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Abstract

The notion of perfect secret sharing scheme has been extended to encompass infinite access
structures, in particular infinite graphs, in [2]. The participants are the vertices of the graph
G and the edges are the minimal qualified subsets. The information ratio of G is the largest
lower bound on the amount of information by secret bits some vertex must receive in each
scheme realizing this access structure. We show that this value is 7/4 for the infinite ladder,
solving an open problem from [2]. We give bounds for other infinite graphs as well.
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1 Introduction

In a secret sharing scheme some information is distributed among the participants so that qualified
subsets of the participants, putting together their shares, can recover the secret. If, in addition,
unqualified subsets gain no information wahtsoever on the secret, the scheme is perfect. Here we
consider cases when the participants are the vertices of a (finite or infinite) graph, and minimal
qualifies subsets are just the edges. The information ratio R(G) of a finite graph G is the largest
lower bound on the amount of information by secret bits (measured as Shannon entropy) some
participant must remember in every scheme realizing this graph. If G is infinite, then R(G) is
the sup of R(G') where G' is a finite spanned subgraph of G. For further motivation and exact
definition, see [2].

In this paper we determine, or bound, the information ratio of several infinite graphs. The
lower bounds use direct constructions and Stinson’s decomposition technique from [3] generalized
in [2]:

Theorem 1.1 Let G; be arbitrary (not necessary spanned) subgraphs of G, and assume that each
edge of G is in at least k of the subgraphs. For each vertex v € G define r;(v) =0 if v ¢ G;, and
r;(v) = R(G};), i-e. the information ratio of G;, otherwise. Then
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Upper bounds come from the so-called entropy method, see, e.g. [1]. For a detailed exposition
please consult [2].

2 The ladder

In this section we show that information ratio for the infinite ladder L depicted on figure 1 is 7/4.
We prove that this is an upper and also a lower bound for R(L) separately.

Figure 1: The ladder and its cover

Claim 2.1 R(L) < 7/4.



Proof As all upper bounds, this one comes from a construction. Consider the right hand side of
figure 1. The ladder is decomposed into two infinite paths and infinitely many squares. We will
use theorem 1.1. Observe that all edges are covered exactly twice, i.e. k = 2. As the information
ratio for the square is 1 and that of the infinite path is 3/2 (see [2]), the sum in (1) is 2+3/2=7/2
for each vertex v. This should be divided by k = 2 to get the upper bound 7/4. |

Claim 2.2 R(L) > 7/4.

Proof Rather than using the entropy method directly, we shall use the result of Theorem 2.3
below. We claim that the information ratio for the ladder is at least as much as that of the graph
(1 depicted on the left hand side of figure 2. Both G; and G2 have ten vertices. On both cases
vertices denoted by the same label are identical, the graphs on the picture are “unfolded” for an
easier drawing. G is the edge graph of the pentagonal prism, while G5 is that of the pentagonal

antiprism.
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Denote the information ratio of the infinite ladder L by r = R(L). All finite spanned subgraphs
of L has information ratio < r. In particular, consider the strip of length 5k, consisting 5k — 1
squares put next to each other. Wrap this strip around G like a ribbon. Each vertex of G; will
be covered k or k + 1 times, and each edge will be covered again k or k + 1 times. We apply
Theorem 1.1 with this “decomposition.” The sum in (1) is either & - or (k + 1)r for each vertex,
and the denominator is k, thus

k+1
R(Gy) < .
As this holds for arbitrary large k, we must have R(G1) < r = R(L). Theorem 2.3 gives the lower
bound 7/4 for R(G1), thus we are done. |

Theorem 2.3 The information ratio is at least 7/4 for both graphs G1 and G2 of figure 2.

Proof The vertices a, ..., e as well as vertices A, ..., E form two cycles of length 5 in both
graphs. In Gy there are five other edges connecting vertices of these cycles as indicated on figure
2. In G2 we have 10 edges between these cycles.

First we prove R(G;1) > 7/4. The proof uses the entropy method as described e.g., in [1, 2].
Let f be any non-negative submodular function with the strong submodulare property on the
subsets of the vertex set of G1. We must show that f(v) > 7/4 for some vertex v € G;. From now
on fix such a function f. We proceed by stating and proving two lemmas.

Lemma 2.4 Let a, b, ¢, and d be vertices of the graph G such that ab, bc, cd are edges, ad and
bd are not edges (that is, abed is a spanned path of length 3 with ac as an optional extra edge).
Suppose X C G is independent, and no vertex in X is connected to any of a, b, ¢, or d. Then
fbeX) — f(X) > 3.

Proof All standard proofs which give f(bc) > 3 can be extended to prove this stronger statement
as well. For the sake of completeness, however, we give the details. Figure 3 shows the idea.
Qualified (i. e. not empty) subsets are boxed. Among the four submodular inequalities indicated
on the figure two are strong (where three out of the four subsets are qualified). Adding up this
four inequalities we get

F(beX) — f(X) > 2+ f(abedX) — f(adX).

As abcdX is qualified while adX is not, the last term on the right hand side is > 1, which proves
the lemma. |



£
T/ \\ beX
adX bdX N
T o

\X

Figure 3: The proof

Lemma 2.5 Let abc be a path in G, and X C G be a subset of vertices such that acX is indepen-
dent. Then f(a) + f(b) + f(cX) > f(acX) + 2.

Proof As aband bc are both edges, strong submodularity gives f(ab)+ f(beX) > f(b)+ f(abeX)+
1. From here f(a) + f(b) + f(cX) > f(abcX) + 1 follows. Now abcX is qualified and acX is not,
thus f(abcX) > f(acX) + 1, which proves the lemma. |

Returning to the proof of R(G1) > 7/4, in G1 acD is independent, abc is a path, therefore, by
Lemma, 2.5,
f(a) + f(b) + f(cD) > f(acD) + 2.

Similarly, ADc is independent, and AED is a path, thus
f(A) + f(E) + f(cD) > f(AcD) +2.

By submodularity,
f(acD) + f(AeD) > f(aAcD) + f(cD).

Addig these inequailities we have
f(a) + f(b) + f(A) + f(E) > 4+ (f(aAcD) — f(cD)) >4+3 =T, (2)

where the last inequality comes from Lemma 2.4. Indeed, in G1, eaAB is a spanned path no
vertices of which is connected to the independent set ¢D. (2) means that at least one of f(a),
f(), f(A), and f(E) is > 7/4 which proves the theorem for G;.

In G5 both eab and bed are spanned paths, thus applying Lemma 2.5 with X as the empty set
we have f(e) + f(a) + f(b) > f(eb) + 2, and f(b) + f(c) + f(d) > f(bd) + 2. By submodularity,
f(eb) + f(bd) > f(bde) + f(b). Combining these inequalities one gets

fle)+ f(a) + f(c) + f(d) > 4+ (f(bde) — f(b)) >4+3=T. 3)

Again, the last inequality is a consequence of Lemma 2.4, as no vertex in the spanned path CdeFE
is connected to b. By (3) at least one of the four values on the left hand side is > 7/4, as required.

3 Further examples

Using the methods and results from the previous section, we can bound the information ratio of
other infinite graphs as well. Figure 4 shows two infinite ladder-like constructs, Ly and Ls. In
both graphs the vertices lie on the two infinite paths, and vertices on these paths are connected
as indicated. In Ly each vertex has degree 4, while in Lo this degree is 5. Graphs H;, Hy and Hj
on the righ hand side of the figure will be used for upper bounds.

Example 3.1 The information ratio of Ly is 3/2.
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Figure 4: Variants on the ladder: L; and Ly and their covers

Proof L; contains the infinite path as a spanned subgraph, consequently the ratio is at least the
ratio of the path, which is 3/2. To show that 3/2 is also an upper bound, cover L; with translated
instances of H; and apply Theorem 1.1. Each edge of L; will be covered exactly twice, thus k = 2
in the theorem. Each vertex on the upper path will be covered once by a, once by b, and once by
¢; and similarly vertices on the bottom path receive each of A, B, and C exactly once. Thus to
prove the claim it is enough to show that there exists a perfect secret sharing scheme on H; which
assigns a single bit to each node for each secret bit. Indeed, in this case the sum in (1) is always
3 which should be divided by k = 2 yielding the upper bound 3/2.

As for Hy, observe that it is a complete bipartite graph with bB and aAcC as the two classes.
In this case a perfect secret sharing scheme realizing the minimal ratio 1 is the following. Let
s € {0,1} be the secret bit, and choose r € {0,1} randomly. Give 7 to all members of one class,
and r ® s to members of the other class. |

Example 3.2 The information ratio of Ly is 5/3.

Proof The lower bound comes from the entropy method. Let abcde be five consecutive vertices
on the top path as indicated on the figure, and let ABCDE be the vertices just below them. By
Lemma, 2.5,

fla) + f(b) + f(e) > flac) + 2,

and, by Lemma 2.4, f(acd) > f(a) + 3. This latter inequality follows as a, as a single element set,
is independent, and no vertex in the path Cede is connected to a. (Ccde is not a spanned path,
but the only extra edge Cd is allowed in the Lemma.) Now f(ac) + f(d) > f(acd), therefore

fFO) + flo)+ fF(d) =25,

that is one of these three values must be > 5/3.

The upper bound uses Theorem 1.1. We shall cover Ly by translated instances of Hy and Hs.
Both H; and Hj has information ratio 1. Indeed, complete graphs have this ratio, and Hj is the
complete graph on 4 vertices. In H» use a ratio 1 secret sharing system on the triangle abB, and
then simply give a’s share to A, ¢ and C.

Put Hy and Hj to all possible positions in Ly. Each edge will be covered 3 times, and each
vertex 5 times. Thus all vertices receive a total of 5 bits, which should be divided by 3 to get the
upper bound.

Example 3.3 For the “reinforced ladder” L* of figure 5, 7/4 < R(L*) < 11/6.
Observe that L* is isomorphic to a strip of width 1 cut out of the triangular lattice.
H4 : H5 :

e

Figure 5: The “reinforced ladder” L* and the cover graphs




Proof The lower bound comes from the R(G2) > 7/4 part of Theorem 2.3 the same way as the
other claim in the same theorem was used to get a lower bound on the information ratio of the
infinite ladder.

For the upper bound consider the graphs Hy and Hy depicted on figure 5. Both Hy and Hj
have information ratio 1. Cover L* by the translated copies of Hy and Hs. Each vertex will
be covered 4 times, horizontal edges (i.e. edges on the two infinite paths) will be covered twice,
while all other edges will covered three times. Add the upper and lower infinite path to make
the edge cover exactly 3 everywhere. The sum of the ratios at each vertex is increased by the
information ratio of the infinite path, which is 3/2. Thus the upper bound ensured by Theorem
1.1is (4 +3/2)/3 = 11/6 as was claimed. |

4 Conclusion

We have determined the information ratio (thus the information rate as well) of three infinite
graphs, and gave estimates for a fourth one. In each case the upper bound was achieved by Stinson’s
decomposition method generalized for infinite graphs. The lower bounds used the entropy method.
In two cases, however, it was done with a twist: rather than applying the method directly, we
gave lower bounds for a finite “factor graph,” and then argued that the information ratio of the
original graph is at least as large as that of its factor. What we have lost in this argument is the
locality. It is quite conceivable that all finite parts of the graph has strictly smaller information
ratio than the whole graph. Thus, while we have established the information ratio of the infinite
ladder, it remains open whether the same ratio is achieved by a finite spanned subgraph.

Graphs L; and Lo are local. We know that the path of lenght 3 has information ratio 3/2,
and this is a spanned subgraph of L;. From the proof of Example 3.2 and Lemmas 2.4 and 2.5

Figure 6: A graph with information ratio 5/3

one can extract that the graph depicted on figure 6, with or without any of the dotted edges, has
information ratio 5/3. One of these graphs is a spanned subgraph of La, thus Ly is local.
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