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Abstract—In the private matching problem, a client and a private matching protocol could be used to determine the
server each hold a set ofx input elements. The client wants to  gimilarity of the scanned fingerprint with the templateseto

privately compute the intersection of these two sets: he leams ;, the gatabase, without revealing any information aboist th
which elements he has in common with the server (and nothing - ’ .
template in the case that no match is found.

more), while the server gains no information at all. In certain ’ h .
applications it would be useful to have a private matching  All known solutions for fuzzy private matching, as well as

protocol that reports a match even if two elements are only our own protocols, work in a semi-honest environment. Is thi
similar instead of equal. Such a private matching protocol is environment participants do not deviate from their protoco

called fuzzy, and is useful, for instance, when elements may be ,;+ may use any (additional) information they obtain to tthei
inaccurate or corrupted by errors.
own advantage.

We consider the fuzzy private matching problem, in a semi- . ) .
honest environment. Elements are similar if they match ont Freedmaret al. [1] introduce the fuzzy private matching

out of T attributes. First we show that the original solution problem and present a protocol farout-of-3 fuzzy private
proposed by Freedmanet al. [1] is incorrect. Subsequently we matching. We show that, unfortunately, this protocol isoiRc

present two fuz_zy private matching protocoljg. The first, simple, rect (see Section Il): the client can “steal” elements eifen
protocol has bit message complexityO(n () (T log|D| + k)). th s h imilar el s
The second, improved, protocol has a much better bit message € Sets haveo similar elements in common.

complexity of O(nT(log|D| + k)), but here the client incurs a  Building and improving on their ideas, we present two
O(n) factor time complexity. Additionally, we present protocols protocols fort-out-of-I" fuzzy private matching (henceforth
based on the computation of the Hamming distance and on simply called fuzzy private matching or FPM for short). The

oblivious transfer, that have different, sometimes more efficien first, simple, protocol has time complexi@(n(T)) and bit
performance characteristics. ' ! t

- T
Index Terms—fuzzy matching, secure 2-party computation, Me€sSage Complexl't@(”(t)(T log |D|+k)) (protocol 3). The
secret sharing second protocol is based on linear secret sharing and has

a much better bit message complexi®(nT (log|D| + k))
l. INTRODUCTION (protocol 5). Here the client incurs @(n?(%)) time com-

In the private matching problem [1], a client and a servgilexity penalty. Note that this is only a factar worse than
each hold a set of elements as their input. The size of the & previous protocol. We also present a simpler version
is n and the type of elements is publicly known. The cliemdf protocol 5 (protocol 4) to explain the technigues used
wants to privately compute the intersection of these twe:seincrementally. This protocol has a slightly worse bit megsa
the client learns the elements it has in common with the sen@mplexity.

(and nothing more), while the server obtains no information Note that, contrary to intuition, fuzzy extractors and secu
at all. sketches ([2]) cannot be used to solve fuzzy private matchin

In certain applications, the elements (think of them as worgroblem.
consisting of letters, or tuples of attributes) may not atsva Indyk and Woodruff [3] present another approach for solv-
be accurate or completely known. For example, due to erroirsg fuzzy private matching, using the computation of the Ham
omissions, or inconsistent spelling, entries in a datalba@g ming distance together with generic techniques like se2ure
not be identical. In these cases, it would be useful to haveparty computations and oblivious transfer. Generic npatity
private matching algorithm that reports a match even if tweomputation and oblivious transfer are considered not to be
entries are similar, but not necessarily equal. Such a terivafficient techniques. Therefore, based on the protocol from
matching is calleduzzy and was introduced by Freedmah [3], we design protocols based on computation the Hamming
al. [1]. Elements are called similar (or matching) in thiglistance that do not use seculeparty computation. One
context if they match onout of T' letters at the right locations. protocol is efficient for small domains of letters (protocol

Fuzzy private matching (FPM) protocols could also bé version 1) and the second protocol uses oblivious transfer
used to implement a more secure and private algorithm @frotocol 6 version 2). The major drawback of the first protoc
biometric pattern matching. Instead of sending the coraplds a strong dependence on the size of the domain of lettees. Th
template corresponding to say a scanned fingerprint, a fuzmain weakness of the second protocol is its high complexity



Bit Com- | Time . Bit Complexity (O) handshaking protocols can be encoded using specially con-
plexity (O) | Complexity structed secret values taken from a large domain.

[1] (corrected), | n(7) o(m(})) n(})(Tlog |D|+k) Privacy issues have also been considered for the approxima-
Fig.3 protocol tion of a functionf among vectors owned by several parties.

SFE protocol | n®T O(m>T) n?Tklog|D| The function f may be Euclidean distance ([11], [12], [3]),
[3] nT?+n? | O(nT? +n?) | —2 set difference ([1]), Hamming distance ([11], [3]), or swal
Fig.4 protocol | n2T om?*T (%)) | n®T(log|D| + k) product (reviewed in [13]).
Fig.5 protocol | nT om21(%)) nT(log |D| + k) Our paper is stru<_:tured as follpws. We formally Qefine the
Fig6 protocol| |DlnT + | O(DnT + DInTh + fuzzy private matching probler.n' in Sectloq II, and mtrodgce
v13 n2(T —t) | n*(T—1) n2(T —t) our system model, some additional notation, and primitives
(T'log | D| + k) there as well. Then in Section Ill we present the solution
Fig.6 protocol | n2T n?T oblivious | nT oblivious trans-|  from [1] for 2-out-of-3 fuzzy private matching and show where
v2! transfercalls | fer calls it breaks down. Section IV contains our first protocol fer

=

For the sake of simplicity time complexities are given rougiynimbers Out-of-1" fuzzy private matching that uses technigues similar
of Iefficient| operaltions (eg., S)‘ecret slharing’s rehconﬁtmls, zncrsllptions% to the ones used in [1]. Then we present our second protocol
polynomial’'s evaluations etc.); we also report here only chmplexity o : . . . . .
the slowest participant based on linear secret sharing in Section V. Finally, Sectio
2 the authors of the paper do not give exact complexity inGheotation. VI presents two protocols based on the computation of a

% protocol with subroutine from first paragraph of sectionA/l- Hamming distance. All our protocols assume a semi-honest
4 protocol with subroutinequal i t y- mat ri x from Figure 7. environment (see Section II—B).

Fig. 1. Results overview Il. PRELIMINARIES

In this section, we introduce the fuzzy matching problem

as well as the mathematical and cryptographic tools that we
— in the protocol there are? - T' oblivious transfer calls. We use to construct our protocols.

present these protocols mainly to show that other apprgache
to solve the fuzzy private matching problem exist as well. A. Fuzzy Private Matching Problem Definition

We compare our protocols to existing solutions using sev-| et a client and a server each own a set of words. A fuzzy
eral complexity measures in Table 1. One of these comrivate matching protocol is2xparty protocol between a client
plexity measures is the notation used for the bit mes-and a server, that allows the client to compute the fuzzy set
sage complexity in [3]. This notation is defined as foljmtersection of these sets (without leaking any informatio
lows. For functions f and g, we write f = O(g) if the server).
fn,k) = O (g(n,k:) 1og® ™M (n) - poly(k) ) where k is To be precise, let each wordl = z!'...27 in these sets
the security parameter. This notation hides certain fadike consist of T’ lettersz? from a domainD. Let X = ! ... 2T
a strong dependence on the security paramieferg.£®), and andY =y'...yT. We defineX ~; Y (X andY match ont
is therefore less accurate than the standard’bigptation. We letters) if and only ift < [{k:2F =y* N (1 <k <T)}|.
prefer this measure for the plain message complexity, whereThe input and the output of the protocol are defined as
we restrict the bit size of the messages to be linedt.in follows. The client input is the seX = {X;,... X, .} of

Related work can be traced back to private equality teste Words of lengthT’, while the server’s input is defined as
ing [4], [5], [1], [6] in the 2-party case, where each party had” = {Y1,... Y.} of ng words of lengthT". Both the client
a single element and wants to know if they are equal (withoand the server have also in their inputg, ng, 7" andt. The
publishing these elements). Private set intersection [g]], output of the client is the sefty; € Y[3X; € X : X; =~ Y}

[7] (possibly among more than two parties) is also relatedhis set consist of all the elements frorh that match with

In this problem the output oéll the participants should beany element from the sek. The server's output is empty
the intersection of all the input sets, but nothing more: @he server does not learn anything). Usually we assume that
participant should gain no knowledge about elements fromz = ns = n. In any case, the sizes of the sets are fixed and
other participant’s sets that are not in the intersection. @ priori known to the other party (so the protocol does not

Similarly related are the so called secret handshaking pfve to prevent the other party to leam the size of the set).
tocols [8], [9], [10]. They consider membership of a secret
group, and allow members of such groups to reliably idef?: Adversary Models
tify fellow group members without giving away their group We prove correctness of our protocols only against com-
membership to non-members and eavesdroppers. We note thaationally bounded (with respect to a security paramkfer
the (subtle) difference between secret handshaking and setd semi-honest adversary, meaning the the parties folew t
intersection protocols lies in the fact that a set-intdisac protocol but may keep message histories in an attempt to lear
protocol needs to be secure for arbitrary element domaim®re than is prescribed. Here we provide the intuition ard th
(small ones in particular), whereas group membership fmformal notion of this model, the reader is referred to [14]



for full definitions. To simplify matters we only considereth These properties hold for suitable operatiensand-;, defined
case of only two participants, the client and the server. over the range of the encryption function. In Paillier'steys,

We have chosen the semi-honest model for a few reaso@peration+; is a multiplication and; is an exponentiation.
First of all, there had not been made any “really” efficient 1) Remark: The domainR of the plaintext of the homo-
solution for FPM problem in any model. Secondly, our protonorphic cryptosystem in all of our protocols (unless spedifi
cols seem to be secure against malicious clients and the odifferently) is defined as followsR should be larger tha®™
possible attacks are on the correctness of the protocols (oy in some protocolsD) and a uniformly random element
malicious servers. Moreover in [15], [16], [17], it is showrfrom R should be inDT (or D) with negligible probability.
how to transform a semi-honest protocol into a protocdlhis property can be satisfied by representing an element
secure in the malicious model. Further, [17] does this ata€ DT (or in some protocols: € D) by r, = 0*||a in
communication blowup of at most a small factorsefly(k). R. The domainR should be a field (e.gZ, for some prime
Therefore, we assume parties are semi-honest in the rearaing.
of the paper (however we are aware that the mentioned generi2) Operations on encrypted polynomialé/e represent any
transformations are not too efficient). polynomial p of degreen (on some ring) as the ordered list

We leave improving protocols to work efficiently in ma-of its coefficients:[ao, a1, ... a,]. We denote the encryption
licious environment and proofs that the protocols from thigf @ polynomialp by {p}, and define it to be the list of
paper are secure against malicious clients for future work. encryptions of its coefficient§{co}x, {1} i, - - - {an } K]-

In the model with a semi-honest adversary, both partiesMany operations can be performed on such encrypted poly-
are assumed to act accordingly to the protocol (but th&pmials like: addition of two encrypted polynomials or nhult
are allowed to use all information that they collect in aRlication of an encrypted and a plain polynomial. We use the
unexpected way to obtain extra information). The securif@llowing property: given an encryption of a polynomiad} x
definition is straightforward in our particular case, asyaoie and somer one can efficiently compute a val§p(z)} k. This
party (the client) learns the output. Following [1] we digid follows from the properties of the homomorphic encryption
the requirements into: scheme:

« The client’s security -indistinguishably: Given that the n n n
server gets no output from the protocol, the definition of{p(z)}x = {Zai :c} = Zh {a; -2t} = Zh {as}i - o
the client’s privacy requires simply that the server cannot =0 K i=0 i=0
distinguish between cases in which the client has different

inputs. D. Linear Secret Sharing

« The server's security €omparison to the ideal model .
o . Some of our protocols useout-of-I" secret sharing. The
The definition ensures that the client does not get more or_ " __". o — .
. . . ) . secrets is split into 7" secret shares’, such that any combi-
different information than the output of the function. This__ . -
hation of at least such shares can be used to reconstsuct

is formalized by considering an ideal 'mplementaﬂo%ombining less tham individual shares gives no information

where a trusted third party TTP gets the inputs of the tWV9 atsoever about the secret.

arties and outputs the defined function. We require that, . . .
P outp . qui A Lineart-out-of-I" Secret Sharing (LSS) scheme is a secret
in the real implementation of the protocol (one without, . . . o
: ) . . sharing scheme with the following property: givérshares
TTP) the client does not learn different information than, _ i _
in the ideal imolementation s' (of secrets), andt sharesr (of secret7) on the same
P ' indices, using’+7" one can reconstruct the sum of the secrets

Due to space constraints our proofs are informal, presgntify 7 One such LSS scheme is Shamir’s original secret sharing
only the main arguments for correctness and security. scheme [19].

IIl. THE ORIGINAL FPM PrOTOCOL

] » Freedmanet al. [1] proposed a fuzzy private matching
In all our protocols we use a semantically secure, addwveﬂ)rotocol for the case wher® = 3 andt = 2 (see Figure 2).

homomorphic public-key cryptosystem, e.g., Paillier'yper Unfortunately, their protocol is incorrect.
tosystem [18]. Let{-}x denote the encryption function with 1y The jgea behind, and the problem of the protocol from
the public keyX'. The homomorphic cryptosystem Supportgig e 2: |ntuitively the protocol works because X; ~» Y;
the following two operations, which can be performed wmoqhem sayz2 = y? andz? = y?. HencePs(«2) = Py(y2) = r;
the knowledge of the private key. and Py (z3) = P3(y?) = r; S0 Py(y2) — P3(y?) = 0. Then the
1) Given the encryptionga}x and{b}, of a andb, one result{r’- (P(y?) — P3(y})) + Y;}x sent back by the server
can efficiently compute the encryption ef-b, denoted simplifies to{Y}}x (the random value’ is canceled by the
{a+ b}tk :={a}x +rn {b}K encryption of0) which the client can decrypt. IX; andY; do
2) Given a constant and the encryptioda}x, of a, one not match, the random valuesr’ andr”’ do not get canceled
can efficiently compute the encryption of a, denoted and effectively blind the value df; in the encryption, hiding
{a-c}g :={atk nc it to the client.

C. Additively Homomorphic Cryptosystem



1) The client chooses a private key, a public key K and parameters 1) The client chooses a private ke, a public key K and parameters

for the additively homomorphic encryption scheme and sefidand for the additively homomorphic encryption scheme and sefidand
the parametergto the server. the parametersto the server.
2) The client: 2) For every combinatiow of ¢ out of 7" indices the client:
a) chooses, for every (such thatl < i < n¢), a random value a) constructs a polynomial:
ri € R. Py(z) = (x—0(X1))  (x—0(X2)) - (x —0(Xny)) Of degree
b) creates3 polynomials:P;, P2, P3 over R (where polynomialP; is nc with domain DT and rangeR.
used to encode all letters on thith position) defined by the set of b) sends{P,}x (the encrypted polynomial) to the server.
equations L 5 3 ) 3) For everyY; € Y, 1 < i < ng, and every received polynomigl
ri = Pi(z;) = Pa(27) = P3(x7), for 1 <i <ng. {P,} K (corresponding to the combinatiar) the server:

c) uses interpolation to calculate coefficients of the poigrals

(P1, P2, P3) and sends their encryptions to the server. a) evaluates polynomiall Py }yc at the pointo(Y;) to compute

{wf}k = {r x Ps(c(Y3)) + Yi}k, wherer € R is always a

3) For eacth- (such thatl < j < ng), the server responds to the client: fresh random value.
{r- (Pr(yj) = P2(y}) + Yt i, {7 (P2(y}) — P3(y})) + Y}k b) sends{w?}x to the client.
{r”- (P D) — Ps(y)) + Yitk, wherer,r’, 7' are fresh random | 4) The client decrypts all received messages. If for such aygéon
values inR. This uses the properties of the homomorphic encryption w? ~¢ X; for any X; € X, then he addss? to the output set.
scheme including the encrypted polynomials explained ini@etitC2. ¢ :

4) If the client receives an encryption of an encodingYef which is Fig. 3. Polynomial Based Protocol solving FPM problem

similar to any word from his seX, then he adds it to the output set.

Fig. 2. Original FPM protocol
of Y; is sent to the client. Later on, the client can recognize
this value by the convention that valuesif' are represented

There is however a problem with this approach. Consider R using a0* prefix. Otherwise (ifY; does not match with
the following input data. The input of the client {§1,2,3] any element fromX) all the values sent to the client contain
. [1,4,5]}, while the input of the server i§[5,4,3]}. Then a random blinding element (and therefore their decryptions
in step 2c of the protocol, the polynomials are defined (lare inY with negligible probability).
the client) in the following way:P;(1) = r; N P (1) = o, 3) Security: The client’s input data is secure because all the
Py(2) = N Px(4) = ro and P5(3) = m N P3(5) = ro. data received by the server are encrypted (using a semintica
But now we see that, unless = ry (which is unlikely secure cryptosystem). Hence the server cannot distinguish
when they are both chosen at randof),remains undefined! between different client’s inputs. The privacy of the serige
Freedmaret al. do not consider this possibility. However, ifprotected because the client only learns about those etsmen
we try to remedy this problem by setting = r, we run from Y that are also inX, and because (by semi-honesty) it
into another one. Among other things, the server computéses not send specially constructed polynomials to cheat th
{r" - (Ps(y?) — P3(y3)) + Yi}k, which, in this particular server. If an elemeny; € Y does not belong toX then a
case equaldr’ - (P2(4) — P5(3)) + [5,4,3]} k. This equals random value is sent by the server (see the correctness proof
{r'- (ro —r1)+[5,4, 3]}, which by equality ofr; andr, re- above).
duces to{[5, 4, 3]} k. In other words, the client learns, 4, 3] 4) Complexity:The messages being sent in this protocol are
even if this value does not match any of the elements held bycryptions of plaintext from the domai®, i.e.,O(T log | D|+
the client. This violates the requirements of the fuzzy qiev k) bits. In step 2 the client senc{g) polynomials of degree
matching problem: if a semi-honest client happens to ownng (sending each coefficient separately). Then in step 3 the
set of tuples with a property similar to the counterexampkerver responds withs values for every polynomial. Hence
above, it learns a tuple of the server. in total O((ns +nc) - (})) messages are sent. Therefore, the
total bit complexity isO((ns +nc) - (1) - (T'log|D| + k).

The time complexity is the same as the number of messages

The protocol of the previous section can be fixed, but i protocol O((ngs + n¢) - (f))
a slightly more elaborate way. Our solution works for ahy

IV. A POLYNOMIAL BASED PROTOCOL

andt, and is presented in Figure 3. In the protocol we use V. SECRETSHARING BASED PROTOCOLS

the following definition. Letr be a combination of different The number of messages sent in the previous protocol is
indicesoy, 03, . .., 0, fromthe rangg(1, ..., T} (there arg})  very large. Therefore, we now present two protocols solving
of those). For a wordX € D7, definec(X) = z°*||---||z°* the FPM problem based on linear secret sharing that trade

(i.e., the concatenation of the lettersinfound at the indices a decrease in message complexity for an increase in time

in the combination). We now discuss the correctness, sgcugomplexity. Both work in the model with a semi-honest

and complexity of this protocol. adversary. First we describe the simple (but slow) protocol
2) Correctness:In the protocol, the client produce@) and later the faster, improved one. We present the simple

polynomials P, of degreenc. Every polynomial representsversion mainly to facilitate the understanding of the invam

one of the combinations of ¢ letters fromT letters. In fact, protocol.

the roots of the polynomiaP, are o(X;) It is easy to see ] .

that if X ~, Y theno(X) = o(Y) for some combinationr. A A Simple Version of the Protocol

Hence, ifX; ~; Y; thenP,(c(Y;)) = 0 for someP, received  The simple protocol is presented in Figure 4. The idea

and evaluated in step 3a. When that happens, the encrypti@hind the protocol is the following. The server encrypts al
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) The client generatesk, K and parametersfor the additively homo-
morphic cryptosystem and sends and theparametergso the server.
For eachX; € X
a) The client encrypts each lettef’ of X; and sendgz}"} x to the

server.
b) For eachy; € Y, run the protocof i nd- mat chi ng(i,j).

i nd- mat chi ng(i,7):

The server generates; andparametersfor the symmetric cryptosys
tem and sendparameterso the client.

) The server sendg; = Ey, (Y;) to the client.

) The server prepares-out-of-d" secret sharegs!,s?,..

~

577 with

kind of messages are the messages encrypted by the symmetric
encryption scheme (they are sent in step 2 of the subroutine)
They are encryptions of plaintext from the domaid .

The main impact on the message complexity of the protocol
is the fact that the subroutingi nd- mat chi ng is called
ncong times. In this subroutine, the server seiddd”) cipher-
texts in step 5 . Hence, in toté)(ncngsT) messages of size
O(log |D| + k) andO(ng) messages of siz€(log |D|T + k)
are sent in this protocol. Therefore, the bit complexity fué t

secret0®||sk;, wherek is the security parameter. protocol is:O(ncnsT(log |D| + k) + ng(log |D|T + k)) =

4) For every |ettelfq;“-” in Yj, the server computes:
vw = ({2 Yk —n {¥}"} k) -n 1) +n {s¥}k Which equals O(ncnsT (log|D| + k)).
{((z¥ — y®) -7 + 3%} &, wherer is always a fresh, random value ~ We see that by first encrypting the words stored by the
from the domain of plaintext _ server using symmetric keys, and later using the secreinghar
5) The server send@q, va,...vr]| to the client. . .
6) The client decrypts the values and checks whether it isiblesto mechanism to reveal these keys instead of the full words,

changes the bit complexity fron®(T(log|D|T + k)) to
O(T'(log |D| + k)), removing a factofl".

The server preparessnc times theT secret shares. Pro-
ducing T' secret shares can be done efficiently and therefore
the time complexity of the server is reasonably low. Thentlie
(in step 6 for each subroutine call) verifies if he can reaoast

, . ic k h the secret;. This verification costg?) reconstructions (and
its wordsY; using separate symmetric keys; and sends the o reconstruction can be done efficiently). The number of

results to th_e client. _The prqtocol then proceeds to reve@l Ko onstructions is in the order 6i(nsnc ({)) which is the
sk; to the client only if the.re is a word’; such thatX; ~; Y. major drawback of this protocol.
Every word X; of the client is matched with each woig
of the server one by one. To this end, the client first senBs An Improved Protocol
each letter ofX; to the server, encrypted to the public key of we can improve the message complexity by combining the
the server separately. idea of using secret sharing (protocol 4) with the idea of
Upon reception of the encrypted letters &, the server encoding all characters at positian using a polynomialP,,
does the following for each word; in his set (using the (protocol 2). The resulting protocol for FPM is presented in
subroutind i nd- mat chi ng(i,j)). Firstly the server preparesFigure 5. It consists of two phases: a polynomial phase, and
secret key £k; for corresponding word’;) for the symmetric a ticket phase.
encryption scheme (e.g., AES), and sends the encryjjted ~ The polynomial phase runs as follows. As in the previous
the client. Then it preparesout-ofI" random secret sharesprotocol, words are first sent encrypted to the client, wtite
s',...,5" such thats = 0¥||sk;. Shares’ is "attached" to the key sk, is encoded using a secret sharing scheme such that
i-th letter of wordYj, so to speak. Note that each time a newyhen the client has a word matching on lettey it obtains
word X; from the client is matched with';, freshsecret shares shares; ™.
are generated to avoid an attack similar to the one describetHowever, we now encode the shares at letter position
in section lII. using a polynomialP* defined by
Using the homomorphic properties of the encryption
schemg, the server theE comppu'?es for each encryptgg Ie{@?(yiﬂ) =5)N(PY(yy) =52%)N...N(PY(yy) = 5a")
{2}k it received, the value,, = {((z}" —y}") -7 +35“)}k  (where, for technical reasons, at least random point is didde
(using a fresh random valueeach time, and encrypting?’  to ensure privacy in the case’ # y*). This polynomial is
to the public keyK). Note thatv,, = {3*}x if and only if sent to the client to allow him to recover shar@ for each
z =y letter 2 = . In fact, it is sent encrypted to the client; more
Finally, the server sends, ..., vy back to the client. The apout this later.
client decrypts these values, and Xf; ~; Yj;, then by the e need to avoid the problem discussed in section Il with
observation in the previous paragraph, among the decryptfe original FPM protocol. Observe that the above definition
values there are at leastsharess” from which sk; and of pP* is only valid if we require that;* = 5;* whenever
thereforeY; can be reconstructed. y;* = y;’. This means that, as we proceed through to the list
Due to space constraints we skip the proofs of correctnesfswords Y; of the server constructing secret shares for key
and security of the protocol from Figure 4 (they can be foung:;, we accumulate restrictions on the possible share values
in the appendix). we can use. In the extreme case, for some wordl” shares
1) Complexity: Two kinds of messages are sent in thisould already be fixed! I was the total number of shares,
protocol. Messages encrypted by homomorphic encryptitimensk; would be fixed and we would have the same leakage

scheme are from the domaii(log | D| + k) bits. The second of information discussed in section IIl.

reconstruct the secréf||z from them. In order to do that, he needs o
try all possible combinations of among theT' decrypted (potential)
shares. If it is possible anBec. (7;) ~¢ X; then he addDec. (7;)

to his output set.

Fig. 4. Simple secret sharing protocol solving FPM problem



We solve this problem by adding an extra shaggs™,... | Polynomial Phase: N
(that are in fact sent to the client in the clear!) and chaggin 1) The server preparessk, K and parametersfor the additively homo-
. morphic cryptosystem and sends and theparametersto the client.
the parameters of the secret sharing scheme, as follows. e For all Y; € Y, the server generatesk; and parametersfor the

observe that if at mosi’ shares can get fixed as described symmetric cryptosystem and sengarametersto the client. Later the

above, the best we can do is creatéla+ 1)-out-of{T + x server sendsj; = Ey, (0°]]Y;) to the client.

h hi h bi ) ( I—li_ t)) 3) ForallY; €Y, the server prepared” + 1]-out—of42 - T' — ¢ + 1]
scheme. This ensures that an ar itraky, can actua_y e secret share{3s7 552, ... 52T~ t+1] with the secre0k||skzj,where
encoded by the secret sharing scheme, even divefixed k is the security parameter. % = y¥ thens;% = 5,".

1%

The server sendg; 711, ...5;27~t+1] to the client.
4) The server prepares polynomials (forw =1 to T') of degreen :
a) The polynomial is defined in the following way:
(P¥(yy") = s1")N(PY(yy) = 52Y)N...(PY(y,) = 5a™))

shares. Ther extra shares are given away "for free" to th
client. Now to ensure that the client needs at l¢dstters that
match wordY in order to be able to reconstrugt; form the

shares it receives, we ne¢d=T +1—zie,xa =T+ 1—1t. The number of points is increasedster 1 by adding random points
In other wor W 1)-out-of-(2-T+1—¢ ret (at least one random point is added).
.O er words, we use @F+ ) out-o ( + f) secre b) The server computes the coefficients of the polynomials amd|e
sharing scheme where for each warg crypts each polynomiaf P*} ;- and sends it to the client.

o the first 7' shares are encoded using polynomia ) The client evaluate¥’ polynomials (forw = 1 to T') on each letter of
pl PT and each word (fori = 1 to n): {v)’}x = {P¥(z¥)}k. If ¥ =y,
veee ) ) . thenvy” = 5,".
« the remainingl’ +-1 —t shares are given the client in thg 6) The client blinds the results? with a random values and sends
clear. them to the server{v} + 7%} k.

. . . Ticket Phase:
If X; =, Y}, then the client obtains at leasshares using the 6) Fori — 1 to n, the server prepared” + 1]—out-of42 - T — ¢ + 1]

polynomialsP!, ..., PT. Combined with thé&’ +1 —¢ shares secret share§;!, 72, ... 72" T—t+1] with secret0. Later he sends
it got for free, it owns at leasl” + 1 shares that allow it to 7) E?ji’ .1. tc?;:l;(;-:‘;]mtfihel (;gei?“t.the server decrypts the received
reconstruct the segret. Note, howeyer, that when it obm_iels message®).; ({v! +r} ) and Se’nd@? e +T73f‘))to the client.
shares by evaluating the polynomial for the lettersXify it | 8) The client unblinds them (by subtractiméf’) obtainingq® .
does not know to whiclY; these shares actually correspond.g) 'lioarﬁ”l =_y£”n1t*t1§“g§” aidﬂw +?“;6 n, the dlnt checks f it i
So m_fact to actually try _to reconstruct the secret, it neteds possible to reconstruct tﬁe secﬁémzfrom [ a . qT 5T+ +
combine these shares with each group of ffee1 —t shares AT T2 T2 Tt | 2 Tt
corresponding td; up toY,, one by one. In order to do that, the client needs to try all possible comfiims
. . . . . of ¢ shares among th& decryptedq shares (the rest of the shargs
This works, but it still leaves the leakage of information s the same during reconstructions). If it is possible andaoy 7,
problem discussed in section Ill when several differentdsor Dec. () = 0%||a, anda matchesX; then he adds: to his output
held by the client each match on some characters of a word Set
Y; held by the client, such thatshares forsk; are released Fig. 5. Improved secret sharing protocol solving FPM problem
even though no single word of the client actually matckgs
This problem is solved in the ticket phase, as follows.
In fact, the polynomials sent by the server to the clieftidden within them no longer match and reconstruction of the
are encrypted using the homomorphic encryption schens€cret is prevented.
Therefore, when evaluating the polynomials for a wird the Due to space constraints we skip the proofs of correctness
client only obtains theencryptedshares corresponding to it.(that is essentially similar to the discussion above) of the
These are useless by themselves. The client needs the helprofocol from Figure 5. This proof can be found in the
the server to decrypt these shares. In doing so, the seriler wppendix.
enforce that the shares the client receives in the end &ctual 1) Security: The privacy of the client’s input data is secure
correspond to a single word in the client set (and not a mbecause all of the data received by the server (in step 6 of
of shares obtained using letters from different words a$én tthe polynomial phase) is of the forme;” + ", wherer}” is
attack described in the previous paragraph). a random value from the domain of the plaintext. Hence the
The server enforces this using so-called tickets (hence ggyver cannot distinguish between different client inputs
name: ticket phase). Tickets are in fggt+ 1)-out-of-(2- 7'+ The privacy of the server is protected because the client
1 —t) random secret shares for the sec¢reThe clients sends receives correct secret shares of soshe (corresponding to
groups of encrypted shares (blinded by random values) thgt € Y') if and only if there is an elemenk; € X such
he got for every wordX; to the server. The server, for eventhat X; ~; Yj. In the polynomial phase, the client receives
group of shares received from the client, decrypts theseshaencrypted polynomials and groups withT — ¢ + 1 shares
and adds the tickets shares. The result is sent back to (f@’ ',...5>7—*1]) of [T+1]-out-of{2-T —t+1] secret
client, who unblinds the result (subtracting the randonuepl sharing scheme. Hence, there is no leakage of information
Because of the linear property of the secret sharing scherimethe polynomial phase. The client receives information in
the secret corresponding to the shares the client receiwbgi plaintext in steps 6 and 7 of the ticket phase. In this situmgti
end (that are the sum of the original share and the tickee$hathe client has at leadt + 1 correct secret shares during step 7
has not changed. But if the client tries to combine differemnd he can reconstruct the sed’&fisk,,, (and thereforeY,,,).
shares obtained form different words, the shares of thetsck If there is no such element iX to which Y; is similar,




then the client receives no more thasghares in every group
g; of potential sharesy;” = 77 +35;* (wherei is an index of

the received group of potential shares). The other valums (|
incorrect letters) include”* (y;’) that cannot be determined.
It is caused by the fact that the client does not know enou
points (degree of the polynomial is+ 1 and the client can

know only n points) defining the polynomial and at leas
one unknown point is random. This is exactly the situatig

like in a polynomial based secret sharing scheme when not

enough shares are known. The client cannot reconstict
for any group separately (by the secret sharing assumptig
because he has less th@m- 1 correct secret shares. Of all

the shares(T" — t + 1) come from values that are sent in

plaintext. For every group of sharesyalues are different and

1) The client preparessk, K and the parametersfor the additively
homomorphic cryptosystem and sen#s and theparametersto the
server.

f2) Run subroutinequal i ty- mat ri x. After this subroutine the serve|

has obtained the following matrix:
o {0}k, forazl =y?
gh f(w77/1‘7)7{ {I}K’ for ‘,L,;n?éygu ’
wherew € {1,...T} ands,j € {1,...n}

t3) ForeachX; € X andY; € Y:

n @ the server computeA (X;, Y;)}x = {X5_, F(4,4,w)}x and,
for £ =0to T —t, sends{(A(X;,Y;) — £) -7+ (0%]|Y;))} x to
the client. Herer is always a fresh, random value.

b) The client decrypts all'—t messages and if any plaintext is i
and matches any word fromX, then the client adds this plainte:
to the output set.

-

n)

Fig. 6. Hamming distance based protocol for the FPM problem

therefore make every received group of shares independent.

The probability that a random value froR is a correct
share is negligible (with respect to a security paraméder
Therefore, the probability that the client can recovercitlli
information is negligible.

2) Complexity: In step 2 the server sends messages

together with oblivious transfer, making their approacksle
practical.

Our protocol (see Figure 6) works as follows. The server

first obtains, using the subroutimgjual i ty-matri x, a 3-
dimensional matrixf(w,,j) containing the encrypted equal-

encrypted by the symmetric encryption scheme that are frd test for thew-th letter in wordsX; andY; (where {0}«

the domainO(log | D|T +k) (that isO(n(T log |D|+k)) bits).

denotes equality and1}x denotes inequality). The server

Later in Step 3 the server Sen@$nT) unencrypted messagessums the entries in this matrix to Compute the encrypted

from the domainO(k + log | D|) (that isO(nT'(log|D| + k))
bits). In step 4 the server sends encryption§’giolynomials
of degreen. This totals toO(nT(log|D| + k)) bits. For
every received polynomial, the client computevalues and
sends them encrypted to the server (againT (log |D|+k))
bits). In the ticket phase, in step 7, the server sefdsT’)
unencrypted messages, thaOignT'(log | D|+k)) bits. Hence,
the bit complexity of the entire protocol totals ©:(n7'(k +
log |D|) + n(k +log |D|T)) = O(nT(k + log | D|)).

The main part of the server time complexity is prepar2ng
times|T'+ 1]—-out—of42-T'— ¢+ 1] secret shares. Since produc

Hamming distancd{f A(X;,Y;) between the wordX; and
Y;. Subsequently, the server sends blinded by a random
value r multiplied by ¢/ — ¢, for all 0 < ¢ < T —t. If
0 < d] <T —t, then for some the valueY; is not blinded
at all. This allows the client to recover;. OtherwiseY] is
blinded by some random value for eveyand the client learns
nothing.

3) Correctness and Security of the protocol from Figure 6:
Assuming that in the subroutinequal i ty-matri x the
matrix f has been securely obtained, protocol 6 calculates
correct output. This can be concluded from the followinggac

ing (2-T—t+1) secret shares can be done efficiently, the tinie X; ~; Y; then (in step 3a\(X;,Y;) € {0 ... T — ¢},

complexity of the server is reasonable. The crucial parther
time complexity of the client is step 9 (which is performet
times). In this step the client checks whether he can renaetst

and therefore{0*||Y;} i is sent to the client. Privacy of the
server is protected because in step 3aXif %, Y; then
A(X;,Y;) € {0,...T—t} and therefore all values received by

the secrety;. This verification costg”) reconstructions (and the client look random to him. Correctness and security fsroo
one reconstruction can be done efficiently). The total numbf this protocol resemble the proofs of the protocol present

of reconstructions is in the order @(n?(%)), which is the
major drawback of this protocol.

VI. HAMMING DISTANCE BASED PROTOCOL

in Figure 4 and are omitted here.

A. Implementing Subroutinequal i ty-matri x

The first method to implement the subrou-
tine equal ity-matrix is as follows. The client sends

a

In this section we present two protocols solving the FPhe letters of all his words to the server as encrypted

problem based on computing the encrypted Hamming d

tance: one that is simple and efficient for small domains € {1,...7}) such thatd¥(v) = {1}k if v

Mectors d: {0,...|D| — 1} (wherei € {1,...nc} and
z¥, and

7

and another that uses oblivious transfer. The difference bg’(v) = {0}, otherwise. This process can be described
tween them is only the implementation of the subroutings sending encryptions of unary encoding of the letters
equal i ty-nmatri x (the frame of the protocol is the sameof all his words. Subsequently the server defines the
for both of them). Firstly we describe the simple protocall anmatrix as f(w, i, j) di’(y;’). The main drawback of
later the one using oblivious transfer. this method is that its bit complexity includes a factor
A technique to compute the encrypted Hamming distance ®@(|D| - n - T +n? - (T — t)). However, the protocol is simple,
solve the FPM problem has been introduced in [3]. Howevernd for small domaind (e.g., ASCII letters) it is efficient.
the protocol in that paper uses generic 2-party computaitiofor constant sizeD and T' ~ t¢ the bit complexity of the



1) The client generates vectd$: [0, . |D|—1] (wherei € {1, . nc} VII. SUMMARY AND FUTURE WORK
andw € {1,...T}) such thatd} (v) = 1if v = 2, andd}’(v) = 0
otherwise. _ A In this paper we have presented a few protocols solving
2) Th(;} mat?xf is de}f)med in the following way (for all, j € {1,...n} | ha FPM problem. The most efficient one works in a linear
andw € {1,...T}): . . L . .
a) The client picks a random bit”,. bit complgxny with respecF t(_) the size of th_e input data and
b) The server and the client perfortrout—of+D| oblivious transfer as  the security parameter. This is a significant improvemest ov
follows. The client constructs}’;, which is a vectof0, . .. |[D|—1] | existing protocols. The improvement comes at an expense of
zswfo"o‘[’;i( 0) @ b2, d2(1) &b, d¥(1D] - 1) @ b, a factorn increase in time complexity (but only at the client).
The server wants {6 obtain a valtié from the veattr with an index Currently, we are investigating how to speed up the time
y¥. For that they perform the oblivious transfer protocol (véhthe | complexity of the client by using error correcting coding
server has an index and the client an array). Subsequérglgerver techniques
obtains the valué, = b, (y}’). ’
¢) The client sendgb}’; }  to the server.
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APPENDIX secrets. To choose arbitrary secrets even for equal wafds (
8ould be a multiset(T" — ¢ + 1) new shares (the ones that

a) Correctness and security of the protocol from I:igurare sent in plaintext) is exactly enough. The role of shares
4: In this protocol the client encrypts all of letters of all ah —7 _r pamntex actly gn. 1
| is like in classical secret sharing. Because the

words (with a unique secret key for every word) and sends tHé >~ % . .
results to the server. Then for every couple of wofs, Y; ), astT —t+ 1 shares are known, the firgt shares work like
the participants run the subroutifié nd- mat chi ng. In the atgogt—of—T slecr_et sharlr;g shcheme. | il

subroutine firstly the server encrypt§ with some random of dté srggueir:]t >sl,ulcnh Sa:evl?/a ' ':h:t seervler t(_:realfépo Iy noml_als
secret keysk; of symmetric encryption scheme. Later it green y valualing a polynomial on

dividessk; into T' shares (with thresholt) and for every letter Z gg:;g:pggg;gg lseet(t:?;tfrsohmar:orl?ae}e\;v%rs g::zsriﬁgltzn'; ted
inY; calculates,, = {((z}" —y}’)-r+3") } k. If 2} =y then P g . yp

the client receives the correct share, otherwise a randdune.va polynomials to the client. The client evaluates the polyraten

However, at this step the client cannot distinguish in which his words .a_ndwachle\ive@;r”};( w(Wheriihe following
situation he is (he cannot distinguish a random value froen ghroperty holds: 'fmi. — Im _then Ui = ‘f,j”"’ ) ﬁ“erlﬂe
correct share). Then the client checks if he can reconstnect ticket pE?SS,Q theEITlent receives valuesg* = v)® + i
secret key using any combination bbut of theT elements where [73°, 7%, ... 7 ]. are tlckgts — secret slharssl W;th the
{Dax(ve)|1 < w < T}. He recognizes the secret key by th(gieQCretO.THenEeT the hcllent.freielvesut}hefgrOL{pi + T, vf 4

0" prefix, and the fact that decrypted by that secret key vaIueT!';lS"';UU" 4:; ) %N e][e ! xb’ T] yi” (for some Y, fe Y) it
similar with one of the words from his set. If he has less thafc i — 5 - There orre], Y the m_earwprorfur)ty_ 0 ILSS’ !

t correct secret shares then he cannot recover the secret fié}{'s a correct secret s are, t Q.ﬁ = v +7 ISalsoa
and the retrieved data looks random to him (this follows fro ortect secret.share. The client IS trying to recover a secre
the security of the secret sharing scheme). Hence all redyui or every recelved_ group of potential shares. However, for a
elements fromy” appear in the client's output. The probabilitypmper reconstruction, he also needs shares that have &een s

that some incorrect element is in the output set is negtlzg|bltO him in plaintext by the Server. These shares are always
) . ; grrect, but he needs to combine shares from the polynomial
The client input data is secure because all of the data |, . .
. . . .—_and ticket phases. Moreover, he does not know which shares
received by the server is encrypted (using the semantic

. r}%m the polynomial phase correspond to the shares from the
secure cryptosystem). Hence the server cannot d'Stmgu{lSéket phase. As a result, the client has to check all of the
between different client inputs. ) ’

: . . .combinations #%2). If the client combines non-fitting shares
Privacy of the server is protected because the client resei
. . .~ then he cannot recover the proper secret key (and therefore
correct secret shares of sorie € Y if and only if there is

an elementX; € X such thatX; ~; Yj. In this situation the thzg:]%;;erf;vroird’).e ( n}, the client checks if he can
client has at leagtcorrect secret shares and he can reconstrurg%onstru’Ct thé]secret 7key fro’m the following shares:
the secret”||sk; (and therefore, it can decrypt). If there is il g2 T Tl =T T2, T2 '
no element inX to which; is similar then the client receives ;) %~ %27 - T N
n independent groups of shares, which has no group withsié\tenou ;Tciorres t:])ﬁdin secret shares are in the U
leastt correct shares. Hence from any of these groups h$en thg secret thpat cou?d be recovered from the mi;,? P
cannot retrieve any secret key. The probability that a rtamdobecause the secret of shares is0). Hence, in ste 9ntlhe
value fromR is a correct share is negligible (with respect t(gl. ¢ Il of th tk .th th ,h b= d
security parametek). Therefore the probability that the client®, €Mt FECOVErs all ot the secret keys thal he has correspgn
o . - shares of.

can recover an illicit secret is negligible.

b) Correctness of the protocol from Figure Fhe first
important issue appears in step 3 of the polynomial phase.
Here the server preparesgroups of|T + 1]—out—of{2 - T —
t + 1] shareg[s;!,5;2,...5;2 7", From thejth group he
can recoveskk;, and thereforeY;. During the creation of these
shares the server uses the rule:

forwe {1,... T} if yi' =y thens;” =35,*. (1)

This rule is necessary because the fifsshares from each
group are later encoded as polynomials.

This secret sharing is used here in the same role ag-the
out—of-7" one. However if the—out—of-7" scheme is used, then
it is impossible to choose the proper value of secrets (&vg.,
matching, but different, words frorl’, would have the same
secret because of Rule 1). Secret shi@gs, ... 51> T~ t+1]
are chosen arbitrarily only to enable proper values of the



