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Abstract. The generic (aka. black-box) group model is a valuable methodology for analyzing the com-
putational hardness of number-theoretic problems used in cryptography. Since the properties ensuring
generic hardness have not been well-studied and formalized yet, for each newly proposed problem an
entire hardness proof has to be done from scratch. In this work we identify criteria that guarantee the
hardness of generalized DL and DH problems in an extended generic group model where algorithms are
allowed to perform any operation representable by a polynomial function. Assuming our conditions are
satisfied, we are able to provide negligible upper bounds on the success probability of such algorithms.
As useful means for the formalization of definitions and conditions we explicitly relate the concepts of
generic algorithms and straight-line programs that have only been used independently in cryptography
so far.
Keywords: Generic Group Model, Straight-Line Programs, Hardness Conditions, Lower Bounds.

1 Introduction

The generic group model was introduced by Nechaev [Nec94] and Shoup [Sho97a]. In this model
one considers algorithms (so-called generic algorithms) that given a group G as black box, may only
perform a set of basic operations on the elements of G such as applying the group law, inversion
of group elements and equality testing. Since in this model the group is treated as black box, the
algorithms cannot exploit any special properties of a concrete group representation. Natural exam-
ples of this class of algorithms are the Pohlig-Hellman [PH78] and Pollard-Rho [Pol78] algorithm
for computing discrete logarithms.

Many fundamental cryptographic problems were proven to be computationally intractable in
the generic model, most notably the discrete logarithm problem (DLP), the computational and
decisional Diffie-Hellman problem (DHP and DDHP) [Sho97a] and the root extraction problem
(in groups of hidden order) [DK02]. These intractability results are considered to be evidence
supporting cryptographic assumptions of number-theoretic nature which underly the security of a
vast number of systems of applied cryptography.

To be precise, a generic group algorithm can only perform a subset of the operations that can
be performed by an algorithm that may exploit specific properties of the representation of group
elements. This implies that proving a problem to be intractable in the generic group model is a
necessary, but not sufficient condition for the problem to be intractable in any concrete group. A
generically intractable problem that is easy in any concrete group has been considered in [Den02].

Nonetheless, when making new intractability assumptions it is, loosely speaking, considered to
be good practice to prove the underlying problem to be hard in the generic model. Many novel
assumptions rely on more complex algebraic settings than standard assumptions like the DL, DH
or root assumption. They involve multiple groups and operations on group elements additional
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to the basic operations. Examples are the numerous assumptions based on bilinear pairings (e.g.,
see [BF01,BB04a,Yac02]). For an adequate analysis of computational and decisional problems over
such algebraic settings and their proper reflection, the basic generic group model needs to be
extended. For instance, in the case of the bilinear Diffie-Hellman problem [BF01], the model is
extended to two (or three) groups and the set of operations a generic algorithm may perform in
addition to the basic ones contains an operation for applying the bilinear map between these groups.

As a result, one ends up with various flavors of the generic model. Since the properties ensuring
generic hardness had not been well-studied and formalized before this work, for each novel problem
an entire hardness proof had to be done from scratch. This can easily become a complicated and
cumbersome task since a rigorous and complete proof in the generic model is quite technical. In
fact, the proofs are often only sketched or even entirely omitted in the literature.

1.1 Our Contributions

In a nutshell, we introduce comprehensive classes of computational problems and identify the core
aspects making these problems hard in the generic model. We provide a set of conditions which,
given the description of a cryptographic problem, allow to easily check whether the problem at
hand is intractable with respect to generic algorithms performing certain operations. In this way we
aim at (i) providing a useful tool to structure and analyze the rapidly growing set of cryptographic
assumptions as motivated in [Bon07] and (ii) making the first steps towards automatically checkable
hardness conditions in the generic model.

More concretely, we formalize quite general classes of computational problems over known order
groups, we call DL-type and DH-type problems. Numerous cryptographic problems currently known
are covered by these classes and, due to their broadness, we expect that many future computational
problems will also comply with them. A considerable list of covered problems is given in Section 2.
In particular, we also support problems like the w-strong Bilinear Diffie-Hellman problem [BB04b]
where an algorithm is asked to output an element being described by a rational function.

We show the existence of a set of conditions which, in the generic group model, are sufficient
for the hardness of DL-type and DH-type problems. An important issue to point out is that we
do not just consider the basic generic group model, i.e., where an oracle provides operations to
apply the group law and compute inverses. Rather, we consider a broader and more flexible variant
where one can additionally make available a rich class of operations. Examples of such operations
are multilinear mappings, arbitrary homomorphisms between groups and also oracles solving other
computational or decisional problems. Correspondingly, our conditions not only consider the com-
putational problem at hand but also explicitly the operations that are available. We were able to
derive non-trivial (generic) bounds for all problems and sets of operations satisfying our conditions.

In this context, we explore and formalize, for the first time, the relationship of generic algorithms
and so-called straight-line programs (SLPs) which are non-probabilistic algorithms performing a
static sequence of operations on their inputs without branching or looping. The concept of SLPs
is widely-used in computational algebra and also proved its usefulness in the area of cryptography
(see, e.g., [BV98,Bro06]). Its relation to generic algorithms has not been explicitly analyzed before.

1.2 Related Work

In [Kil01] the author analyzes a generalization of the Diffie-Hellman problem, the P -Diffie-Hellman
problem: given group elements (g, gx1 , gx2) the challenge is to compute gP (x1,x2), where P is a
(non-linear) polynomial and g is a generator of some group G. Besides other results, it is shown
there that the computational and decisional variant of this problem class is hard in the (standard)
generic model.
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Recently, another general problem class has been introduced in [BBG05b] to cover DH related
problems over bilinear groups. The authors show that decisional problems belonging to this class
which satisfy a certain condition are hard in a generic bilinear group setting.

An interesting work by Maurer [Mau05] presents an abstract model of computation, which gen-
eralizes the generic model. This model captures so-called extraction, computation and distinction
problems. In contrast to our framework, this model does not cover the case of multiple groups.
Maurer proves lower bounds on the computation complexity for several specific examples within
this setting, however the paper does not give sufficient nor necessary conditions for the hardness of
problem classes in the framework.

Recent work by Bresson et al. [BLMW07] independently analyzes generalized decisional prob-
lems over a single prime order group in the plain model. They showed that under several restrictions
a so-called (P,Q)-DDH problem is efficiently reducible to the standard DDH problem. This result
has also some consequences for the hardness of (P,Q)-CDH problems in the generic group model:
since standard DDH is known to be hard in the generic model also a (P,Q)-DDH problem (over a
single prime order group) satisfying the restrictions is hard and thus the respective computational
version of this problem. However, one important requirement for applying their results is that the
P and Q polynomials describing the problem need to be power-free, i.e., variables are only allowed
to occur with exponents being equal to zero or one. This is not a necessary condition for a compu-
tational problem to be hard in the generic model (e.g., consider the square exponent problem) and
excludes a large class of problems.

To summarize, the works cited above consider quite restricted classes of cryptographic problems
and/or fixed algebraic settings. For instance, the w-strong family of problems is covered by neither
approach. Our framework is much more flexible: we provide sufficient hardness conditions for large
classes of DL- and DH-type problems defined over multiple groups that are not necessarily of prime
order. Moreover, in contrast to existing solutions our conditions take variable sets of operations
into account.

1.3 Basic Notation

Let poly(x) denote the class of univariate polynomials in x with non-negative integer coefficients.
We call a function f : N → R

+ polynomial bounded if there exists poly ∈ poly(x) s.t. for all κ:
f(κ) ≤ poly(κ). We call a function f negligible if the inverse of any poly ∈ poly(x) is asymptotically
an upper bound of f , i.e., ∀poly ∈ poly(x)∃κ0 ∀κ ≥ κ0 : f(κ) ≤ 1

poly(κ) .

Throughout the paper we are concerned with multivariate Laurent polynomials over the ring Zn.
Informally speaking, Laurent polynomials are polynomials whose variables may also have negative
exponents. More precisely, a Laurent polynomial P over Zn in indeterminates X1, . . . , Xℓ is a finite
sum P =

∑

aα1,...,αℓ
Xα1

1 · · ·X
αℓ

ℓ where aα1,...,αl
∈ Zn and αi ∈ Z. The set of Laurent polynomials

over Zn forms a ring with the usual addition and multiplication (where the identity X−ℓ
j Xℓ

j =
1 holds). By deg(P ) = max{

∑

i |αi| | aα1,...,αl
6≡ 0 mod n} (and deg(0) = −∞) we denote the

(absolute) total degree of a Laurent polynomial P 6= 0. Furthermore, we denote by L
(ℓ,c)
n (where

0 ≤ c ≤ l) the subring of Laurent polynomials over Zn where only the variables Xc+1, . . . , Xℓ can

appear with negative exponents. Note that for any P ∈ L
(ℓ,c)
n and x = (x1, . . . , xℓ) ∈ Z

c
n × (Z∗

n)
ℓ−c

the evaluation P (x), where we set X1 = x1, . . . , Xℓ = xℓ in P , is well-defined.

If A is a probabilistic algorithm, then y
R
← A(x) denotes the assignment to y of the output of

A’s run on x with fresh random coins; we write y ← A(x) if A is deterministic. Furthermore, by
[A(x)] we denote the set of all possible outputs of a probabilistic algorithm A on input of a fixed

value x and variable random coins. If S is a set, then x
R
← S denotes the random generation of an

element x ∈ S using the uniform distribution.
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1.4 Outline

In Section 2 we formalize the classes of computational problems under consideration. Section 3
introduces our extended generic group model based on Shoup’s model. In particular, we define the
notion of a generic operation set as well as a problem’s intractability against generic algorithms
only allowed to perform operations from this set. Section 4 presents abstract hardness conditions
linking the concepts of generic algorithms and straight-line programs (SLPs). Loosely speaking,
we show that a problem is intractable with respect to generic algorithms if (i) not too much
information about the secret choices is leaked due to equality relations between computable group
elements (leak-resistance) and (ii) the considered problem is not solvable in a trivial way (SLP-
intractability). In Section 5 we introduce easily checkable conditions ensuring leak-resistance and
SLP-intractability. Additionally, concrete bounds for these properties are given. Finally, Section 6
extends our framework in different directions. We describe how the conditions can be used to prove
the non-existence of generic reductions thereby adding operations implementing decision oracles to
the framework. Furthermore, we extend our basic problem class definition from Section 2 as well
as our conditions in order to cover the w-strong problem family.

2 Problem Classes

In this section we formally define the classes of computational problems under consideration. In
order to get the key ideas of our formalization, we start with an informal and simplified description
of an important class of computational problems over a single (known order) group. Such problems
often comply to the following general form: Let G be a cyclic group with corresponding generator
g. Then given a tuple (a1, . . . , az) of (public) elements from G which are related to some secret

random choices x = (x1, . . . , xℓ)
R
← Z

ℓ
|G|, the challenge is to compute some element a ∈ G (DH-type

problem) or some discrete logarithm x ∈ Z|G| (DL-type problem) which is also related to x. The
relation between x and a public element aj belonging to a problem instance can be represented by
a function of the form

f : Z
ℓ
|G| → Z|G| .

That means, we have aj = gf(x). Similarly, the relation between the solution a ∈ G resp. x ∈ Z|G|

and x can be specified by such a function. In this work, we restrict ourselves to functions given
by Laurent polynomials. As an example, consider the description of the CDH problem: Given
(a1 = g1, a2 = gx1 , a2 = gx2) ∈ G3, where x = (x1, x2) ∈U Z

2
|G| the challenge is to compute the

element a = gx1x2 . Thus, the relational structure between x and the public group elements can be
captured by polynomials 1, X1, X2. The relation to the solution is given by the polynomial X1X2.

Definition 1 generalizes this approach to the case of multiple groups and mixed secret choices
over Zn and Z

∗
n. The former is required to include the important class of problems over bilinear (and

more generally, multilinear) groups while the latter is necessary to include the class of so-called
exponent inversion problems. For our formalization we adapted and extended the framwework
in [SS01].

Definition 1 (DL-/DH-type problem). A DL-/DH-type problem P is characterized by

– A tuple of parameters
ParamP = (k, ℓ, c, z)

consisting of some constants k, ℓ ∈ N, c ∈ N0 where c ≤ ℓ and a polynomial z ∈ poly(x).
– A structure instance generator SIGenP(κ) that on input of a security parameter κ outputs a

tuple of the form
((G,g, n), (I, Q)) ,

where
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• (G,g, n) denotes the algebraic structure instance consisting of descriptions of cyclic groups
G = (G1, . . . , Gk) of order n and corresponding generators g = (g1, . . . , gk),
• (I, Q) denotes the relation structure instance consisting of the input polynomials I =

(I1, . . . , Ik), with Ii ⊂ L
(ℓ,c)
n , |Ii| ≤ z(κ), and the challenge polynomial Q ∈ L

(ℓ,c)
n .

Then a problem instance of P consists of a structure instance ((G,g, n), (I, Q))
R

← SIGenP(κ) as
well as group elements

gI(x) =
(

g
P (x)
i |P ∈ Ii, 1 ≤ i ≤ k

)

,

where x
R

← Z
c
n × (Z∗

n)
ℓ−c are secret values. Given such a problem instance, the challenge is to

compute
{

Q(x), for a DL-type problem

g
Q(x)
1 , for a DH-type problem

.

Numerous computational problems of cryptographic interest fall into the class of DL-type
or DH-type problems. Examples are problems such as the DLP, DHP, a variant of the repre-
sentation problem [SS01], generalized DHP [SS01], GAP-DHP [OP01], square and inverse ex-
ponent problem [SS01], divisible DHP [BDZ03], w-weak and w-strong DHP [Che06], bilinear
DHP [BF01], w-bilinear DH inversion problem [BB04a], w-bilinear DH exponent problem [BBG05a],
co-DHP [BGLS03], co-bilinear DHP [BF01], bilinear pairing inversion problem [Yac02] and many
more. In Section 6.2 we extend our definitions and conditions to also include problems like the
w-strong DH and w-strong BDH problem where the challenge is specified by a rational function.
As an illustration of the definition, we consider several problems in more detail.

Example 1 (Discrete Logarithm Problem). For the DL problem we have parameters

ParamDL = (1, 1, 1, 2)

and a structure instance generator SIGenDL that on input κ returns

((G = G1,g = g1, n), (I = I1 = {1, X1}, Q = X1)) .

Note that we have the “same” input polynomials and challenge polynomial for all κ and random
coins of SIGenDL. A problem instance of the DL problem additionally comprises group elements

(

g
P (x)
1 |P ∈ {1, X1}

)

= (g1, g
x1
1 ) ,

where x = x1
R
← Zn, and the task is to compute Q(x) = x1.

Example 2 (Computational Diffie-Hellman Problem). For the DH problem we have parameters

ParamDH = (1, 2, 2, 3)

and a structure instance generator SIGenDH that on input κ returns

((G = G1,g = g1, n), (I = I1 = {1, X1, X2}, Q = X1X2)) .

Again, we always have the “same” input polynomials and challenge polynomial. A problem instance
additionally comprises group elements

(

g
P (x)
1 |P ∈ {1, X1, X2}

)

= (g1, g
x1
1 , gx2

1 ) ,

where x = (x1, x2)
R
← Z

2
n, and the task is to compute g

Q(x)
1 = gx1x2

1 .
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Example 3 (w-Bilinear Diffie-Hellman Inversion Problem). For the w-BDHI problem we have pa-
rameters

Paramw-BDHI = (3, 1, 0, w + 1)

and a structure instance generator SIGenw-BDHI that on input κ returns

((G = (G1, G2, G3),g = (g1, g2, g3), p), (I = (I1 = {1}, I2 = {1, X1, X
2
1 , . . . , X

w(κ)
1 }, I3 = {1}), Q = X−1

1 ))

such that p is a prime, there exists a non-degenerated, efficiently computable bilinear mapping
e : G2 ×G3 → G1 with e(g2, g3) = g1 and an isomorphism ψ : G2 → G3 with ψ(g2) = g3). Note
that the number of input polynomials in I2 grows with the security parameter. A problem instance
additionally comprises group elements

(

g
P (x)
i |P ∈ Ii, 1 ≤ i ≤ 3

)

=

(

g1, g2, g
x1
2 , . . . , g

x
w(κ)
1

2 , g3

)

,

where x = x1
R
← Z

∗
n, and the task is to compute g

Q(x)
1 = g

x−1
1

1 .

In the remainder of this paper, we are often only interested in individual parts of the output

of SIGenP . To this end, we introduce the following simplifying notation: By $
R
← SIGen$

P(κ), where
$ is a wildcard character, we denote the projection of SIGen’s output to the part $. For instance,

(n, I, Q)
R
← SIGen

(n,I,Q)
P (κ) denotes the projection of the output to the triple consisting of the group

order, the input polynomials, and the challenge polynomial. Furthermore, by [SIGen$
P(κ)] we denote

the set of all possible outputs $ for a given fixed security parameter κ.1

3 Extending Shoup’s Generic Group Model

We need a slightly more flexible definition of the generic group model than usual since we consider
large classes of problems with varying algebraic setting which refers to the underlying algebraic
groups and operations available on these groups. Thus, also the generic group setting needs to
take the varying number of groups and their structures into account. To make the results in the
generic model as strong as possible the operations made available through the generic oracle should
closely correspond to those of the algebraic setting in the plain model. That means the generic
algorithms considered in our model should be allowed to apply all operations that are known to
be efficiently computable in this algebraic setting and do not make intrinsic use of the encoding of
group elements.

3.1 Generic Operations

Given a problem and its underlying algebraic setting, we call the operations being made available
in the generic group model the (generic) operation set of the problem. In the following we formally
define the notion of an operation set and describe what operations can be part of it.

For our framework we restrict to consider operations of the form

◦ : Gs1 × . . .×Gsu → Gd
(a1, . . . , au) 7→ ◦(a1, . . . , au)

where u ≥ 1, s1, . . . , su, d ∈ {1, . . . , k} are some fixed constants (that does not depend on κ).
Furthermore, we demand that the action of ◦ on the group elements can be represented by a fixed

1 In [SS01], the authors call this kind of sets “siblings”.
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regular polynomial. That means, there exists a fixed F ∈ Z[Y1, . . . , Yu] (also not depending on κ)
such that for any generators g1, . . . , gu, gd given as part of a problem instance hold

◦(a1, . . . , au) = g
F (y1,...,yu)
d

where a1 = gy11 , . . . , au = gyu
u . For instance, the bilinear mapping e : G2 × G3 → G1 which is part

of the algebraic setting of the w-BDHIP is such an operation: for any g2, g3 and g1 = e(g2, g3) it

holds that e(a1, a2) = e(gy12 , g
y2
3 ) = g

F (y1,y2)
1 where F = Y1Y2. In fact, to the best of our knowledge,

virtually any deterministic operation considered in the context of the generic group model in the
literature so far belongs to this class of operations. In Section 6.1 we extend the operation set to
additionally include decision oracles.

We represent an operation of the above form by a tuple (◦, s1, . . . , su, d, F ), where the first
component is a symbol serving as a unique identifier of the operation. The set of allowed operations
can thus be specified by a set of such tuples as done in Definition 2. In the following we may assume
that an operation set always contains at least operations for performing the group law and inversion
of group elements (for each group).

Definition 2 (Operation Set). An operation set Ω is a finite set of tuples of the form
(◦, s1, . . . , su, d, F ), where the components of these tuples are defined as above.

Example 4 (Operation Set for w-BDHIP). The operation set Ω = {(◦1, 1, 1, 1, Y1 + Y2),
(◦2, 2, 2, 2, Y1 + Y2), (◦3, 3, 3, 3, Y1 + Y2), (inv1, 1, 1,−Y1), (inv2, 2, 2,−Y1), (inv3, 3, 3,−Y1),
(ψ, 2, 3, Y1), (e, 2, 3, 1, Y1 · Y2)} specifies operations for performing the group law (◦i) and in-
version (inv i) over each group as well as the isomorphism ψ : G2 → G3 and the bilinear map
e : G2 ×G3 → G1.

3.2 Generic Group Algorithms and Intractability

In this section, we formally model the notion of generic (aka. black-box) algorithms for our setting.
We adapt Shoup’s standard generic group model [Sho97b] for this purpose.

Let Sn ⊂ {0, 1}
⌈log2(n)⌉ denote a set of bit strings of cardinality n and Σn the set of all bijective

functions from Zn to Sn. Furthermore, let σ = (σ1, . . . , σk) ∈ Σ
k
n be a k-tuple of randomly chosen

encoding functions for the groups G1, . . . , Gk ∼= Zn, i.e., for each 1 ≤ i ≤ k

σi : Zn → Sn

is a bijective encoding function assigning elements from Zn to bit strings, chosen at random among
all possible bijections.

A generic algorithm A in our setting is a probabilistic algorithm that is given access to a generic
(multi-) group oracle OΩ allowing A to perform operations from Ω on encoded group elements.
Since any cyclic group of order n is isomorphic to (Zn,+), we will always use Zn with generator 1 for
the internal representation of a group Gi. As internal state OΩ maintains two types of lists namely

element lists L1, . . . , Lk, where a Li ⊂ L
(ℓ,c)
n , and encoding lists E1, . . . , Ek, where Ei ⊂ Sn. For an

index j let Li,j and Ei,j denote the j-th entry of Li and Ei, respectively. Each list Li is initially
populated with the corresponding input polynomials given as part of a problem instance of a DL-
/DH-type problem P, i.e., Li = (P |P ∈ Ii) (and the polynomials P are taken from Ii in some fixed
publicly known order). A list Ei contains the encodings of the group elements corresponding to the
entries of Li, i.e., Ei,j = σi(Li,j(x)). Ei is initialized with Ei = (σi(P (x))|P ∈ Ii). A is given (read)
access to all encodings lists. In order to be able to perform operations on the randomly encoded
elements, the algorithm may query OΩ. Let (◦, s1, . . . , su, d, F ) be an operation from Ω. Upon
receiving a query (◦, j1, . . . , ju), where j1, . . . ju are pointers into the encoding lists Ej1 , . . . Eju , the
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oracle computes P := F (Ls1,j1 , . . . , Lsu,ju), appends P to Ld and σd(P (x)) to the encoding list Ed.
After having issued a number of queries, A eventually provides its final output. In the case that P
is a DL-type problem, we say that A has solved the problem instance of P if its output a satisfies
Q(x)− a ≡ 0 mod n. In the case that P is a DH-type problem, A has solved the problem instance
if for its output σ1(a) holds that Q(x)− a ≡ 0 mod n.

Let a DL-/DH-type problem over cyclic groups G1, . . . , Gk of order n be given. We can write
the group order as n = pe · s with gcd(p, s) = 1 where p be the largest prime factor of n. Then for
each i it holds that

Gi ∼= G
(pe)
i ×G

(s)
i

where G
(pe)
i and G

(s)
i are cyclic groups of order pe and s, respectively. It is easy to see that solving

an instance of a DL-/DH-type over groups Gi of order n means for a generic algorithm to solve it

separately over the subgroups G
(pe)
i and the subgroups G

(s)
i . In particular, the inputs, the generic

operations, and a solution over G
(s)
i are of no help to find a solution over G

(pe)
i . Thus, computing

a solution to a DL-type or DH-type problem over the groups Gi is a least as hard for generic

algorithms as computing a solution over groups the G
(pe)
i given only inputs over these subgroups.

Hence, to assess the intractability of DL-/DH-type problems we can restrict to consider these
problems over groups of prime power order. In the following we always assume that SIGenP on
input κ generates groups of prime power order n = pe with p > 2κ and e > 0 as well as challenge
and input polynomials over Zpe .

Our notion of a problem’s intractability against generic algorithms allowed to perform certain
operations Ω is formalized in Definition 4 and 5, respectively. Note that the two definitions only
differ with respect to the output of the generic algorithm. In our formalizations we consider classes
of generic algorithms exhibiting the same runtime where runtime is measured by the number of
oracle queries. This class is captured by Definition 3.

Definition 3 (q-GGA). A q-GGA A is a generic group algorithm that for any κ ∈ N, which it
receives as part of its input, makes at most q(κ) queries to the generic group oracle.

Definition 4 (GGA-intractability of DL-type Problems). A DL-type problem P is called
(Ω, q, ν)-GGA-intractable if for all q-GGA A and κ ∈ N we have

Pr[Q(x) ≡ a mod n :

(n, I, Q)
R

← SIGen
(n,I,Q)
P (κ);

σ
R

← Σk
n;

x
R

← Z
c
n × (Z∗

n)
ℓ−c;

a
R

← AOΩ (κ, n, I, Q, (σ1(P (x))|P ∈ I1), . . . , (σk(P (x))|P ∈ Ik))

] ≤ ν(κ)

Definition 5 (GGA-intractability of DH-type Problems). A DH-type problem P is called
(Ω, q, ν)-GGA-intractable if for all q-GGA A and κ ∈ N we have

Pr[Q(x) ≡ a mod n :

(n, I, Q)
R

← SIGen
(n,I,Q)
P (κ);

σ
R

← Σk
n;

x
R

← Z
c
n × (Z∗

n)
ℓ−c;

σ1(a)
R

← AOΩ (κ, n, I, Q, (σ1(P (x))|P ∈ I1), . . . , (σk(P (x))|P ∈ Ik))

] ≤ ν(κ)
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4 Abstract Hardness Conditions: Linking GGA and SLP Intractability

Informally speaking, we will see that the grade of intractability of a DL-/DH-type problem with
respect to generic algorithms can be “measured” by means of two “quantities”:

1. The probability of gaining information about the secret choices x in the course of a computation
by means of non-trivial equalities between group elements. This quantity is called leak-resistance.

2. The probability to solve problem instances using a trivial strategy, i.e., by taking actions in-
dependently of (in)equalities of computed group elements and thus independent of the specific
problem instance. This quantity is called SLP-intractability.

For formalizing both quantities we make use of (a generalized form of) so-called straight-line
program (SLP) generators specified by Definition 6. SLPs are a very common concept in the field
of computational algebra that has also proven its usefulness in the area of cryptography (e.g., see
[BV98,Bro06]). However, the SLP model and the GGA model have not been explicitly related in
the literature so far. It is important to note that an SLP-generator is not given any group elements
(which are part of a problem instance) as input but is only aware of relation structure instance in
terms of certain Laurent polynomials.

Definition 6 ((Ω, q)-SLP-generator). A (Ω, q)-SLP-generator S is a probabilistic algorithm that

on input (κ, n, I, Q) where κ, n ∈ N, I = (I1, . . . , Ik) with Ii ⊂ L
(ℓ,c)
n , and Q ∈ L

(ℓ,c)
n , outputs

lists (L1, . . . , Lk) where Li ⊂ L
(ℓ,c)
n . Each list Li is initially populated with Li = (P |P ∈ Ii). The

algorithm can append a polynomial to a list by applying an operation from Ω to polynomials already
contained in the lists, i.e., for an operation (◦, s1, . . . , su, d, F ) ∈ Ω and existing polynomials P1 ∈
Ls1 , . . . , Pu ∈ Lsu the algorithm can append F (P1, . . . , Pu) to Ld. In this way, the algorithm may
add up to q(κ) polynomials in total to the lists. Occasionally, we assume in the following that the
algorithm additionally outputs an element a ∈ Zn in the case of a DL-type problem and a polynomial
P ∈ L1 in the case of DH-type problem, respectively.

Let us first formalize the leak-resistance of a problem. When do group elements actually leak
information due to equality realtions? To see this, reconsider the definition of the generic oracle in
Section 3.2 and observe that two encodings Ei,j and Ei,j′ are equal if and only if the evaluation
Li,j − Li,j′(x) yields zero. However, it is clear that such an equality relation yields no information
about particular choices x if it holds for all elements of Z

c
n × (Z∗

n)
ℓ−c. Thus, denoting the ideal of

L
(ℓ,c)
n containing all Laurent polynomials that are effectively zero over Z

c
n × (Z∗

n)
ℓ−c by

In = {P ∈ L(ℓ,c)
n | ∀x ∈ Z

c
n × (Z∗

n)
ℓ−c : P (x) ≡ 0 mod n}

an equality yields no information at all if (Li,j − Li,j′) ∈ In. Otherwise, a non-trivial collision
occurred and A learns that x is a modular root of Li,j − Li,j′ .

By Definition 7 we capture the chance that information about the secret choices x is leaked in
the course of a computation due to non-trivial equalities between group elements. For this purpose
we can make use of (Ω, q)-SLP-generators since they generate all possible sequences of polynomials
that may occur as internal state of the generic oracle OΩ during an interaction with an q-GGA.

Definition 7 (Leak-resistance). A DL-/DH-type problem P is called (Ω, q, ν)-leak-resistant if
for all (Ω, q)-SLP-generators S and κ ∈ N we have

Pr[∃i and P, P ′ ∈ Li s.t. (P − P ′)(x) ≡ 0 mod n ∧ P − P ′ /∈ In :

(n, I, Q)
R

← SIGen
(n,I,Q)
P (κ);

(L1, . . . , Lk)
R

← S(n, κ, I, Q);

x
R

← Z
c
n × (Z∗

n)
ℓ−c

] ≤ ν(κ)
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Now assume that no information about x can be gained. In this case, we can restrict to consider
algorithms applying trivial solution strategies to solve instances of a problem. That means, we can
restrict our considerations to the subclass of generic algorithms that, when fixing all inputs except
for the choice of x, always apply the same fixed sequence of operations from Ω and provide the
same output in order to solve an arbitrary problem instance. Thus, the algorithm actually acts as
a straight-line program in this case. More precisely, assuming the absence of non-trivial collisions,
we can show that a generic algorithm is essentially equivalent to an SLP-generator.

Definitions 8 and 10 formalize the chance of solving a DL-type or DH-type problem in such a
trivial way. For DL-type problems this essentially means the chance to blindly guess Q(x).

Definition 8 (SLP-intractability of DL-Type Problems). A DL-type problem P is called
(Ω, q, ν)-SLP-intractable if for all κ ∈ N we have

Pr[Q(x) ≡ a mod n :

(n, I, Q)
R

← SIGen
(n,I,Q)
P (κ);

(a, L1, . . . , Lk)
R

← S(κ, n, I, Q);

x
R

← Z
c
n × (Z∗

n)
ℓ−c

] ≤ ν(κ)

Definition 9 formulates the seemingly stronger notion of ν-non-triviality that is independent of Ω
and q-SLP-generators. Clearly, a DL-type problem P that is ν-non-trivial for some function ν is
also (Ω, q, ν)-SLP-intractable for any Ω and any q. While Definition 8 reflects what is actually
needed to prove GGA-intractability, our practical conditions presented in Section 5 ensures that a
DL-type problem is ν-non-trivial where ν is a negligible function.

Definition 9 (Non-Triviality of DL-Type Problems). A DL-type problem P is called ν-non-
trivial if for all (computationally unbounded) algorithms Guess that on input (κ, n, I, Q) output
some element a ∈ Zn and for all κ ∈ N we have

Pr[Q(x) ≡ a mod n :

(n, I, Q)
R

← SIGen
(n,I,Q)
P (κ);

a
R

← Guess(κ, n, I, Q);

x
R

← Z
c
n × (Z∗

n)
ℓ−c

] ≤ ν(κ)

For DH-type problems, we consider the probability to obtain Q(x) when evaluating the output

P of an q-SLP-generator with x
R
← Z

c
n× (Z∗

n)
ℓ−c. Remember that the SLP-generator cannot simply

output Q that is given as input to him, but the output P must be generatable from I by only using
(at most q) operations from Ω.

Definition 10 (SLP-intractability of DH-type Problems). A DH-type problem P is called
(Ω, q, ν)-SLP-intractable if for all (Ω, q)-SLP-generators S and all κ ∈ N we have

Pr[(P −Q)(x) ≡ 0 mod n :

(n, I, Q)
R

← SIGen
(n,I,Q)
P (κ);

(P,L1, . . . , Lk)
R

← S(κ, n, I, Q);

x
R

← Z
c
n × (Z∗

n)
ℓ−c

] ≤ ν(κ)

10



Finally, Theorem 1 relates GGA-intractability to leak-resistance and SLP-intractability.

Theorem 1 (GGA-intractability of DL-/DH-type Problems). If a DL-type problem is
(Ω, q, ν1)-leak-resistant and (Ω, q, ν2)-SLP-intractable then it is (Ω, q, ν1 + ν2)-GGA-intractable.
If a DH-type problem is (Ω, q, ν1)-leak-resistant and (Ω, q, ν2)-SLP-intractable then it is
(Ω, q, 1

2κ−(q(κ)+z(κ)) + ν1 + ν2)-GGA-intractable.

Proof. We restrict to the more complex case of DH-type problems. The proof for DL-type problems
works analogously.

In the following we assume a DH-type problem P according to Definition 1 and an operation
set Ω according to Definition 2 are given. Considering a fixed operation set Ω, we denote the
corresponding generic oracle simply by O = OΩ. Furthermore, we consider an arbitrary but fixed
κ ∈ N and output

(n, I, Q)
R
← SIGen

(n,I,Q)
P (κ)

of the problem instance generator.
Let A be an arbitrary q-GGA. Let S denote the event that A on input

(κ, n, I, Q, (σ1(P (x))|P ∈ I1), . . . , (σk(P (x))|P ∈ Ik)),

where x
R
← Z

c
n×(Z∗

n)
ℓ−c and σ

R
← Σk

n, outputs an encoding s = σ1(a) such thatQ(x)− a ≡ 0 mod n.
We can split the success event S into the event S′ that A wins with an encoding that occurred
during computation, i.e., s ∈ E1, and the event S′′ that A wins with a new encoding, i.e., s 6∈ E1.
Since a new encoding is associated with an uniformly random element from Zn \ L1 we have

Pr[S′′] ≤
1

n− (q(κ) + z(κ))
≤

1

2κ − (q(κ) + z(κ))
.

In the remainder of this proof we are concerned with bounding the probability of the event S′.
From now on we assume that A always outputs an encoding contained in E1.

Introducing a Simulation Game. Starting from the real game we first introduce an intermediate
game before we specify the actual simulation game.

An Equivalent Oracle. Let us define an equivalent oracle, denoted by O′, by doing a slight
change to the original oracle O: instead of choosing the encoding functions σ up front, we define
them just-in-time, i.e., we apply the well-known lazy sampling technique. More precisely, each time
a new polynomial P should be appended to a list Li the following computation is triggered to
determine the encoding of P (x): O′ checks if there exists any index 1 ≤ j ≤ |Li| such that

(P − Li,j)(x) ≡ 0 mod n .

If this equation holds for some j, then the respective encoding Ei,j is appended to Ei again.

Otherwise, the oracle chooses a new encoding s
R
← Sn\Ei and appends it to Ei. It is easy to see

that O′ and O are equivalent, i.e., their behavior is perfectly indistinguishable.
The definition of success in this intermediate game is adapted accordingly: Let S∗ denote the

event that A outputs an encoding E1,j such that

(Q− L1,j)(x) ≡ 0 mod n .

Certainly, we have Pr[S∗] = Pr[S′].

Remark 1. Note that the output encoding can clearly occur several times in E1 and thus is associ-
ated with several polynomials in L1. However, by the definition of the element encoding procedure,
all of these polynomials evaluate to the same value. Hence, for the definition of success it does not
matter which of these polynomials is considered.

11



The Simulation Oracle. Now we replace O′ by a simulation oracle Osim. The simulation oracle
behaves exactly like O′ except for the encodings of elements in order to be independent of x: Each
time a new polynomial P should be appended to some list Li, Osim checks whether there exists an
index 1 ≤ j ≤ |Li| such that

P − Li,j ∈ In (1)

In other words, it checks if Li contains a polynomial Li,j that evaluates to the same value as P for
all possible choices and thus describes the same function as P . If this is the case, the encoding Ei,j
is appended to Ei again, where j is the smallest index for which Equation (1) is satisfied. Observe
that if this equation is satisfied for two different indices j and j′ then we also have Ei,j = Ei,j′ .
Thus, actually it does not matter which of the corresponding encodings is taken if more than
one polynomial matches. If Equation (1) cannot be satisfied, the Osim chooses a new encoding

s
R
← Sn\Ei and appends it to Ei.

In this way, the determined encoding and thus the behavior of Osim is independent of the
particular secret choices x given as input to it. Obviously, the applied modification also leads to a
behavior differing from that of O′ in the case that there exists an index i and P, P ′ ∈ Li such that

(P − P ′)(x) ≡ 0 mod n ∧ P − P ′ 6∈ In .

We denote this simulation failure event by F. Note that if and only if F occurs, the simulation oracle
computes different encodings for the same group element. The success event in the simulation game
is defined as before. We denote this event by Ssim.

Let us consider the oracles O′ and Osim as deterministic Turing machines and assume both
receive the same inputs and random strings. Furthermore, consider the algorithm A as a deter-
ministic Turing machine with identical input and random tape when interacting with both oracles.
Assuming that F does not occur, the algorithm receives the same sequence of encodings and thus
issues the same sequence of queries (leading to the same lists of Laurent polynomials maintained by
O′ and Osim) in both games. Furthermore, it outputs the same encoding in the end of both games.
Hence, we have the following relation between the considered events:

S∗ ∧ ¬F ⇐⇒ Ssim ∧ ¬F

That means, both games proceed identically unless a simulation failure occurs. Using this relation
we immediately obtain the desired upper bound on the success probability in the original game in
terms of the success probability and the failure probability in the simulation game:

Pr[S] = Pr[S′′] + Pr[S′]

≤
1

2κ − (q(κ) + z(κ))
+ Pr[S′]

=
1

2κ − (q(κ) + z(κ))
+ Pr[S∗]

≤
1

2κ − (q(κ) + z(κ))
+ Pr[Ssim] + Pr[F]

The last inequality follows from applying the Difference Lemma [Sho06].

Bounding Probabilities in the Simulation Game. Remember that the behavior ofOsim is independent
of the secret x. That means, assuming fixed random coins for Osim and A, the simulation game

proceeds identically for all possible choices of x
R
← Z

c
n × (Z∗

n)
ℓ−c. So the lists of polynomials

L1, . . . , Lk maintained by Osim stay the same and A outputs the same encoding E1,j for any x. In
other words, A computes a straight-line program in this case. The choice of A’s random tape can
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therefore be thought of as selecting an SLP from a set of alternatives. Hence, assuming arbitrary
but fixed random coins only for Osim, A is equivalent to some (Ω, q)-SLP-generator. This is the key
observation for bounding the success and failure probability in the simulation game as done in the
following.

Provided that the considered DH-type problem P is (Ω, q, ν1)-leak-resistant there is a common
function ν1 bounding the probability of any (Ω, q)-SLP-generator in computing two polynomials
P, P ′ ∈ Li (for arbitrary 1 ≤ i ≤ k) such that

(P − P ′)(x) ≡ 0 mod n ∧ P − P ′ 6∈ In .

From this it follows immediately that ν1 also upper bounds the probability of a simulation failure
during an interaction of the q-GGA A and the simulation oracle Ssim, i.e.,

Pr[F] ≤ ν1(κ) .

Similarly, assume that P is (Ω, q, ν2)-SLP-intractable and let (P,L1, . . . , Lk) be the output of
an arbitrary (Ω, q)-SLP-generator. Then we know that the probability of P ∈ L1 in colliding with
the challenge polynomial, i.e.,

(Q− P )(x) ≡ 0 mod n ,

for x
R
← Z

c
n × (Z∗

n)
ℓ−c is upper bounded by ν2. Thus, it follows that also the probability of A in

finding an encoding E1,j such that L1,j collides with Q is bounded by this function, i.e.,

Pr[Ssim] ≤ ν2(κ) .

This concludes the proof of our theorem. ⊓⊔

5 Practical Conditions

In this section, we present easily checkable conditions ensuring that a DH-type (DL-type) problem is
(Ω, ν1, q)-leak-resistant and (Ω, ν2, q)-SLP-intractable (ν2-SLP-intractable) with q being polynomial
and ν1 and ν2 being negligible functions in the security parameter. Reviewing the corresponding
definitions, we see that the probabilities ν1 and ν2 are closely related to the probability of randomly
picking roots of certain multivariate Laurent polynomials. Section 5.1 shows that the probability of

finding such a root is small for non-zero polynomials in L
(ℓ,c)
n having low total absolute degrees. This

observation is the main line along which we develop our set of practical conditions. More precisely,
in Section 5.2 we deduce upper bounds on the the degree of polynomials that can be generated
from the input polynomials applying q operations from Ω. Based on these bounds, we finally derive
the conditions for leak-resistance in Section 5.3 and for SLP-intractability in Section 5.4 and 5.5.

5.1 Randomly Picking Roots of Laurent Polynomials

The following auxiliary lemmas provide the desired link between the degrees of a multivariate
Laurent polynomial and the probability of randomly picking one of its roots.

We start with Lemma 1 being an extended version of Lemma 1 in [Sho97a]. It upper bounds
the probability of randomly picking a root over Z

c
n× (Z∗

n)
ℓ−c of a non-zero multivariate polynomial

in terms of its degree.

Lemma 1. Let p ∈ P be a prime, e ∈ N, and n = pe. Let P ∈ Zn[X1, . . . , Xℓ] be a non-zero
polynomial of total degree d. Then for random x ∈U Z

c
n × (Z∗

n)
ℓ−c, where 0 ≤ c ≤ ℓ, we have

Pr[P (x) ≡ 0 mod n] ≤
d

p− 1
.
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Proof. We can write the polynomial P as P = ps · P ′ for some integer s ≥ 0 and polynomial
P ′ ∈ Zpe [X1, . . . , Xℓ] such that P ′ 6≡ 0 (mod p) and deg(P ′) = d. Since we assume that P 6≡ 0
(mod pe) it follows that ps < pe. Let (x1, . . . , xℓ) ∈ Z

ℓ
pe be a root of the polynomial P . Then we

have pe|P (x1, . . . , xℓ) ⇔ pe|psP ′(x1, . . . , xℓ). Since ps < pe it follows that pe−s|P ′(x1, . . . , xℓ) and
thus P ′(x1, . . . , xℓ) ≡ 0 (mod p). That means every root (x1, . . . , xℓ) ∈ Z

ℓ
pe of P over Zpe is also a

root of P ′ over the prime field Zp. Thus, if (x1, . . . , xℓ) ∈ Z
c
n × (Z∗

n)
ℓ−c is a root of P modulo pe

then (x′1, . . . , x
′
ℓ) = (x1 mod p, . . . , xℓ mod p) ∈ Z

c
n × (Z∗

n)
ℓ−c is a root of P ′ modulo p. A simple

consequence of a lemma by Schwartz (Lemma 1 in [Sch80]) tells us that P ′ has at most

∣

∣

∣
Z
c
n × (Z∗

n)
ℓ−c

∣

∣

∣

d

|Z∗
p|

= dpc(p− 1)ℓ−c−1

roots in Z
c
n × (Z∗

n)
ℓ−c modulo p. Thus, P has at most

dpc(p− 1)ℓ−c−1p(e−1)ℓ (2)

roots in Z
c
n × (Z∗

n)
ℓ−c modulo pe. So if (x1, . . . , xℓ) is chosen uniformly from Z

c
n × (Z∗

n)
ℓ−c we get

Pr[P (x1, . . . , xℓ) ≡ 0 mod pe] ≤
dpc(p− 1)ℓ−c−1p(e−1)ℓ

pec(pe−1(p− 1))ℓ−c

=
dpcp(e−1)ℓ

peℓ−ec−ℓ+c+ec(p− 1)

=
dp(e−1)ℓ+c

p(e−1)ℓ+c(p− 1)

=
d

p− 1

⊓⊔

Finally, Lemma 2 provides an upper bound on the probability of picking a root of a Laurent
polynomials of degree d. We make use of Lemma 1 to prove this result.

Lemma 2. Let p ∈ P be a prime, e ∈ N, and n = pe. Let P ∈ L
(ℓ,c)
n , where 0 ≤ c ≤ ℓ, be a non-zero

Laurent polynomial of total absolute degree d. Then for random x ∈U Z
c
n × (Z∗

n)
ℓ−c we have

Pr[P (x) ≡ 0 mod n] ≤
(ℓ− c+ 1)d

p− 1
.

Proof. Actually, we like to upper bound the probability of randomly picking a root of P by applying
Lemma 1. However, P is a Laurent polynomial and may exhibit negative exponents in some variables
preventing us from using this lemma directly. Therefore, let us consider the polynomial

R · P, where R :=
∏

c<j≤ℓ

Xd
j .

Since we have R(x) ∈ Z
∗
n, i.e., it is no zero-divisor, for all x ∈ Z

c
n× (Z∗

n)
ℓ−c, we know that R ·P has

exactly the same roots as P (and is in particular a non-zero polynomial). Thus, we can determine
the probability for randomly picking a root of R · P instead.

Now observe that in the product polynomialR·P all variables only occur with positive exponents
and so it can be seen as a “regular” polynomial over Zn: by multiplying with R, a term of the form
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X±d′

j , where d′ ≤ d, occurring in P is reduced to the term Xd±d′

j . It is easy to see that the total
degree of the product polynomial is upper bounded by

d+ (ℓ− c)d = (ℓ− c+ 1)d .

Since R · P is not the zero polynomial we can apply Lemma 1 yielding

Pr[P (x) ≡ 0 mod n] = Pr[(R · P )(x) ≡ 0 mod n]

≤
(ℓ− c+ 1)d

p− 1
.

⊓⊔

5.2 Representing Operation Sets as Graphs: Bounding Polynomial Degrees

We aim at formalizing the class of operation sets that only allow for a small raise of the degrees
of polynomials that can be generated by any (Ω, q)-SLP-generator. Remember, these are the poly-
nomials that can be generated from the input polynomials by applying operations from Ω at most
q(κ) times. Moreover, for this kind of operation sets concrete upper bounds on the polynomial
degrees should be derived.

To this end, we introduce a special type of graph, called operation set graph (Definition 11),
modelling an operation set and reflecting the corresponding raise of degrees.

Definition 11 (Operation Set Graph). An operation set graph G = (V,E) is a directed multi-
edge multi-vertex graph. There are two types of vertices, namely group and product vertices. The
vertex set V contains at least one group vertex and zero or more product vertices. Each group vertex
in V is labeled with an unique integer. All product vertices are labeled by

∏

. E contains zero or
more directed edges, where an edge may connect two group vertices or a group and a product vertex
in both directions.

Let Ω be an operation set involving k groups. Then the operation set graph GΩ = (V,E)
corresponding to Ω is constructed as follows: V is initialized with k group vertices representing
the k different groups, where these vertices are labeled with the numbers that are used in the
specification of Ω, say the numbers 1 to k. For each operation (◦, s1, . . . , su, d, F ) ∈ Ω we add
additional product vertices to V and edges to E. Let the polynomial F describing the operation
◦ be represented as sum of non-zero monomials Mi, i.e., F =

∑

iMi. Then for each Mi we do the
following:

1. We add a product vertex and an edge from this vertex to the group vertex with label d.
2. For each variable Yj (1 ≤ j ≤ u) occurring with non-zero exponent ℓ in Mi we add ℓ edges from

the group vertex labeled with the integer sj to the product vertex just added before.

In order to embed the notion of increasing polynomial degrees by applying operations into the
graph model, we introduce the following graph terminology: We associate each group vertex in a
graph with a number, called weight. The weight may change by doing walks through the graph.
Taking a walk through the graph means to take an arbitrary path that contains exactly two group
vertices (that are not necessarily different) where one of these vertices is the start point and the
other is the end point of the path. Note that such a path may contain at most one product vertex.2

A walk modifies the weight of the end vertex in the following way:

2 For the graphs obtained by applying the construction rules to an operation set it holds that each such path always
contains a product vertex. However, we need this relaxed definition in the subsequent proof.
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– If the path contains only the two group vertices, the new weight is set to be the maximum of
the weights of the start and end vertex.

– If the path contains a product vertex, the new weight is set to be the maximum of the old

weight and
u
∑

j=1
wj , where u is the indegree and wj is the weight of the j-th predecessor of this

product vertex.

We define a free walk to be a walk on a path that only consists of the two group vertices and no
other vertex. A non-free walk is a walk on a path containing a product vertex. It is important to
observe that

– a non-free walk can actually increase the maximum vertex weight of a graph in contrast to a
free-walk.

– after each non-free walk the weight of any vertex can be changed at most finitely many times
by doing free walks.

Hence, the following definition of the q-weight makes sense: Let q be a fixed positive number. We
consider finite sequences of walks through a graph, where each sequence consists of exactly q non-
free walks and an arbitrary finite number of free walks. We define the q-weight of a (group) vertex
to be the maximum weight of this vertex over all such sequences. Similarly, we define the q-weight
of an operation set graph to be the maximum of the q-weights of all its vertices. Considering the
above observations, we see that the q-weight of any vertex and thus the q-weight of the graph is
well-defined and a finite number.

Obviously, the q-weights of the vertices 1, . . . , k of an operation set graph GΩ can be used to
upper bound the degrees of the output polynomials L1, . . . , Lk of any (Ω, q)-SLP-generator S when
setting the initial vertex weights appropriately. This is captured more formaly in Lemma 3.

Lemma 3. Let I = (I1, . . . , Ik), where Ii ⊂ L
(ℓ,c)
n , and Q ∈ L

(ℓ,c)
n be given. Let Ω be an operation

set involving k groups and GΩ be the corresponding operation set graph, where we define the initial
weight of any group vertex i to be the maximal degree of the polynomials in Ii. Let S be a (Ω, q)-
SLP-generator. Then for any output (L1, . . . , Lk) ∈ [S(κ, n, I,Q)], where κ is some fixed positive
number, the degrees of the polynomials in Li are upper bounded by the q(κ)-weight of the group
vertex i.

Remark 2. Assume we set the initial weights of any group vertex i to be the the maximal positive
(respectively negative) degree, i.e., the maximal sum of the positive (respectively negative) expo-
nents in any monomial, of the input polynomials Ii. Then the q(κ)-weight of the group vertex i can
be used to bound the positive (and negative) degrees of any Laurent polynomial in Li. Similarly,
it could be used the to bound the positive or negative degree of a single variable Xj occurring in
any Laurent polynomial in Li. Thus, the following results on the q-weight are also helpful to bound
these degrees, which is especially interesting with regard to Condition 5 in Section 5.5.

With regard to the definition of the q-weight, we can immediately simplify the structure of
operation set graphs: Clearly, we do not change the q-weight of a graph if we remove self-loops and
product vertices with indegree 1, where in the latter case the two edges entering and leaving the
vertex are replaced by a single edge going from the predecessor vertex to the successor vertex. In
the following we only consider operation set graphs reduced in this way and thus being compliant
to Definition 12.

Definition 12 (Reduced Operation Set Graph). A reduced operation set graph is an operation
set graph containing any product vertex with indegree one or self-loops.
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1

2

3

Fig. 1. GΩ for Ω = {(◦1, 1, 1, 1, Y1 + Y2), (◦2, 2, 2, 2, Y1 + Y2), (◦3, 3, 3, 3, Y1 + Y2), (inv1, 1, 1,−Y1), (inv2, 2, 2,−Y1),
(inv3, 3, 3,−Y1), (ψ, 2, 3, Y1), (e, 2, 3, 1, Y1 · Y2)} of w-BDHIP. Strongly connected components are marked by dashed borders.

As an illustrating example, consider the reduced operation set graph depicted in Figure 1, which
belongs to the operation set for the w-BDHI problem (cf. Example 4).

The following condition characterizes graphs that do not allow for a super-polynomial grow of
vertex weights. Intuitively, it prohibits any kind of repeated doubling.

Condition 1 Let GΩ be a reduced operation set graph. Then for every strongly connected compo-
nent3 C of GΩ it holds that every product vertex contained in C has at most one incoming edge from
a vertex that is also contained in C.

Furthermore, for the q-weight of operation set graphs satisfying Condition 1, it is possible to derive
non-trivial upper bounds as given in Theorem 2.

Theorem 2. Let GΩ be a reduced operation set graph satisfying Condition 1. Let n1 denote the
number of product vertices contained in GΩ, umax the maximal indegree and dmax the maximal
initial weight of these product vertices, and n2 the number of SCCs containing at least one product
and one group vertex. Then the q-weight of GΩ is upper bounded by

D(n1, n2, umax, dmax, q) =















dmax(umax)
n1 , n2 = 0

dmaxe
n1 , n2 > 0 and q < e

umax
n1

dmax

(

umaxq
n1

)n1

, n2 > 0 and q ≥ e

umax
n1

,

where e denotes Euler’s number.

Example 5. Condition 1 is satisfied for GΩ depicted in Figure 1 since the strongly connected com-
ponent containing the product vertex contains no other vertices. We have n1 = 1, n2 = 0, and
umax = 2. When setting the initial weight of any group vertex in GΩ to some value w, then Theo-
rem 2 yields that for any q the q-weight of the graph is bounded by 2w.

Note that the factor by which the (maximal) initial weight of the vertices can be increased
only depends on the particular operation set graph. Hence, with regard to Lemma 3, once we have
shown that an operation set only allows to increase degrees by a low (i.e., polynomial) factor, this
certainly holds for all problems involving this operation set and does not need to be reproven (as
it is currently done in the literature).

Proof. The operation set graph GΩ can have manifold forms. Table 1 summarizes which connections
between vertices are possible in GΩ. In order to determine an upper bound on the q-weight of GΩ
we apply a sequence of slight transformations to the graph that simplify its structure and can
only increase its q-weight. Finally, we will end up with a graph for the case n2 = 0 and n2 > 0,
respectively, exhibiting a very simple structure that allows us to determine the desired bound.

3 A strongly connected component of a directed graph GΩ = (V, E) is a maximal set of vertices U ⊂ V s.t. every
two vertices in U are reachable from each other. The strongly connected components of a graph can be computed
in time O(V + E) (e.g., see [CLR90]).
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Table 1. Possible connections between different types of vertices in GΩ

Vertex Type Indegree Possible Predecessors Outdegree Possible Successors

group 0 . . . ∗ group, product 0 . . . ∗ group, product
product 2 . . . ∗ group 1 group

i

Fig. 2. Structure of an SCC containing more than one vertex after first modification

The following transformations simplify the structure of the strongly connected components of
the graph so that we end up with only a few different forms. In the course of these modifications
we sometimes add new group vertices to the graph receiving edges from other group vertices. This
is the reason why the notion of free-walks has been introduced in Section 5.2. When adding such
a vertex, we always assume that it is labeled with a new unique integer and initially receives the
weight dmax.

Modification 1. First of all, we set the initial weight of each group vertex to dmax. Clearly,
it will not change the q-weight of the graph if we replace directly connected group vertices within
each SCC by a joined single vertex. Incoming and outgoing edges of the individual group vertices
are simply connected to the joined vertex. Finally, we remove all self-loops in the graph, i.e., edges
that have the same vertex as start and end point.

Now, the graph may contain three different types of SCCs. We have SCCs consisting of a single
group vertex or a single product vertex. Moreover, there may exist SCCs that contain more than one
vertex. Such SCCs comply with the structure depicted in Figure 2. The cloud shown in this figure
is composed of one or more product vertices and zero or more group vertices that are connected as
follows:

– each group vertex is connected to one or more product vertices also contained in the SCC.
– each group vertex has zero or more incoming edges from outside the SCC and zero or more

outgoing edges to other SCCs (omitted in Figure 2).
– each product vertex has exactly one incoming edge from exactly one group vertex also contained

in the SCC and it has exactly one outgoing edge to a group vertex also contained in the SCC.
– each product vertex has at least one incoming edge from outside the SCC (omitted in Figure 2).

Note that there might be more than one path through the cloud since group vertices might have
edges to more than one product vertex inside the cloud.

Modification 2. The following modification only needs to be applied if n2 > 0. We reduce
all SCCs containing more than two vertices to SCCs containing exactly two vertices. Certainly, it
can only increase the q-weight of a graph if we connect each group vertex in such an SCC with
each other by direct edges in both directions. Thus, we can join all group vertices within the same
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Fig. 3. Transformation of a group vertex with connections to more than one product vertex

SCC as we did in the course of the first modification. In this way, we get one group vertex that is
connected to more than one product vertex in the same SCC. This situation is depicted at the left
hand side of Figure 3.

Assume that a joined group vertex has outgoing edges to m product vertices. The m product
vertices have u1−1, . . . , um−1 incoming edges from outside the SCC. These edges stem from group
vertices. For the sake of simplicity, we omitted additional incoming and outgoing edges of the joined
group vertex shown in Figure 3. We transform such a structure as follows: we remove all m product
vertices and connect their incoming edges to an extra group vertex added to the graph (outside
the SCC). Furthermore, we add a product vertex to the SCC and connect the newly added group
vertex via umax − 1 edges to this product vertex. Finally, we put an edge from the joined group
vertex to the product vertex and another edge in the opposite direction. Hence, we receive an SCC
containing exactly one group and one product vertex that form a cycle as shown on the right hand
side of Figure 3. We apply the transformation just described also to SCCs containing exactly one
group and one product vertex (i.e., m = 1) if the product vertex has an indegree smaller than umax.

To summarize, our graph can now be composed of the following types of strongly connected
components: SCCs consisting of a single group vertex (Type 1), or a single product vertex (Type
2) or a group and a product vertex (Type 3).

Modification 3. We apply the following modification provided that n2 > 0: The structure of
the graph is further simplified by replacing any SCC of Type 2 by an SCC of Type 3 as shown
in Figure 4. The product vertex of the SCC of Type 3 (on the right hand side of the figure) has
umax − 1 incoming edges. The group vertex in this SCC has been newly added to the graph. Note
that we cannot simply use the group vertex j for this purpose since this may introduce additional
cycles to the graph. Moreover, observe that the group vertices i1, . . . , iu that were connected to the
SCC of Type 2 are now connected to another new group vertex added outside the SCC. This new
vertex has umax − 1 edges to the product vertex in the SCC.

Modification 4. Let us consider each SCC of the graph as a single vertex. The resulting graph
is a directed acyclic graph (DAG). We perform a topological sort on this DAG, i.e., we arrange the
vertices of the DAG in different layers such that Layer 0 contains only the sources of the DAG,
Layer 1 only the vertices that receive edges from vertices in Layer 0, Layer 2 only the vertices that
receive edges from Layer 1 or Layer 0 and so on. In general, vertices in Layer j can only receive
edges from vertices contained in Layers i < j.

Now observe that paths through the DAG starting at the same source may split at some vertex
and join again at another vertex. To analyze the q-weight of the graph we like to prevent this. We
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Fig. 4. Replace SCC consisting of a single product vertex

further simplify the DAG such that if a path branches at some vertex the splitted paths never join
again.

To this end, we proceed as follows: We first describe the modifications for the case n2 > 0. We
start at Layer 1 and consider all SCCs having incoming edges from multiple different sources at
Layer 0. If this is the case for an SCC of Type 1, we can simply keep exactly one edge from one
arbitrary source and remove all other edges. Note that we do not change the q-weight of the graph
in this way since all sources are group vertices and are associated with the same initial weight dmax.
Now assume that an SCC of Type 3 has this property. Remember that the product vertex of such
an SCC has umax − 1 ≥ 1 incoming edges from vertices of Layer 0 and the group vertex may have
m ≥ 0 incoming edges from outside the SCC. In this case we remove all incoming edges, choose an
arbitrary source at Layer 0 and connect this source via umax − 1 edges to the product vertex and
via one edge to the group vertex of this SCC.

After that, we consider the SCCs in Layer 2. Such an SCC may have incoming edges from
different vertices of Layer 0 and Layer 1. We have to choose the predecessor vertex providing the
maximal increase of weight among all predecessors. After having selected such a predecessor, we
remove the edges from all other predecessors and connect the chosen predecessor to the SCC of
Layer 2 in the way described before. The right predecessor is chosen as follows: If the SCC of Layer
2 receives only edges from Layer 0, we can pick an arbitrary predecessor of this layer. If it has one
or more edges from Layer 1, then we only need to consider the predecessors from Layer 1. If one or
more of them are SCCs of Type 3, we pick one of these as source. If all of them are SCCs of Type
1, then we choose an arbitrary of these as source.

In general, we handle one layer after another in this way. If we are at a certain layer and find an
SCC receiving edges from multiple predecessors, we do the following to select a single predecessor:
we count the number of SCCs of Type 3 along each path from a source of the DAG in Layer 0 to
this SCC. and choose the predecessor being part of the path that exhibits the maximal number. (If
more than one path has a maximal number of SCCs of Type 3, we can choose an arbitrary of the
corresponding predecessors.)

In the case n2 = 0, we apply the same transformations where the predecessor is selected ac-
cording to the maximal number of SCCs of Type 2.

Analyzing the q-weight. Now, it is clear that the q-weight of the graph will be the weight
at a vertex belonging to the path from a source to a sink of the DAG that contains the maximal
number of SCCs of Type 2 if n2 = 0 or of Type 3 if n2 > 0. Moreover, it is generated by doing
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Fig. 6. Paths containing the q-weight for the case n2 > 0

walks only along this path. This is because splitted paths will never join again and so in order to
obtain a maximal vertex weight it is not “worthwhile” to do walks along different paths.

Let us first consider the case n2 = 0. The structure such a path is shown in Figure 5. For the
sake of simplicity, we omitted group vertices that may exist between the depicted group vertices.
Note that the presence of such additional group vertices does not affect the q-weight of a graph. It
is easy to see that the best strategy in order to achieve a maximal vertex weight by doing a number
of q walks along the shown path is to first apply a walk from the source of the path to the second
group vertex via the product vertex, then to apply a walk from this group vertex to the third group
vertex via the second product vertext, and so on. Since the path may contain at most n1 product
vertices each of indegree umax, the q-weight is upper bounded by

dmaxu
q
max

in the special case q ≤ n1 and in general by

dmaxu
n1
max .

Now, let us consider the case n2 > 0. Figure 5 shows the path structure for this case, where
additional group vertices between the SCCs of Type 3 are omitted again. In order to achieve a
maximal vertex weight, we first apply a certain number a1 of walks from the source to the group

21



vertex of the first SCC, then a certain number a2 of walks from the group vertex of the second SCC
to the group vertex of third SCC and so on.

We can easily analyze the effects of this strategy: Doing a1 > 0 walks in a row from the source
to the group vertex of the first SCC results in a weight in the latter group vertex of at most

dmax + a1(umax − 1)dmax ≤ a1umaxdmax.

Then doing a2 > 0 walks in a row from the group vertex of the second SCC to the group vertex of
the third SCC results in a weight in the latter group vertex of at most

a1umaxdmax + a2(umax − 1)(a1umaxdmax) ≤ a2umax(a1umaxdmax)

= a1a2dmaxu
2
max

In general, when applying this strategy and doing a1 > 0 walks to the 1st SCC, a2 > 0 walks
to the 2nd SCC, ..., and finally at > 0 walks from the group vertex of the (t − 1)-th SCC to the
group vertex of the t-th SCC, this results in a weight of at most

dmaxu
t
max

t
∏

i=1

ai . (3)

Remark 3. The product in Equation (3) can immediately be upper bounded by observing that each
ai is clearly smaller or equal to q. This leads to the rough upper bound

dmaxu
n1
maxq

n1 .

However, it is possible to derive a slightly tighter bound than this which is done in the following.

Let m ≤ n1 be the number of SCCs along this path and q be the total number of walks we
perform on this path. We like to upper bound the product (3) under the following constraints on
the occurring parameters: dmax ≥ 1, umax ≥ 2,

∑t
i=1 ai = q, and t ≤ min(q,m). First, we can show

that the t-partition of q in summands ai leads to a maximal product of summands if all ai are
equal. More precisely, for all t ≥ 1 and all a1, . . . , at > 0 with

∑t
i=1 ai = q we have

t
∏

i=1

ai ≤
(q

t

)t

.

The above inequality can be shown using induction on t: For t = 1 the statement is obviously true.
For t > 1 we have

t
∏

i=1

ai = at

t−1
∏

i=1

ai ≤ at

(

q − at
t− 1

)t−1

≤
q

t

(

q − q
t

t− 1

)t−1

=
(q

t

)t

(4)

The 2nd inequality of Equation (4) follows from the fact that the function f(x) = x
(

q−x
t−1

)t−1

restricted to the domain (0, q) reaches its absolute maximum for x = q
t
.

Hence, if we have already decided to involve a certain fixed number t of consecutive SCCs of
the path in our walks, we obtain a maximal weight by spending (approximately) the same number
of walks on each SCC since

dmaxu
t
max

t
∏

i=1

ai ≤ dmax

(umaxq

t

)t

.

It remains to determine the “best” choice for t.
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Considering the function f(x) =
(

umaxq
x

)x
in the domain (0,∞), yields that f reaches its absolute

maximum f(x) = e
umaxq

e at x = umaxq
e

, where e denotes Euler’s number. Furthermore, f has no
other local extremum. So it is monotonically increasing in (0, uq

e
] and decreasing in (uq

e
,∞). From

this observation it follows immediately that for all t ≤ n1 we have

dmax

(umaxq

t

)t

≤

{

dmaxe
n1 , q < e

umax
n1

dmax

(

umaxq
n1

)n1

, q ≥ e

umax
n1

⊓⊔

Based on the ideas underlying the reductions in the previous proof, it is possible to devise a
graph algorithm (Algorithm 1) that finds individual bounds on the q-weights of the group vertices
which are often tighter than the generic bound from Theorem 2. The principle of the algorithm is
simple. We consider the directed acyclic graph that is composed of the SCCs of the operation set
graph. We move from the sources to the sinks of the DAG and recursively bound the q-weights of
the vertices within each SCC. More precisely, we label each SCC with a q-weight (bound) based
on the weight of the vertices inside the SCC and the SCCs having direct edges to the considered
SCC. As a starting point the algorithm considers the SCCs of indegree zero that due to Condition 1
may only be composed of group vertices. Then all SCCs receiving only edges from these sources
are labeled, and so on. In the end when all SCCs are labeled, the q-weight bound of a group vertex
is simply set to be the q-weight bound of the (unique) SCC it is contained in.

Algorithm 1 Computation of the q-weigths of group vertices.
Input: q, reduced operation set graph G satisfying Condition 1, initial weights for the k group vertices in G

Output: q-weights w1, . . . , wk of vertices 1, . . . , k

1: Perform a topological sort on the DAG of G, i.e., arrange the SCCs of G in layers 0 to ℓ such that SCCs in layer
j can only receive edges from SCCs contained in layers i < j.

2: for each layer j = 0 : ℓ do

3: for each SCC C in layer j do

4: if C consists only of group vertices then

5: set weight of C to maximum of weights of vertices contained in C and weights of SCCs in layers i < j

having edges to C
6: end if

7: if C consists only of a single product vertex then

8: set weight of C to sum of weights of SCCs in layers i < j having edges to C
9: end if

10: if C consists of at least one product vertex and one group vertex then

11: let w be the maximum of the weights of group vertices contained in C and the weights of SCCs in layers
i < j having edges to these group vertices

12: for each product vertex Π in C, compute sum of weights of SCCs in layers i < j having edges to Π, and
let v be the maximum of these sums

13: set weight of C to w + qv

14: end if

15: end for

16: end for

17: for i = 1 : k do

18: set wi to weight of SCC containing the group vertex i

19: end for

5.3 Practical Conditions: Leak-Resistance

To provide leak-resistance, we ensure that any difference of two distinct polynomials computable
by a (Ω, q)-SLP-generator is of low degree. We do so by demanding that the input polynomials I
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of a problem P have low degrees (Condition 2) and restrict to operation sets Ω only allowing for
small increase of degrees (Condition 1).

Condition 2 There exists r1 ∈ poly(x) such that for all κ ∈ N, I ∈ [SIGenI
P(κ)]:

max
1≤i≤k,P∈Ii

(deg(P )) ≤ r1(κ).

If these conditions are satisfied, we can derive a concrete leak-resistance bound ν for any runtime
bound q as done in Theorem 3.

Theorem 3. Let Ω be an operation set such that Condition 1 is satisfied. Furthermore, let P be
a DL-type or DH-type problem satisfying Condition 2. Then for any q ∈ poly(x), the problem P is
(Ω, q, ν)-leak-resistant, where

ν(κ) = k(q(κ) + z(κ))2
(ℓ− c+ 1)D(n1, n2, umax, r1(κ), q(κ))

2κ

is a negligible function.

Example 6 (Leak-resistance for w-BDHIP). The degrees of the input polynomials of the w-BDHI
problem are polynomially upper bounded through w(κ) by definition. As we have already seen
in Example 5, Ω satisfies Condition 1 yielding D(1, 0, 2, w(κ), q(κ)) = 2w(κ). Furthermore, for
w-BDHIP we have parameters k = 3, ℓ = 1, and c = 0. Thus, by Theorem 3 the problem P is
(Ω, q, ν)-leak-resistant, where

ν(κ) =
12(q(κ) + w(κ) + 1)2w(κ)

2κ
.

Proof. Let S be some (Ω, q)-SLP-generator. Furthermore, let (n, I,Q)
R
← SIGen

(n,I,Q)
P (κ) and

(L1, . . . , Lk)
R
← S(κ, n, I, Q). Remember that |Li| is upper bounded by q(κ) + z(κ). Apply-

ing Theorem 2 and Lemma3 yields that for for every P ∈ Li, deg(P ) is upper bounded by
D(n1, n2, umax, r1(κ), q(κ)), where n1 denotes the number of product vertices contained in GΩ,
umax the maximal indegree of these product vertices, and n2 the number of SCCs containing at
least one product and one group vertex. Moreover, note that every polynomial not contained in the

ideal In is certainly not the zero polynomial in L
(ℓ,c)
n . Thus, by applying Lemma 2 and using the

assumption 2κ < p < 2κ+1 we get

Pr[∃i and P, P ′ ∈ Li : (P − P ′)(x) ≡ 0 mod n ∧ P − P ′ /∈ In]

≤ k(q(κ) + z(κ))2
(ℓ− c+ 1)(D(n1, n2, umax, r1(κ), q(κ)))

p− 1

≤ k(q(κ) + z(κ))2
(ℓ− c+ 1)(D(n1, n2, umax, r1(κ), q(κ)))

2κ

where x
R
← Z

c
n × (Z∗

n)
ℓ−c. ⊓⊔

5.4 Practical Conditions: SLP-intractability of DL-type Problems

In view of Lemma 2, in order to ensure SLP-intractability for a DL-type problem it suffices to require
the challenge polynomial being non-constant (Condition 3) and of low degree (Condition 4).

Condition 3 (Non-Triviality of DL-type Problems) There exists κ0 ∈ N such that for all

κ ≥ κ0, (n,Q) ∈ [SIGen
(n,Q)
P (κ)] the polynomial Q is not a constant in L

(ℓ,c)
n .
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In plain language, Condition 3 is the very natural condition that the solution of a DL-type
problem should depend on the secret choices. Otherwise, the considered problem would be totally
flawed, i.e., solvable with a success probability equal to 1.

Note that Definition 1 allows a problem to have a “completely different” challenge polynomial
Q for each possible group order n = pe. However, in practice, the form of the challenge polynomial
usually does not depend on the parameter n. More precisely, there exists a Laurent polynomial Q′

over Z such that for any n the corresponding challenge polynomial is simply defined by Q′ mod n
(e.g., Q′ = X1 for the DLP). In this case observing that Q′ is not a constant (over the integers)
immediately implies that for almost all primes p and all integers e the polynomial Q′ mod pe is not

constant in L
(ℓ,c)
n .

Moreover, by Condition 4 we restrict to challenge polynomials with low degrees. Note that we
had a similar condition for the input polynomials.

Condition 4 There exists r2 ∈ poly(x) such that for all κ ∈ N, Q ∈ [SIGen
Q
P(κ)]:

deg(Q) ≤ r2(κ).

Assuming the above conditions are satisfied for a DL-type problem, Theorem 4 implies that the
problem is ν-non-trivial, where ν is a negligible function in the security parameter.

Theorem 4. Let P be a DL-type problem satisfying Condition 3 and Condition 4. Then the problem
P is ν-non-trivial, where

ν(κ) =

{

1, κ < κ0
(ℓ−c+1)r2(κ)

2κ , κ ≥ κ0

is a negligible function.

Example 7. Let us consider the DLP. Here, Conditions 3 and 4 are satisfied since we always have
deg(Q) = 1 =: r2(κ). Moreover, remember that ℓ = c = 1 for the DLP. Thus, by Theorem 4 the
problem is ν-SLP-intractable where ν(κ) = 1

2κ .

Proof. Clearly, the probability considered in Definition 8 is always upper bounded by 1 for κ ≤ κ0,

where κ0 is the bound from Condition 3. Now let κ ≥ κ0. Furthermore, let (n,Q)
R
← SIGen

(n,Q)
P (κ)

and an arbitrary value a ∈ Zn be given. Condition 3 yields that Q−a is not zero in L
(ℓ,c)
n and from

Condition 2 we know that deg(Q− a) is upper bounded by r2(κ). Thus, by applying Lemma 2 and
using the assumption 2κ < p < 2κ+1 we get

Pr[Q(x) ≡ a mod n] ≤
(ℓ− c+ 1)r2(κ)

p− 1
≤

(ℓ− c+ 1)r2(κ)

2κ

for x
R
← Z

c
n × (Z∗

n)
ℓ−c. ⊓⊔

5.5 Practical Conditions: SLP-intractability of DH-type Problems

To ensure SLP-intractability of DH-type problems we formulate similar conditions as in the case
of DL-type problems. More precisely, we ensure that the difference polynomials considered in the
definition of SLP-intractability (Definition 10) are never zero and of low degree.

The non-triviality condition (Condition 5) states that an efficient SLP-generator can hardly
ever compute the challenge polynomial (in L1), and thus solve the problem with probability 1.

Condition 5 (Non-Triviality of DH-type Problems) For every q ∈ poly(x) there exists κ0 ∈

N such that for all κ ≥ κ0, (Ω, q)-SLP-generators S, (n, I, Q) ∈ [SIGen
(n,I,Q)
P (κ)], and (L1, . . . , Lk) ∈

[S(κ, n, I, Q)], P ∈ L1 we have P 6= Q in L
(ℓ,c)
n .
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We note that Condition 5 appears to be more complex compared to the practical conditions seen
so far and it is not clear to us how to verify it in its full generality. However, to the best of our
knowledge it is easy to check for any particular problem of practical relevance. Usually, one of the
following properties is satisfied implying the validity of Condition 5:

– The total degree of every P ∈ L1 is bounded by a value which is smaller than the total degree
of Q.

– The positive/negative degree of every P ∈ L1 is bounded by a value which is smaller than the
positive/negative degree of Q.

– The positive/negative degree of some variable Xj in every P ∈ L1 is bounded by a value which
is smaller than the positive/negative degree of that variable in Q.

Remember, that we can make use of the results from Section 5.2 for proving that a problem satisfies
one these properties. It should also be pointed out that it is possible to derive easier versions of
Condition 5 by restricting the considered class of problems and operation sets. However, we do not
go into detail.

Moreover, we have to prevent that an (Ω, q)-SLP-generator outputs a polynomial P 6= Q fre-
quently “colliding” with Q and thus serving as a good interpolation for Q. Assuming P is low
degree, which is given by Conditions 1 and 2, it remains to demand that Q is of low degree as well:

Condition 6 There exists r2 ∈ poly(x) such that for all κ ∈ N, Q ∈ [SIGen
Q
P(κ)]:

deg(Q) ≤ r2(κ).

We need the practical conditions for leak-resistance in addition to the ones stated in this section
for showing that a DH-type problem is (Ω, q, ν)-SLP-intractable, where ν is a negligible function
in the security parameter. This is captured by Theorem 5.

Theorem 5. Let Ω be an operation set such that Condition 1 is satisfied. Furthermore, let P be
DH-type problem satisfying Condition 2, Condition 5, and Condition 6. Then for any q ∈ poly(x),
the problem P is (Ω, q, ν)-SLP-intractable, where

ν(κ) =

{

1, κ < κ0
(ℓ−c+1)(r2(κ)+D(n1,n2,umax,r1(κ),q(κ)))

2κ , κ ≥ κ0

is a negligible function.

Example 8 (SLP-intractability of w-BDHIP). Remember, that for this problem the challenge poly-
nomial is fixed to Q = X−1

1 . Moreover, observe that all variables occur only with positive exponents
in the input polynomials. Thus, also every polynomial P ∈ L1 will exhibit only variables occurring
with positive exponents. Hence, Condition 5 is trivially satisfied (independently of the consid-
ered operation set Ω).4 Condition 6 is satisfied since we always have deg(Q) = 1 =: r2(κ). As
we have already seen in the previous section, Conditions 1 and 2 hold yielding the upper bound
D(1, 0, 2, w(κ), q(κ)) = 2w(κ) on the degrees of the polynomials P ∈ L1. Moreover, we have pa-
rameters k = 3, ℓ = 1, and c = 0. Thus, by Theorem 5 the problem is (Ω, q, ν)-SLP-intractable,
where

ν(κ) =
2 + 4w(κ)

2κ
.

4 Note that X−1
1 6= X

φ(n)−1
1 in L

(1,0)
n but these polynomials evaluate to the same value for all x1 ∈ Z

∗

n. However,

Cond. 1 and 2 ensure that for any efficient SLP-generator there exists κ0 s.t. for all κ ≥ κ0 the polynomial X
φ(n)−1
1

cannot be computed.
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Proof. Clearly, the probability considered in Definition 10 is bounded by 1 for κ ≤ κ0, where κ0

is the bound from Condition 5. Now let κ ≥ κ0, q be an arbitrary polynomial, and S be some

(Ω, q)-SLP-generator. Furthermore, let (n, I,Q)
R
← SIGen

(n,I,Q)
P (κ) and (L1, . . . , Lk)

R
← S(κ, n, I, Q).

Remember that |L1| is upper bounded by q(κ) + z(κ). Condition 5 yields that for all Laurent

polynomials P ∈ L1 the difference Q−P is not zero in L
(ℓ,c)
n . From Condition 2 we know that deg(Q)

is polynomially upper bounded by r2(κ) and deg(P ) is upper bounded byD(n1, n2, umax, r1(κ), q(κ))
which results from Theorem 2 and Lemma3. Thus, we have

deg(Q− P ) ≤ r2(κ) +D(n1, n2, umax, r1(κ), q(κ))

for all P ∈ L1. By applying Lemma 2, this leads to a probability of

Pr[(Q− P )(x) ≡ 0 mod n] ≤
(ℓ− c+ 1)(r2(κ) +D(n1, n2, umax, r1(κ), q(κ)))

p− 1

≤
(ℓ− c+ 1)(r2(κ) +D(n1, n2, umax, r1(κ), q(κ)))

2κ

for x
R
← Z

c
n × (Z∗

n)
ℓ−c. ⊓⊔

6 Extensions

6.1 Showing the Non-Existence of Generic Reductions

The basic role of operation sets is to reflect the natural abilities (e.g., computing the group law) of
a generic algorithm with respect to the algebraic setting but they can also be used to model oracles,
additionally given to an algorithm, solving certain computational or decisional problems. In this
way, the conditions can also serve as a means to analyze the relationship of cryptographic problems.
More precisely, the conditions can help us to prove that there exists no generic (polynomial-time)
reduction between certain problems: a problem P is not (Ω, q)-generically-reducible to a problem
P ′ if P is (Ω′, q, ν)-GGA-intractable, where ν is a negligible function and Ω′ is an operation set
containing all operations that Ω does plus an operation implementing a P ′-oracle.

In the following we analyze which kind of problem solving oracles can be represented by a
polynomial function. Besides distinguishing between the well-known classes of computational and
decisional oracles, we also distinguish between fixed-base oracles solving problem instances only with
respect to fixed generators and regular oracles that receive the generators for which the problem
instance should be solved as an extra input. More precisely, let us assume that an instance of a
problem P should be solved with the help of a fixed-base oracle for a problem P ′. Then this oracle
only works with respect to the generators given as part of the problem instance of P. Clearly, fixed-
base oracles are restricted versions of the corresponding regular oracles. Thus, such an oracle may
only be used to prove or disprove the existence of a reduction from P to a restricted (fixed-base)
version of the problem P ′.5

We can realize most fixed-base computational oracles as an operation of the form given in
Section 3.1, i.e., using a fixed polynomial F over Z. However, we cannot implement regular ora-
cles solving computational problems. For instance, consider the algebraic setting of the w-BDHI
problem. Let g2, g3, g1 = e(g2, g3) be fixed generators of cyclic groups G2, G3, G1 given as part of a
problem instance of the w-BDHI problem. It is important to observe that all group elements are rep-
resented by the generic oracle with respect to these generators or more precisely with respect to the
isomorphic generator 1 in (Zn,+). A fixed-base oracle for the bilinear Diffie-Hellman problem over
the three groups receives three elements gy12 , g

y2
2 , g

y3
2 ∈ G2 as input and returns e(g2, g3)

y1y2y3 ∈ G1.

5 However, it is easy to see that in the case of the Diffie-Hellman problem both types of oracles are equivalent.
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The operation (OFB-BDH, 2, 2, 2, 1, Y1Y2Y3) realizes such an oracle. It is easy to see that our practical
conditions are still satisfied for the w-BDHI problem if we we add this operation to the operation
set considered in Example 4. Thus, the w-BDHI problem remains “hard” in this case. A regular
oracle for the BDH problem is given generators gy42 ∈ G2, g

y5
3 ∈ G3 as an additional input and

returns

e(gy42 , g
y5
3 )y

′

1y
′

2y
′

3 = e(g2, g3)
y1y2y3y

−2
4 y5 ,

where y′1, y
′
2, y

′
3 are the discrete logarithms of gy12 , g

y2
2 , g

y3
2 to the base gy42 . Note that we cannot realize

this oracle as an operation compliant to our definition since a Laurent polynomial F = Y1Y2Y3Y
−2
4 Y5

would be required for its representation. However, only “regular” polynomials are permitted for
representing operations. This restriction is not an arbitrary decision. Without it it is not clear how
to ensure the leak-resistance property.

Besides computational oracles, it is also of interest to realize decisional oracles that can be
queried in order to solve a DL-/DH-type problem. For instance, this is needed for the analysis of
so-called gap problems (e.g., see [OP01]). To include such oracles in our setting, we need to add a
new type of operation similar to the one already known: we allow decisional oracles that that can
be represented as a mapping of the form

f : Gs1 × . . .×Gsu → {0, 1}

f(gy1s1 , . . . , g
yu
su

) = 1 iff F (y1, . . . , yu) ≡ 0 mod n,

where u ≥ 1, s1, . . . , su ∈ {1, . . . , k} are some fixed constants, F ∈ Z[Y1, . . . , Yu] is some fixed
polynomial, and g1, . . . , gu are generators given as part of a problem instance of the respective
DL-/DH-type problem. We denote such a decision operation by a tuple (f, s1, . . . , su, {0, 1}, F ).

The above formulation is particularly useful as it allows to express decision oracles defined by
rational functions. In this way, most fixed-base and regular decisional oracles can be implemented
in our framework. As an example, consider a regular decisional BDH oracle. This oracle takes
e(g2, g3)

y6 ∈ G1 as additional input compared to the regular computational oracle described above.
It outputs 1 iff

e(g2, g3)
y1y2y3y

−2
4 y5 = e(g2, g3)

y6 ⇐⇒ y1y2y3y
−2
4 y5 ≡ y6 mod n .

Clearly, this is a rational equation. However, testing the validity of this equation is certainly equiv-
alent to testing whether

y1y2y3y5 − y
2
4y6 ≡ 0 mod n

is satisfied. Thus, we can realize a regular decision BDH oracle in our model by means of the
decision operation (ODBDH, 2, 3, 2, 2, 2, 1, {0, 1}, Y1Y2Y3Y5 − Y

2
4 Y6).

Clearly, a decision operation constitutes another source of information for a generic algorithm.
Thus, we have to adapt the definition of leak-resistance slightly: Let us assume that any (Ω, q)-
SLP-generator additionally outputs a list L0 which is initially empty and to which polynomials
P := F (P1, . . . , Pu), where P1 ∈ Ls1 , . . . , Pu ∈ Lsu , may be added that result from applying any
decision operation (f, s1, . . . , su, {0, 1}, F ) contained in Ω. Similar to equalities between computed
group elements (cf. Section 4), an equality P (x) ≡ 0 mod n verified by a decision operation yields
no information about particular choices x if it holds for all elements from Z

c
n × (Z∗

n)
ℓ−c. This

observation leads to the following extended version of the leak-resistance property:
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Definition 13 (Leak-resistance). A DL-/DH-type problem P is called (Ω, q, ν)-leak-resistant if
for all (Ω, q)-SLP-generators S and κ ∈ N we have

Pr[∃i > 0, P, P ′ ∈ Li s.t. (P − P ′)(x) ≡ 0 mod n ∧ P − P ′ /∈ In or

∃P ∈ L0 s.t. P (x) ≡ 0 mod n ∧ P /∈ In :

(n, I, Q)
R

← SIGen
(n,I,Q)
P (κ);

(L0, L1, . . . , Lk)
R

← S(κ, n, I, Q);

x
R

← Z
c
n × (Z∗

n)
ℓ−c

] ≤ ν(κ)

It is not hard to see that no extra (practical) condition (in addition to Conditions 1 and 2) is
needed to ensure that computations remain leak-resistant.6 Just to clarify, the new operation type
does not need to be represented in an operation set graph and correspondingly Condition 1 only
concerns an operation set excluding decision operations. We can immediately bound the probability
of leakage due to decision operations leading to the leak-resistance bound ν given in Theorem 6.
Note that compared to the previous bound, only the negligible function dq(κ), where d is a constant,
has been added.

Theorem 6. Let Ω be an operation set such that Condition 1 is satisfied and let d ∈ N be a bound
on the degree of any polynomial describing a decision operation in Ω (we set d = 0 if no such
operation exists). Furthermore, let P be a DL-type or DH-type problem satisfying Condition 2.
Then for any q ∈ poly(x), the problem P is (Ω, q, ν)-leak-resistant, where

ν(κ) =
1

2κ
(ℓ− c+ 1)(k(q(κ) + z(κ))2 + dq(κ))D(n1, n2, umax, r1(κ), q(κ))

is a negligible function.

Informally speaking, the above theorem implies that any DL-/DH-type problem that is hard for
GGAs (by satisfying our practical conditions) remains being hard even if we additionally admit
any decision oracle representable by an operation of the above type. We therefore conclude that a
decision oracle is no significant help in solving a computational problem over black-box groups.

Example 9 (Leak-resistance for w-BDHIP with DBDH oracle). Let us assume we extend the oper-
ation set given in Example 4 by the operation

(ODBDH, 2, 3, 2, 2, 2, 1, {0, 1}, Y1Y2Y3Y5 − Y
2
4 Y6)

implementing a decision BDH oracle. The polynomial in the above tuple is of degree 4. Thus, by
Theorem 6 the w-BDHI problem is (Ω, q, ν)-leak-resistant, where

ν(κ) =
1

2κ
2(2w(κ))(3(q(κ) + w(κ) + 1)2 + 4w(κ)) .

6.2 Rational Functions Specifying Problem Challenges

Our framework defined so far only covers problems where the solution of a problem instance can
be represented as a (Laurent) polynomial function of the secret choices. This restriction excludes
important problems like the w-strong Diffie-Hellman problem and the w-strong Bilinear Diffie-
Hellman problem. Informally speaking, the w-SDH problem can be described as follows: Let G

6 If we allow decision oracles to depend on the security parameter, i.e., number of inputs u and the form of the
polynomial F defining the output, then we would need to demand that deg(F ) is polynomial bounded in κ.
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be a cyclic group of prime order p and g a corresponding generator. Then given group elements
g, gx

1
, gx

2
, . . . , gx

w
∈ G, where x ∈ Z

∗
p, the task is to find v ∈ Z

∗
p and a group element a ∈ G such

that a = g
1

(x+v) . Observe that here the solution is defined by a rational function of the secret choices
and the value v that can be chosen freely. If 1

(x+v) is not defined over Zp for particular x and v

(this is the case when v = −x), then the problem instance shall be deemed to be unsolved.
We can easily extend our framework in this way. To let the class of DL-/DH-type problem

(Definition 1) cover this problem type we do the following: We first need to introduce two additional
parameters ℓ′ and c′ defining the range Z

c′

n × (Z∗
n)
ℓ′−c′ from which the algorithm is allowed to

choose the value v. Furthermore, we consider structure instance generators SIGen that, instead of

Q ∈ L
(ℓ,c)
n , output two Laurent polynomials Q1 and Q2 over Zn in the variables X1, . . . , Xℓ, V1, . . . Vℓ

where only the variablesXc+1, . . . , Xℓ and Vc′+1, . . . , Vℓ′ may appear with negative exponents. These
polynomials represent a rational function

R : (Zcn × (Z∗
n)
ℓ−c)× (Zc

′

n × (Z∗
n)
ℓ′−c′)→ Zn

(x,v) 7→
Q1(x,v)

Q2(x,v)
.

Note that by partially evaluating Q1 and Q2 with some v ∈ Z
c′

n × (Z∗
n)
ℓ′−c′ , we obtain two Laurent

polynomials Q1(X,v) and Q2(X,v) from L
(ℓ,c)
n .

A problem instance of such an extended DL-/DH-type problem is defined as before. Given a
problem instance, the challenge is to output some v ∈ Z

c′

n × (Z∗
n)
ℓ′−c′ such that Q2(x,v) ∈ Z

∗
n as

well as the element










Q1(x,v)
Q2(x,v) , for a DL-type problem

g
Q1(x,v)
Q2(x,v)

1 , for a DH-type problem

.

Note that this modification is indeed a generalization of our problem class definition. All problems
covered by the old definition are also covered by the new definition simply by setting Q2 = 1 and
ℓ′ = 0.

Adapting the major part of the framework to the new definition is quite straightforward. In fact,
the definition of leak-resistance, the corresponding conditions and theorems stay the same since we
did not make any change to the functions describing the relation between the private choices and
the public group elements, i.e., the input polynomials. In the following, we only sketch important
differences in comparison to the previous version of the conditions.

For this purpose, we need to introduce some new notation. We denote by

F(L(ℓ,c)
n ) =

{

Q1

Q2
| Q1, Q2 ∈ L(ℓ,c)

n , Q2 is not a zero-divisor

}

the (total) ring of fractions (aka. ring of rational functions) of L
(ℓ,c)
n . An element a

b
∈ F(L

(ℓ,c)
n ) with

a, b ∈ Zn is called a constant fraction. The ring L
(ℓ,c)
n can be seen as a subring of this ring by

identifying Q ∈ L
(ℓ,c)
n with Q

1 ∈ F(L
(ℓ,c)
n ).

Note that if we evaluate the fraction Q1

Q2
, describing the challenge of an extended DL-/DH-type

problem, with some v ∈ Z
c′

n × (Z∗
n)
ℓ′−c′ we obtain a fraction Q1(X,v)

Q2(X,v) that is not necessarily a well-

defined element of F(L
(ℓ,c)
n ). This is because Q2(X,v) might be a zero divisor in L

(ℓ,c)
n . However,

we can exclude this case, because by choosing such a fraction (i.e., by selecting this particular v)
an algorithm can never solve a problem instance:

Lemma 4. If P ∈ L
(ℓ,c)
n is a zero-divisor then for any x ∈ Z

c
n × (Z∗

n)
ℓ−c the element P (x) ∈ Zn is

a zero-divisor.
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Proof. It is easy to see that if P is a zero-divisor then there exists an element a 6= 0 ∈ Zn such that
a · P = 0. Thus, also for any P (x) we have a · P (x) = 0. ⊓⊔

Thus, our conditions only need to address fractions being elements of F(L
(ℓ,c)
n ).

We stipulate the following extended definitions for the SLP-intractability of a DL-type and a
DH-type problem, respectively. Note that the SLP-generators now additionally output v in order
to select a specific fraction.

Definition 14 (SLP-intractability of DL-Type Problems). A DL-type problem P is called
(Ω, q, ν)-SLP-intractable if for all κ ∈ κ we have

Pr[Q2(x,v) ∈ Z
∗
n and R(x,v) ≡ a mod n :

(n, I, Q1, Q2)
R

← SIGen
(n,I,Q1,Q2)
P (κ);

(v, a, L0, . . . , Lk)
R

← S(κ, n, I, Q1, Q2);

R←
Q1

Q2
;

x
R

← Z
c
n × (Z∗

n)
ℓ−c

] ≤ ν(κ)

Definition 15 (SLP-intractability of DH-type Problems). A DH-type problem P is called
(Ω, q, ν)-SLP-intractable if for all (Ω, q)-SLP-generators S and κ ∈ N we have

Pr[(Q2(x,v) ∈ Z
∗
n and (P −R(X,v))(x) ≡ 0 mod n :

(n, I, Q1, Q2)
R

← SIGen
(n,I,Q1,Q2)
P (κ);

(v, P, L0, . . . , Lk)
R

← S(κ, n, I, Q1, Q2);

R←
Q1

Q2
;

x
R

← Z
c
n × (Z∗

n)
ℓ−c

] ≤ ν(κ)

The GGA-intractability of a DL-/DH-type problem is still related in the same way to the leak-
resistance property and the SLP-intractability of the problem. That means, Theorem 1 still holds
for our extension and can reproved very easily.

To ensure SLP-intractability, we require Condition 7 and 8 for DL-type problems and Condition
7 and 9 for DH-type problems to be satisfied.

Condition 7 There exists r2 ∈ poly(x) such that for all κ ∈ N, (n,Q1, Q2) ∈ [SIGen
(n,Q1,Q2)
P (κ)],

and v ∈ Z
c′

n × (Z∗
n)
ℓ′−c′:

max{deg(Q1(X,v)),deg(Q1(X,v))} ≤ r2(κ).

Condition 8 (Non-Triviality of DL-type Problems) There exists κ0 ∈ N such that for all

κ ≥ κ0, (n,Q1, Q2) ∈ [SIGen
(n,Q1,Q2)
P (κ)], and v ∈ Z

c′

n × (Z∗
n)
ℓ′−c′ we have that Q1(X,v)

Q2(X,v) is not a

constant fraction in F(L
(ℓ,c)
n ) (provided that it is a well-defined element, i.e., Q2(X,v) is not a

zero-divisor).
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Condition 9 (Non-Triviality of DH-type Problems) For every q ∈ poly(x) there exists κ0 ∈

N such that for all κ ≥ κ0, (Ω, q)-SLP-generators S, (n, I, Q1, Q2) ∈ [SIGen
(n,I,Q1,Q2)
P (κ)],

(P,L0, . . . , Lk) ∈ [S(κ, n, I, Q1, Q2)], and v ∈ Z
c′

n × (Z∗
n)
ℓ′−c′ we have that Q1(X,v)

Q2(X,v) 6= P in F(L
(ℓ,c)
n )

(provided that it is a well-defined element, i.e., Q2(X,v) is not a zero-divisor).

These conditions imply (Ω, q, ν)-SLP-intractability for the same negligible functions ν as stated
in Theorems 4 and 5. To reprove Theorem 4, one needs to observe that the conditions ensure that
for any a and non-zero-divisor Q2(X,v) the Laurent polynomial

Q1(X,v)− aQ2(X,v)

is non-zero and of total degree bounded by r2. Similarly, for the proof of Theorem 5 we observe
that for any P and non-zero-divisor Q2(X,v) the Laurent polynomial

Q1(X,v)− PQ2(X,v)

is non-zero and of total degree bounded by r1 + r2.

Example 10 (SLP-intractability of w-SDHP). For the w-SDH problem we have parameters

Paramw−SDH = (k = 1, ℓ = 1, c = 0, ℓ′ = 1, c′ = 0, z = w + 1)

and a structure instance generator SIGenw−SDH that on input κ returns

((G = G1,g = g1, n = p), (I = I1 = {1, X1
1 , . . . , X

w(κ)
1 }, Q1 = 1, Q2 = X1 + V1)) .

Note that for any v1 ∈ Z
∗
p, the fraction

Q1(X,v)

Q2(X,v)
=

1

X1 + v1

is an element of F(L
(ℓ,c)
n ) but not an element of the subring L

(ℓ,c)
n . Hence, Condition 9 is trivially

satisfied, since P is always a Laurent polynomial (independently of the considered operation set
Ω). Condition 7 is satisfied since we always have

max{deg(Q1(X,v),deg(Q2(X,v))} = 1 =: r2(κ) .

As we can easily see, Conditions 1 and 2 hold assuming an operation set containing operations for
performing the group law and inversion of elements in G1, i.e.,

Ω = {(◦, 1, 1, 1, Y1 + Y2), (inv , 1, 1,−Y1)}

yielding the upper bound D(0, 0, 0, w(κ), q(κ)) = w(κ) on the degrees of the polynomials P ∈ L1.
Thus, the problem is (Ω, q, ν)-SLP-intractable, where

ν(κ) =
w(κ) + 1

2κ
.
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