
Multiparty Computation to Generate Secret Permutations

Chris Studholme and Ian Blake

University of Toronto

September 6, 2007

Abstract

We make use of a universal re-encryption mixnet to efficiently perform a secure multiparty
computation to generate a secret permutation. When complete, the permutation is shared
among the players in such a way that each player knows his share of the permutation but
no others. Such a permutation is useful in dining cryptographers networks (DC-nets) to
determine in which slot each player should transmit. We also see this primitive as being
useful in online gaming for either shuffling cards or ordering players without the need for a
trusted dealer or other third party.

Keywords: secure multiparty computation, secret permutation, re-encryption, ElGamal
encryption

1 Introduction

The multiparty computation described in this paper allows n players to choose a random permu-
tation, of themselves or some other set, and share that permutation among themselves in such
a way that each player knows only their part of the permutation. Since the permutation is not
completely secret, we consider this type of sharing a weak form of secret sharing. If a group
of players collude, they will learn each others’ shares of the permutation and they can narrow
down the possibilities for the remaining shares, but as long as at least two players are honest,
the coalition will be unable to learn the entire permutation.

We envision two primary uses of this secret permutation generation technique. The first is
to generate a secret ordering of the players participating in some form of anonymous message
delivery system. In both a dining cryptographers network (DC-net) [3] and a public decryption
shuffle [1] the participating players must know which slot their message is to appear in after
decryption. Indeed, in “Dining Cryptographers Revisited”, Golle and Juels [8] make the following
comment regarding collisions and the possibility of generating a secret permutation:

“The problem can be avoided through techniques like secure multiparty computation
of a secretly distributed permutation of slots among players, but this is impractical.”

Our contribution is an interactive protocol to generate the required secretly distributed permuta-
tion which has complexity that is, to within a constant, optimal. Adida and Wikström describe
in Section 7 of [1] an alternate method of generating the required permutation; however, we note
that their method requires that an encrypted n × n matrix be passed from one player to the
next. Since our method involves only passing an n-vector, our protocol has a factor of n lower
complexity.

The other potential use of our protocol is in the ordering of players or in making other random
choices in online games. Sweeney and Shamos consider this problem in the non-secret setting [9].

1

While not many games require a secret random ordering of the players, we imagine that with an
efficient protocol for generating such orderings, perhaps such a game might be designed in the
future. Our protocol is useful, however, for one common component of many games, the shuffling
of cards.

Our approach to generating a secret permutation is to construct a mixnet where each of
the n parties is also a node in the mixnet. The parties take turns shuffling and re-encrypting
an n-vector of ciphertexts, and the final order of these ciphertexts determines the permutation.
The protocol is complicated both by the need to ensure that each party has a chance to shuffle
the vector (i.e. malicious parties cannot route around the honest ones) and that no party can
recognize their own ciphertext until the final ordering has been fixed.

Other possible approaches to generating this sort of permutation include having each party
choose some large number at random and then comparing those numbers using a multiparty
greater than protocol. Care would need to be taken to ensure a party cannot unfairly influence
their share of the permutation by making a non-uniform choice. To be successful, O (n log n)
instances of the greater than protocol would need to be performed, and in the end the permutation
would not be entirely secret. A better approach might be to make use of a kth-ranked element
computation [2]. While each party would learn what the kth-ranked element is, no one except
the holder of that element would know who has it. Unfortunately, with each kth-ranked element
computation requiring log n rounds with overhead O (n log n) per round, the total complexity
would be O

(

n2 log2 n
)

. We will show that our protocol has a communication and computation
complexity of O (n log n) per player.

In the next section we review the ElGamal cryptosystem and universal re-encryption. Then,
in Section 3, we present our secret permutation sharing protocol and in Section 4 we prove several
security properties. Finally, in Section 5, we discuss the application of our protocol to games.

2 ElGamal Cryptosystem

At the core of our secret permutation sharing scheme is a mixnet utilizing the ElGamal proba-
bilistic public key encryption scheme [5]. Let G be some cyclic group 〈g〉 generated by g ∈ G and
let q = |G|. We use the operator ∈R to denote a uniform random selection. The three essential
algorithms provided by the ElGamal cryptosystem are:

• Key generation: Output (PK,SK) = (y = gx, x) for random x ∈R Zq.

• Encryption: Input comprises a message m ∈ G, a public key y and a random encryption
factor r ∈R Zq. The output is a ciphertext C = (α, β) = (myr, gr).

• Decryption: Input is a ciphertext C = (α, β) under public key y and the corresponding
secret key x. The output is plaintext m = α/βx.

In addition to these basic operations, a re-encryption algorithm is also commonly used. Re-
encryption takes as input a ciphertext C and the public key the ciphertext was encrypted under y,
and then outputs an alternate ciphertext C ′ that is an encryption of the same plaintext message
under the same public key.

Golle, et. al., extend the ElGamal cryptosystem to provide an algorithm for doing universal
re-encryption [7]. Their new algorithms require a two-fold increase in ciphertext size but allow
re-encryption without knowledge of the public key. To encrypt they choose a random encryption
factor r = (r0, r1) ∈R Z

2
q and then form the ciphertext (4-tuple) C = [(myr0 , gr0); (yr1 , gr1)].

To re-encrypt the ciphertext C = [(α0, β0); (α1, β1)], choose a random re-encryption factor

2

r′ = (r′0, r
′
1) ∈R Z

2
q and compute C ′ = [(α0α

r′
0

1 , β0β
r′
0

1); (α
r′
1

1 , β
r′
1

1)]. Decryption is the same as it
is for standard ElGamal (using only the first 2-tuple), but it allows one to also verify that the
ciphertext was encrypted using the correct public key. Such verification is done by decrypting
the latter 2-tuple and checking for the identify element.

As will be seen in the next section, our protocol makes use of universal re-encryption; however,
as will also be seen, we are only interested in recognizing ciphertexts encrypted under a certain
key and not in sending messages. Therefore, all of our ciphertexts are encryptions of the identity
element message. Since the latter half of a Golle ciphertext 4-tuple is actually an encryption
of the identity element, we can define a universal re-encryption algorithm for use on standard
ElGamal encryptions of the identity element, thus avoiding the two-fold increase in ciphertext
size. We propose the following algorithm:

• Universal identity re-encryption: Input is a ciphertext C = (α, β) and a random
re-encryption factor r′ ∈R Zq. The output is an alternate ciphertext C ′ = (αr′ , βr′).

If this re-encryption operation is performed on a ciphertext that is not an encryption of the
message m = 1, the re-encryption will corrupt the message — preventing successful decryption.

For secret key x, we define the set of all possible encryptions of the identity element under
the public key gx as E(x) = { (α, β) | α = βx }. The ciphertext (1, 1) is an element of every such
set, but without this element, the sets are disjoint. Furthermore, for every C with β 6= 1, there
exists at most one x for which C ∈ E(x).

The final operations we need are a means of altering the key under which a ciphertext is
encrypted. The following two algorithms accomplish this:

• Key addition: Input is a ciphertext C = (α, β) and an offset δ. The output is a ciphertext
message C ′ = (αβδ , β), which is an encryption of the same plaintext message but now under
public key y′ = ygδ, where y is the public key C is encrypted under.

• Key product: Input is a ciphertext C = (α, β) and a coefficient c. The output is a
ciphertext message C ′ = (αc, β). If C is an encryption of m under the public key y, then
C ′ is an encryption of mc under the public key y′ = yc.

Note that while key addition can be used on any ciphertext, key product will alter the message if
the ciphertext is not an encryption of the identity element. These operations can be performed
without knowledge of the key a ciphertext is encrypted under, but they will not provide any
information about said key. Also, if a message C is encrypted under gx, then key addition with
an offset of −x will decrypt the message, yielding (m,β).

Key product will only be used to negate the key of a ciphertext. If a ciphertext C ∈ E(x),
then performing key product with c = −1 mod q will yield a ciphertext C− ∈ E(−x). This
operation can be used to turn any black box performing key addition with (secret) offset δ into
a black box which performs key addition with offset −δ. Simply negate the key of the ciphertext
before input into the black box and again after output.

Note that the key addition operation can be thought of as a partial encryption or decryption
operation and is closely related to the threshold decryption techniques described by Desmedt
and Frankel [4].

2.1 Security of ElGamal

ElGamal is known to have semantic security if the group G is one for which the Decisional
Diffie-Hellman (DDH) assumption holds. Semantic security is a property that limits an adver-
sary’s ability to derive information about a plaintext message from its corresponding ciphertext.

3

Typically, instead of testing a cryptosystem for semantic security, one tests for ciphertext indis-
tinguishability, a property that has been shown to be equivalent to semantic security [6]. This
latter property asserts an adversary’s inability to determine which of two plaintext messages,
chosen by him, has been given back to him in the form of a ciphertext message.

The DDH assumption asserts that no computationally bounded adversary can distinguish
between the distributions (gx, gy , gxy) and (gx, gy, gz), where x, y, z ∈R Zq. Alternatively, given
(gx, gy, gz), the adversary cannot determine if z = xy. By computationally bounded we mean an
adversary who runs in time polynomial in κ, a security parameter. For this DDH assumption,
and ElGamal, we choose the group G such that q = O (2κ).

Semantic security limits an adversary’s ability to derive information about a message from its
corresponding ciphertext; however, since the ciphertexts we are interested in are all encryptions
of the identity element, semantic security has little meaning in our setting. Instead, we provide
a definition of key indistinguishability (KI). Informally, this is the inability of an adversary to
distinguish between ciphertexts encrypted with distinct public keys.

To test an adversary, as defined by the algorithm A, later referred to as an adversarial
algorithm, we define an experiment for KI as follows. Two private ElGamal keys are generated
along with two random encryption exponents. Then, an encryption of the identity element is
formed using each key and the corresponding random exponent. The adversary is given these
two ciphertexts in some randomly chosen order along with the two public keys and asked to guess
the order of the ciphertexts. If the adversary guesses correctly the experiment terminates with
an output of ’1’. Otherwise the output is ’0’. As mentioned above, ElGamal is parametrized
under the security parameter κ.

Experiment 1. ExpKI
A

(EG,κ)

u0, u1 ∈R Zq;
r0, r1 ∈R Zq;
C0 ← (gu0r0 , gr0); C1 ← (gu1r1 , gr1);
b ∈R {0, 1};
b
′ ← A(gu0 , gu1 , Cb, C1−b, “guess”);

if b = b
′ then output ’1’ else output ’0’ fi

Definition 1. The ElGamal cryptosystem EG provides KI if for any adversary A with resources
polynomial in κ the probability pr[ExpKI

A
(EG,κ) = ’1’]− 1/2 is negligible in κ.

Theorem 1. Under the DDH assumption, ElGamal provides KI.

Proof: By contradiction, assume adversary A is successful in breaking KI. We will show how
this adversary can be used to break the DDH assumption.

Consider the following slightly altered experiment:

Expaltki
A

(EG,κ)
u0, u1, u

′
1 ∈R Zq;

r0, r1 ∈R Zq;
C0 ← (gu0r0, gr0); C1 ← (gu1r1, gr1);
b ∈R {0, 1};

b
′ ← A(gu0 , gu′

1 , Cb, C1−b, “guess”);
if b = b

′ then output ’1’ else output ’0’ fi

The only difference between this experiment and Experiment 1 is that, in the latter, one
of the public keys passed to the adversary is corrupt (alternatively, one of the ciphertexts is

4

corrupt). The adversary may, however, still have sufficient information to determine b. This
gives us two cases to consider.

Case 1: pr[Expaltki
A

(EG,κ) = ’1’] − 1/2 is negligible in κ. The adversary is not capable of
handling corrupt parameters. We can construct an adversary A′ successful against DDH as
follows. Recall that the DDH test is to determine if z = xy.

funct A′(gx, gy, gz , “guess”) ≡
u0, r0 ∈R Zq;
C0 ← (gu0r0, gr0); C1 ← (gz , gy);
b ∈R {0, 1};
b
′ ← A(gu0 , gx, Cb, C1−b, “guess”);

if b = b
′ then output ’1’ else output ’0’ fi.

If z = xy then A will see parameters constructed as in Experiment 1; however, if z 6= xy the
ciphertext C1 will not be a properly formed encryption under the key gx and A will be unable
to determine b.

Case 2: pr[Expaltki
A

(EG,κ) = ’1’] − 1/2 is not negligible in κ. In this case the adversary is
clever enough to handle partially corrupt input, however, we can still construct an adversary A′

successful against DDH.

funct A′(gx, gy, gz , “guess”) ≡
u1, u

′
1, r1 ∈R Zq;

C0 ← (gz , gy); C1 ← (gu1r1 , gr1);
b ∈R {0, 1};

b
′ ← A(gx, gu′

1 , Cb, C1−b, “guess”);
if b = b

′ then output ’1’ else output ’0’ fi.

If z = xy then A will see partially corrupt parameters yet does have an advantage when
guessing b. When z 6= xy, no information about b is passed to A, and therefore, the adversary
cannot possibly determine b with a probability significantly greater than 1/2.

These constructions prove that KI follows from the DDH assumption.

We also note that key addition with offset δ cannot be performed if one only has gδ . This is
obvious if one recalls that, for C ∈ E(u), key addition with offset −u is equivalent to decryption
and that g−u can be easily computed from gu. If one could do this, one could decrypt using only
the public key.

Theorem 2. Assuming KI and given a ciphertext C ∈ E(u) and a public key gx, for any
adversary A with resources polynomial in κ the probability that A outputs a ciphertext C ′ =
(α′, β′) for which β′ 6= 1 and C ′ ∈ E(u + x) is negligible in κ.

Proof: Given any ciphertext C and a public key gu, a successful adversary A can determine if
C ∈ E(u) as follows. Choose δ ∈R Zq and compute g−u+δ. Then use A to compute key addition
with offset −u + δ. If this last step is successful, the resulting ciphertext will be an element of
E(δ) (which is easily checked) if and only if C ∈ E(u). Since A is not always successful but is
assumed to be successful with a probability that is non-negligible in κ, the above steps must be
repeated many, but no more than polynomial in κ, times to attain confidence in the result. If
any of these repetitions results in an element of E(δ), we assume that C ∈ E(u). A test of this
form is sufficient to break KI, thus proving the theorem.

5

Corollary 1. Given as input ciphertexts C1 ∈ E(u1) and C2 ∈ E(u2), for any adversary A
with resources polynomial in κ the probability that A outputs a ciphertext C ′ = (α′, β′) for which
β′ 6= 1 and C ′ ∈ E(u1 + u2) is negligible in kappa.

Finally, we define a generalized form of KI, called generalized oracle key indistinguishability
(GOKI). KI is generalized in two ways: there are h ≥ 2 keys and the adversary is provided
with an oracle that can recognize ciphertexts encrypted under one of these keys. The following
experiment tests an adversary A for GOKI. Note that π(C1, . . . , Ch) produces a permuted list
where Ci is located in position π(i).

Experiment 2. ExpGOKI
A

(EG,κ, h)
u1, . . . , uh ∈R Zq;
r1, . . . , rh ∈R Zq;
for i := 1 to h do

Ci ← (guiri , gri);
od

π : [1 . . . h]→ [1 . . . h] ←− random permutation;
(p, q)← A(gu1 , . . . , guh , π(C1, . . . , Ch), Ou1,...,uh

, “guess”);
if p = π(q) then output ’1’ else output ’0’ fi

The oracle Ou1,...,uh
, on input a ciphertext C = (α, β), determines if α = βui for some i. If

index i exists, the oracle outputs ’1’, otherwise it outputs ’0’. Obviously, the oracle does not
reveal which key matched.

Definition 2. The ElGamal cryptosystem EG provides GOKI if for all h and any adversary A
with resources polynomial in κ, the probability pr[ExpGOKI

A
(EG,κ, h) = ’1’] − 1/h is negligible

in κ.

Conjecture 1. Under the DDH assumption, ElGamal provides GOKI.

3 Secret Permutation Sharing

Before stating the protocol, it is useful to have in mind, at least informally, the properties this
protocol seeks to provide. They are:

• Correctness. Each of the n players outputs a unique share of the secret permutation (say,
an integer in {1, . . . , n}). Against a malicious adversary we require that either each of the
honest players outputs a unique share or at least one outputs a distinct failure signal.

• Privacy. No coalition of n − 2 or fewer players can learn the complete permutation. A
coalition will know which shares are held by the honest players, but as long as there are at
least 2 honest players, the coalition will be unable to determine the mapping of shares held
by honest players to those players with a probability greater than that of random guessing.

• Uniformity. The positions of the honest players in the final permutation are distributed
uniformly.

After stating the protocol we will define these properties formally and prove that they hold under
suitable assumptions against an honest but curious (semi-honest) adversary. The protocol, as
stated, is not secure against a malicious adversary, but we will discuss what is required to make
it secure against such an adversary and describe our efforts to prove security in this case.

Assume g ∈ G and q = |G| are publicly known. The players are initially in some order and
numbered 1 to n. The protocol for generating a permutation of n items is as follows:

6

1. Each player chooses at random two private keys xi ∈R Zq and ui ∈R Zq. The public key
gui is sent to Player 1.

2. Player 1 uses the n public keys to form an initial list of ciphertexts [(gu1 , g), . . . , (gun , g)].
Note that each of these ciphertexts is an encryption of the message 1 ∈ G under the
corresponding public key.

3. Each player in turn, starting with Player 1, will perform key addition with offset xi on each
ciphertext, re-encrypt each ciphertext and shuffle the list. Suppose Player i is processing
the ciphertext Cj = (αj , βj). The player will, with random re-encryption factor rj ∈R Zq,
compute

C̄j = (α
rj

j β
xirj

j , β
rj

j) . (1)

After processing each ciphertext in this manner, a random permutation is chosen and the
list of ciphertexts is reordered. The new list is then sent to the next player for similar
processing.

4. After Player n has completed the above step, she broadcasts the list of ciphertexts to all
players.

5. After receiving the list, each player broadcasts their xi value to all players.

6. Finally, each player will attempt to decrypt all messages using the secret key wi = ui +
∑

j xj. If Player i locates exactly one ciphertext for which α/βwi = 1, β 6= 1, then the player
takes the position of this message within the list as his share of the secret permutation.

If one wishes a permutation on a larger number of items, say a multiple of n, each player can
simply act as multiple players; however, to improve efficiency slightly, each player only needs to
choose a single xi and perform Step 3 once.

3.1 Complexity

The computational complexity of the protocol is O (nκ) group operations per player (O (n) ex-
ponentiations), while the communication complexity is O (nκ) bits per player (O (n) group ele-
ments). This assumes that in Step 4 the final list is either efficiently broadcast or passed through
the players in a daisy chain manner (for example, from one player to the next in the reverse
order of Step 3).

To ensure the probability that two players choose the same key is negligible, the key space
must have at least n2 elements. This implies that the security parameter κ must be at least
proportional to log n, and thus, the communication complexity is O (n log n) bits per player.

Consider the communication costs associated with either the players deciding on a non-
secret permutation or having a third party choose the permutation and send it to each player.
Encoding a permutation of n items requires O (n log n) bits. In this sense, our permutation
generation protocol is optimal (to within a constant).

Of course, if a third party were to generate the permutation and only send each player his
share of the permutation, the communication complexity would be O (log n) per player, but
O (n log n) for the third party. In this sense, our protocol is not quite optimal.

7

4 Security

We consider 3 types of adversary:

1. Global passive. The global passive adversary has access to all communication and wishes
to learn something about the generated permutation.

2. Semi-honest player. This player follows the protocol as stated but attempts to learn
any additional information she can from the messages she sees and the secrets she has.

3. Malicious adversary. This adversary has complete control over one or more players, and
as such, may not follow the protocol. Of course, if any other player detects a problem with
the messages sent out by the adversary, they may terminate the protocol. The goal of the
malicious adversary is to break one of the security properties while avoiding premature
termination.

All players are computationally bounded and run in time polynomial in the security parameter
κ. Furthermore, we assume that all communications are secure in the sense that if one honest
player sends/broadcasts a message to some other honest player, the message will arrive intact.

Our protocol does not require that any of the communication be private. That is, all com-
munication can be considered to be broadcast to all players. Because of this, the above list
is totally ordered on the strength of the adversary and proof of security against a malicious
adversary implies security against the others.

We now formally define each of the three desired security properties, prove our SPG is secure
against a semi-honest adversary, and discuss security against a malicious adversary.

4.1 Correctness

Player i, assumed to be following the protocol, will take his position in the final permutation to
be j if and only if the jth ciphertext in the final list, say Cj = (αj , βj), has the property that
αj = βwi

j and βj 6= 1. Recall that wi = ui +
∑

k xk. We say an invalid permutation has been
selected if Player i and Player i′, i 6= i′, take the same final position j. This can occur if and only
if one of the following holds: wi = wi′ or the two players see a different ciphertext at position j,
say Cj 6= C ′

j , respectively.
The probability that ui = ui′ is negligible in the security parameter so we assume this is not

the case. The sum of the xk can only be different (for different players) if when broadcasting xk

in Step 5 some player sends different values to different players. This cannot happen in the case
of a semi-honest adversary or in the case where a reliable broadcast channel is used. For the case
where the adversary is malicious and uses point-to-point transmission of messages, we discuss
below the changes necessary to ensure all players receive the same x values, thus preventing the
adversary from causing an invalid permutation to be generated in this manner.

We also note that all players will see the same ciphertext in a given position, say ciphertext
Cj in position j, both in the case of a semi-honest adversary and in the case where a reliable
broadcast channel is used in Step 4. If a malicious adversary is present and the final list is dis-
tributed via point-to-point transmission (either directly from Player n or daisy chained through
all players) we suggest a simple verification of the final list. Given a collision resistant hash
function1 H : G2n → G, broadcast in Step 5 both xi and the hash value computed by applying H

1For example, apply SHA-512 to a bit-string representation of the element of the domain, and then map the

result x to an element of G by treating x as an integer and computing gx. To scale with κ, substitute a hash

function with a sufficiently large range for SHA-512.

8

to the final list received in Step 4. Then, in Step 6, every player verifies that the n−1 hash values
they received match the hash value they computed. If the values do not match, the permutation
generation fails.

4.2 Privacy

To formally define privacy we first design an experiment which tests an adversary’s ability to
correctly determine an honest player’s share of the permutation. We assume that either the
adversary is semi-honest and may obtain the secret material held by an arbitrary subset of the
players or the adversary is malicious and may control an arbitrary subset of the players. The
following experiment could be simplified somewhat if only a semi-honest adversary were being
considered, but we wish to use the same definition for both types of adversary and will consider
the proof of privacy in the semi-honest case to be a sketch of the proof for the malicious adversary
case.

The experiment that follows is intended to simulate the protocol but we have made a few
simplifications which are justified as follows:

• Since the order in which the players process the list in Step 3 is arbitrary, we may assume
that both Player 1 and Player n are adversary controlled. This gives the adversary the
most power. In addition to this, we will assume that some number of adversary controlled
players go first, then all of the honest players, and finally the remaining adversary controlled
players. Furthermore, the actions of these groups of players may be aggregated. Note
that even in the case where there are one or zero adversary controlled players, we let the
adversary process the list both first and last.

• In aggregating the actions of the honest players in Step 3 we let x =
∑

xi.

• We force the adversary’s xi values to sum to zero. The adversary may initially perform key
addition with some non-zero offset and then later undo this by performing key addition
with the additive inverse. This does not weaken a semi-honest adversary as the adversary
may also perform key addition with any desired offset on any private copies of ciphertexts
as they desire.

• Forcing the adversary’s xi values sum to zero does weaken a malicious adversary against
the protocol as stated. If such an adversary is able to choose his xi values as a function of
the honest player’s xi values, the adversary will have control over the sum

∑

j xj computed
in Step 6 and can break privacy. To prevent this, we describe later how a non-mailable
commitment scheme can be used to ensure that the value of the sum

∑

j xj is distributed
uniformly. For the purposes of this definition, we simply assume this is the case.

• Finally, in aggregating the honest players, we assume they all see the same final list. This
list must have either been distributed using reliable broadcast or a hash function has been
employed as described in the correctness section above.

With these simplifications in mind, we now design an experiment for a probabilistic adver-
sarial algorithm A. Assume the secret permutation generator is parametrized by κ, the security
parameter, n, the number of players, and h, the number of honest players. In the case of a
semi-honest adversary, n − h is the number of players open to the adversary. We restrict the
adversarial algorithm to running in time polynomial in κ.

The experiment proceeds as follows. First the honest players choose their secret keys and send
the public keys to the adversary. The adversary generates and returns a “first list” of ciphertexts

9

along with two polynomial time algorithms to be invoked later. This first list includes the actions
of the adversary in Step 3 of the protocol. The experimenter then performs Step 3 on behalf of
the honest players, using the aggregated x, and passes the resulting list to the adversary provided
algorithm A which generates the “final list” of ciphertexts. This final list is tested to ensure it
is valid, i.e. it contains exactly one ciphertext for each honest player. If the list is not valid,
the experiment terminates with the special output value ’⊥’. This output value distinguishes
this outcome from a failed guess, which produces an output of ’0’. Finally, after being given the
value of x, the other adversary provided algorithm, A′, guesses an honest player mapping, and if
this guess is correct, the output is ’1’. Note that π(C̄1, . . . , C̄n) produces a permuted list where
C̄i is located in position π(i).

Experiment 3. Exppriv
A

(SPG, κ, n, h)

for i := 1 to h do

ui ∈R Zq;
od

(C1, . . . , Cn; A,A′)←− A(gu1 , . . . , guh); // “first list”
x ∈R Zq;
for i := 1 to n do

if αi /∈ G or βi /∈ G or βi = 1 then output ’⊥’ fi // Ci = (αi, βi)
ri ∈R Zq;
C̄i ←− (αri

i βxri

i , βri

i);
od

π : [1 . . . n]→ [1 . . . n] ←− random permutation;
(C ′

1, . . . , C
′
n)←− π(C̄1, . . . , C̄n);

(C ′′
1 , . . . , C ′′

n)←− A(C ′
1, . . . , C

′
n); // “final list”

for i := 1 to h do

zi ←−
{

j | α′′
j = (β′′

j)ui+x
}

; // C ′′
j = (α′′

j , β′′
j)

if |zi| 6= 1 then output ’⊥’ fi

od

(p, q)←− A′(x, C ′
1, . . . , C

′
n); // “the guess”

if α′′
p = (β′′

p)uq+x and β′′
p 6= 1 then output ’1’ else output ’0’ fi

Definition 3. The secret permutation generator SPG with n players, h ≥ 2 of which are
honest, has privacy if for any adversary A with resources polynomial in κ, the probability
pr[Exppriv

A
(SPG, κ, n, h) = ’1’]− 1/h is negligible in κ.

A semi-honest adversary has additional restrictions not inherent in the above experiment
that will be discussed in the proof of the following theorem. Also, notice that with a semi-honest
adversary, the experiment will never terminate with an output of ’⊥’, and therefore, the tests
that lead to this output could be removed if one is only interested in privacy against a semi-honest
adversary.

Theorem 3. Assume ElGamal has GOKI. If we consider only semi-honest adversaries A then
our secret permutation generation protocol has privacy.

Proof: By contradiction, we suppose there exists a semi-honest adversary A for which
pr[Exppriv

A
(SPG, κ, n, h) = ’1’] − 1/h is non-negligible in κ and use this algorithm to construct

an adversary A′ that can break GOKI.

10

Throughout this proof we will assume the h keys gu1 , . . . , guh provided by Experiment 2 are
distinct. The probability that they are not is negligible in κ.

There exists a vector (v1, . . . , vn) ∈ Zn
q for which each Ci ∈ E(vi) and C̄i(x) ∈ E(vi + x). We

denote C̄i as C̄i(x) to emphasis the dependence on x.
Since the adversary is semi-honest, it must be the case that there exists δ ∈ Zq such that for

each j there exists a unique i for which Ci ∈ E(uj − δ) (i.e. vi = uj − δ). Furthermore, the
algorithm A must perform a key addition with offset δ on each input ciphertext, a re-encryption of
each ciphertext, and some permutation (shuffling) of the ciphertexts. We note that the shuffling
of the ciphertexts cannot help the adversary in any way and so, without loss of generality, we
assume algorithm A does not shuffle its output.

We saw in Section 2.1 that an algorithm which performs key addition with offset δ can be
transformed into an algorithm that performs key addition with offset −δ by simply negating the
key of both the input ciphertext and the output ciphertext. In this way, we construct algorithm
A− from A which performs key addition with offset −δ (and re-encryption) on each of the input
ciphertexts. Note that the composition of A and A− in either order is an algorithm which, on
input a list of n ciphertexts, simply re-encrypts each ciphertext and outputs them.

Now we describe the construction of the adversary A′. In Experiment 2, the adversary is
invoked with the line

(p, q)←− A′(gu1 , . . . , guh , Ĉ1, . . . , Ĉh, Ou1,...,uh
, “guess”) .

The first thing to do is simply pass the keys to the adversary

(C1, . . . , Cn; A,A′)←− A(gu1 , . . . , guh) ,

and then follow Experiment 3, choosing a x and π, until we have completed the computation of
the “final list”

(C ′′
1 , . . . , C ′′

n)←− A(C ′
1, . . . , C

′
n) .

By performing key addition on each of these ciphertexts with offset −x and passing the result to
the oracle, the set H = { i | C ′′

i ∈ E(uj + x) for some j } can be computed. Since the adversary
is semi-honest, this set must have exactly h elements.

Now, construct a new final list (Ĉ ′′
1 , . . . , Ĉ ′′

n) as follows. For each i, if i /∈ H then set Ĉ ′′
i = C ′′

i ,
otherwise Ĉ ′′

i is Ĉj with the offset x added to the key. Each Ĉj must be used exactly once so we
choose a bijection µ : [1 . . . h]→ H and set j = µ−1(i).

With this new final list, apply A− to compute a new intermediate list

(Ĉ ′
1, . . . , Ĉ

′
n)←− A−(Ĉ ′′

1 , . . . , Ĉ ′′
n) .

Finally, the new intermediate list is simply passed to algorithm A′ to obtain a mapping

(p, q)←− A′(x, Ĉ ′
1, . . . , Ĉ

′
n) .

If this mapping is an obviously incorrect guess, i.e. p /∈ H, then A′ is to output a random guess
and terminate. Otherwise, the pair (µ−1(p), q) is output to indicate that Ĉµ−1(p) is an element
of E(uq).

Guesses made by A fall into three categories: correct, wrong and obviously wrong (p /∈ H).
Since an obviously wrong guess is turned into a valid guess for A′ we have that the probability
A′ outputs a correct guess is Pcorrect + Pbad(1/h), where Pbad is the probability that a guess is
obviously wrong. Since Pcorrect ≥ 1/h + k−ǫ for some ǫ > 0 and infinitely many κ (the security
parameter), we conclude that A′ is correct with at least this same probability, thus breaking
GOKI.

11

4.2.1 Privacy against a malicious adversary

As mentioned, our protocol does not provide privacy against a malicious adversary without a few
modifications. The most significant change here is to make use of a non-mailable commitment
scheme to ensure that no player can compute his xi value as a function of the other player’s
values. The commitment scheme is a method that allows a player to commit to their value while
keeping it hidden. Later, the player can reveal his value and all other players can verify that it is
the one committed to. The non-mailable aspect of such a commitment is discussed below. The
modifications required to the steps of the protocol are as follows:

Step 1: Using a non-mailable commitment scheme C, each player broadcasts a commitment
C(xi) to xi.

Step 3: Each player must verify that all of the ciphertexts in the list they receive are properly
formed. This is done by checking that for all j, αj ∈ G, βj ∈ G and βj 6= 1. If any of these
checks fail, the protocol is terminated.

Step 5: In broadcasting xi to all players, the commitment C(xi) is opened. Also, as described
in the above section on correctness, if the use of a hash function is required the hash value is
broadcast in this step.

Step 6: In addition to the other checks described, the validity of the commitments is checked,
and if a hash function was used, the hash values are also checked. If any of these checks fail, the
protocol terminates with failure.

One must carefully choose the commitment scheme to use. If one player, say Player i, commits to
xi with C(xi), some other player could commit to the same value, but since that player does not
know xi, that player would be unable to correctly perform Step 3. The result would be failure of
the protocol. However, if a player, given the commitment C(xi), can generate either C(−xi) or
C(xj −xi), for some xj , the privacy of the protocol can be broken. For this reason using gxi as a
commitment to xi will not work. We believe committing to each bit in the binary representation
of xi should suffice. Other, more efficient, non-mailable commitment schemes may work as well.
From this point on we assume a suitable commitment scheme has been selected.

With these modifications to the protocol in mind, we now prove our SPG has privacy against
an almost malicious player. The adversary is malicious but has one restriction placed upon it; the
algorithm A(C̄1, . . . , C̄n) is implemented as n algorithms A1(C̄1), . . . , An(C̄n). We are working
to remove this restriction.

Before stating our theorem, we prove two important lemmas. The first allows us to prove
that for each public key uj , at least one ciphertext in the “first list” is a function of that key and
that key alone. The second is needed to prove that each of the h ciphertexts in the “first list”
that are functions of the public keys have a specific form.

The following experiment tests an adversary’s ability to produce two final ciphertexts from
one intermediate ciphertext. We refer to this experiment as the dual experiment to emphasize
the generation of two ciphertexts from one.

Experiment 4. Expdual
A

(κ)

u1, u2 ∈R Zq;
(C0, A)←− A(gu1 , gu2); // “initial ciphertext”
if α0 /∈ G or β0 /∈ G then output ’0’ fi // C0 = (α0, β0)
x1, x2 ∈R Zq;
r1, r2 ∈R Zq;
C ′

1 ←− (αr1

0 βx1r1

0 , βr1

0);

12

C ′
2 ←− (αr2

0 βx2r2

0 , βr2

0);
(C ′′

1 , C ′′
2)←− A(C ′

1, C
′
2); // “final ciphertext”

if β′′
1 = 1 or β′′

2 = 1 then output ’0’ fi // C ′′ = (α′′, β′′)
if α′′

1 = (β′′
1)u1+x1 and α′′

2 = (β′′
2)u2+x2 then output ’1’ else output ’0’ fi

Lemma 1. Assuming KI (as in Theorem 2), the probability pr[Expdual
A

(κ) = ’1’] is negligible
in κ.

Proof: By contradiction, suppose A is an adversary that is successful in the experiment with
non-negligible probability. We show how this adversary can be used to break Theorem 2.

We are given as input a key gx and a ciphertext C ∈ E(u), and we must show how to compute
a ciphertext C ′ = (α′, β′) for which β′ 6= 1 and C ′ ∈ E(u + x).

Choose u1 ∈R Zq, compute gu1 , and set gu2 = gx. These two public keys are given to A to
get a ciphertext C0. There exists some v0 for which this ciphertext is an encryption under the
key gv0 .

During a “normal” invocation of A, the ciphertext C ′
1, an encryption under the key gv0+x1,

is transformed into C ′′
1 , an encryption under the key gu1+x1 . This is key addition with offset

u1 − v0. Likewise, the ciphertext C ′
2 is transformed into C ′′

2 via key addition with offset u2 − v0.
In Section 2 we noted that an algorithm that performs key addition with offset δ can be easily

transformed into an algorithm to perform key addition with offset −δ. Simply negate the key of
both the input ciphertext and the output ciphertext. Let A− be A transformed as described.

To break the lemma, we need two invocations of A. For the first, we provide C as input to
A−, first parameter, to obtain an element of E(u− u1 + v0). Using key addition, this ciphertext
is transformed into an element of E(u + v0). Finally, this latter ciphertext is given to A as the
second parameter to obtain an element of E(u + u2) = E(u + x).

If each invocation of A yields an appropriate result with probability greater than k−ǫ, then
our final probability of success at least k−2ǫ, which is non-negligible in κ.

We further note that this lemma holds even if the probability is only computed over experi-
ments for which x1 = x2 as the proof does not require that these two values be independent.

Lemma 2. Suppose h coloured balls are tossed (randomly) into n coloured bins with at most
one ball allowed in each bin. The colours are chosen from some set and duplicates are allowed.
Unless all of the balls are the same colour, the probability that each ball matches the colour of
the bin it lands in is at most 1/h.

Proof: Suppose d of the balls are, say, red and h− d are black. Also, to ensure the probability
of a match is non-zero, we assume that at least d bins are red and at least h− d are black. Some
bins (up to n − h) may be painted some third colour. We consider a toss of the balls to have
been a success if the colour of each ball matches the colour of the bin it landed in.

Let the bins be lined up in some order, toss the balls, and consider the h bins that have a ball
in them. If any of these bins are a third colour, the toss was a failure. Assume this is not the
case. Map the colours of the h bins to a string of bits with red mapping to 1 and black mapping
to 0. If this bit string (of length h) is not of weight d, the toss was a failure, so we assume this
is not the case. Label this bit string X.

Now consider the h balls and map their colours to the bits of a bit string labelled Y . The
toss is only a success if the two bit strings match exactly (i.e. X = Y).

The bit string Y has weight d and was selected uniformly from the set of all weight d strings.
This set is of size

(

h
d

)

. Therefore, the probability that X = Y is 1/
(

h
d

)

, and since we made some

13

assumptions about X above, this probability is an upper bound. Notice that for 0 < d < h,
1/

(

h
d

)

≤ 1/h. Only if d = 0 or d = h is a probability greater than 1/h possible.
Finally, we note that if there are more than two distinct ball colours, the probability of success

is further reduced, thus proving the lemma.

Theorem 4. Assume ElGamal has GOKI. If we consider only malicious adversaries A for which
the adversary provided algorithm A(C̄1, . . . , C̄n) is implemented as n algorithms A1(C̄1), . . . , An(C̄n),
then our (modified) secret permutation generation protocol has privacy.

Proof: By contradiction, we suppose there exists an adversary A for which
pr[Exppriv

A
(SPG, κ, n, h) = ’1’] − 1/h is non-negligible in κ and use this algorithm to construct

an adversary A′ that can break GOKI.
Throughout this proof we will assume the h keys gu1 , . . . , guh provided by Experiment 2 are

distinct. The probability that they are not is negligible in κ.
There exists a vector (v1, . . . , vn) ∈ Zn

q for which each Ci ∈ E(vi) and C̄i(x) ∈ E(vi + x). We
denote C̄i as C̄i(x) to emphasis the dependence on x.

Claim: If, for some i, j, k, and non-negligibly many x, algorithm Ak, on input C̄i(x), outputs
an element of E(uj + x), then for all j′ 6= j and k′, the number of x values for which algorithm
Ak′ , also on input C̄i(x), outputs an element of E(uj′ + x), is negligible.

This follows from Lemma 1 and establishes that each ciphertext Ci can be used to generate
elements of E(uj + x) for at most one j. Therefore, each of at least h of the n ciphertexts output
by A as the “first list” must have been constructed for the purpose of generating elements from
a particular set E(uj + x).

Each algorithm Ak is probabilistic and therefore its action is difficult to predict. Despite this,
we will consider each of these algorithms, on any particular run, to be performing key addition
with some offset; however, the offset may vary from one run to the next. Our justification for
this is that the algorithm cannot (with non-negligible probability) output an element of one of
the sets E(uj + x) without performing key addition (even if it is with an offset of 0). Indeed, on
any particular run, the probability that at least h of the algorithms are performing key addition
must be at least 1/h.

Claim: There exists δ ∈ Zq such that for all j there exists an i for which Ci ∈ E(uj − δ) (i.e.
vi = uj − δ).

Suppose, during some run of the algorithms, each algorithm Ak performs key addition with
the offset δ′k. Furthermore, each Ci ∈ E(uj − δi) for some j and δi. Actually, with the latter, for
all j there exists some δi for which Ci ∈ E(uj − δi), but we assume the adversary had some j in
mind when he generated Ci. If algorithm Ak is to process the input C̄i(x) and output an element
of E(uj + x), then it is necessary that δ′k = δi. Because of this we consider each ciphertext Ci

to be coloured by δi and each algorithm to be coloured by δ′k. A valid final list can only be
produced if the permutation π maps h of the ciphertexts to similarly coloured algorithms.

Lemma 2 establishes that unless at least h of the ciphertexts are of the same colour, the
probability that a valid final list is generated is at most 1/h. Let δ be this colour. Furthermore,
because of the specific requirements for a valid final list, it must be the case that for every j
there exists an i for which Ci ∈ E(uj − δ).

Now we describe the construction of the adversary A′. In Experiment 2, the adversary is
invoked with the line

(p, q)←− A′(gu1 , . . . , guh , Ĉ1, . . . , Ĉh, Ou1,...,uh
, “guess”) .

14

The first thing to do is simply pass the keys to the adversary

(C1, . . . , Cn; A1, . . . , An, A′)←− A(gu1 , . . . , guh) ,

and then follow Experiment 3, choosing a x and π, until we have completed the computation of
the “final list”

(C ′′
1 , . . . , C ′′

n)←− (A1(C
′
1), . . . , An(C ′

n)) .

By performing key addition on each of these ciphertexts with offset −x and passing the result to
the oracle, the set H = { i | C ′′

i ∈ E(uj + x) for some j } can be computed. If this set does not
have exactly h elements, then A′ is to output a random guess and terminate. From the claims
proven earlier, we know that with probability at least 1/h, H has exactly h elements, for each j
there exists an i ∈ H such that C ′′

i ∈ E(uj + x), and there exists a δ such that for k ∈ H, Ak,
during this run, performed key addition with an offset of δ.

Now, let algorithm A−

k be Ak but with both the input ciphertext and output ciphertext
modified by key negation. Recall that the result of this is that if Ak performs key addition with
offset δ, then A−

k will perform key addition with offset −δ.
To finish the construction of the adversary, we now compute a new intermediate ciphertext

list (Ĉ ′
1, . . . , Ĉ

′
n). For each i, if i /∈ H then set Ĉ ′

i = C ′
i, otherwise Ĉ ′

i is Ĉj with the offset x
added to the key and processed with A−

i . Each Ĉj must be used exactly once so we choose a
bijection µ : [1 . . . h] → H and set j = µ−1(i). As above, with probability at least 1/h, the h
algorithms used here all performed key addition with offset δ.

Finally, the new intermediate list is simply passed to algorithm A′ to obtain a mapping

(p, q)←− A′(x, Ĉ ′
1, . . . , Ĉ

′
n) .

If this mapping is an obviously incorrect guess, i.e. p /∈ H, then A′ is to output a random guess
and terminate. Otherwise, the pair (µ−1(p), q) is output to indicate that Ĉµ−1(p) is an element
of E(uq).

The probability that A′ makes it to this last step and the list (Ĉ ′
1, . . . , Ĉ

′
n) is a well formed

ciphertext list (i.e. there exists some π that would yield this intermediate list in Experiment 3)
is at least 1/h2. If Pguess is the probability that A correctly guesses a mapping given that the
final list is valid, then the probability that A′ outputs a correct mapping is at least

(

1−
1

h2

)

1

h
+

1

h2
Pguess .

If Pguess ≥ 1/h + k−ǫ for some ǫ > 0 and infinitely many κ (the security parameter), then the
probability that A′ is correct is at least 1/h + k−ǫ/h2 which is non-negligibly greater than 1/h,
thus breaking GOKI.

It is our intention to show, in future work, that the restricted form of the algorithm A does
not in fact weaken the adversary. Not only does re-arrangement of the ciphertexts, using an
intermediate ciphertext more than once, and duplicating output ciphertexts not provide the
adversary with any advantage, we also note the infeasibility of creating an algorithm that takes
as input two ciphertexts and combines them to create a single meaningful ciphertext as output.
With this in mind, we state the following conjecture.

Conjecture 2. Assuming ElGamal has GOKI, our (modified) SPG protocol has privacy against
a malicious adversary.

15

4.3 Uniformity

We stated earlier that uniformity is the property that the positions of the honest players in the
final permutation are distributed uniformly. If there are h honest players and n positions, we
have

(

n
h

)

distinct arrangements of honest players. It is from this set the positions are to be
selected uniformly.

To test an adversary’s ability to break uniformity, we consider the following experiment. Let
κ be the security parameter, n the number of players, h of which are honest, and H ⊆ {1, . . . , n},
|H| = h, the set of positions the adversary is aiming to put the honest players into. The bulk
of the following experiment is identical to Experiment 3 with the only difference being after the
final list has been tested for validity. If the final list is valid the experiment simply checks to see
if the honest players are in the positions specified by the set H. If so, the experiment terminates
with output ’1’. If not, the output is ’0’.

Experiment 5. Expfair
A

(SPG, κ, n, h,H)

for i := 1 to h do

ui ∈R Zq;
od

(C1, . . . , Cn; A)←− A(gu1 , . . . , guh); // “first list”
x ∈R Zq;
for i := 1 to n do

if αi /∈ G or βi /∈ G or βi = 1 then output ’⊥’ fi // Ci = (αi, βi)
ri ∈R Zq;
C̄i ←− (αri

i βxri

i , βri

i);
od

π : [1 . . . n]→ [1 . . . n] ←− random permutation;
(C ′

1, . . . , C
′
n)←− π(C̄1, . . . , C̄n);

(C ′′
1 , . . . , C ′′

n)←− A(C ′
1, . . . , C

′
n); // “final list”

for i := 1 to h do

zi ←−
{

j | α′′
j = (β′′

j)ui+x
}

; // C ′′
j = (α′′

j , β′′
j)

if |zi| 6= 1 then output ’⊥’ fi

od

H ′ ←−
{

j | α′′
j = (β′′

j)ui+x for some i
}

;

if H = H ′ then output ’1’ else output ’0’ fi

Definition 4. The secret permutation generator SPG with n players, h of which are honest,
has uniformity if for any adversary A with resources polynomial in κ and any H ⊆ {1, . . . , n},

|H| = h, the probability pr[Expfair
A

(SPG, κ, n, h,H) = ’1’]− 1/
(

n
h

)

is negligible in κ.

While our SPG does provide uniformity against a semi-honest adversary, even the modified
version does not provide uniformity against a malicious one. There is a malicious adversary that
can break uniformity, but only with a high probability that the experiment fails with an invalid
“final list”. Such an adversary operates as follows. Each ciphertext Ci is an encryption under one
of the public keys uj , where each public key is used roughly the same number of times. Then,
algorithm A is constructed to randomly choose exactly h of the intermediate ciphertexts and
combine them with n− h randomly generated ciphertexts. The chosen intermediate ciphertexts
take the positions described by H in the final list. If the final list is valid, the honest player
ciphertexts are in exactly the right positions.

16

We calculate that the probability the final list is valid is approximately (n/h)h/
(

n
h

)

(if n is a
multiple of h, this expression is exact). Clearly, for all h < n, this probability is strictly greater
than 1/

(

n
h

)

. We conjecture, however, that in an environment where the adversary has a strong
incentive to not cause the protocol to fail with an invalid final list, our SPG has uniformity.

Conjecture 3. Assume ElGamal has GOKI. If we consider only malicious adversaries A for
which the probability pr[Expfair

A
(SPG, κ, n, h,H) = ’⊥’] is negligible in κ, then our (modified)

secret permutation generation protocol has uniformity.

Furthermore, we suspect this restriction is too strong and we are exploring the possibility
that a higher bound on the probability that the final list is invalid may be allowed.

Note that for one of our stated uses of an SPG, the ordering of players in an anonymous
message delivery system, uniformity is not necessary as maximum anonymity is only achieved
when the permutation is uniformly selected, and therefore, the players have a strong motivation
to ensure such uniformity.

As for its use in online games, there is a straightforward way to add uniformity to any SPG
protocol.

4.3.1 Adding Uniformity

The uniformity property is not as essential to a SPG protocol as privacy because uniformity can
be easily added with one additional round of communication and a constant factor increase in
communication complexity. The additional steps simply require that, after the secret permuta-
tion has been generated, the players participate in a protocol to generate a non-secret uniform
permutation and then compose the two permutations to yield a secret and uniform final permu-
tation.

One example of a non-secret uniform permutation generation protocol is as follows. Each
player chooses an integer from Zn!. The players then commit to and reveal their integers. The
commitment is to ensure the integers are independent. Finally, the players sum the integers
modulo n! and map the result to a permutation on n items.

5 Application to Games

A secret permutation sharing scheme can be used in a variety of games to either select a secret
ordering of the players or to shuffle a deck of cards. Some games (e.g. the board game Civi-
lization) require the players to draw numbers from a hat to determine an initial secret ordering.
Many other games require a deck of cards to be shuffled and dealt. For games where an entire
deck is to be dealt out (e.g. Bridge or Hearts), the application of our secret permutation sharing
scheme is straightforward. Suppose 4 players are to be dealt 13 cards each. In Step 2, Player 1
forms an initial set of 52 ciphertexts from the 4 public keys received

[(gu1 , g), . . . , (gu1 , g), (gu2 , g), . . . , (gu2 , g), (gu3 , g), . . . , (gu3 , g), (gu4 , g), . . . , (gu4 , g)].

This list contains 13 copies of each of the 4 ciphertexts. Then, in Step 6, each player can expect
to find exactly 13 ciphertexts for which α/βwi = 1. The 52 list positions are associated with the
cards of a standard deck and each player takes the cards associated with the 13 such ciphertexts
as their hand. We are also working on an extension of our protocol to allow the cards to be
revealed to players slowly over time.

17

6 Conclusions

A secure multiparty protocol for computing a secret permutation has been formulated and ana-
lyzed. Notions of privacy and uniformity were introduced and the protocol evaluated in terms of
these notions. In particular, it was shown the protocol achieves privacy under a weak condition
on the behaviour of the adversary. Work to remove this condition continues.

References

[1] Ben Adida and Douglas Wikström, How to shuffle in public, Proceedings of the Theory of
Cryptography 2007, February 2007.

[2] Gagan Aggarwal, Nina Mishra, and Benny Pinkas, Secure computation of the kth-ranked
element., EUROCRYPT (Christian Cachin and Jan Camenisch, eds.), Springer, 2004, LNCS
3027, pp. 40–55.

[3] David Chaum, The dining cryptographers problem: Unconditional sender and recipient un-
traceability, Journal of Cryptology 1 (1988), 65–75.

[4] Yvo G. Desmedt and Yair Frankel, Threshold cryptosystems, CRYPTO ’89: Proceedings on
Advances in cryptology (New York, NY, USA), Springer-Verlag New York, Inc., 1989, LNCS
435, pp. 307–315.

[5] Taher El Gamal, A public key cryptosystem and a signature scheme based on discrete log-
arithms, Proceedings of CRYPTO 84 on Advances in cryptology (New York, NY, USA),
Springer-Verlag New York, Inc., 1985, LNCS 196, pp. 10–18.

[6] Shafi Goldwasser and Silvio Micali, Probabilistic encryption., J. Comput. Syst. Sci. 28 (1984),
no. 2, 270–299.

[7] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson, Universal re-encryption for
mixnets, RSA Conference Cryptographer’s Track, 2004, LNCS 2964, pp. 163–178.

[8] Philippe Golle and Ari Juels, Dining cryptographers revisited, Proceedings of Eurocrypt 2004,
May 2004, LNCS 3027, pp. 456–473.

[9] Latanya Sweeney and Michael Shamos, Multiparty computation for randomly ordering players
and making random selections, Tech. Report CMU-ISRI-04-126, Carnegie Mellon University,
School of Computer Science, Pittsburgh, July 2004.

18

