each of thegeanswers using a fierent permutation from
the family ¥ provided toSam, and each permutations in this family is chosen independently and uniformly
at random). Since the random coins of the receiver are fixed, thesvajue ., aogn can be viewed as a
deterministic function of the input;. Let us denote this function Ry : {0, 1} o — {0, 1}'°9" whereq(n)
is the bit-length of the sender’s input. Then, it remains to analyze sucoasaljlity of S* in the following
experiment:

e t+ 1 valuesws, wb owl € {0, 1}% are chosen independently and uniformly at random.

logn+1’ log net ©
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o " is successful ii(wy) = h(w,

(i))g 1) for somei € [t].

In order to analyze this experiment, we consider a set of “bad” inputs. féhis set consists of all inputs

for which the seh~1(h(w)) is very small relative t¢0, 1}9M" (less than some polynomial fraction). In case that
wi is not in this bad set, theS* has a very high success probability, and the probabilitywhas in this set

is rather low. More formally, let

BAD = {WG {0, 1}q(n) : |h_1(h(W))| < 1 } ’

290 7 2nfce(n)p(n)
then since the range bfcontains at mogt elements, we have that

1

1
Priw € BABT < e cmp) ~ 2mcnp()

Therefore, the probability tha* aborts in round log + 1 can be upper bounded as follows

A

Pr[&1] < Pr[wy; € BAD] + Pr[&1 | wy ¢ BAD]

B 1 . ( - 1 )t
~ 2n3¢(n)p(n) 2n“c(n) p(n)

1 1 2n°¢(n)p(n)
" 1 -
2n3c(n) p(n) ( 2ntte(n) p(n) )

1
= Zcmp(m P
1

= ecmp()

More generally, in every round of fortlogn + 1 for k > 1, the malicious sende&$* holds some input
W(k-1) logn+1, Which is uniformly distributed among all inputs of the sender. Wis1)i0gn+1 Was used bys* to
simulate the honest sender in rounkls () logn+1,...,klogn. Then,S* usesSam to sample independently
and uniformly at randont elements from the set of all inputs that are consistent with the transcripeof th
protocol in the firstk—1) logn rounds. Therefore, itis only required that one of these inputs will bsistent
with W_1)i0gn+1 ON the answers it provided in rounds< 1) logn + 1,...,klogn and the same argument as
before goes through, with the onlyfiiirence that in this case the functibris defined only over the set of
inputs which are consistent with the firkt< 1) logn rounds (and not over the whole $611}%M). [

In the following lemma we show that given th&t has successfully completed the commit stage, the
transcript of the commit stage is distributed identically to the transcript of the costage in an honest
execution of the protocol. Formally, we define two the following two distributions

o D}, = views- gy(n) is the distribution of the view oR in the commit stage when interacting with the
malicious sendes*(1"). This view consists oR’s random coins and of the sequence of messages it
receives fromS*. The distribution is taken oveR’s random coins and over the uniform choicergF
andsign.

o Dy = view(sgy(n) is the distribution of the view oR in the commit stage when interacting with the
honest sendeB(1", b,rs). This view consists oR’s random coins and of the sequence of messages
it receives fromS. The distribution is taken over the random coingRéndS, and over the uniform
choice ofb € {0, 1} andr.
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Lemma 3.6. Given thatS* successfully completed the commit stage, the distributiznand D}, are identi-
cal.

Proof. We show that the distributior®, andD;, assign equal probabilities to every triplek(dq, aq4) given
that S* did not abort during the commit stage. More specifically, we prove by imoluon 1< i < d that
Prp, [r,0d, @] = Prp; [r®, dd, @al-

Fori = 1, clearly we have that B [rz,q1] = Pro: [r®, 01] sincerg is distributed exactly the same in the
two cases, andj is a deterministic function ofgz. Therefore we only have to show thatPfailrg, o1] =

Prp: [a1lrg, qi]. In the first round, the malicious sendst queriesSam”” 9" with Q = (Cy, L, 1), and

depth
7,9 ,sign

receivesw; = (by,r1). Note that by the description (ﬁamdepth and of F, there is a random permutation
7,7 ,sign

fo which corresponds tQ, andSamdeloth outputs b1, r1) = fo(0™), which is a uniformly distributed value.
That is,S* sendsa; = Si(bs,r1, 1) for a uniformly distributed pairlf;, r1) exactly as the honest sendgr
should do.

Assume now that the claim holds for 1, i.e., Pp, [rg,Gi-1,8-1] = Pro: [r=.Gi—1,8i-1]. Again, we
have that Pp, [qilrg, Gi-1,8-1] = Pro; [qilrg, 0i-1, @i-1], Since in both casesg is a deterministic function
of rg, gi—1 anda;_1. It remains to show that By, [alrg, i, 8-1] = Pro: [&lrg, i, &-1]. At this point we
have to distinguish between two possible cases. The first case is that irteetcoundS* computes; by
simulating the honest sender using an inpwthich has already been sampled in an earlier round. Therefore
the distribution of the resulting; is exactly as if the honest send&rhad inputw to begin with, and the
lemma follows inductively. The second case is that in the current r&mmeriesSam;’Z’tf]'g” multiple times
with some queryQ and obtains some& which is consistent with the transcript of the protocol up to this
point. Note that by the description Shm;’;’tf]'g” and of7, the permutatiorfq which corresponds tQ was
chosen uniformly at random froii,,, and independently of all the other permutationginThereforew is
uniformly distributed among all inputs which are consistent with the protocalisstript until this point, and
therefore the distribution of the resultirzg is exactly as if the honest send8rhad inputw to begin with.

Thus, Pp, [ailrg, Gi, ai-1] = Pro; [ailrg, 0i, &-1], which yields the correctness of the lemma. [

We conclude the proof of Theore®4 by combining Lemmate.5 and 3.6, and by exploiting the
statistical-hiding property of the commitment scheme.

Proof of Theorem 3.4 Assuming that the malicious send8f has successfully completed the commit

stage, then in the reveal sta§é use§am;’e7;’tf]ig” in order to sample uniformly and independently at random

n input pairs{(b&’il, ré’jl)}?zl from the set of all input pairs which are consistent with the transcript®f th
commit stage. We prove that with overwhelming probability these inputs edliie reveal both td = 0
and tob = 1.

Denote byD? = views(o)r)(N) the distribution of the honest receiver’s view in the commit stage when
interacting with the honest send8§(1",0,rs). This view consists of its random coins and of the sequence
of messages it receives fro and the distribution is taken over the random coinRadnd S and over
the choice ofr. Similarly, let D} = views()®)(n). Then, the assumption that the commitment scheme is
statistically-hiding against an honest receiver, implies that the statistitatatice between the distributions
D0 andD} is some negligible functiop(n).

We define a set of “good” transcripts. This set consists of all trartsasiithe commit stage which enable
S* to reveal both td = 0 and tob = 1 with overwhelming probability. We show that with overwhelming
probability the transcript is in this set. Formally, we define

GOOD = {trans : (1 - m) - Prpy [trans] < Pryy [trans] < (1 + M) - Prpo [trans]} .
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Note that for every transcriptans of the commit stage and for evefye [n], it holds that

Pl e [bdjll =0 | trans] Pr, r,r,R[ i1 =0 A trans] Prpp [trans]

Prff’rﬂ[bfj‘ll =1 | trans] Prs ik [bd+1 =1 A tans| Prp[trans]

where the second equality follows from Lemi@®. The definition of the seEOOD implies that iftrans €
GOOD, then for all stficiently largen it holds that

min{PrTf,r,e [bgjil =0 | trans] Pl e [b =1 | trans]} >1/3 .

d+1

Therefore, .
L 2
P re [S* fails in the reveal stag(etrans € GOOD] <2 (é) ,

since a failure occurs only in the case thatrailhput pairs sampled in the reveal stage hb&h = 0, or that

they all haveb((]lji1 = 1. It remains to show that the transcript isG@OOD with overwhelming probability.
Lemma3.6and the fact that the statistical distance between the distribu§rand D}, is at mosjp(n) imply
that

Pr.# ., [trans € GOOD]

Prp, [trans € GOOD]

1
=5 (Prﬂg [trans € GOOD] + Pryy [trans € GOOD])
1
25 (2. Pry [trans € GOOD] —p(n))
p(n)
> 1-2+/p(n) - —

where the last inequality follows from Fa2i3. Therefore,

Pr[S* fails in the reveal stade< Pr[trans ¢ GOOD] + Pr[S* fails in the reveal stag|etrans € GOOD]
< 24p (n)+&+2 (3)

Finally, Lemma3.5 states thatS* successfully completes the commit stage with probability at least 1
1/(n®p(n)), and therefore

7,7 ,sign
((decom, decom’)|com) « <S* SaMenn (1), R7(1", rR)> :

Pr. F si
s l V7 (com, decom) = 0, V7(com, decom’) = 1

p(n)
-1 (g 2+ 2 (3]
1
>1- m ,
for all sufficiently largen. [ ]
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3.3 Proof of Theorem3.1

In this short section we combine Theoreti8and3.4 and derive the proof of Theoregl Let (S,R,V, A)

be a fully-black-boxO(n)-expanding construction of a weakly-binding statistically-hiding honesgiver bit-
commitment scheme from a(n)-hard family of trapdoor permutations, in which the sender communicates at
mostc(n) bits during the commit stage. Denote pfn) the polynomial for which the scheme is-{11/p(n))-
binding. From this point on, we fix the depth restriction functiapth : N — N of the oracleSam to be the
functiondepth(n) = [IE(SH + 1. TheorenB.4 states that there exists a polynomial-time malicious seSder
such that

((decom, decom’)|com) « <S* Samgg‘?gn(ln),w(ln, l’R)> 3 1

PrT,T, i 5 > - Y, 9
S Y7 (com, decom) = 0, V7 (com, decom’) = 1 p(n)

for all suficiently largen. Thus, the fully-black-box construction guarantees that

-« 7.7 .sign
Priaoanr | A5 Gyt y) = Fr (1, y)| >

y«{0,1)".sign

s()

for infinitely many values oh, whereA runs in times(n), and the probability is taken also over all the
possible outcomes of the internal coin tosse&oBy converting the Turing-maching to a circuit family,
and by incorporating the description 8f into this family, we obtain that there exists a circAit of size at
most, says’(n) = (s(n))? such that

2
S(n) s’

for infinitely many values ofi. The assumption that the constructio®i®)-expanding (i.e., thahwhen given
security parameter"linvokesS* on security parameters which are at mddt"), guarantees thak usesS*
in a way such thaam is queried up to depth at mapth(n) = O (2% ). This means that also the circuit
queriesSam up to depth at mostepth(n). We conclude the proof by observing thasifn)3depth(n+2 . on/8
then the existence of the circllt contradicts Theorer.3, and therefores*(n)3derth(V+2 > 21/8 j o  ¢(n)

(535 = QM)

7,7 ,sign
Prucoap.r | A5 Gyt ) = Frted.y)| >

y«{0,1}",sign

4 Refining the Relation Between Single-Server PIR and Commitent Schemes

The relation between single-server PIR and commitment schemes was filsteekby Beimel et al. 1],
who showed that any single-server PIR protocol in which the servenuamicates at mosi/ 2 bits to the user
(wherenis the size of the server’s database), can be used to construct a vieaadilyg statistically-hiding bit-
commitment scheme. In particular, this served as the first indication that thereéf low-communication
PIR protocols implies the existence of one-way functions. In this sectionefives the relation between these
two fundamental primitives by improving their reduction. Informally speakoug,reduction essentially uses
the reduction of Beimel et al. instantiated with a better extractor. This enaledslkbwing improvements:
(1) the communication complexity of the PIR protocol is essentially prese(2edijven a single-server PIR
protocol in which the server communicates- k bits, it is possible to commit t6(k) bits while executing
the underlying single-server PIR protocol only once, and (3) wisetfea construction of Beimel et al. was
presented for single-server PIR protocols in which the server comntagsiaamosh/2 bits, our construction
can rely on single-server PIR in which the server communicates np-to(logn) bits.

In what follows we state our main theorem in the current section, and thenddormally describe the
construction and prove TheorefriL
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Theorem 4.1. Let dn) € w(logn), k(n) > 2d(n), and let® be a single-server PIR protocol in which the
server communicates-ak(n) bits, where n is the size of the server’s database. Then, there existskéywe
binding statistically-hiding commitment sche@@M” for d(n)/6 bits, in which the sender communicates
less than n- k(n) + 2d(n) bits during the commit stage. Moreover, the construction is fully-blacketmak
linearly-preserving.

The construction. Fix d(n), k(n) and® as in Theoremd.1 Figure2 describes our construction of the
commitment schem@OM” = (S, R). In the construction we use a stro(“tt(n)/?), 21-d()/ 3)-extractor EXT:

{0, 1}" x {0, 1}90) — {0, 1}90M/6 whose existence is guaranteed by Proposii@h The correctness @OM”
follows directly from the correctness &f. In addition, notice that the total number of bits communicated by
the sender in the commit stage is the total number of bits that the server commaiiricatelus the seed
length and the output length of the extractor EXT. Thus, the sender comatemiess than — k(n) + 2d(n)

bits during the commit stage.

Protocol COM” = (S, R)

Joint input: security parameter™l
Sender’s input: s € {0, 1}94(/6,

Commit stage:
1. S chooses a uniformly distributede {0, 1}".
2. R chooses a uniformly distributed indéx [n].

3. S andR execute the single-server PIR protogbfor database of length, whereS acts as the server
with input x andR acts as the user with inputAs a resultR obtains a bitx; € {0, 1}.

4. S chooses a uniformly distributed seed {0, 19", computesy = EXT(x,t) @ s, and sendst(y) to R.
Reveal stage:
1. Ssends § x) toR.

2. If theit" bit of x equalsx; andy = EXT(x, t) @ s, thenR outputss. OtherwiseR outputs.L.

Figure 2: A construction of a commitment scheme from any low-communication singlerdeliRkeprotocol.

Proof intuition. The commit stage consists of the sender and the receiver choosingiranplots x €

{0, 1}" andi € [n], respectively, and executing the PIR protogbbn these inputs. As a consequence, the
receiver obtains a bit;, which by the correctness @t is theit™ bit of x. Now, notice that since the sender
communicated only — w(logn) bits, then the random variable correspondingktstill has w(logn) min-
entropy from the receiver’s point of view (with high probability). We taldvantage of this fact, and exploit
the remaining min-entropy ofin order to hide the committed strirgjn a statistical manner (note that since it
is required to reveal the seed of the extractor during the commit stage edesieongextractor). The formal
proof of the hiding property is similar to that of L29)] in the bounded storage model, which is in turn based
on ideas that were used for constructing pseudorandom gene@tspate bounded computatio®§], We
note that the proof of hiding does not rely on any computational propeftidge underlying PIR protocdp,

but only on the assumed bound on the number of bits communicated by theieegfv@ he binding property
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follows from the security of the PIR protocol: in the reveal stage, theesamdst send a valuewhoseit" bit
is consistent with the bit obtained by the receiver during the commit stagethibutit is not known to the
sender.

Lemma 4.2. The scheme€OM?” is statistically hiding.

Proof. We have to show that for any computationally unbounded rec&ivand for any two stringsy ands;,
the statistical distance between the distributibriew, s, =-)(n)} and{view ss,)z)(N)} (see Definition2.6)
is negligible inn. The transcript of the commit stage consists of the transtepsy of the execution ofP
and of the pairt{ EXT(x,t) @ s), wheresis the committed string. Note that sintansy is independent of the
committed string, it is sfficient to prove that the statistical distance between the distributicnEXT(x, t))
giventransy and the uniform distribution is negligible im

We argue that due to the bound on the number of bits communicated by theisefjesven after exe-
cuting®, the databask still has sdficient min-entropy in order to guarantee thaEXT(x, t)) is suficiently
close to uniform. More specifically, I&* be an all-powerful receiver (recall that without loss of generality
such arR* is deterministic), and denote b§the random variable corresponding to the vatue the scheme
CcoM” . The following claim states the with high probabil¥yhas high min-entropy fror®*’s point of view.

Claim 4.3. It holds that
k(n)

_Kn)
Prransw—COMP H(X,(Xltransp)<T <27,

t
wheretransy is the transcript of the embedded executio®of COM” .

Proof. For any value of, the random coins used &in the execution of, let f, : {0, 1}" — {0, 1} pe

the function that mapsto the value otransy generated by the interaction &(x, r), R*), and let Col, r) <

(X €{0,1}": f(X) = f;(x)}. Sincef, has at most2K" possible outputs, it follows that

on—k(n) . 9*P+1

Prys [lCoI(x, Nl < 2@“] <=2

ki
-

(4.1)

Let
BAD = {trans;o © Pry [lCoI(x, r) < 29+

k(n) _Kn)
trans;o]>24 2t 2} ,

then a standard averaging argument yields
_ko)
PrtransW—COMP [trans,o € BAD] <277

Denote byU, the random variable correspondingrtin the execution o£OM?”. Then, the following
holds for every value ox andtranse:
Pr[X = x | transpg] (4.2)
Ko g Ko g
= Pr[X = XA |Col(X,Uy)| < 272 ’ trans;o] + Pr[X = XA |Col(X,Uy)| = 272 ’ trans;o]
< Pr[lCoI(X, Uyl < 2P+ | tranSp] + o (8)

Note that ifH., (X | transg) < k(n)/6 for sometransy, then there exists axfor which

k(n)
Pr[X=x| transp] > 2776 ,
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and therefore Equatiof2implies that
Pr[|Co|(X, Ul < 2%+ ’ transp] s 7@ _ o (P) S 1P

Thus,

k(n)]

Prtransw—c()/\/(?’ |:Hoo(x | transp) < T

< Pliansycom” [PF[ICol(x’ Upl < 2%+ ‘ transw] > 21—@]

< Plianspcom® [transp € BAD]

<P

Now, sinced(n) € w(logn) andk(n)/6 > d(n)/3, Claim4.3implies that with probability - negf), the
extractor EXT guarantees that the statistical distance between thd, BAT(x, t)) (giventransy) and the
uniform distribution is at most®24(M/3 (which is again negligible im). Therefore the schem@OM” is
statistically-hiding. More specifically, for every strisgs {0, 1}9/6 it holds that

SD({transp, t, EXT(X, t) @ s}, {transp, U74(n)/6})

k(n)

< Pr{Ho(X | transp) < &

k(n
+SD({trans;o, t,E EXT(X 1) @ s}, {transp, U7g(n)/6} | Heo (X | transyp) > %)

Kn)

di
<P %

Therefore, for any two strings, s € {0, 1}9(W/6 we have

SD({view(s(s)zey (M)} - {View(s(sy - (M}) = SD({transp, t, EXT(X.t) @ so). {transp, t, EXT(X.t) @ 1)

k(n)

<2.(2% 2%
which is negligible im as required. [
Lemma 4.4. The scheme€oM” is weakly binding.

Proof. We show that the schen@M” is (1-1/n?)-binding. Given any malicious send8nd* that violates
the binding of the commitment scherg@®M” with probability at least 1- 1/n?, we construct a malicious
serverSrv* that breaks the security of the single-server PIR prot#col

As an intermediate step, we first construct a malicious server that has-aegbgible advantage in
predicting a uniformly chosen index held by the usefAn More specifically, we construct a malicious
serverSrv* and a predictof)’ such that
1 1
n

Pr[v — view s iy (N) - D'(V) = i] 2ot

where the probability is taken over the uniform choice ef[n] and over the coin tosses 8tv*, O’ andU.
Recall thatview s+ 44(;)y(n) denotes the distribution on the view 8fv* when interacting withZ{(i) where
i € [n]. This view consists of its random coins and of the sequence of messagesives fromi{.
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The malicious serveSrv* follows the malicious sendeSnd* in the embedded execution 8fin COM” .
Following the interactionSrv* proceeds the execution Shd* to obtain a pairt;y) and two decommitments
(%1, s1) and o, ). If X1 = %o, thenSrv* fails. Otherwise, denote by € [n] the minimal index such that
x1[j] # X2[j]. Now, the predicto)’ outputs a uniformly distributed valuéfrom the setfy] \ {j}.

In order to analyze the success probability in predictjmgpte that if &, s1) and (2, sp) are valid decom-
mitments ands; # S, (i.e., S* broke the binding 0€OM?”), then it must hold thax; # X,. In this case, let
j € [n] be the minimal index such thai[j] # %[ ]], then it must be the case that |, as otherwis® will not
accept the two decommitments. Therefore, when the predizgtoutputs a uniformly distributed € [n] \ {]j}
it will output i with probability 1/(n — 1). Thus,

\%
—_
[N
|

| —
~————
E

PI‘[V — view<3n,*;u(i)>(n) . D/(V) = i]

In the remainder of the proof, we apply a rather standard argument @& twde fully consistent with
Definition 2.5 of the security of single-server PIR. That is, we need to show that éxésts a pair of indices
i, j € [n], a malicious serveSrv* and a distinguishe® such that

1
22—,
p(n)
for some polynomiap(n). We prove that this holds for independently and uniformly chas¢r [n] (and

therefore there existand j for which this holds) where&rv* is the malicious server described above, and
D = Djj is adistinguisher that us¢s’ as follows:

|Pr[v — view s 2/ (N) 1 D) = 1] - Pr[v — view s 2 (N) : D(V) = 1]|

e If 2 outputsi, thenD outputs 1.
e If 2 outputsj, thenD outputs O.

e Otherwise D outputs a uniformly distributed € {0, 1}.

Then,
Pr[V — VieW<Srv*’(u(i)>(n) : D(V) = 1]
. , g 1 . , .
= Pr[v — viewsn: (i) (n) - D'(V) = |] +5 Pr[v — viewsn (i (n) - D'(v) ¢ {i, j}]
1 1 1 _ , .
> 5 + = + 5 Pr[v — viewsn- )y (N) - D'(V) ¢ {i, J}] ,
and

Pr[v — viewsns )y (N) : D(V) = 1]

_ , g1 _ , .
= Pr[v — view s )y (N) - D'(V) = |] t5 Pr[v — view s )y (N) - D'(V) € {i, j}]
1 1

= -+ Pr|v  view(sne 1g)(n) : D'(V) ¢ fi. j}]

where the last equality holds since botnd j are independently chosen. Finally, note that

Pr|v — view(sns 2/ () - D'(V) ¢ 1i. j}] = Pr[v  view(sn 21gy(0) : D'(V) ¢ fi. j}]
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and therefore

'Pr[v — viewsns )y (N) : D(V) = 1] - Pr[v — viewsr- () (N) : D(V) = l” > n_12 .

5 Communication Lower Bound for Single-Server PIR

Is this section we combine the results from secti®asd4, and derive an immediate proof of our main result,
formally stated as follows:

Theorem 5.1. In any fully-black-box @n)-expanding construction of a single-server PIR protocol from a
family of trapdoor permutations, the server communica&ds) bits to the user, where n is the size of the
server’s database.

Proof. Assume towards a contradiction that there exists a fully-black@@}-expanding construction of a
single-server PIR protocol from a family of trapdoor permutations in whiehserver communicategn)
bits, wheren is the size of the server’s database. By applying Theatdmwith parameter&(n) = n — o(n)
andd(n) = log? n (actually anyd(n) = w(logn) sufices) we obtain a fully-black-bo®(n)-expanding weakly-
binding statistically-hiding bit-commitment scheme from a family of trapdoor permutatim which the
sender communicate®n) bits during the commit stage, wheneis the security parameter of the scheme.
However, the existence of such a scheme contradicts The®dkem ]

5.1 On extending the lower bound to weakly-preserving constructios

Our result does not rule out weakly-preserving (fully-black-bosistructions of single-server PIR from
trapdoor permutations in which the sender communica(i@sbits to the user. We note that although weakly-
preserving reductions guarantee much weaker security than polynomialgrving reductions, investigating
lower bounds for such reductions is still a very interesting research tBpen more so as the sole construc-
tion to date of a single-server PIR protocol from trapdoor permutatioes sigch a reduction. A possible
step towards tightening our bound is to first provide an improved lower boartdie communication com-
plexity of statistically-hiding commitment schemes that allow the sender to commit to naretsingle bit.
Whereas in Sectiod we proved that any low-communication single-server PIR implies a statisticaliygh
commitment scheme that allows the sender to commit to a relatively long string, oer bmund on the
communication complexity of statistically-hiding commitment schemes in Se8senves as a bottleneck: it
does not take into consideration the number of committed bits (the lower bounly is eerms of the security
parameter).

It is quite possible that a much tighter lower bound can be proved for stongnitment schemes. Such
a lower bound may extend the result of the current paper to the settingafynereserving reductions, and
prove the optimality of the single-server PIR protocol of Kushilevitz andd@sky [27]. We note that the
statistically-hiding commitment scheme of Naor et all][(which is constructed from one-way permutations
in a fully-black-box manner) can be used to commi©idog n) bits while the sender communica®) bits
(see, for example32)).
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