
Fuzzy Private Matching (Extended Abstract)
Łukasz Chmielewski∗ Jaap-Henk Hoepman∗†

∗Security of Systems (SoS) group
Institute for Computing and Information Sciences, RadboudUniversity Nijmegen

{lukaszc,jhh}@cs.ru.nl
†TNO Information and Communication Technology

P.O. Box 1416, 9701 BK, Groningen, The Netherlands
jaap-henk.hoepman@tno.nl

Abstract—In the private matching problem, a client and a
server each hold a set ofn input elements. The client wants to
privately compute the intersection of these two sets: he learns
which elements he has in common with the server (and nothing
more), while the server gains no information at all. In certain
applications it would be useful to have a private matching
protocol that reports a match even if two elements are only
similar instead of equal. Such a private matching protocol is
called fuzzy, and is useful, for instance, when elements may be
inaccurate or corrupted by errors.

We consider the fuzzy private matching problem, in a semi-
honest environment. Elements are similar if they match ont

out of T attributes. First we show that the original solution
proposed by Freedmanet al. [1] is incorrect. Subsequently we
present two fuzzy private matching protocols. The first, simple,
protocol has bit message complexityO(n

`

T

t

´

(T log |D| + k)).
The second, improved, protocol has a much better bit message
complexity of O(nT (log |D| + k)), but here the client incurs a
O(n) factor time complexity. Additionally, we present protocols
based on the computation of the Hamming distance and on
oblivious transfer, that have different, sometimes more efficient,
performance characteristics.

Index Terms—fuzzy matching, secure 2-party computation,
secret sharing

I. I NTRODUCTION

In the private matching problem [1], a client and a server
each hold a set of elements as their input. The size of the set
is n and the type of elements is publicly known. The client
wants to privately compute the intersection of these two sets:
the client learns the elements it has in common with the server
(and nothing more), while the server obtains no information
at all.

In certain applications, the elements (think of them as words
consisting of letters, or tuples of attributes) may not always
be accurate or completely known. For example, due to errors,
omissions, or inconsistent spelling, entries in a databasemay
not be identical. In these cases, it would be useful to have a
private matching algorithm that reports a match even if two
entries are similar, but not necessarily equal. Such a private
matching is calledfuzzy, and was introduced by Freedmanet
al. [1]. Elements are called similar (or matching) in this
context if they match ont out ofT letters at the right locations.

Fuzzy private matching (FPM) protocols could also be
used to implement a more secure and private algorithm of
biometric pattern matching. Instead of sending the complete
template corresponding to say a scanned fingerprint, a fuzzy

private matching protocol could be used to determine the
similarity of the scanned fingerprint with the templates stored
in the database, without revealing any information about this
template in the case that no match is found.

All known solutions for fuzzy private matching, as well as
our own protocols, work in a semi-honest environment. In this
environment participants do not deviate from their protocol,
but may use any (additional) information they obtain to their
own advantage.

Freedmanet al. [1] introduce the fuzzy private matching
problem and present a protocol for2-out-of-3 fuzzy private
matching. We show that, unfortunately, this protocol is incor-
rect (see Section III): the client can “steal” elements evenif
the sets haveno similar elements in common.

Building and improving on their ideas, we present two
protocols for t-out-of-T fuzzy private matching (henceforth
simply called fuzzy private matching or FPM for short). The
first, simple, protocol has time complexityO(n

(

T
t

)

) and bit
message complexityO(n

(

T
t

)

(T log |D|+k)) (protocol 3). The
second protocol is based on linear secret sharing and has
a much better bit message complexityO(nT (log |D| + k))
(protocol 5). Here the client incurs aO(n2

(

T
t

)

) time com-
plexity penalty. Note that this is only a factorn worse than
the previous protocol. We also present a simpler version
of protocol 5 (protocol 4) to explain the techniques used
incrementally. This protocol has a slightly worse bit message
complexity.

Note that, contrary to intuition, fuzzy extractors and secure
sketches ([2]) cannot be used to solve fuzzy private matching
problem.

Indyk and Woodruff [3] present another approach for solv-
ing fuzzy private matching, using the computation of the Ham-
ming distance together with generic techniques like secure2-
party computations and oblivious transfer. Generic multi-party
computation and oblivious transfer are considered not to be
efficient techniques. Therefore, based on the protocol from
[3], we design protocols based on computation the Hamming
distance that do not use secure2-party computation. One
protocol is efficient for small domains of letters (protocol
6 version 1) and the second protocol uses oblivious transfer
(protocol 6 version 2). The major drawback of the first protocol
is a strong dependence on the size of the domain of letters. The
main weakness of the second protocol is its high complexity

Bit Com-

plexity (Õ)

Time
Complexity1

Bit Complexity (O)

[1] (corrected),
Fig.3 protocol

n
`
T
t

´
O(n

`
T
t

´
) n

`
T
t

´
(T log |D|+k)

SFE protocol n2T Õ(n2T) n2Tk log |D|

[3] nT 2 + n2 Õ(nT 2 + n2) — 2

Fig.4 protocol n2T O(n2T
`
T
t

´
) n2T (log |D| + k)

Fig.5 protocol nT O(n2T
`
T
t

´
) nT (log |D| + k)

Fig.6 protocol
v13

|D|nT +

n2(T − t)

O(|D|nT +
n2(T − t))

|D|nTk +
n2(T − t)
(T log |D| + k)

Fig.6 protocol
v24

n2T n2T oblivious
transfer calls

n2T oblivious trans-
fer calls

1 For the sake of simplicity time complexities are given roughly in numbers
of efficient operations (e.g., secret sharing’s reconstructions, encryptions,
polynomial’s evaluations etc.); we also report here only thecomplexity of
the slowest participant
2 the authors of the paper do not give exact complexity in theO notation.
3 protocol with subroutine from first paragraph of section VI-A.
4 protocol with subroutineequality-matrix from Figure 7.

Fig. 1. Results overview

– in the protocol there aren2 · T oblivious transfer calls. We
present these protocols mainly to show that other approaches
to solve the fuzzy private matching problem exist as well.

We compare our protocols to existing solutions using sev-
eral complexity measures in Table 1. One of these com-
plexity measures is thẽO notation used for the bit mes-
sage complexity in [3]. This notation is defined as fol-
lows. For functions f and g, we write f = Õ(g) if

f(n, k) = O
(

g(n, k) logO(1)(n) · poly(k)
)

, where k is
the security parameter. This notation hides certain factors like
a strong dependence on the security parameterk (e.g.k3), and
is therefore less accurate than the standard big-O notation. We
prefer this measure for the plain message complexity, where
we restrict the bit size of the messages to be linear ink.

Related work can be traced back to private equality test-
ing [4], [5], [1], [6] in the 2-party case, where each party has
a single element and wants to know if they are equal (without
publishing these elements). Private set intersection [1],[6],
[7] (possibly among more than two parties) is also related.
In this problem the output ofall the participants should be
the intersection of all the input sets, but nothing more: a
participant should gain no knowledge about elements from
other participant’s sets that are not in the intersection.

Similarly related are the so called secret handshaking pro-
tocols [8], [9], [10]. They consider membership of a secret
group, and allow members of such groups to reliably iden-
tify fellow group members without giving away their group
membership to non-members and eavesdroppers. We note that
the (subtle) difference between secret handshaking and set-
intersection protocols lies in the fact that a set-intersection
protocol needs to be secure for arbitrary element domains
(small ones in particular), whereas group membership for

handshaking protocols can be encoded using specially con-
structed secret values taken from a large domain.

Privacy issues have also been considered for the approxima-
tion of a functionf among vectors owned by several parties.
The functionf may be Euclidean distance ([11], [12], [3]),
set difference ([1]), Hamming distance ([11], [3]), or scalar
product (reviewed in [13]).

Our paper is structured as follows. We formally define the
fuzzy private matching problem in Section II, and introduce
our system model, some additional notation, and primitives
there as well. Then in Section III we present the solution
from [1] for 2-out-of-3 fuzzy private matching and show where
it breaks down. Section IV contains our first protocol fort-
out-of-T fuzzy private matching that uses techniques similar
to the ones used in [1]. Then we present our second protocol
based on linear secret sharing in Section V. Finally, Section
VI presents two protocols based on the computation of a
Hamming distance. All our protocols assume a semi-honest
environment (see Section II-B).

II. PRELIMINARIES

In this section, we introduce the fuzzy matching problem
as well as the mathematical and cryptographic tools that we
use to construct our protocols.

A. Fuzzy Private Matching Problem Definition

Let a client and a server each own a set of words. A fuzzy
private matching protocol is a2-party protocol between a client
and a server, that allows the client to compute the fuzzy set
intersection of these sets (without leaking any information to
the server).

To be precise, let each wordX = x1 . . . xT in these sets
consist ofT lettersxi from a domainD. Let X = x1 . . . xT

andY = y1 . . . yT . We defineX ≈t Y (X andY match ont

letters) if and only ift ≤ |{k : xk = yk ∩ (1 ≤ k ≤ T)}|.
The input and the output of the protocol are defined as

follows. The client input is the setX = {X1, . . . XnC
} of

nC words of lengthT , while the server’s input is defined as
Y = {Y1, . . . YnS

} of nS words of lengthT . Both the client
and the server have also in their inputsnC , nS , T andt. The
output of the client is the set{Yi ∈ Y |∃Xi ∈ X : Xi ≈t Yj}.
This set consist of all the elements fromY that match with
any element from the setX. The server’s output is empty
(the server does not learn anything). Usually we assume that
nC = nS = n. In any case, the sizes of the sets are fixed and
a priori known to the other party (so the protocol does not
have to prevent the other party to learn the size of the set).

B. Adversary Models

We prove correctness of our protocols only against com-
putationally bounded (with respect to a security parameterk)
and semi-honest adversary, meaning the the parties follow the
protocol but may keep message histories in an attempt to learn
more than is prescribed. Here we provide the intuition and the
informal notion of this model, the reader is referred to [14]

for full definitions. To simplify matters we only consider the
case of only two participants, the client and the server.

We have chosen the semi-honest model for a few reasons.
First of all, there had not been made any “really” efficient
solution for FPM problem in any model. Secondly, our proto-
cols seem to be secure against malicious clients and the only
possible attacks are on the correctness of the protocols by
malicious servers. Moreover in [15], [16], [17], it is shown
how to transform a semi-honest protocol into a protocol
secure in the malicious model. Further, [17] does this at a
communication blowup of at most a small factor ofpoly(k).
Therefore, we assume parties are semi-honest in the remainder
of the paper (however we are aware that the mentioned generic
transformations are not too efficient).

We leave improving protocols to work efficiently in ma-
licious environment and proofs that the protocols from this
paper are secure against malicious clients for future work.

In the model with a semi-honest adversary, both parties
are assumed to act accordingly to the protocol (but they
are allowed to use all information that they collect in an
unexpected way to obtain extra information). The security
definition is straightforward in our particular case, as only one
party (the client) learns the output. Following [1] we divide
the requirements into:

• The client’s security –indistinguishably: Given that the
server gets no output from the protocol, the definition of
the client’s privacy requires simply that the server cannot
distinguish between cases in which the client has different
inputs.

• The server’s security –comparison to the ideal model:
The definition ensures that the client does not get more or
different information than the output of the function. This
is formalized by considering an ideal implementation
where a trusted third party TTP gets the inputs of the two
parties and outputs the defined function. We require that
in the real implementation of the protocol (one without
TTP) the client does not learn different information than
in the ideal implementation.

Due to space constraints our proofs are informal, presenting
only the main arguments for correctness and security.

C. Additively Homomorphic Cryptosystem

In all our protocols we use a semantically secure, additively
homomorphic public-key cryptosystem, e.g., Paillier’s cryp-
tosystem [18]. Let{·}K denote the encryption function with
the public keyK. The homomorphic cryptosystem supports
the following two operations, which can be performed without
the knowledge of the private key.

1) Given the encryptions{a}K and{b}K , of a andb, one
can efficiently compute the encryption ofa+ b, denoted
{a + b}K := {a}K +h {b}K

2) Given a constantc and the encryption{a}K , of a, one
can efficiently compute the encryption ofc · a, denoted
{a · c}K := {a}K ·h c

These properties hold for suitable operations+h and·h defined
over the range of the encryption function. In Paillier’s system,
operation+h is a multiplication and·h is an exponentiation.

1) Remark: The domainR of the plaintext of the homo-
morphic cryptosystem in all of our protocols (unless specified
differently) is defined as follows:R should be larger thanDT

(or in some protocolsD) and a uniformly random element
from R should be inDT (or D) with negligible probability.
This property can be satisfied by representing an element
a ∈ DT (or in some protocolsa ∈ D) by ra = 0k||a in
R. The domainR should be a field (e.g.,Zq for some prime
q).

2) Operations on encrypted polynomials:We represent any
polynomial p of degreen (on some ring) as the ordered list
of its coefficients:[α0, α1, . . . αn]. We denote the encryption
of a polynomialp by {p}K and define it to be the list of
encryptions of its coefficients:[{α0}K , {α1}K , . . . {αn}K].

Many operations can be performed on such encrypted poly-
nomials like: addition of two encrypted polynomials or multi-
plication of an encrypted and a plain polynomial. We use the
following property: given an encryption of a polynomial{p}K

and somex one can efficiently compute a value{p(x)}K . This
follows from the properties of the homomorphic encryption
scheme:

{p(x)}K =

(
nX

i=0

αi · x
i

)

K

=
nX

h
i=0

{αi · x
i}K =

nX
h

i=0

{αi}K ·h xi

D. Linear Secret Sharing

Some of our protocols uset-out-of-T secret sharing. The
secrets is split into T secret sharessi, such that any combi-
nation of at leastt such shares can be used to reconstructs.
Combining less thant individual shares gives no information
whatsoever about the secret.

A Linear t-out-of-T Secret Sharing (LSS) scheme is a secret
sharing scheme with the following property: givent shares
si (of secrets), and t sharesri (of secretr) on the same
indices, usingsi+ri one can reconstruct the sum of the secrets
s+r. One such LSS scheme is Shamir’s original secret sharing
scheme [19].

III. T HE ORIGINAL FPM PROTOCOL

Freedmanet al. [1] proposed a fuzzy private matching
protocol for the case whereT = 3 and t = 2 (see Figure 2).
Unfortunately, their protocol is incorrect.

1) The idea behind, and the problem of the protocol from
Figure 2: Intuitively the protocol works because ifXi ≈2 Yj

then, say,x2
i = y2

j andx3
i = y3

j . HenceP2(x
2
i) = P2(y

2
j) = ri

andP3(x
3
i) = P3(y

3
j) = ri soP2(y

2
i)−P3(y

3
j) = 0. Then the

result{r′ · (P2(y
2
j)−P3(y

3
j)) + Yj}K sent back by the server

simplifies to{Yj}K (the random valuer′ is canceled by the
encryption of0) which the client can decrypt. IfXi andYj do
not match, the random valuesr, r′ andr′′ do not get canceled
and effectively blind the value ofYj in the encryption, hiding
it to the client.

1) The client chooses a private keysk, a public keyK and parameters
for the additively homomorphic encryption scheme and sendsK and
the parametersto the server.

2) The client:
a) chooses, for everyi (such that1 ≤ i ≤ nC), a random value

ri ∈ R.
b) creates3 polynomials:P1, P2, P3 overR (where polynomialPj is

used to encode all letters on thejth position) defined by the set of
equations
ri = P1(x1

i) = P2(x2
i) = P3(x3

i), for 1 ≤ i ≤ nC .
c) uses interpolation to calculate coefficients of the polynomials

(P1, P2, P3) and sends their encryptions to the server.
3) For eachYj (such that1 ≤ j ≤ nS), the server responds to the client:

{r · (P1(y1
j) − P2(y2

j)) + Yj}K , {r′ · (P2(y2
j) − P3(y3

j)) + Yj}K ,
{r′′ · (P1(y1

j) − P3(y3
j)) + Yj}K , wherer, r′, r′′ are fresh random

values inR. This uses the properties of the homomorphic encryption
scheme including the encrypted polynomials explained in Section II-C2.

4) If the client receives an encryption of an encoding ofYi, which is
similar to any word from his setX, then he adds it to the output set.

Fig. 2. Original FPM protocol

There is however a problem with this approach. Consider
the following input data. The input of the client is{[1, 2, 3]
, [1, 4, 5]}, while the input of the server is{[5, 4, 3]}. Then
in step 2c of the protocol, the polynomials are defined (by
the client) in the following way:P1(1) = r1 ∩ P1(1) = r2,
P2(2) = r1 ∩ P2(4) = r2 and P3(3) = r1 ∩ P3(5) = r2.
But now we see that, unlessr1 = r2 (which is unlikely
when they are both chosen at random),P1 remains undefined!
Freedmanet al. do not consider this possibility. However, if
we try to remedy this problem by settingr1 = r2 we run
into another one. Among other things, the server computes
{r′ · (P2(y

2
i) − P3(y

3
i)) + Yi}K , which, in this particular

case equals{r′ · (P2(4) − P3(3)) + [5, 4, 3]}K . This equals
{r′ · (r2−r1)+ [5, 4, 3]}K , which by equality ofr1 andr2 re-
duces to{[5, 4, 3]}K . In other words, the client learns[5, 4, 3]
even if this value does not match any of the elements held by
the client. This violates the requirements of the fuzzy private
matching problem: if a semi-honest client happens to own a
set of tuples with a property similar to the counterexample
above, it learns a tuple of the server.

IV. A POLYNOMIAL BASED PROTOCOL

The protocol of the previous section can be fixed, but in
a slightly more elaborate way. Our solution works for anyT

and t, and is presented in Figure 3. In the protocol we use
the following definition. Letσ be a combination oft different
indicesσ1, σ2, . . . , σt from the range{1, . . . , T} (there are

(

T
t

)

of those). For a wordX ∈ DT , defineσ(X) = xσ1 || · · · ||xσt

(i.e., the concatenation of the letters inX found at the indices
in the combination). We now discuss the correctness, security
and complexity of this protocol.

2) Correctness: In the protocol, the client produces
(

T
t

)

polynomialsPσ of degreenC . Every polynomial represents
one of the combinationsσ of t letters fromT letters. In fact,
the roots of the polynomialPσ are σ(Xi) It is easy to see
that if X ≈t Y thenσ(X) = σ(Y) for some combinationσ.
Hence, ifXi ≈t Yj thenPσ(σ(Yj)) = 0 for somePσ received
and evaluated in step 3a. When that happens, the encryption

1) The client chooses a private keysk, a public keyK and parameters
for the additively homomorphic encryption scheme and sendsK and
the parametersto the server.

2) For every combinationσ of t out of T indices the client:
a) constructs a polynomial:

Pσ(x) = (x−σ(X1)) · (x−σ(X2)) · · · (x−σ(XnC
)) of degree

nC with domainDT and rangeR.
b) sends{Pσ}K (the encrypted polynomial) to the server.

3) For everyYi ∈ Y , 1 ≤ i ≤ nS , and every received polynomial
{Pσ}K (corresponding to the combinationσ) the server:
a) evaluates polynomial{Pσ}K at the point σ(Yi) to compute

{wσ
i }K = {r ∗ Pσ(σ(Yi)) + Yi}K , wherer ∈ R is always a

fresh random value.
b) sends{wσ

i }K to the client.
4) The client decrypts all received messages. If for such a decryption

wσ
i ≈t Xj for any Xj ∈ X, then he addswσ

i to the output set.

Fig. 3. Polynomial Based Protocol solving FPM problem

of Yj is sent to the client. Later on, the client can recognize
this value by the convention that values inDT are represented
in R using a0k prefix. Otherwise (ifYj does not match with
any element fromX) all the values sent to the client contain
a random blinding elementr (and therefore their decryptions
are inY with negligible probability).

3) Security:The client’s input data is secure because all the
data received by the server are encrypted (using a semantically
secure cryptosystem). Hence the server cannot distinguish
between different client’s inputs. The privacy of the server is
protected because the client only learns about those elements
from Y that are also inX, and because (by semi-honesty) it
does not send specially constructed polynomials to cheat the
server. If an elementyi ∈ Y does not belong toX then a
random value is sent by the server (see the correctness proof
above).

4) Complexity:The messages being sent in this protocol are
encryptions of plaintext from the domainR, i.e.,O(T log |D|+
k) bits. In step 2 the client sends

(

T
t

)

polynomials of degree
nC (sending each coefficient separately). Then in step 3 the
server responds withnS values for every polynomial. Hence
in total O((nS + nC) ·

(

T
t

)

) messages are sent. Therefore, the
total bit complexity isO((nS + nC) ·

(

T
t

)

· (T log |D| + k)).
The time complexity is the same as the number of messages

in protocolO((nS + nC) ·
(

T
t

)

).

V. SECRETSHARING BASED PROTOCOLS

The number of messages sent in the previous protocol is
very large. Therefore, we now present two protocols solving
the FPM problem based on linear secret sharing that trade
a decrease in message complexity for an increase in time
complexity. Both work in the model with a semi-honest
adversary. First we describe the simple (but slow) protocol
and later the faster, improved one. We present the simple
version mainly to facilitate the understanding of the improved
protocol.

A. A Simple Version of the Protocol

The simple protocol is presented in Figure 4. The idea
behind the protocol is the following. The server encrypts all

1) The client generatessk, K and parametersfor the additively homo-
morphic cryptosystem and sendsK and theparametersto the server.

2) For eachXi ∈ X

a) The client encrypts each letterxw
i of Xi and sends{xw

i }K to the
server.

b) For eachYj ∈ Y , run the protocolfind-matching(i,j).
find-matching(i,j):
1) The server generatesskj andparametersfor the symmetric cryptosys-

tem and sendsparametersto the client.
2) The server sendsbyj = Eskj

(Yj) to the client.
3) The server preparest–out–of–T secret shares[s1, s2, . . . sT] with

secret0k||skj , wherek is the security parameter.
4) For every letteryw

j in Yj , the server computes:
vw = (({xw

i }K −h {yw
j }K) ·h r) +h {sw}K which equals

{((xw
i − yw

j) · r + sw)}K , wherer is always a fresh, random value
from the domain of plaintext.

5) The server sends[v1, v2, . . . vT] to the client.
6) The client decrypts the values and checks whether it is possible to

reconstruct the secret0k||z from them. In order to do that, he needs to
try all possible combinations oft among theT decrypted (potential)
shares. If it is possible andDecz(byj) ≈t Xi then he addsDecz(byj)
to his output set.

Fig. 4. Simple secret sharing protocol solving FPM problem

its wordsYj using separate symmetric keysskj and sends the
results to the client. The protocol then proceeds to reveal key
skj to the client only if there is a wordXi such thatXi ≈t Yj .

Every wordXi of the client is matched with each wordYj

of the server one by one. To this end, the client first sends
each letter ofXi to the server, encrypted to the public key of
the server separately.

Upon reception of the encrypted letters forXi, the server
does the following for each wordYj in his set (using the
subroutinefind-matching(i,j)). Firstly the server prepares
secret key (skj for corresponding wordYj) for the symmetric
encryption scheme (e.g., AES), and sends the encryptedYj to
the client. Then it preparest-out-of-T random secret shares
s1, . . . , sT such thats = 0k||skj . Sharesi is "attached" to the
i-th letter of wordYj , so to speak. Note that each time a new
wordXi from the client is matched withYj , freshsecret shares
are generated to avoid an attack similar to the one described
in section III.

Using the homomorphic properties of the encryption
scheme, the server then computes for each encrypted letter
{xw

i }K it received, the valuevw = {((xw
i − yw

j) · r + sw)}K

(using a fresh random valuer each time, and encryptingyw
j

to the public keyK). Note thatvw = {sw}K if and only if
xw

i = yw
j .

Finally, the server sendsv1, . . . , vT back to the client. The
client decrypts these values, and ifXi ≈t Yj , then by the
observation in the previous paragraph, among the decrypted
values there are at leastt sharessw from which skj and
thereforeYj can be reconstructed.

Due to space constraints we skip the proofs of correctness
and security of the protocol from Figure 4 (they can be found
in the appendix).

1) Complexity: Two kinds of messages are sent in this
protocol. Messages encrypted by homomorphic encryption
scheme are from the domainO(log |D|+ k) bits. The second

kind of messages are the messages encrypted by the symmetric
encryption scheme (they are sent in step 2 of the subroutine).
They are encryptions of plaintext from the domainDT .

The main impact on the message complexity of the protocol
is the fact that the subroutinefind-matching is called
nCnS times. In this subroutine, the server sendsO(T) cipher-
texts in step 5 . Hence, in totalO(nCnST) messages of size
O(log |D|+ k) andO(nS) messages of sizeO(log |D|T + k)
are sent in this protocol. Therefore, the bit complexity of the
protocol is:O(nCnST (log |D| + k) + nS(log |D|T + k)) =
O(nCnST (log |D| + k)).

We see that by first encrypting the words stored by the
server using symmetric keys, and later using the secret sharing
mechanism to reveal these keys instead of the full words,
changes the bit complexity fromO(T (log |D|T + k)) to
O(T (log |D| + k)), removing a factorT .

The server preparesnSnC times theT secret shares. Pro-
ducing T secret shares can be done efficiently and therefore
the time complexity of the server is reasonably low. The client
(in step 6 for each subroutine call) verifies if he can reconstruct
the secretYj . This verification costs

(

T
t

)

reconstructions (and
one reconstruction can be done efficiently). The number of
reconstructions is in the order ofO(nSnC

(

T
t

)

), which is the
major drawback of this protocol.

B. An Improved Protocol

We can improve the message complexity by combining the
idea of using secret sharing (protocol 4) with the idea of
encoding all characters at positionw using a polynomialPw

(protocol 2). The resulting protocol for FPM is presented in
Figure 5. It consists of two phases: a polynomial phase, and
a ticket phase.

The polynomial phase runs as follows. As in the previous
protocol, words are first sent encrypted to the client, whilethe
key skj is encoded using a secret sharing scheme such that
when the client has a word matching on letterw, it obtains
sharesj

w.
However, we now encode the shares at letter positionw

using a polynomialPw defined by

(Pw(yw
1) = s1

w)∩ (Pw(yw
2) = s2

w)∩ . . .∩ (Pw(yw
n) = sn

w)

(where, for technical reasons, at least random point is added
to ensure privacy in the casexw

i 6= yw
j). This polynomial is

sent to the client to allow him to recover sharesi
w for each

letterxw
i = yw

j . In fact, it is sent encrypted to the client; more
about this later.

We need to avoid the problem discussed in section III with
the original FPM protocol. Observe that the above definition
of Pw is only valid if we require thatsi

w = sj
w whenever

yw
i = yw

j . This means that, as we proceed through to the list
of words Yj of the server constructing secret shares for key
skj , we accumulate restrictions on the possible share values
we can use. In the extreme case, for some wordYj , T shares
could already be fixed! IfT was the total number of shares,
thenskj would be fixed and we would have the same leakage
of information discussed in section III.

We solve this problem by adding an extra sharessj
T+1, . . .

(that are in fact sent to the client in the clear!) and changing
the parameters of the secret sharing scheme, as follows. We
observe that if at mostT shares can get fixed as described
above, the best we can do is create a(T + 1)-out-of-(T + x)
scheme. This ensures that an arbitraryskj can actually be
encoded by the secret sharing scheme, even givenT fixed
shares. Thex extra shares are given away "for free" to the
client. Now to ensure that the client needs at leastt letters that
match wordYj in order to be able to reconstructskj form the
shares it receives, we needt = T + 1− x i.e., x = T + 1− t.

In other words, we use a(T +1)-out-of-(2 ·T +1−t) secret
sharing scheme where for each wordYj

• the first T shares are encoded using polynomials
P 1, . . . , PT , and

• the remainingT +1− t shares are given the client in the
clear.

If Xi ≈t Yj , then the client obtains at leastt shares using the
polynomialsP 1, . . . , PT . Combined with theT +1− t shares
it got for free, it owns at leastT + 1 shares that allow it to
reconstruct the secret. Note, however, that when it obtainsthe
shares by evaluating the polynomial for the letters inXi, it
does not know to whichYj these shares actually correspond.
So in fact to actually try to reconstruct the secret, it needsto
combine these shares with each group of freeT +1− t shares
corresponding toY1 up to Yn one by one.

This works, but it still leaves the leakage of information
problem discussed in section III when several different words
held by the client each match on some characters of a word
Yj held by the client, such thatt shares forskj are released
even though no single word of the client actually matchesYj .
This problem is solved in the ticket phase, as follows.

In fact, the polynomials sent by the server to the client
are encrypted using the homomorphic encryption scheme.
Therefore, when evaluating the polynomials for a wordXi, the
client only obtains theencryptedshares corresponding to it.
These are useless by themselves. The client needs the help of
the server to decrypt these shares. In doing so, the server will
enforce that the shares the client receives in the end actually
correspond to a single word in the client set (and not a mix
of shares obtained using letters from different words as in the
attack described in the previous paragraph).

The server enforces this using so-called tickets (hence the
name: ticket phase). Tickets are in fact(T +1)-out-of-(2 ·T +
1− t) random secret shares for the secret0. The clients sends
groups of encrypted shares (blinded by random values) that
he got for every wordXi to the server. The server, for every
group of shares received from the client, decrypts these shares
and adds the tickets shares. The result is sent back to the
client, who unblinds the result (subtracting the random value).
Because of the linear property of the secret sharing scheme,
the secret corresponding to the shares the client receives in the
end (that are the sum of the original share and the ticket share)
has not changed. But if the client tries to combine different
shares obtained form different words, the shares of the tickets

Polynomial Phase:
1) The server preparessk, K and parametersfor the additively homo-

morphic cryptosystem and sendsK and theparametersto the client.
2) For all Yj ∈ Y , the server generatesskj and parametersfor the

symmetric cryptosystem and sendsparametersto the client. Later the
server sendsbyj = Eskj

(0k||Yj) to the client.
3) For all Yj ∈ Y , the server prepares[T + 1]–out–of–[2 · T − t + 1]

secret shares[sj
1, sj

2, . . . sj
2·T−t+1] with the secret0k||skj , where

k is the security parameter. Ifyw
j = yw

m thensj
w = sm

w .
The server sends[sj

T+1, . . . sj
2·T−t+1] to the client.

4) The server preparesT polynomials (forw = 1 to T) of degreen :
a) The polynomial is defined in the following way:

((P w(yw
1) = s1

w)∩ (P w(yw
2) = s2

w)∩ . . . (P w(yw
n) = sn

w))
The number of points is increased ton+1 by adding random points
(at least one random point is added).

b) The server computes the coefficients of the polynomials and en-
crypts each polynomial{P w}K and sends it to the client.

5) The client evaluatesT polynomials (forw = 1 to T) on each letter of
each word (fori = 1 to n): {vw

i }K = {P w(xw
i)}K . If xw

i = yw
m

thenvw
i = sm

w .
6) The client blinds the resultsvw

i with a random valuesrw
i and sends

them to the server:{vw
i + rw

i }K .
Ticket Phase:
6) For i = 1 to n, the server prepares[T + 1]–out–of–[2 · T − t + 1]

secret shares[τi
1, τi

2, . . . τi
2·T−t+1] with secret0. Later he sends

[τi
T+1, . . . τi

2·T−t+1] to the client.
7) For i = 1 to n and forw = 1 to T , the server decrypts the received

messagesDsk({vw
i +rw

i }K) and sends(vw
i +rw

i +τi
w) to the client.

8) The client unblinds them (by subtractingrw
i) obtainingqw

i .
If xw

i = yw
m thenqw

i = sm
w + τi

w.
9) For i = 1 to n and j = 1 to n, the client checks if it is

possible to reconstruct the secret0k||z from: [q1
i , q2

i , . . . qT
i , sj

T+1+

τi
T+1, sj

T+2 + τi
T+2, . . . sj

2·T−t+1 + τi
2·T−t+1].

In order to do that, the client needs to try all possible combinations
of t shares among theT decryptedq shares (the rest of the shares
is the same during reconstructions). If it is possible and forany byj ,
Decz(byj) = 0k||a, anda matchesXi then he addsa to his output
set.

Fig. 5. Improved secret sharing protocol solving FPM problem

hidden within them no longer match and reconstruction of the
secret is prevented.

Due to space constraints we skip the proofs of correctness
(that is essentially similar to the discussion above) of the
protocol from Figure 5. This proof can be found in the
appendix.

1) Security:The privacy of the client’s input data is secure
because all of the data received by the server (in step 6 of
the polynomial phase) is of the form:vw

i + rw
i , whererw

i is
a random value from the domain of the plaintext. Hence the
server cannot distinguish between different client inputs.

The privacy of the server is protected because the client
receives correct secret shares of someskj (corresponding to
Yj ∈ Y) if and only if there is an elementXi ∈ X such
that Xi ≈t Yj . In the polynomial phase, the client receives
encrypted polynomials andn groups withT − t + 1 shares
([si

T+1, . . . si
[2·T−t+1]]) of [T +1]–out–of–[2·T−t+1] secret

sharing scheme. Hence, there is no leakage of information
in the polynomial phase. The client receives information in
plaintext in steps 6 and 7 of the ticket phase. In this situation,
the client has at leastT +1 correct secret shares during step 7
and he can reconstruct the secret0k||skm (and therefore,Ym).

If there is no such element inX to which Yj is similar,

then the client receives no more thant shares in every group
qi of potential shares:qw

i = τi
w +sj

w (wherei is an index of
the received group of potential shares). The other values (for
incorrect letters) includePw(yw

j) that cannot be determined.
It is caused by the fact that the client does not know enough
points (degree of the polynomial isn + 1 and the client can
know only n points) defining the polynomial and at least
one unknown point is random. This is exactly the situation
like in a polynomial based secret sharing scheme when not
enough shares are known. The client cannot reconstructskj

for any group separately (by the secret sharing assumption),
because he has less thanT + 1 correct secret shares. Of all
the shares,(T − t + 1) come from values that are sent in
plaintext. For every group of shares,τ values are different and
therefore make every received group of shares independent.
The probability that a random value fromR is a correct
share is negligible (with respect to a security parameterk).
Therefore, the probability that the client can recover illicit
information is negligible.

2) Complexity: In step 2 the server sendsn messages
encrypted by the symmetric encryption scheme that are from
the domainO(log |D|T +k) (that isO(n(T log |D|+k)) bits).
Later in step 3 the server sendsO(nT) unencrypted messages
from the domainO(k + log |D|) (that isO(nT (log |D| + k))
bits). In step 4 the server sends encryptions ofT polynomials
of degreen. This totals toO(nT (log |D| + k)) bits. For
every received polynomial, the client computesn values and
sends them encrypted to the server (againO(nT (log |D|+k))
bits). In the ticket phase, in step 7, the server sendsO(nT)
unencrypted messages, that isO(nT (log |D|+k)) bits. Hence,
the bit complexity of the entire protocol totals to:O(nT (k +
log |D|) + n(k + log |D|T)) = O(nT (k + log |D|)).

The main part of the server time complexity is preparing2n

times[T +1]–out–of–[2·T −t+1] secret shares. Since produc-
ing (2·T −t+1) secret shares can be done efficiently, the time
complexity of the server is reasonable. The crucial part forthe
time complexity of the client is step 9 (which is performedn2

times). In this step the client checks whether he can reconstruct
the secretYj . This verification costs

(

T
t

)

reconstructions (and
one reconstruction can be done efficiently). The total number
of reconstructions is in the order ofO(n2

(

T
t

)

), which is the
major drawback of this protocol.

VI. H AMMING DISTANCE BASED PROTOCOL

In this section we present two protocols solving the FPM
problem based on computing the encrypted Hamming dis-
tance: one that is simple and efficient for small domains
and another that uses oblivious transfer. The difference be-
tween them is only the implementation of the subroutine
equality-matrix (the frame of the protocol is the same
for both of them). Firstly we describe the simple protocol and
later the one using oblivious transfer.

A technique to compute the encrypted Hamming distance to
solve the FPM problem has been introduced in [3]. However,
the protocol in that paper uses generic 2-party computations

1) The client preparessk, K and the parameters for the additively
homomorphic cryptosystem and sendsK and theparametersto the
server.

2) Run subroutineequality-matrix. After this subroutine the server
has obtained the following matrix:

f(w, i, j) =


{0}K , for xw

i = yw
j

{1}K , for xw
i 6= yw

j

,

wherew ∈ {1, . . . T} and i, j ∈ {1, . . . n}
3) For eachXi ∈ X andYj ∈ Y :

a) the server computes{∆(Xi, Yj)}K = {
PT

w=1
f(i, j, w)}K and,

for ℓ = 0 to T − t, sends{(∆(Xi, Yj)− ℓ) · r + (0k||Yj))}K to
the client. Herer is always a fresh, random value.

b) The client decrypts allT −t messages and if any plaintext is inDT

and matches any word fromX, then the client adds this plaintext
to the output set.

Fig. 6. Hamming distance based protocol for the FPM problem

together with oblivious transfer, making their approach less
practical.

Our protocol (see Figure 6) works as follows. The server
first obtains, using the subroutineequality-matrix, a 3-
dimensional matrixf(w, i, j) containing the encrypted equal-
ity test for thew-th letter in wordsXi and Yj (where{0}K

denotes equality and{1}K denotes inequality). The server
sums the entries in this matrix to compute the encrypted
Hamming distancedj

i = ∆(Xi, Yj) between the wordsXi and
Yj . Subsequently, the server sendsYj blinded by a random
value r multiplied by d

j
i − ℓ, for all 0 ≤ ℓ ≤ T − t. If

0 ≤ d
j
i ≤ T − t, then for someℓ the valueYj is not blinded

at all. This allows the client to recoverYj . OtherwiseYj is
blinded by some random value for everyℓ, and the client learns
nothing.

3) Correctness and Security of the protocol from Figure 6:
Assuming that in the subroutineequality-matrix the
matrix f has been securely obtained, protocol 6 calculates a
correct output. This can be concluded from the following facts:
if Xi ≈t Yj then (in step 3a)∆(Xi, Yj) ∈ { 0 . . . T − t },
and therefore{0k||Yj}K is sent to the client. Privacy of the
server is protected because in step 3a ifXi 6≈t Yj then
∆(Xi, Yj) 6∈ {0, . . . T−t} and therefore all values received by
the client look random to him. Correctness and security proofs
of this protocol resemble the proofs of the protocol presented
in Figure 4 and are omitted here.

A. Implementing Subroutineequality-matrix

The first method to implement the subrou-
tine equality-matrix is as follows. The client sends
the letters of all his words to the server as encrypted
vectors dw

i : {0, . . . |D| − 1} (where i ∈ {1, . . . nC} and
w ∈ {1, . . . T}) such thatdw

i (v) = {1}K if v = xw
i , and

dw
i (v) = {0}K otherwise. This process can be described

as sending encryptions of unary encoding of the letters
of all his words. Subsequently the server defines the
matrix as f(w, i, j) = dw

i (yw
j). The main drawback of

this method is that its bit complexity includes a factor
O(|D| ·n · T + n2 · (T − t)). However, the protocol is simple,
and for small domainsD (e.g., ASCII letters) it is efficient.
For constant sizeD and T ≈ t the bit complexity of the

1) The client generates vectorsdw
i : [0, . . . |D|−1] (wherei ∈ {1, . . . nC}

andw ∈ {1, . . . T}) such that:dw
i (v) = 1 if v = xw

i , anddw
i (v) = 0

otherwise.
2) The matrixf is defined in the following way (for alli, j ∈ {1, . . . n}

andw ∈ {1, . . . T}):
a) The client picks a random bitbw

i,j .
b) The server and the client perform1–out–of–|D| oblivious transfer as

follows. The client constructshw
i,j , which is a vector[0, . . . |D|−1]

as follows:
hw

i,j = [dw
i (0) ⊕ bw

i,j , dw
i (1) ⊕ bw

i,j , . . . dw
i (|D| − 1) ⊕ bw

i,j].
The server wants to obtain a value from the vectorhw

i,j with an index
yw

j . For that they perform the oblivious transfer protocol (where the
server has an index and the client an array). Subsequently, the server
obtains the valueh = hw

i,j(y
w
j).

c) The client sends{bw
i,j}K to the server.

d) f(w, i, j) =


{bw

i,j}K , for h = 0

{1 − bw
i,j}K , for h = 1

Fig. 7. Subroutineequality-matrix based on oblivious transfer

protocol reduces toÕ(n2 + n · T) (which is significantly
better than the bit complexity of the protocol from [3] in this
situation).

The second implementation of the subroutine is shown
in Figure 7. This implementation uses1–out–of–q oblivious
transfer. An oblivious transfer is a2-party protocol, where
a client has a vector ofq elements, and the server chooses
any one of them in such a way that the server does not
learn more than one, and the client remains oblivious to the
value the server chooses. Such an oblivious transfer protocol
is described in [6]. The fastest implementation of oblivious
transfer works in timeÕ(1).

The second version of the subroutineequality-matrix
uses such an oblivious transfer in the following way. Let
dw

i be the unary encoding ofxw
i as defined above (in the

description of the first method of implementation). The client
chooses a random bitbw

i,j . Next he constructs a vectorhw
i,j

which contains all bits ofdw
i , each blinded by the random

bit bw
i,j . In other wordshw

i,j [x] = dw
i (x) ⊕ bw

i,j . Using an
oblivious transfer protocol, the server requests theyw

j -th entry
in this vector, and obtainsdw

i (yw
j)⊕bw

i,j . By the obliviousness,
the client does not learnyw

j , and the server does not learn
any other entry. Subsequently, the client sends the encryption
{bw

i,j}K to the server. Based on this the server constructs
f(w, i, j) = {dw

i (yw
j)}K as explained in the protocol.

1) Corollary: These protocols are in general less efficient
in bit complexity than the improved protocol based on secret
sharing (see Section V-B, Figure 5). The first protocol is
efficient for small domains, but significantly less efficientfor
large ones. In the second protocol there aren2 · T oblivious
transfer calls. Moreover, at this stage, we do not foresee a
way to improve these protocols. However, the protocols are
interesting because they do not use generic2-party computa-
tions. Furthermore, the techniques being used contain novel
elements especially in the subroutineequality-matrix,
that presents a technique for obtaining the encryption of a
single bit using only one oblivious transfer.

VII. SUMMARY AND FUTURE WORK

In this paper we have presented a few protocols solving
the FPM problem. The most efficient one works in a linear
bit complexity with respect to the size of the input data and
the security parameter. This is a significant improvement over
existing protocols. The improvement comes at an expense of
a factorn increase in time complexity (but only at the client).

Currently, we are investigating how to speed up the time
complexity of the client by using error correcting coding
techniques.

REFERENCES

[1] M. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” inAdvances in Cryptology — EUROCRYPT 2004.,
2004, pp. 1–19.

[2] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data,” Cryptol-
ogy ePrint Archive, Report 2003/235, 2003, http://eprint.iacr.org/.

[3] P. Indyk and D. Woodruff, “Polylogarithmic private approximations and
efficient matching,” inThe third Theory of Cryptography conference
2006, vol. 3876 of LNCS, 2006, pp. 245–264.

[4] F. Boudot, B. Schoenmakers, and J. Traoré, “A fair and efficient
solution to the socialist millionaires’ problem,”Discrete Applied
Mathematics, vol. 111, no. 1–2, pp. 23–36, 2001. [Online]. Available:
citeseer.ist.psu.edu/boudot01fair.html

[5] R. Fagin, M. Naor, and P. Winkler, “Comparing information without
leaking it,” Communications of the ACM, vol. 39, no. 5, pp. 77–85, 1996.
[Online]. Available: citeseer.ist.psu.edu/article/fagin96comparing.html

[6] M. Naor and B. Pinkas, “Oblivious transfer and polynomialevaluation,”
in Thirty-First Annual ACM Symposium on the Theory of Computing,
May 1999, pp. 245–254.

[7] L. Kissner and D. Song, “Privacy-preserving set operations,” inAdvances
in Cryptology — CRYPTO 2005., 2005, pp. 68–80.

[8] J.-H. Hoepman, “Private handshakes,” in4th Eur. Symp. on Security and
Privacy in Ad hoc and Sensor Networks, 2007.

[9] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H.-C.
Wong, “Secret handshakes from pairing-based key agreements,” in 24th
IEEE Symposium on Security and Privacy, Oakland, CA, May 2003, p.
180.

[10] C. Castelluccia, S. Jarecki, and G. Tsudik, “Secret handshakes from
ca-oblivious encryption,” inIn Advances in Cryptology - ASIACRYPT
2004: 10th International Conference on the Theory and Application of
Cryptology and Information Security, vol. 3329, December 2004, pp.
293–307.

[11] K. Du and M. Atallah, “Protocols for secure remote database access
with approximate matching,” inthe First Workshop on Security
and Privacy in E-Commerce, Nov. 2000., November 2000. [Online].
Available: citeseer.ist.psu.edu/du00protocols.html

[12] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. J. Strauss, and R. N.
Wright, “Secure multiparty computation of approximations,”Lecture
Notes in Computer Science, vol. 2076, pp. 927+, 2001.

[13] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen, “On private scalar
product computation for privacy-preserving data mining,”Lecture Notes
in Computer Science, vol. 3506, pp. 104–120, 2004.

[14] O. Goldreich,Secure multi-party computation. Cambridge University
Press, 2002.

[15] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game or a completeness theorem for protocols with honest majority,” in
STOC. ACM, 1987, pp. 218–229.

[16] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Universally com-
posable two-party and multi-party secure computation,” inSTOC, 2002,
pp. 494–503.

[17] M. Naor and K. Nissim, “Communication complexity and securefunc-
tion evaluation,”CoRR, vol. cs.CR/0109011, 2001.

[18] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” inAdvances in Cryptology — EUROCRYPT 1999., May
1999, pp. 223–238.

[19] A. Shamir, “How to share a secret,” inCommunications of the ACM,
vol. 22, n.11, November 1979, pp. 612–613.

APPENDIX

a) Correctness and security of the protocol from Figure
4: In this protocol the client encrypts all of letters of all of his
words (with a unique secret key for every word) and sends the
results to the server. Then for every couple of words(Xi, Yj),
the participants run the subroutinefind-matching. In the
subroutine firstly the server encryptsYj with some random
secret keyskj of symmetric encryption scheme. Later it
dividesskj into T shares (with thresholdt) and for every letter
in Yj calculatesvw = {((xw

i −yw
j)·r+sw)}K . If xw

i = yw
j then

the client receives the correct share, otherwise a random value.
However, at this step the client cannot distinguish in which
situation he is (he cannot distinguish a random value from the
correct share). Then the client checks if he can reconstructthe
secret key using any combination oft out of theT elements
{Dsk(vw)|1 ≤ w ≤ T}. He recognizes the secret key by the
0k prefix, and the fact that decrypted by that secret key value is
similar with one of the words from his set. If he has less than
t correct secret shares then he cannot recover the secret key,
and the retrieved data looks random to him (this follows from
the security of the secret sharing scheme). Hence all required
elements fromY appear in the client’s output. The probability
that some incorrect element is in the output set is negligible.

The client input data is secure because all of the data
received by the server is encrypted (using the semantically
secure cryptosystem). Hence the server cannot distinguish
between different client inputs.

Privacy of the server is protected because the client receives
correct secret shares of someYj ∈ Y if and only if there is
an elementXi ∈ X such thatXi ≈t Yj . In this situation the
client has at leastt correct secret shares and he can reconstruct
the secret0k||skj (and therefore, it can decryptYj). If there is
no element inX to whichYj is similar then the client receives
n independent groups of shares, which has no group with at
least t correct shares. Hence from any of these groups he
cannot retrieve any secret key. The probability that a random
value fromR is a correct share is negligible (with respect to
security parameterk). Therefore the probability that the client
can recover an illicit secret is negligible.

b) Correctness of the protocol from Figure 5:The first
important issue appears in step 3 of the polynomial phase.
Here the server preparesn groups of[T + 1]–out–of–[2 · T −
t + 1] shares[sj

1, sj
2, . . . sj

2·T−t+1]. From thejth group he
can recoverskj , and therefore,Yj . During the creation of these
shares the server uses the rule:

for w ∈ {1, . . . T}: if yw
i = yw

m thensi
w = sm

w. (1)

This rule is necessary because the firstT shares from each
group are later encoded as polynomials.

This secret sharing is used here in the same role as thet–
out–of–T one. However if thet–out–of–T scheme is used, then
it is impossible to choose the proper value of secrets (e.g.,two
matching, but different, words fromY , would have the same
secret because of Rule 1). Secret shares[si

T+1, . . . si
[2·T−t+1]]

are chosen arbitrarily only to enable proper values of the

secrets. To choose arbitrary secrets even for equal words (Y

could be a multiset)(T − t + 1) new shares (the ones that
are sent in plaintext) is exactly enough. The role of shares
[si

1, . . . si
T] is like in classical secret sharing. Because the

last T − t + 1 shares are known, the firstT shares work like
a t–out–of–T secret sharing scheme.

Subsequently, in step 4, the server createsT polynomials
of degreen in such a way that evaluating a polynomial on
a corresponding letter from some word fromY results in
a corresponding secret share. Later he sends the encrypted
polynomials to the client. The client evaluates the polynomials
on his words and achieves{vw

i }K (where the following
property holds: ifxw

i = yw
m then vw

i = sm
w). After the

ticket phase, the client receivesT values qw
i = vw

i + τi
w,

where [τi
1, τi

2, . . . τi
T] are tickets – secret shares with the

secret0. Hence the client receives the group:[v1
i + τi

1, v2
i +

τi
2, . . . vT

i + τi
T], where if xw

i = yw
m (for someYm ∈ Y)

thenvw
i = sm

w. Therefore, by the linear property of LSS, if
vw

i is a correct secret share, thenqw
i = vw

i + τi
w is also a

correct secret share. The client is trying to recover a secret
for every received group of potential shares. However, for a
proper reconstruction, he also needs shares that have been sent
to him in plaintext by the server. These shares are always
correct, but he needs to combine shares from the polynomial
and ticket phases. Moreover, he does not know which shares
from the polynomial phase correspond to the shares from the
ticket phase. As a result, the client has to check all of the
combinations (n2). If the client combines non-fitting shares
then he cannot recover the proper secret key (and therefore
the proper word).

Hence, for i, j ∈ {1, . . . n}, the client checks if he can
reconstruct the secret key from the following shares:
[q1

i , q2
i , . . . qT

i , sj
T+1 + τi

T+1, sj
T+2 + τi

T+2, . . .

sj
2·T−t+1 + τi

2·T−t+1] .
If enough corresponding secret shares are in the groupqi,
then the secret that could be recovered from them is0k||skm

(because the secret ofτ shares is0). Hence, in step 9 the
client recovers all of the secret keys that he has corresponding
shares of.

