
A Proof of Security of a Mesh Security Architecture

*Doug Kuhlman, ∗Ryan Moriarty, Tony Braskich, Steve Emeott, Mahesh Tripunitara
Motorola Labs

1301 E. Algonquin Rd.
Schaumburg, IL 60196

{doug.kuhlman, ryan.moriarty, tony.braskich, steve.emeott, tripunit}@motorola.com

Abstract

The IEEE 802.11s standard is tasked to provide ways
of establishing and securing a wireless mesh network.
One proposal establishes a Mesh Security Architecture
(MSA), with an interesting key hierarchy and full pro-
tocol definitions. This paper proves the correctness
and security of the MSA proposal and its correspond-
ing protocols. We also propose and prove the security
of an additional protocol (an abbreviated handshake)
which offers a substantial efficiency improvement in
certain instances. To prove the entire architecture se-
cure, we utilize Protocol Composition Logic (PCL) to
prove each protocol secure. From that basis, we can
show the protocols compose securely to prove the en-
tire architecture. We also contribute some novel con-
cepts to PCL, to allow us to prove the security of the
overall architecture.

1 Introduction

Security is an important concern for many networks,
particularly wireless ones, where attacks are easier to
mount, because the network itself is so easy to detect
and to use. Wireless protocols, too, have been success-
fully attacked. The most famous of these attacks are
against the Wired Equivalent Privacy (WEP) proto-
col [3, 24]. The IEEE task group i [1] was created to
provide a more secure protocol, ratified in June 2004.
While the protocol was initially created simply using
good design criteria, it was later proven to be secure
under certain assumptions [20].

The IEEE 802.11s task group was formed to define
extensions to IEEE 802.11 supporting mesh network-
ing [19]. A goal of the task group is to secure the mesh
utilizing existing IEEE 802.11 security mechanisms and
extensions. Instead of waiting until the protocols and
key derivations are ratified and in use, we examine a
particular proposal [4, 5, 6, 7]. This document de-

∗principal authors

scribes not only one protocol chain, but a multitude of
intermixing protocols, designed to establish, distribute,
and use keys within a wireless mesh network. Since
this submission has not yet been fully ratified and im-
plemented, we are hoping that an early analysis will
provide support for valuable portions, while also point-
ing out a few areas of suggested improvements, which
we hope can be instantiated in the final release of the
standard.

While many methods of proving the security of a
protocol exist, we chose to utilize the Protocol Compo-
sition Logic (PCL) methodology introduced by Durgin,
Mitchell, and Pavlovic [17] and later improved on by
many others. While we acknowledge the value of BAN
logic, computational methods, and a host of other pro-
tocol proof methodologies, we feel that the use of PCL
provides the appropriate level of abstraction, while pro-
viding the absolutely critical composition properties
which allow us to extend proofs of security from in-
dividual protocols to the entire Mesh Security Archi-
tecture (MSA) proposed to the IEEE 802.11s standard.
Additionally, the IEEE 802.11s proposal draws some,
in spirit, at least, from the IEEE 802.11i standard.
Since PCL was the choice for proof system for IEEE
802.11i in [20], we found it natural to continue its use
in the security proof of MSA. The MSA proposal en-
compasses more protocols than does the 802.11i stan-
dard, including some with interesting timing mecha-
nisms. Nodes playing more than one role in a mesh
also invalidates much of the existing proof structure
from [20].

In this paper, we provide PCL equivalents of the pro-
tocols presented in the MSA submissions. In a break
from previous papers, which have limited their exami-
nation to only the portions of the protocol critical for
proving matching conversations, we examine the to-
tality of each protocol. We have found that extending
protocols from basic primitives to fuller information ex-
change to be a nontrivial problem. Instead of leaving
that as an exercise for the reader or the implementer,
we have broken down the protocols into smaller por-

1



tions, proving the authentic delivery of additional in-
formation within each protocol. This was hinted at in
[2], and we follow their example in not formally defin-
ing authentic delivery of additional information. The
natural intuition that the information sent from one
party is received at the other party exactly as sent will
suffice for our purposes.

Our analysis of the protocols and key hierarchy of
this particular IEEE 802.11s submission indicate that
it was well-designed. We have only a few recommen-
dations to make.

• The initial authentication message from the mesh
authenticator to the requesting mesh point should
include a nonce from the mesh authenticator and
not simply use the key generation nonce provided
by the mesh key distributor. This provides fresh-
ness guarantees for all parties appropriately.

• In the Group Key Handshake, we add the MAC
addresses of the sender and the receiver inside the
MIC. This is necessary to prove authenticity of the
update message and to prevent a specific type of
reflection/replay attack.

We elaborate on all of these points later in the paper.
The final result is that we provide a proof of all of the

protocols used in MSA, with some of the listed modi-
fications. We prove that all messages are directly tied
to the sending and receiving nodes and must be deliv-
ered exactly as sent, if the protocol completes. Fur-
thermore, we show that all of the protocols compose
together arbitrarily. That is, the various protocols can
be run concurrently, in sequence, or other ways, as re-
quired by higher-level logic. This provides a complete
proof of the security of the MSA key architecture. We
use standard assumptions from other PCL papers, with
only a few additions.

The rest of the paper is organized as follows. Section
2 provides a brief background on PCL and the IEEE
802.11s standard. Section 3 contributes some minor
but critical additions to the PCL taxonomy. Section
4 describes the MSA key hierarchy, upon which much
of the security relies. Section 5 examines the proposed
protocols of MSA. Section 6 suggests a new abbrevi-
ated handshake protocol, for quicker mobility within
MSA. Section 7 provides a proof of the security and
robustness of the key hierarchy already introduced, by
examining the protocols of the previous two sections.
Section 8 proves the composition of all the protocols
and gives the major results of the paper. Section 9
concludes the paper.

2 Preliminaries

We motivate this paper and provide some additional
background on the notation, terms, and conventions of
this paper.

2.1 Overview of Proof Method

We use Protocol Composition Logic (PCL) to prove
correctness and security of the Mesh Security Archi-
tecture. We briefly overview PCL in this section. PCL
has been used for a security analysis of 802.11i [20] and
IPv6 [14].

2.1.1 Cords

Protocols in PCL are modeled using cords and cord
calculus. This provides a compact way of describing
protocols, while simultaneously giving a formal logic
definition. A typical two-person protocol will be mod-
eled by two threads, one thread for the initiator and
one thread for the responder, making a single cord.
Possible actions inside a thread include nonce genera-
tion, signature creation, encryption, hash calculation,
network communication, and pattern matching (which
includes decryption and signature verification). Each
thread consists of a number of basic sequences, each of
which has pre and post conditions.

2.1.2 Proof Methodology

The proof methodology of PCL is described in [11, 12,
20, 10, 13, 17, 16, 9, 23]. We use the standard syn-
tax of Θ[P ]XΦ. This means that with preconditions
Θ before the run of actions P by thread X, the re-
sult (postcondition) Φ is proven to hold. The condi-
tions of Θ and Φ usually indicate what actions a thread
has already done, what information is available to cer-
tain parties, temporal order of corresponding actions
that must have happened, or the like. These are use-
ful for stating the states before and after a protocol
run, from each participant’s perspective. We use the
notation that Θ is always a precondition, Φ always a
postcondition, and Γ an invariant. Some postcondi-
tions for one step will become preconditions for an-
other step. We consistently use a subscript of SI for
security invariants. Other subscripts are ordered (pro-
tocol, description, principal) where some fields may be
blank. We also use shorthand notation for various pre-
conditions, postconditions, and/or invariants. These
are denoted by { and } in the subscript, to indicate
the conjunction of two (or more) conditions. For ex-
ample, ΓSI,{ABBH,SIMO},{1,2} would be used to denote
ΓSI,ABBH,1∧ ΓSI,ABBH,2∧ ΓSI,SIMO,1∧ ΓSI,SIMO,2.

2



The proof system is built on three fundamental
building blocks. The first is a series of first-order log-
ical axioms, described in [13]. The second is a series
of cryptographic/security axioms. These are described
in various papers, including [13, 20, 17]. These assume
reasonably idealized cryptographic functionality, but
most cryptographic primitives achieve them in prac-
tice, if not necessarily in theory. The third building
block is the fundamental principle of honesty. Hon-
esty imposes certain restrictions on roles. Honesty is a
special type of invariance that allows one instance of a
thread to reason about the actions of a corresponding
thread, participating in the same protocol. Honest par-
ties follow defined protocols in predictable ways. If the
other party in a protocol is not honest, then nothing
can be proven/reasoned, because the other party could
have already sent out private key information. The ac-
tions of the attacker are not assumed to be honest, of
course. We do, however, assume that the attacker is
not a “legitimate” node already in the network.

The axioms used in this paper are described in the
literature [9, 13, 20]. These describe the basic first-
order actions, honesty principle and most of the secu-
rity axioms needed. One missing security axiom, which
we need to reason about the correctness of informa-
tion at certain parties, is that a node which creates a
signature of information must have that information.
This is axiom SIG1: Computes(X, SIGprivX (m)) ⊃
Has(X,m) ∧Has(X, privX).

2.1.3 Composing Proofs

One of the core features of PCL is its ability to reason
about how certain protocols interact. Since this paper
will be covering an entire architecture, it is imperative
that the large number of individual protocols be proven
secure not only independently but working together in
conjunction in the system. To this end, we extensively
use the proofs of protocol composition developed in
[13]. We will expand on this concept in Section 8.

2.2 Overview of 802.11s

The overall IEEE 802.11 standard is charged with pro-
viding a Wireless Local Area Network (WLAN) with
an infrastructure typically connected using wired Lo-
cal Area Networks (LANs). This fixed network is at
odds with recent trends for applications that require
a mobile infrastructure along with mobile end nodes.
Additionally, there is a need for a network that pro-
vides increased bandwidth while using infrastructure
nodes that individually offer a smaller communication
range than is typical today.

To meet these needs, the 802.11 task group s (“Mesh

Networking”) is working to develop a mesh networking
protocol, providing auto-configuring, multi-hop paths
between wireless stations to support the exchange of
data packets. Mesh networking may be used in a vari-
ety of usage scenarios to extend wireless coverage with
minimal additional configuration and to locations pre-
viously impractical to reach. A goal of the task group
is to utilize existing IEEE 802.11 security mechanisms,
with extensions, to secure a Mesh in which all of the
stations are controlled by a single logical administra-
tive entity for security [19]. The 802.11 Mesh Network-
ing task group continues to refine its draft specification
through the resolution of comments received during a
review of the specification in late 2006 [4, 7, 5, 6].

A mesh network of nodes, as defined by the 802.11s
submissions [6, 7], has a few major types of nodes. A
mesh can be identified with its Mesh Key Distributor
(MKD). The MKD is responsible for much of the key
management within its domain. No mesh can form
without one node being designated as the MKD. For
meshes which require authentication at an AAA server
(e.g., a RADIUS server), the MKD is assumed to have
a secure physical link with the AAA server. Because
of the special nature of the MKD, we assign the MKD
the “variable” T in this paper. All references in this
paper to T are exclusive to the MKD. The MKD is also
a regular member of the mesh and, as such, all normal
nodes (typically denoted X or Y ) include the MKD as
well. A general node in the mesh will be either a Mesh
Point (MP) or a Mesh Authenticator (MA). A MP is
a full member of the mesh and can communicate with
other nodes in the mesh. A MA is a MP which has
established a session key with the MKD. A Candidate
MP is an entity which wishes to join the mesh but is
not yet a MP.

The protocols in MSA provide additional complica-
tions beyond the main protocols used in 802.11i in a
few ways. The primary difference is the peer-to-peer
nature of a mesh network. Nodes in a MSA mesh must
be allowed to act in different roles at different times.
Thus, the invariants used to prove the security of the
802.11i 4-way handshake, which rely on a node not
sending certain messages, no longer apply. The new in-
variants introduced are slightly more complicated but
serve to accomplish a similar goal (preventing reflection
attacks). The peer-to-peer nature also poses some diffi-
culties with timing. The 802.11i proofs used matching
conversations to prove authenticity. However, in MSA,
we must provide for the case that both parties simul-
taneously start instances of a protocol and messages
are not necessarily well-ordered. Thus, the proofs from
[20] do not carry over directly.

We also abuse key notation slightly. Most keys we
will discuss are actually made of a plurality of keys,

3



used for unique purposes. For example, the key mate-
rial we denote as ptk actually has three parts, a trans-
port key (tk) used for bulk encryption, a key encryption
key (kek) used to encrypt the gtk, and a key confirma-
tion key (kck) used for Message Integrity Code (MIC)
generation. We simplify the exposition by utilizing ptk
for all these parts.

Similarly, the MSA proposal describes using partic-
ular bits to create unique message IDs. We do not
recreate that work here. For simplicity (and since we
don’t have bandwidth concerns), we simply use strings
to denote the unique message IDs.

3 Additions to PCL and Proof
Methodology

In order for our proofs and protocol descriptions to
meet our required level of adequacy we need to con-
tribute some ideas to PCL and introduce some new
proof goals. In this section we elaborate on these ideas.

3.1 Flexible Temporal Ordering

The temporal ordering of actions in the original PCL
definition is too strict for our applications. Protocols
we wished to analyze using PCL include a simultaneous
protocol where the order in which some of the messages
are sent and received does not have to be strict. For
example in the simultaneous open case of the abbrevi-
ated handshake, the final two messages of the protocol
may be sent and received in either order. Currently
in PCL one must decide on a strict ordering, thus we
were not able to describe this protocol in PCL.

PCL needed to be updated to allow this particular
application. The necessary change to PCL can be re-
alized as a simple add-on to the language. In other
words, the proposed modification does not fundamen-
tally change PCL, it only adds capability to the lan-
guage. Thus all previous proofs under PCL will still
hold true with our addition to PCL.

Our change to the language is adding an “action
group” and redefining a strand. We define an action
group as: (action group) g ::= (a; . . . ; a), where a is an
action as defined in [13]. We also redefine a strand as:
(strand) s ::= [g(; or :) . . . (; or :)g]. Thus a strand is
now composed of an arbitrary number of action groups
separated by colons or semicolons. The idea behind
the action group is that the actions in an action group
must be done in the order they appear. However, the
action groups within a strand separated by a colon (:)
can be done in any order and action groups separated
by a semicolon (;) must be done in the order they ap-
pear. Note that any strand defined previous to this

addition to the language can still be defined exactly
the same way by defining each action group to be one
action and by setting all the separators inside a strand
to semicolon.

We now update Axiom AA4 to reflect this ad-
dition to the language. Recall [13] that AA4 is:
>[a; . . . ; b]Xa < b. We now include action groups and
the new strand in this axiom. Thus we redefine AA4
as: >[a : b; . . . ; c : d]Xa ∧ b < c ∧ d, where a, b, c and d
are action groups. Note that nothing about the tem-
poral order of a compared to b or c compared to d
is indicated. We also include a new axiom AA5 as
>[(a; . . . ; b)]Xa < b, where a and b are actions, to deal
with the temporal ordering of action groups. Also note
that if each action group is exactly one action and only
semicolons are used in the new strands our AA4 be-
comes exactly the AA4 previously defined and AA5
is in this case irrelevant.

Protocols whose definition includes a colon add an
additional complication in the determination of basic
sequences. Since a basic sequence is defined as any
actions before a receive, there may be different sets of
actions that occur before a receive depending on the
sequence of events in reality. Thus we must ensure
that invariants and preconditions hold over all possible
basic sequence orderings and compositions.

3.2 Generalized Matching Conversa-
tions and Generalized Mutual Au-
thentication

The proofs of mutual authentication used in many pre-
vious PCL papers have been based on the standard
notion of authentication called matching conversations
[2]. This is natural as these protocols are “turn-by-
turn protocols” in which one a participant receives a
message and then responds to the message, then re-
ceives a message and responds to it and so on. How-
ever, some of the peer-to-peer protocols in this paper
can never obtain matching conversations as the order
in which messages are sent and received is necessarily
flexible, as a functional requirement. Thus we general-
ize the key properties of matching conversations and in-
formally define two new notions which we call maximal
conversations and generalized matching conversations.
We feel these definitions will have significant impacts
beyond the scope of this paper.

We loosely define conversation and then matching
conversation from [2]. A conversation is the set of
ordered triples of time, received message, and sent
messages for a party. It describes the visible net-
work actions of a single party. A matching conversa-
tion is where one party’s conversation exactly matches
another’s party conversation, in reverse (where one

4



party’s sent messages match the other’s received mes-
sages and vice versa). Additionally, the temporal order
of the sends and receives must follow what one would
consider natural for a turn-based protocol.

We loosely define the maximal conversation for a
participant A. We first determine the maximal possi-
ble temporal ordering. To do this we consider all legal
orderings in an ideal world (one with no adversarial
interference) from the view of a participant A in a pro-
tocol. Given this maximal temporal ordering, we note
the existence of messages for which A can never confirm
reception, because A could not confirm the reception
of the message in an ideal world with no adversarial
interference. This is analogous to the last send in a
turn-by-turn protocol, for which the sender cannot pos-
sibly verify reception. We take the maximal temporal
ordering and remove any send or receive that A could
not verify in the ideal world – the remaining actions
represent the maximal conversation for participant A.

With this definition in hand, we now define gener-
alized matching conversations for a participant A. We
say A has generalized matching conversations, if in ev-
ery run of the system, every action in the maximal con-
versation for participant A has a corresponding action
at participant A (e.g., A does all its actions) and at the
appropriate other participant in the system. For two-
participant protocols (like all those in this paper), this
means that the maximal conversation for participant A
has messages exactly matching the other participant’s
maximal conversation, with the strictest time ordering
possible.

We can now informally define generalized mutual au-
thentication. In the world where an adversary has ac-
cess to every message and can act on them within the
restraints of the proof system (symbolic or computa-
tional), generalized mutual authentication means that
generalized matching conversations for every partici-
pant implies acceptance and acceptance implies gen-
eralized matching conversations for every participant.
For the purpose of this paper we wish to keep the defini-
tion of generalized mutual authentication general. We
explore all these definitions is detail in separate work.

When our definition is applied to a “turn-by-turn”
protocol it becomes exactly the definition from [2]. In
every other instance our definition requires that the or-
dering of actions be maximal with respect to what is
possible in the ideal world. Since this definition im-
poses maximal temporal ordering on a protocol, this
definition is at least sufficient. Most protocols in the
MSA are turn-by-turn protocol and thus the [2] defini-
tion suffices. The three exceptions are the simultane-
ous open case of the abbreviated handshake (which is a
peer-to-peer protocol and has some timing flexibility),
Peer Link Establishment (which is not a cryptographic

protocol in itself and requires no temporal ordering)
and the Push protocol which is actually the composi-
tion of two protocols.

We note that the generalized matching conversa-
tions property encompasses the matching record of
runs property [15] too. Additionally, this property
guarantees all desired properties from [21] and implies
all the possible authentication definitions in [18].

3.3 Security Invariants

In PCL security goals are generally shown to hold upon
successful completion of a protocol. However some se-
curity goals must hold throughout the entire run of a
protocol, even if the protocol aborts prematurely. The
Insecure Key Transfer Protocol in figure 1 illustrates
this point. If we assume protocol completion from the
point of view of RESP we can prove that the secret key
was distributed correctly, since the validity of INIT’s
public key is established once RESP receives the third
message. However RESP uses the public key in the sec-
ond message before the validity of the public key can
be established. Thus if the protocol aborts after the
RESP sends the second message, it may be the case
that the public key sent in message one was actually
an adversary’s public key. It is therefore possible for
the adversary to intercept the secret key. While this
protocol is slightly contrived, in larger protocols with
different security goals it may be the case that a subtle
insecurity like this will go unnoticed. Thus for certain
security goals we advocate showing they hold after ev-
ery possible point at which the protocol may abort. We
call these security goals security invariants.

Inputs and Parties:
Two parties: INIT and RESP. Shared input: confir-
mation key (ck). INIT private input: INIT public key
(PKINIT ). RESP private input: secret key (sk).
Goal: Has(Z, sk) ⊃ Z = INIT ∨ Z = RESP

Insecure Key Transfer Protocol:

1. INIT sends PKINIT to RESP.

2. RESP receives PKINIT ; encrypts sk under PKINIT ,
computes the keyed hash of the encryption with key
ck; and sends ({sk}PKINIT , HASHck({sk}PKINIT ))
to INIT.

3. INIT receives ({sk}PKINIT , HASHck({sk}PKINIT )),
verifies the keyed hash; decrypts sk; computes the
keyed hash of sk and PKINIT with the ck and sends
HASHck(sk, PKINIT ) to RESP.

4. RESP verifies the signature.

Figure 1: Insecure Key Transfer

Security invariants differ from both typical invari-

5



ants and security goals, though they share some sim-
ilarities with both. Typical invariants are statements
that are shown to hold throughout the system being
proved and then used to prove the security goals of
the protocol. Security invariants are statements that
hold security properties within themselves. They are
different than security goals as we want them to hold
throughout the entire run of the protocol and not sim-
ply upon a successful completion. We follow the logic
of [13], requiring security invariants to provably hold
after every basic sequence in a protocol. This is simi-
lar to work done in [23, 22], although we feel we make
the concept more explicit.

A key distribution protocol has a very natural (and
very necessary) security invariant. One would want to
show after every basic sequence that no party other
than the two distributing the key could have access to
the key, (Has(Z, sk) ⊃ Z = INIT ∨ Z = RESP). Note
that in the Insecure Key Transfer Protocol, it would
not be possible to prove this security invariant from
the point of the view of the Responder after RESP
sends the second message, but it would be possible to
show immediately after the RESP receives the fourth
message.

3.4 Return to Global

In examining the proof of the Group Key Handshake
from [20] we found an ambiguity in the update of the
counter. Since most of PCL uses static variables in
its thread definition, it would seem the global variable
is only updated at the conclusion of the protocol. If
this is the case, an invariant is violated and thus the
proof of the Group Key Handshake property is incor-
rect. Fundamentally, the invariant claims that “if a
message was sent after another message then the ear-
lier message has a lower counter value.” This is not
always the case as two messages can be sent before the
sequence counter is updated on a global level. On the
other hand, updating variables globally as soon as they
are modified/used/created leads to much larger com-
plications within the rest of the PCL framework. Since
counters are only referenced in [20] to our knowledge,
we are led to conclude the counter implications are a
slight oversight.

The most “unobtrusive” solution to this problem is
to simply add a global update action that instantly
updates the value in the main thread that instantiated
the current thread. Thus any role that is started after
the end of this basic sequence will contain the updated
global variable. It is important to note that in PCL
basic sequences are autonomous steps and thus we are
guaranteed that the value that is updated at the global
level will not be used until after the basic sequence

that updated it completes. No values will change in
the local state, thus the local state will still have all
bound values as required by PCL. We need a way to
refer to these global variables, thus for any variable x,
globalx represents the same variable on a global level.
The return action within a thread describes this action
of updating a global variable with a local value.

It is not completely clear that the strong postcondi-
tion we prove utilizing this additional functionality is
strictly necessary, but it is straightforward to accom-
plish and builds upon the work in [20], so we felt it
appropriate to include it here. We found this addition
to be necessary to prove the invariants and postcondi-
tion on ordering of messages with counters.

3.5 Mid-Protocol Composition

For many of the protocols in MSA, the protocol may
instantiate another protocol partway through its run.
For example, in a key exchange protocol, if both par-
ties who are trying to establish a session key have a
shared key cached locally, then they do not need to
run a protocol to retrieve it. However if that key is
not cached locally, one of the parties must pause their
current protocol and run a key pull protocol. To fur-
ther complicate matters, this could potentially happen
in the middle of a basic sequence.

This is new ground for PCL and we have devised
a non-trivial proof (see section 8) that enables us to
frame this complex action in PCL and develop sound
proofs. While we will elaborate on this subject later
in the paper, we give a very brief description here. Es-
sentially, we define the inception of functions that may
need to run a separate protocol to be breaks in basic se-
quences. Then before and after these function calls we
define basic sequence pre and post conditions that must
be satisfied for a successful completion of the protocols.
The idea of basic sequence pre and post conditions were
give in [20] to enable staged composition and remain
standard in the language [13], although they have not
been previously used in this way to enable mid-protocol
composition.

3.6 Miscellaneous Information and
Functions Used in MSA

Part of the MSA deals with exchanging authentic in-
formation. This information is used to determine basic
network functions (e.g., bandwidth selections), security
information (e.g., cipher suite selection), and to help es-
tablish the node. From this collection of information,
certain pieces are simultaneously chosen from two sets
of information, by various functions. We discuss our
model of this information and these functions.

6



INFOX . A principal will need to exchange informa-
tion with another principal during the Peer Link Estab-
lishment, Abbreviated Handshake, Mesh Key Holder
Security Handshake (MKHSH), and key holder trans-
port protocols. This information is represented as
INFOX . Its contents differ for each protocol. For the
Abbreviated Handshake and Peer Link Establishment
protocols, its contents include identifiers of cached
keys, supported cipher suites and authentication meth-
ods, an identifier of the security domain, whether the
principal is a MA and whether it can communicate with
the MKD. During Peer Link Establishment, additional
information about the MKD’s identity and protocols it
supports are included. During the MKHSH, INFOX

includes identifiers of the mesh network and the secu-
rity domain, and a list of protocols the MKD supports.

Select(). Two principals X and Y must make simul-
taneous selections of link and protocol options from
exchanged information INFOX and INFOY . This se-
lection is represented as one function, select(). During
Peer Link Establishment and Abbreviated Handshake
protocols, select() determines the key to be used based
on information each principal sends about the keys it
has cached and whether it is a MA and capable of re-
trieving the key from the MKD. Thus, the function
ensures that a key is either locally cached or may be
retrieved from the MKD if the protocol is to continue.
Similarly, in the Peer Link Establishment protocol, se-
lect() determines the principal that will initiate the 4-
way handshake. A pairwise cipher suite for use after
the completion of the Peer Link Establishment and Ab-
breviated Handshake protocols also must be selected.
The select() function added to PCL determines the ci-
pher suite to be used based on INFOX and INFOY ,
selecting the most-preferred common cipher suite of the
principal with the numerically-larger address.

Retrieve(). The retrieve function actually gets the
key to the strand, after the selection of which key will
be used. Retrieve takes a key name (pmkN , corre-
sponding to a specific pmk) as its input. Then the
retrieve function will look to see if the key is locally
cached on disk. If it is not and the principal executing
the retrieve function is a MA (has a connection set up
with the MKD), the retrieve function will initiate a key
pull. If the key is not on disk and the principal is not
a MA, retrieve will fail and the protocol that called it
will abort. Because the retrieve function may or may
not perform a key pull, we create a break in the basic
sequence directly before and directly after the retrieve
function. Retrieve is an addition to the PCL action
set.

The retrieve function has inherent preconditions and

postconditions as it is a basic sequence. The pre-
conditions and postconditions are intuitive given the
explanation above. As a precondition the retrieve
function must have the key looked for cached locally
(Has(X, pmk)) or it must have a key that implies a con-
nection with the MKD (Has(X, mptkX,T )). Thus the
precondition is Has(X, mptkX,T )∨Has(X, pmk) where
pmk matches the input pmkN . The postcondition is
simply Has(X, pmk). The retrieve function has secu-
rity requirements only if the principal must perform a
key pull. We deal with the security requirements in the
Pull protocol in Subsection 5.4.

Additional Functions. Additionally throughout
the paper we use the Increment(x) function, which re-
turns a number higher than x, IsLess(x, y), to check
if x < y, IsLessEqual(x, y) to check if x ≤ y, and re-
turn(x) which we described in detail in Section 3.4.

4 Key Hierarchy of MSA

The key hierarchy of MSA is critical for understanding
how the various protocols interact and for determining
what keys guard which other keys[6]. We describe the
hierarchy here and prove its correctness in section 7.
This delay will allow us to provide definitions of the
protocols over which it is provably secure.

4.1 Description of the Key Hierarchy of
MSA

Recall that the MSA mesh network is comprised of a
Mesh Key Distributor (MKD), Mesh Authenticators
(MA), Mesh Points (MP) and nodes trying to join the
mesh we call Candidate MPs. The protocols describing
entity interactions are given in the Mesh Security Ar-
chitecture (MSA). The Mesh Security Architecture has
an inherent key hierarchy. We give this key hierarchy
in Figure 2. Each node in the graph represents a key
and labels on each edge represents the protocols needed
to obtain the key at the destination node from the key
at the starting node. We note that the subscripts of
the keys are ordered, for example the pmkX,Y is pro-
tected by the pmkmkdX and the pmkY,X is protected
by mptkX,T . The entities in the system that may have
access to the keys are listed next to each key, with the
exception of the gtk.

Let X be a Candidate MP and let T be the MKD. X
either has a shared xxKey with T or it shares public key
credentials with T . If it shares public credentials with
the MKD, then the MKD and X run the Transport
Layer Security (TLS) protocol in order to derive the
xxKeyX . Once T and X share an xxKeyX they need

7



xxKeyX {X,T}

privX {X} privT {T}

MSA Auth (TLS) MSA Auth (TLS)

pmkmkdX {X,T}

mkdkX,T {X,T}

mptkX,T {X,T}

gtkX gtkY1 gtkX gtkYn gtkX gtkY1 gtkX gtkYn

ptkX,Yn {X,Yn,T}ptkX,Y1 {X,Y1,T}ptkX,Yn,T {X,Yn,T}ptkX,Y1 {X,Y1,T}

pmkYn,X {X,Yn,T}pmkY1,X {X,Y1,T}pmkX,Yn,T {X,Yn,T}pmkX,Y1 {X,Y1,T}

MKHSH

MSA Auth (4wayHS)

MSA Auth (4wayHS)

Null

Push, Pull, or Delete

ABBH or MSA Auth ABBH or MSA Auth

ABBH or MSA Auth or GKH ABBH or MSA Auth or GKH

Local MP keys (for MP X) Peer MP keys (for MP X)

Figure 2: MSA Key Hierarchy for Node X

to share a nonce to derive the pmkmkdX . This nonce
is currently delivered to X when X runs a Four-Way
Handshake with a MA. This Four-Way Handshake is
part of the MSA Authentication. Once this nonce is
delivered, X can derive the pmkmkdX , pmkX,Z for any
Z and the mkdkX,T . When the Four-Way Handshake
completes with node Y , X will have derived ptkX,Y ,
received the gtkY from Y , and delivered gtkX to Y .

At this point X becomes a Mesh Point (MP) but
is not yet a MA. To become a MA, X needs to run
the MKHSH with T , to derive the mptkX,T , which is
a session key between X and T . This will enable X
to run the Push/Pull/Del protocols with T in order to
retrieve pmkZ,X for any Z.

The 802.11s task group has received submissions
expressing an interest in developing an Abbreviated
Handshake (ABBH) [8, 25]. The ABBH is used by
a MP or a MA (X) to derive a ptkX,Z , and exchange
gtkX and gtkZ with another MA or MP (Z). In [5], the
method of exchanging these credentials is to have the
MP or MA run the full MSA Authentication with the
other MA or MP. In this paper we develop a candidate
ABBH and prove its security and composability with
the rest of the MSA architecture.

The only protocol not mentioned thus far is the
Group Key Handshake protocol. This is used by a
MA or MP to update its group key. The protocol only
works with nodes with which it maintains a security

association (shared ptk).

4.2 Proof of Key Hierarchy of MSA

In this paper we give a full proof of the key hierarchy.
That is, we show that as long as the principals are hon-
est and act according to the protocols, the ownership
of the keys can be guaranteed according to the key hi-
erarchy. We emphasize that our proof methods allow
us to show this proof holds for ANY possible run of
the MSA with honest principals. We believe this is the
first proof in PCL of a full mesh key hierarchy.

We do this using the work of [23] and combining the
ideas of that paper with our ideas of security invari-
ants. We give the security invariants relevant to the
key hierarchy in Figure 3. In Section 7 we give a proof
that these security invariants do in fact hold through-
out ANY run of the MSA, as long as the indicated
principals are in fact honest.

5 Existing Protocols of MSA
Proposal

In this section we give the description, invariants and
goals of the existing protocols in the MSA proposal [7].
These descriptions are abstractions that contain the
parts of the protocols relevant to the security proofs.

8



ΓTLS,SI,1 :=
KOHonest(privX , {}) ⊃
Has(Z, privX) ⊃ Ẑ = X̂

ΓTLS,SI,2 :=
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Has(Z, xxKeyX) ⊃ Ẑ = X̂ ∨ Ẑ = T̂

Γ4WAY,SI,1 :=
KOHonest(pmkmkdX , {xxKeyX}) ⊃
Has(Z, pmkmkdX) ⊃ Ẑ = X̂ ∨ Ẑ = T̂

Γ4WAY,SI,2 :=
KOHonest(mkdkX,T , {xxKeyX}) ⊃
Has(Z, mkdkX,T ) ⊃ Ẑ = X̂ ∨ Ẑ = T̂

ΓPPD,SI,1,ΓMKHSH,SI,1 :=
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Has(Z, mptkX,T ) ⊃ Ẑ = X̂ ∨ Ẑ = T̂

ΓPPD,SI,2 :=
KOHonest(pmkX,Y , {pmkmkdX , mptkY,T }) ⊃
Has(Z, pmkX,Y ) ⊃ Ẑ = X̂ ∨ Ẑ = Ŷ ∨ Ẑ = T̂

ΓABBH,SI,1,Γ4WAY,SI,3,ΓGKH,SI,1 :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Has(Z, ptkX,Y ) ⊃ Ẑ = X̂ ∨ Ẑ = Ŷ ∨ Ẑ = T̂

ΓABBH,SI,2,Γ4WAY,SI,4,ΓGKH,SI,2 :=
KOHonest(gtkX , {ptkX,Y1 , . . . ptkX,Yn}) ⊃
Has(Z, gtkX) ⊃ Has(Z, ptkX,Yi)

Figure 3: MSA Key Hierarchy

In some cases it was necessary to change these proto-
cols slightly from their current description in MSA in
order to complete the proofs of security; we always in-
dicate when a change was made. In all cases, without
these changes, the security goals were not true. It was
not a deficiency in the ability of PCL to prove seem-
ingly correct assertions but actual deficiencies in the
protocols.

5.1 MSA Authentication

The MSA Authentication protocol can be run at differ-
ent times throughout the MSA [5]. The MSA Authen-
tication protocol can be used by a Candidate MP to
join the mesh or by a MA or MP to establish a connec-
tion with a MP or MA so long as one of the parties is
a MA. For clarity of presentation we will assume that
X is a Candidate MP and Y is a MA for the length of
this subsection.

The MSA Authentication protocol can be thought
of as a single large protocol. It contains a Peer Link
Establishment subprotocol, an optional TLS subpro-

tocol, an optional Key Pull subprotocol and a Four-
Way Handshake subprotocol. We examine each of the
subprotocols separately. We then connect these sub-
protocols using their pre and post conditions. Below
we discuss each of these parts separately.

5.1.1 Peer Link Establishment

The Peer Link Establishment is the first subprotocol
to be run during MSA Authentication. During Peer
Link Establishment X and Y will exchange various
networking information. As we mentioned in Section
3.5, INFOX and INFOY will represent this informa-
tion. There is no cryptography of any kind in the Peer
Link Establishment protocol; it is simply an unauthen-
ticated exchange of information.

The Peer Link Establishment Protocol is a peer-to-
peer protocol and because it was designed with this
in mind it has some interesting properties. First the
Peer Link Establishment phase of MSA Authentication
is symmetric for each party. Also, X and Y do not
need to send or receive the first message in any order.
This is because it is valid for either party to initiate
the protocol. For example if X is already a MP or
a MA and is establishing a connection to Y who is
already a MP or a MA, Y may have tried to start this
establishment with X before it receives any message
from X. In fact the parties may decide to start this
protocol at the same time. One can verify that while
the roles of X and Y do not necessarily have to be
symmetric, symmetry gives us some desired properties.

As stated earlier, we will assume (without loss of gen-
erality) that X is the Candidate MP and Y is a MA.
We give the strands, preconditions and postconditions
of the Peer Link Establishment protocol in Figure 4.
We note that the strands are symmetric thus we only
present one strand, however because X is a Candidate
MP and Y is a MA their preconditions and postcondi-
tions are different.

The only requirements we have of the Peer Link
Establishment protocol is that upon completion each
party involved in the protocol has received and sent the
messages that should be sent in a Peer Link Establish-
ment protocol and any party involved in the protocol
must share either public credentials or a xxKeyX with
T . We can not hope to show our generalized mutual au-
thentication goal as this is not a cryptographic protocol
in itself. While these postconditions are trivial, we will
use them as preconditions to later protocols. Formally
we must show the following theorem. The case we are
examining is the case where ¬Has(X, pmkmkdX) (so
that X is not part of the mesh).

Theorem 1. Given precondition ΘPLE upon execut-
ing the Peer Link Establishment protocol ΦPLE,1 and

9



PLE = (X, Ŷ , INFOX)

[(send Ŷ , X̂, INFOX , “IATH1”;

rcve X̂, Ŷ , INFOX , “IATH3”) :

(rcve X̂, Ŷ , INFOY , “IATH1”;

send Ŷ , X̂, INFOY , “IATH3”)]X

ΘPLE,INIT := (Has(X, credX) ∧Has(T, credT ))∨
(Has(X, xxKeyX) ∧Has(T, xxKeyX))∨
(Has(X, pmkmkdX))

ΘPLE,MA := Has(Y, mptkY,T )

ΦPLE,INIT,1 :=
Send(X, IATH1X) ∧ Rcve(X, IATH1Y)∧
Send(X, IATH3X) ∧ Rcve(X, IATH3Y)

ΦPLE,INIT,2 := ΘPLE,INIT

ΦPLE,MA,1 :=
Send(Y, IATH1Y) ∧ Rcve(Y, IATH1X)∧
Send(Y, IATH3Y) ∧ Rcve(Y, IATH3X)

ΦPLE,MA,2 := ΘPLE,MA

Figure 4: Strand Preconditions and Postconditions of
Peer Link Establishment

ΦPLE,2 are guaranteed to hold. Formally,
ΘPLE [PLE]XΦPLE,1 ∧ ΦPLE,2

We give no proof as it is trivial. Note the lack of im-
plication that the same messages were received by the
peer. The information exchanged during the PLE is
verified during the Four-Way Handshake. Thus upon
completion of the Four-Way Handshake we prove that
in fact the messages sent and received by one party
are the same as the messages sent and received by the
other party in the Peer Link Establishment. It is nat-
ural that we can not show this security property until
after the completion of the Four-Way Handshake as the
messages are not verified by any cryptographic means
until the Four-Way Handshake.

5.1.2 TLS

Assume X and Y have just run the Peer Link Es-
tablishment protocol. In order to participate in the
Four-Way Handshake, X must first be sure to share
a xxKeyX with T , the MKD. If X only shares public
key credentials with the MKD and not the xxKeyX ,
then following the completion of the Peer Link Es-
tablishment protocol, X and T must run TLS. We
define the public key credentials of X as credX :=
(privX , pubX , pubCA, SIGCA(X, pubX)).

TLS was proven secure in [20], however the invariants
and thus the proof relied on the assumption that one

party always acted as the “client” and one party always
acted as the “server.” This will not always be the case
as any node could possibly be the MKD of another
mesh network. Thus we reprove TLS and give a proof
in which the role of each party is not restricted. We
mention that this may be of independent interest as
often a party will act as both a server and a client in
TLS. We give the strands of TLS (in this context) in
Figure 5 and the Preconditions, Invariants and Security
Goals in Figure 6. We note that although we call the
secret exchanged the xxKeyX , it is still an arbitrary
secret.

TLS:CLNT = (X, T̂ , V erSUx)

[new Nx; send X̂, T̂ , Nx, V erSUx;

rcve T̂ , X̂, Nt, V erSUt, cert1;

mtch cert1/SIGCA(T̂ , pubT );

new xxKeyX ; mtch SIGCA(X̂, pubX)/cert2;
mtch ENCpubT (xxKeyX)/enc2;
mtch SIGprivX (handShake1)/sig2;
mtch HashxxKeyX (handShake1, “client”)/hash2;

send X̂, T̂ , cert2, enc2, sig2, hash2;

rcve T̂ , X̂, hash3;
mtch HashxxKeyX (handShake2, “server”)/hash3]X

TLS:SRVR = (T, V erSUt)

[rcve X̂, T̂ , Nx, V erSUx;

new Nt; mtch SIGCA(T̂ , pubT )/cert1;

send T̂ , X̂, Nt, V erSUt, cert1;

rcve X̂, T̂ , cert2, enc2, sig2, hash2;

mtch SIGCA(X̂, pubX)/cert2;
mtch SIGprivX (handShake1)/sig2;
mtch ENCpubT (xxKeyX)/enc2;
mtch HashxxKeyX (handShake1, “client”)/hash2;
mtch hash3/HashxxKeyX (handShake2, “server”);

send T̂ , X̂, hash3]Y

Figure 5: Strands of TLS

Security Requirements of TLS. We follow [20] to
choose our desired security properties for TLS.

1. We require that the principals agree on each
other’s identity, the protocol completion status (to
the point it can be verified), the values of the pro-
tocol version, cryptographic suite, and the secret
(in this case the xxKeyX) that the client sends
to the server. For the client this property is given
as matching conversations ΦTLS,AUTH,CLNT and
key delivery ΦTLS,KD,CLNT the analogous prop-
erties for the server are given in Section A in the
Appendix.

10



2. We require that only the client and the server
know the secret the client generates (in our case
the xxKeyX), this is realized in the security in-
variant ΓTLS,SI,2 in Figure 3.

ΘTLS := Has(X, credX) ∧Has(T, credT )

ΓTLS,1 := Honest(X̂) ∧ Send(X, m)∧
Contains(m, SIGprivX (handShake1)) ⊃
Send(X, TLS1) < Rcve(X, TLS2) <
Send(X, TLS3)

ΓTLS,2 := Honest(T̂ ) ∧ Send(T, m)∧
Contains(m, HashxxKeyX (Ŷ , T̂ , Ny, V erSUy,

T̂ , Ŷ , Nz, V erSUt, cert1,

Ŷ , T̂ , cert2, sig2, enc2, hash2, T̂ , Ŷ , “server”)) ⊃
(Z = T ∧ Rcve(T, TLS1) < Send(T, TLS2) <
Rcve(T, TLS3) < Send(T, TLS4))

ΦTLS,AUTH,CLNT :=
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Send(X, TLS1) < Rcve(T, TLS1) <
Send(T, TLS2) < Rcve(X, TLS2) <
Send(X, TLS3) < Rcve(T, TLS3) <
Send(T, TLS4) < Rcve(X, TLS4)

ΦTLS,KD,CLNT :=
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Has(X̂, xxKeyX) ∧Has(T̂ , xxKeyX)

Figure 6: Preconditions Invariants and Security Goals
for the Client of TLS

To formally show that the security requirements
listed above hold we must show the following theorem.

Theorem 2.
(i) ΓTLS,{1,2,} ∧ ΓTLS,SI,{1,2} `
ΘTLS [TLS : CLNT]XΦTLS,{AUTH,KD},CLNT

(ii) ΓTLS,{1,2,} ∧ ΓTLS,SI,{1,2} `
ΘTLS [TLS : SRVR]T ΦTLS,{AUTH,KD},SRV R

(iii) TLS ` ΓTLS,{1,2} ∧ ΓTLS,SI,{1,2}

Enumeration (i) reads “Given preconditions ΘTLS

and invariants ΓTLS,1,ΓTLS,2,ΓTLS,SI,1 and ΓTLS,SI,2

upon executing the Client role the security goals
ΦTLS,AUTH,CLNT , ΦTLS,KD,CLNT are guaranteed to
hold.” Enumeration (ii) is the analogous to (i), but
for the server. Enumeration (iii) shows that ΓTLS,{1,2}
and ΓTLS,SI,{1,2} are invariants of TLS. We give the
formal proof of (i) and (ii) in the appendix. We give
the proof of the security invariants in Section 7. We
give a general overview of all the proofs below.

Client’s View. If we assume that the server is hon-
est, the server is the only one who has the private
key to decrypt the xxKeyX that the client sent with
the server’s public key and neither will send out the
xxKeyX ; this is captured in ΓTLS,SI,1 and ΓTLS,SI,2.
Thus a hash under the xxKeyX can only come from
the client or the server. However due to the form of
the hash from ΓTLS,2 we know it came from the server.
The hash from the server contains the entire conversa-
tion thus far and it matches the record of the conversa-
tion that the client has, thus the client and server must
share all the same variables. Additionally from ΓTLS,2

we know that the server will only send a hash of the
entire conversation if it has sent and received all the
previous messages of this TLS session in the correct
order. We can further order the messages using the
freshness of the nonces. Combining all these parts we
get matching conversations. Key Distribution is triv-
ial as we have previously shown they share the same
variables.

Server’s View. If we assume that the client is honest
only the client has privX . Again this is captured in
ΓTLS,SI,1. Thus the signature the server receives can
only come from the client. The signature contains the
entire conversation thus far including the encryption of
the xxKeyX . Thus the client and the server must share
all the same variables used to this point. We are given
from ΓTLS,1 that if the client sends out the signature of
the entire conversation, the client must have sent and
received the previous messages of this TLS session in
the correct order. We can order the messages using the
freshness of the nonces and the fact that if a message
arrives that only the client could have sent than the
client must have sent it before it arrived. Combining
all these parts we get matching conversations. Again
Key Distribution is trivial.

Invariants. We need to show that the invariants hold
throughout all the basic sequences. This is normally a
simple task; it is not in this case. ΓTLS,1 requires that
the client send and receive the first two messages of the
protocol before sending the third and similarly ΓTLS,2

requires that the server send and receive the first three
messages before sending the final message. While this
is true at this point in the protocol, it cannot be shown
to be true while looking at a single basic sequence in
isolation. Thus we implement the proof technique from
Section 3. We note that after each basic sequence any
send or receive action will be a post condition of that
basic sequence. Also we note that any precondition to a
basic sequence that is solely a send or receive action will
be a postcondition to that basic sequence as well. This
enables us to show that ΓTLS,1 and ΓTLS,2 indeed hold

11



over the run of this protocol. The security invariants
are proved later in Section 7.

5.1.3 Four-Way Handshake

The Four-Way Handshake will verify the information
exchanged in the Peer Link Establishment protocol as
well as establish a session key between X and Y . We
present the strands of the MSA Four-Way Handshake
in Figure 7 and give the preconditions, invariants and
selected security goals of the Candidate MP in Figure
8. The security goals of the MA are analogous and can
be found in the appendix in Section B.1.1. The security
invariants have previously been given in Figure 3.

The Four-Way Handshake is based on the 802.11i
Four-Way Handshake, but it is fundamentally differ-
ent. In the ptk derivation function in MSA, the sender
of the first message’s nonce will always be after the
recipient of the first message’s nonce. In 802.11i the
nonces in the derivation function are ordered by value.
Ordering the nonces by the sender and receiver of a set
of messages allows each party to know who is the ini-
tiator and who is the recipient of any MIC’d message,
without carrying any state. This is because the nonce
ordering in the key (and thus the key itself) along with
the message id distinctly identifies the sender of the
message. In MSA, based on the key and the message id,
the sender of the message is ambiguous without keep-
ing state. In [5], the ordering of the nonces is slightly
different, based on role selection, but it is unambiguous
based on other information.

We prove a slight modification of the four-way hand-
shake proposed in [5]. We add a nonce from the MA
in this protocol, so that the derived key is provably
fresh from both perspectives. Thus, the ptk derivation
is not based off of the MKD-nonce for the candidate
MP (a static value we denote TNx for T -Nonce for
X). Instead, we generate a nonce at the MA (Y ) and
use that in the derivation of the ptk and propose using
the TNx only for deriving portions of the key hierar-
chy. Without this change, key freshness could not be
proven.

Although the 802.11i Four-Way Handshake was
proven secure in [20] we can not reuse that proof for
two main reasons. First, the proof from [20] was reliant
on one party only ever carrying out one role. Thus, to
have any guarantee of security the parties could not
exchange roles. We can not make this guarantee for
mesh networks. Second, the handshake in 802.11i as-
sumes that the parties already have established keys.
Again this is not the case in a mesh of peers, thus we
need a proof that deals with with a mid-protocol key
derivation and a key pull.

Recall that X is a candidate MP and that Y is a MA.

4WAY:INIT = (X, Ŷ , INFOX , INFOY , gtkX)

[rcve X̂, Ŷ , “IAUTH5”, y, TNx;
mtch SELECT (INFOX , INFOY )/CS, pmkN ;

mtch HASH(xxKeyey, TNx, X̂, Ŷ )/pmkmkdX ;
mtch HASH(pmkmkdX)/pmkX,Y ;
mtch RETRIEV E(pmkN)/pmk;
new x; mtch HASHpmk(x, y)/ptkX,Y ;
mtch encptkX,Y (gtkX)/enc1;

mtch HASHptkX,Y

(“IAUTH6”, x, pmkN, INFOX , enc1)/mic1;

send Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1;

rcve X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2;
mtch enc2/encptkX,Y (gtkY );

mtch mic2/HASHptkX,Y

(“IAUTH7”, y, pmkN, INFOY , TNx, enc2);
mtch HASHptkX,Y (“IAUTH8”)/mic3;

send Ŷ , X̂, “IAUTH8”, mic3]X

4WAY:MA = (Y, INFOY , INFOX , gtkY )
[mtch SELECT (INFOX , INFOY )/CS, pmkN ;
mtch RETRIEV E(pmkN)/pmk, TNx;

new y; send X̂, Ŷ , “IAUTH5”, y, TNx;

rcve Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1;
mtch HASHpmk(x, y)/ptkX,Y ;
mtch enc1/encptkX,Y (gtkX);

mtch mic1/HASHptkX,Y

(“IAUTH6”, x, pmkN, INFOX , enc1);
mtch enc2/encptkX,Y (gtkY );

mtch mic2/HASHptkX,Y

(“IAUTH7”, y, pmkN, INFOY , TNx, enc2);

send X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2;

rcve Ŷ , X̂, “IAUTH8”, mic3;
mtch mic3/HASHptkX,Y (“IAUTH8”)]Y

Figure 7: Strands of the Four-Way Handshake

X and Y have not communicated as part of this mesh
thus they will not share a key in the mesh. Since X is
not a MA and Y is a MA we know that select() will
output pmkNX,Y . It therefore is the case that when Y
executes the retrieve function as part of the Four-Way
Handshake Y will need to perform a Key Pull protocol
with the MKD, as Y is the only MA. It is simple to
verify that Y satisfies the preconditions of the retrieve
function since Has(Y, mptkY,T ) is a precondition of the
Four-Way Handshake. We also mention as a side note
that Y will retrieve the TNx from the MKD in addition
to pmkX,Y and must pass the mdkNonceX along to X.
Now we must verify that X satisfies the retrieve pre-
condition at the point he executes the function. This
point is not directly obvious, but still simple to verify.
Since X is a Candidate MP Y will pass the TNx to X.

12



Once X has the xxKeyX and the TNx, X can derive
the pmkX,Z for all Z and thus can derive pmkX,Y .

In order to achieve our security goals we needed to
modify the Four-Way Handshake protocol from the
current MSA specification. Currently, the MA only
sends a single nonce that was received from the MKD
in the first message. The Candidate MP uses this nonce
as both the TNx and as Y ’s contribution to the ptkX,Y .
However, if this is done then Y can not contribute to
the ptkX,Y and thus we can not show key freshness.
Thus we recommend an extra nonce be added to the
Four Way Handshake protocol. Then Y ’s nonce can
be used to derive the ptkX,Y and the TNx can be used
for its sole purpose of deriving the pmkmkdX and the
mkdkX,T .

Θ4WAY,INIT,1 := ΦPLE,INIT,1

Θ4WAY,INIT,2 := ΦPLE,INIT,2

Θ4WAY,MA,1 := ΦPLE,MA,1

Θ4WAY,MA,2 := ΦPLE,MA,2

Γ4WAY,1 := Honest(X̂) ∧ Send(X, m)∧
(Contains(m, HASHptkZ,Y (“IAUTH6”))∨
Contains(m, HASHptkY,Z (“IAUTH7”))∨
Contains(m, HASHptkZ,Y (“IAUTH8”))) ⊃
Ẑ = X̂

Φ4WAY,AUTH,INIT :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
(Θ4WAY,INIT,2 ∧Θ4WAY,MA,2∧
Send(Y, IATH5)) < Rcve(X, IATH5) <
Send(X, IATH6) < Rcve(Y, IATH6) <
Send(Y, IATH7) < Rcve(X, IATH7) <
Send(X, IATH8)

Φ4WAY,PTKD,INIT :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Has(X, ptkX,Y ) ∧Has(Y, ptkX,Y )

Φ4WAY,GTKD,INIT :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Has(X, gtkY ) ∧Has(Y, gtkX)

Φ4WAY,KF,INIT :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
new (X̂, x) ∧ x ⊆ ptkX,Y ∧ FirstSend(Y, y, IATH5)∧
new (Ŷ , y) ∧ y ⊆ ptkX,Y ∧ FirstSend(X, x, IATH6)

Φ4WAY,INFO,INIT :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
SELECT (INFOX , INFOY ) = CS, pmkN∧
Has(X, CS, pmkN) ∧Has(Y, CS, pmkN)

Figure 8: The Preconditions, Invariants and Security
Goals of the Four-Way Handshake

We now give our security goals taken from [20], which

were based on the security goals given in the 802.11i
standard. We adapted them slightly for the slight dif-
ferences in the protocol.

1. Confirm the existence of the PMK at the peer; this
is realized in the matching conversation security
goals , Φ4WAY,AUTH,INIT and Φ4WAY,AUTH,MA.

2. Ensure that the ptk is fresh; this is realized in the
key freshness security goal, Φ4WAY,KF,INIT and
Φ4WAY,KF,MA.

3. Synchronize the installation of the session keys
into the MAC; realized in the ptk delivery goal,
Φ4WAY,PTKD,INIT and Φ4WAY,PTKD,MA.

4. Transfer the GTK from the the MA to the Candi-
date MP and from the Candidate MP to the MA,
realized in gtk delivery goal, Φ4WAY,GTKD,INIT

and Φ4WAY,GTKD,MA.

5. Confirm the selection of miscellaneous secu-
rity information, realized in verified infor-
mation exchange goal, Φ4WAY,INFO,INIT and
Φ4WAY,INFO,MA.

We now give the formal security theorem below, as
usual the first two enumerations represent the security
goals of the Candidate MP and the MA respectively
and the third enumeration is a verification that the
protocol does not violate its invariants.

Theorem 3.
(i) Γ4WAY,1 ∧ Γ4WAY,SI,{1,2,3,4} `
Θ4WAY,INIT,{1,2}[4WAY:INIT]X
Φ4WAY,{AUTH,PTK,GTKD,KF,INFO},INIT

(ii) Γ4WAY,1 ∧ Γ4WAY,SI,{1,2,3,4} `
Θ4WAY,MA,{1,2}[4WAY:MA]Y
Φ4WAY,{AUTH,PTK,GTKD,KF,INFO},MA

(iii)4WAY ` Γ4WAY,1 ∧ Γ4WAY,SI,{1,2,3,4}

We walk through the proof briefly here, a full version
is in the appendix in Section B.1.1.

Candidate MPs’s View From precondition
Θ4WAY,INIT,1, the Candidate MP has the messages
he sent and received in the Peer Link Establishment.
Also on protocol completion MA knows he sent and
received the messages of the Four-Way Handshake.
From the receipt of the MIC in IATH7, the MA know
whoever sent the message has the ptkX,Y . From the
security invariants on the system he knows that if
everyone with access to the pmk is behaving honestly
(X, Y , T ) then IATH7 must have come from one

13



of these principals. But, from the invariants on the
protocol he can tell using the message identifier in
the MIC of IATH7 and the order of the nonce in
the ptkX,Y that the MIC came from Y . Since every
protocol’s message identifiers are unique (with the
exception of TLS), X uses the message identifiers and
knows that Y must be participating in the Four Way
Handshake. Thus as part of the Four Way Handshake
X knows Y must have earlier verified the MIC that
X sent in IATH6, before sending IATH7. Since Y
must have hashed both the MIC in message 7 and
the MIC in message 6 (to verify it), X knows he
indeed shares all the variables with Y . Thus X can
now confirm that every message sent and received
by Y in both the Peer Link Establishment and the
Four Way Handshake match X’s. With some more
temporal tricks X can get matching conversations
for the Four-Way Handshake protocol. While we can
not necessarily order the messages of the Peer Link
Establishment protocol, we can still ensure that the
messages are identical. Thus we have established
Φ4WAY,AUTH,INIT and the remaining security goals
follow without much work.

MA’s View The MA receives IATH8 and with sim-
ilar methods as given in the proof of the Candidate
MP’s view Y can tell that X hashed the MIC in IATH8.
Then the MA knows that X is indeed participating
in the Four-Way Handshake and thus must have com-
puted the MIC in IATH7 in order to verify it before
X sent IATH8. Again from the MIC in IATH6 and
the invariants on the system Y can prove that X sent
IATH6. Thus Y can verify that he and X share all the
same variables. And with a few more timing tricks we
can ensure Φ4WAY,AUTH,MA holds and the remaining
security goals follow.

Invariants. The invariants are straightforward and
it can easily be verified they hold over the basic se-
quences.

We are now done describing the MSA Authentication
protocol in the case of a Candidate MP and a MA.

5.1.4 MSA Authentication without a Candi-
date MP

In the previous subsubsections we looked at MSA Au-
thentication when one of the parities is a Candidate
MP. However, the MSA Authentication protocol can
be run between a MP or MA and a MP or MA, so long
as one of the parties is a MA. We continue to assume,
without loss of generality that Y is the MA. This fun-
damentally changes nothing in the security proofs; it
is just a different path through the initial handshake.

There is no TLS step in this case, the protocol pro-
ceeds from PLE directly to 4WAY. The composition is
proven in Section 8.

5.2 Mesh Key Holder Security Hand-
shake

The MKHSH is used to set up a session key, the
mptkX,T between a MP (X) and the MKD (T ). Once
MKHSH completes successfully the MP becomes an
MA. We give the strands, preconditions and invariants
in figure 9. The security goals are nearly identical to
those of the Four-Way Handshake and thus have been
moved to the appendix in Section C. The security in-
variant has been previously given in Figure 3.

MKHSH:INIT = (X, T̂ , INFOX)

[new x; send “MKH1”, x, X̂, T̂ , INFOX ;

rcve “MKH2”, x, t, X̂, T̂ , INFOT , mic0;
mtch SELECT (INFOX , INFOT )/CS;
mtch HASHmkdkX,T (x, t)/mptkX,T ;

mtch mic0/HASHmptkX,T
(

“MKH2”, x, t, X̂, T̂ , INFOT );

mtch mic1/HASHmptkX,T
(“MKH3”, x, t, X̂, T̂ , INFOX);

send “MKH3”, x, t, X̂, T̂ , INFOX , mic1;

rcve “MKH4”, x, t, X̂, T̂ , INFOT , mic2;

mtch mic2/HASHmptkX,T
(“MKH4”, x, t, X̂, T̂ , INFOT )]X

MKHSH:RESP = (T, INFOT )

[rcve “MKH1”, x, X̂, T̂ , INFOX ;
mtch SELECT (INFOX , INFOT )/CS;
new t; mtch HASHmkdkX,T (x, t)/mptkX,T ;

mtch HASHmptkX,T
(

“MKH2”, x, t, X̂, T̂ , INFOT )/mic0;

send “MKH2”, x, t, X̂, T̂ , INFOT , mic0;

rcve “MKH3”, x, t, X̂, T̂ , INFOX , mic1;

mtch mic1/HASHmptkX,T
(“MKH3”, x, t, X̂, T̂ , INFOX);

mtch mic2/HASHmptkX,T
(“MKH4”, x, t, X̂, T̂ , INFOT );

send “MKH4”, x, t, X̂, T̂ , INFOT , mic2]T

ΘMKHSH,1 := Has(X, mkdkX,T ) ∧Has(T, mkdkX,T )

ΓMKHSH,1 := Honest(X̂) ∧ Send(X, m)∧
(Contains(m, HASHmptkX,T (“MKH2”, (Ŷ , Ẑ)))∨
Contains(m, HASHmptkX,T (“MKH3”, (Ẑ, Ŷ )))∨
Contains(m, HASHmptkX,T (“MKH4”, (Ŷ , Ẑ))) ⊃
Ẑ = X̂

Figure 9: Strands, preconditions and invariants of the
MKHSH

This is a Four Way Handshake that is used for set-

14



ting up a key. From the point of view of this paper it is
very similar to the Four-Way Handshake in MSA pre-
sented earlier. Once again, it is possible to tell who sent
which message based solely on the MIC of the message.
However in the MKHSH protocol it is done in a more
straightforward way than in the Four-Way Handshake.
In the MKHSH protocol, each message that is MIC’d
contains the MA’s address ordered before the MKD’s
address in the MIC (this is capture in the invariant
ΓMKHSH,1). Thus a reflection attack is not possible.
Still the ideas are similar enough that the proof is al-
most identical. We give the formal security theorem
below.

Theorem 4.
(i) ΓMKHSH,1 ∧ ΓMKHSH,SI,1 `
ΘMKHSH,INIT,1[MKHSH:MA]X
ΦMKHSH,{AUTH,MPTK,GTKD,KF,INFO},MA

(ii) ΓMKHSH,1 ∧ ΓMKHSH,SI,1 `
ΘMKHSH,MA,1[MKHSH:MKD]T
ΦMKHSH,{AUTH,MPTKD,GTKD,KF,INFO},MKD

(iii)MKHSH ` ΓMKHSH,1 ∧ ΓMKHSH,SI,1

The proof is nearly identical to the proof of the Four-
Way Handshake and the differences are neither enlight-
ening nor interesting. It has been omitted.

5.3 Group Key Handshake

If a MA or MP has a security connection (shares a
session key) and wants to update its group transfer
key, it must distribute its new group transfer key to
every principal it has a connection with. To do this it
will run the Group Key Handshake protocol.

The protocol is a simple two-round protocol, in
which a sender, X, sends its group transfer key to a
receiver, Y and the receiver acknowledges the recep-
tion. The messages are protected by MICs using the a
portion of the ptkX,Y and the gtkX is encrypted again
using the ptkX,Y . The sender maintains a message
counter for every principal it has a connection with,
and it updates this counter after every key exchange
message sent.

In examining the protocols we found the current
MSA Group Key Handshake is vulnerable to a reflec-
tion attack as in the messages there is no indication of
who the sender or the intended receiver of the message
was. The protocol was adopted from 802.11i and was
not modified to ensure security in a mesh network. We
modify the Group Key Handshake to include the sender
and receiver’s addresses ordered inside the MICs. This
stops the reflection attacks and allows us to prove the
protocol secure.

The Group Key Handshake protocol contains the
“return to global” function that we introduced in Sec-
tion 3.4. It will be used to return the new message
counter value, represented by ngtkcX,Y , to the global
level. Thus, once the basic sequence is complete, any
role that uses the gtkcX,Y value will be using the up-
dated global message counter number globalgtkcX,Y =
ngtkcX,Y . Recall that in PCL basic sequences are au-
tonomous steps and thus we are guaranteed that the
value that is updated at the global level will not be
used until after the basic sequence that updated it com-
pletes.

We give the strands, preconditions and invariants in
Figure 10 and note that GRP1HASH and GRP2HASH
represent the hashes in the first and second messages
of the group key handshake, instantiated with the ap-
propriate principals variables. The security invariants
can be found in Figure 3. While ΓGKH,2 is listed as
an invariant it could be considered a security invariant
as it has security properties within itself. It essentially
states that a message with a higher counter was sent
out after a message with a lower counter. The stated
security goals are simply matching conversations and
group key delivery; they are straightforward and have
been moved to Section D. This leads to a theorem
about the correctness of the Group Key Handshake,
similar to previous theorems.

Theorem 5.
(i) ΓGKH,{1,2} ∧ ΓGKH,SI,{1,2} `
ΘGKH,{1,2}[GKH:SNDR]X
ΦGKH,{AUTH,GTKD},SNDR

(ii) ΓGKH,{1,2} ∧ ΓGKH,SI,{1,2} `
ΘGKH,{1,2}[GKH:RCVR]Y
ΦGKH,AUTH,RCV R

(iii)GKH ` ΓGKH,{1,2} ∧ ΓGKH,SI,{1,2}

We have omitted the proofs (i) and (ii) as they are
nearly identical to the proof given of the Delete proto-
col in section E. However, the proof that ΓGKH,2 holds
over every basic sequence of the Group Key Hand-
shake is one of the most technically challenging proofs
we present. The proof requires that the precondition
ΘGKH,2 holds after every basic sequence, thus we ad-
ditionally show this property in the proof. The proof
is quite original as we are using the new function intro-
duced in this paper, return(). We give the formal proof
in Section D in the appendix, but give an overview be-
low.

Proof Sketch: GKH ` ΘGKH,2 ∧ ΓGKH,2, SNDR.
First we need to show the precondition holds over all

15



GKH:SNDR =

(X, Ŷ , gtkcX,Y , ptkX,Y , gtkX)
[mtch ngtkcX,Y /Increment(gtkX,Y );
return ngtkcX,Y ;mtch enc1/ENCptkX,Y (gtkX);

mtch mic1/HASHptkX,Y (

“GKH1”, ngtkcX,Y , X̂, Ŷ , enc1);

send “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1;

rcve “GKH2”, ngtkcX,Y , mic2, Ŷ , X̂;
mtch mic2/HASHptkX,Y (

“GKH2”, ngtkcX,Y , Ŷ , X̂)]X

GKH:RCVR =

(Y, X̂, gtkc′X,Y , ptkX,Y )

[rcve “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1;
IsLess(gtkc′X,Y , ngtkcX,Y );
mtch enc1/ENCptkX,Y (gtkX);

mtch mic1/HASHptkX,Y (

“GKH1”, ngtkcX,Y , X̂, Ŷ , enc1);
return ngtkcY,T ;
mtch mic2/HASHptkX,Y (

“GKH2”, ngtkcX,Y , Ŷ , X̂);

send “GKH2”, ngtkcX,Y , mic2, Ŷ , X̂]Y

ΘGKH,1 := Has(X, ptkX,Y ) ∧Has(Y, ptkX,Y )

ΘGKH,2 := Send(X, m) ∧ Contains(m, gtkc′X,Y ) ⊃
IsLess(gtkc′X,Y , Increment(globalgtkcX,Y ))

ΓGKH,1 := Honest(X̂) ∧ Send(X, m)∧
(Contains(m, Hashptk(“GKH1”, Ẑ, Ŷ ))∨
Contains(m, Hashptk(“GKH2”, Ŷ , Ẑ))) ⊃ Ẑ = X̂

ΓGKH,2 := Honest(X̂) ∧ Send(X, m0) ∧ Send(X, m1)∧
Contains(m0, HASHptkX,Y (ngtkc′X,Y , GRP1HASH)∧
= Contains(m1, HASHptkX,Y (ngtkcX,Y , GRP1HASH)∧
IsLess(gtkc′X,Y , gtkcX,Y ) ⊃ Send(X, m0) < Send(X, m1)

ΓGKH,3 := Honest(X̂) ∧ Send(X, m0) ∧ Send(X, m1)∧
Contains(m0, HASHptkX,Y (ngtkc′X,Y , GRP2HASH))∧
Contains(m1, HASHptkX,Y (ngtkcX,Y , GRP2HASH))∧
IsLess(gtkc′X,Y , gtkcX,Y ) ⊃ Send(X, m0) < Send(X, m1)

Figure 10: Strands, preconditions and Invariants of the
Group Key Handshake

basic sequences. The precondition essentially states
that any counter value that has been sent out in the
past is smaller than the incremented value of the global
counter, i.e. ngtkcX,Y < Increment(globalgtkcX,Y ).
We need to show this precondition holds over the first
basic sequence, i.e. we need to show that if the precon-
dition is true at the start of the protocol it is still true
after the send of the first message GKH1. The only
counter value sent out in the first basic sequence was

newgtkcX,Y . Recall, globablgtkcX,Y = newgtkcX,Y

from the return function. Thus we have ngtkcX,Y <
Increment(globalgtkcX,Y ), by the definition of Incre-
ment.

Now assuming the precondition and the invariant
held before the first basic sequence we must show that
the invariant still holds. Recall that the invariant es-
sentially states that a message with a higher counter
was first sent out after a message with a lower counter.
From the precondition we know that all messages sent
prior to this basic sequence have a counter number
smaller than newgtkcX,Y . This value is GTK1’s mes-
sage counter value. Thus, GTK1 did not violate the
invariant and the invariant still holds after the basic
sequence. The proof of the second basic sequence is
trivial as it does not contain a send.

Proof Sketch: GKH ` ΘGKH,2 ∧ ΓGKH,3, RCVR.
We assume that the precondition holds and we need to
show that it holds over the first basic sequence. The
message sent out during the first basic sequence has
a counter value of ngtkcX,Y , which is the same value
as the current global counter value. Thus ngtkcX,Y <
Increment(globalgtkcX,Y ) continues to hold.

We can show the invariant holds over the first ba-
sic sequence in much the same was as in the SNDR
case. We know from the precondition that all messages
sent prior to the start of this basic sequence contain a
smaller counter value than the value of the message we
send during this first basic sequence. Thus we do not
violate the invariant sending the message of the first
basic sequence. This completes the proof sketch.

5.4 Push, Pull and Delete

The Push, Pull and Delete protocols are protocols be-
tween a MA and the MKD for key management of the
pmk’s. We give the strands, preconditions and invari-
ants of the all three protocols below, some of the in-
variants have been moved to the appendix as they are
similar to ΓPPD,2. The security invariants can be found
in Figure 3.

PULL:MA = (Y, T̂ , X̂, pmkNX,Y , plcY,T )
[mtch nplcY,T /Increment(plcY,T );
return nplcY,T ;
mtch mic1/HASHmptkY,T (

Ŷ , T̂ , “PULL1”, nplcY,T , X̂, pmkNX,Y );

send T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1;

rcve Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2;

mtch enc1/ENCmptkY,T (pmkX,Y );

mtch mic2/HASHmptkY,T (Ŷ , T̂ , “PULL2”,

16



nplcY,T , X̂, pmkNX,Y , TNx, enc1)]Y

PULL:MKD = (T, pmkX,Y , plc′Y,T )

[rcve T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1;
IsLess(plc′Y,T , nplcY,T );
mtch mic1/HASHmptkY,T (

Ŷ , T̂ , “PULL1”, nplcY,T , X̂, pmkNX,Y );
mtch enc1/ENCmptkY,T (pmkX,Y );

return nplcY,T ;

mtch mic2/HASHmptkY,T (Ŷ , T̂ , “PULL2”,

nplcY,T , X̂, pmkNX,Y , TNx, enc1);

send Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2]T

PUSH:MA = (Y, plcY,T = nplcY,T , pdc′Y,T )

[rcve Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0;
mtch mic0/HASHmptkY,T (

Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y );
IsLess(pdc′Y,T , npdcY,T );
return npdcY,T ;
PULL:MA]Y

PUSH:MKD =

(T, Ŷ , X̂, pmkNX,Y , pmkX,Y , pdcY,T , plc′Y,T )
[mtch npdcY,T /Increment(pdcY,T );
return npdcY,T ;
mtch mic0/HASHmptkY,T (

Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y );

send Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0;
PULL:MKD]T

DEL:MA := (Y )

[rcve Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0;
mtch mic0/HASHmptkY,T (

Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y );
IsLess(pdc′Y,T , npdcY,T );
return npdcY,T ;
mtch mic1/HASHmptkY,T (

Ŷ , T̂ , “DEL2”, npdcY,T , X̂, pmkNX,Y );

send T̂ , Ŷ , “DEL2”, npdcY,T , X̂, pmkNX,Y , mic1]Y

DEL:MKD := (T, Ŷ , X̂, pmkNX,Y , pmkX,Y )
[mtch npdcY,T /Increment(pdcY,T );
return npdcY,T ;
mtch mic0/HASHmptkY,T (

Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y );

send Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0;

rcve T̂ , Ŷ , “DEL2”, npdcY,T , X̂, pmkNX,Y , mic1;
mtch mic1/HASHmptkY,T (

Ŷ , T̂ , “DEL2”, npdcY,T , X̂, pmkNX,Y )]T

ΘPPD,1 := Has(T, mptkY,T ) ∧Has(Y, mptkY,T )

ΘPPD,2 := Send(Y, m) ∧ Contains(m, plc′Y,T ) ⊃
IsLess(plc′Y,T , Increment(globalplcY,T ))∧
Send(T, m) ∧ Contains(m, pdc′Y,T ) ⊃
IsLess(pdc′Y,T , Increment(npdcY,T ))

ΓPPD,1 := Honest(Y ) ∧ Send(Y, m)∧
(Contains(m, HASHmptkY,T (Ẑ, X̂, “PULL1”))∨
Contains(m, HASHmptkY,T (X̂, Ẑ, “PULL2”))∨
Contains(m, HASHmptkY,T (X̂, Ẑ, “PUSH1”))∨
Contains(m, HASHmptkY,T (X̂, Ẑ, “DEL1”))∨
Contains(m, HASHmptkY,T (Ẑ, X̂, “DEL2”))) ⊃
Ẑ = Ŷ

ΓPPD,2 := Honest(Ẑ)∧
(Send(Z, m0) ∧ Send(Z, m1)∧
Contains(m0, HASHmptkZ,X (plc′Z,X , PULL1HASH))∧
Contains(m1, HASHmptkZ,X (plcZ,X , PULL1HASH))∧
IsLess(plc′Y,T , plcY,T ) ⊃ Send(T, m0) < Send(T, m1))

(1)

The Pull protocol is the protocol used by the re-
trieve() function to obtain a key if it is not cached lo-
cally. Thus, the Pull protocol can be run mid-protocol
during either the MSA Authentication or during our
Abbreviated Handshake we present later. Of course, it
can also be run independently. The protocol consists
of the MA sending a request for a key by name and
the MKD delivering that key. The Pull protocol uses
a counter in a similar fashion to the Group Key Hand-
shake, which is maintained by the MA as he initiates
the Pull protocol.

The Push protocol is a three message protocol, initi-
ated by the MKD, to instruct the MA to update a key.
The first messages is sent by the MKD and contains
the name of the key to update. Once, the MA receives
this message, he instantiates a Pull protocol using the
key name delivered by the MKD. Thus the Push pro-
tocol could be thought of as a one message protocol,
followed by the Pull protocol. However for ease of pre-
sentation we chose not to always separate the protocol
this way. The first message of the Push protocol has a
separate counter that is maintained by the MKD as the
MKD initiates the Push protocol. However the second
and third messages contain the counters of the Pull
protocol.

The Delete protocol consists of the MKD sending the
name of a key to delete, followed by an acknowledge-
ment from the MA. The delete protocol uses the same
counter as the Push protocol in both its messages.

The security goals of these protocols are mostly
straightforward, however the authentication goal for
the MKD:PUSH is not. For the the authentication
goal we will consider PUSH as a one message protocol,
followed by a two message protocol. It is fine to sepa-
rate it in this way as this is an accurate representation
of the protocol. Thus we will apply our generalized
matching conversation definition to this set of two pro-
tocols. In the ideal world (without any adversaries) it

17



is impossible to prove that the MA received PULL1.
This is because there is nothing connecting the PUSH
message sent with the next message sent in the sys-
tem, PULL1. It is possible that the message PUSH1
was lost and the MA decided independently to run the
Pull protocol. Thus we have no hopes of every prov-
ing the reception of PUSH1 from the point of view of
the MKD. However, this is irrelevant, for as long as
the MKD receives the PULL1 (which is fundamentally
similar to a PUSH2) message after it sends the PUSH1
message, it can send the correct key to the MA. Thus
our definition in this case proves to be sufficient. Also it
is maximal if when we consider PUSH as a one message
protocol followed by a two message protocol, which we
believe was the intention of the designers of the MSA.
We give the authentication goal for the MKD:PUSH
below,

ΦPUSH,MA,MKD :=
KOHonest(mptkX,T , {mkdkX,T }) ⊃
(Send(T, PUSH1) ∧ Send(Y, PULL1)) <
Rcve(T, PULL1) < Send(Y, PULL2).

The Push, Pull, and Delete protocols also have sim-
ilar timing invariants as the Group Key Handshake.
These guarantee that the MA and the MKD will al-
ways be certain which messages were sent in which or-
der. The proof of this invariant is nearly identical to
the proof given in the Group Key Handshake and is
thus omitted. Since we were able to show this invari-
ant over all three protocols, the protocols do in fact
compose arbitrarily with each other. Thus, there is no
combination of steps, lost messages and restarts that
will cause a message sent out after another message
to have a lower counter value. Note that this is only
the case if the basic sequences are implemented as au-
tonomous steps as modeled by PCL. If the basic se-
quences are not autonomous steps than the ordering
security invariant does not hold, but the rest of the
proofs (mutual authentication, key secrecy, etc.) are
still valid.

We present the formal requirement of Push, Pull and
Delete below. We use the short hand PPD:MA to in-
dicate we have independently proven the statement for
the MA running each of the three protocols. We use
similar notation for the MKD.

Theorem 6.
(i) ΓPPD,{1,2} ∧ ΓPPD,SI,{1,2} `
ΘPPD,{1,2}[PPD:MA]X
ΦPPD,{AUTH,PTKD},PPD

(ii) ΓPPD,{1,2} ∧ ΓPPD,SI,{1,2} `
ΘPPD,{1,2}[PPD:MKD]T
ΦPPD,AUTH,MKD

(iii)PPD ` ΓPPD,{1,2} ∧ ΓPPD,SI,{1,2}

6 Abbreviated Handshake

The Abbreviated Handshake is a protocol that is to
be used in place of a MSA Authentication between a
MA and a MP, so long as one of the parties is a MA.
The 802.11s task group has received submissions inter-
ested in creating an Abbreviated Handshake [8, 25].
The idea is that it is a shorter protocol, as not as
many steps are necessary when both parties have al-
ready joined the mesh. This allows for node mobil-
ity within the mesh, with minimal extra messages and
bandwidth cost.

As in the MSA Authentication the parties will ex-
change information important to the successful com-
pletion of the protocol. This information is given in
the form of INFO and the select() function deter-
ministically selects the correct option from the shared
info. As in the Peer Link Establishment protocol, both
principals may start communication at the same time.
However, the protocols are not totally symmetric, for if
both parties are MAs the decision as who will retrieve
the key from the MKD is based on the relative values
of the MAC addresses.

Also we found it unnecessary to require that both
parities always act as if they are in the case where they
have started a connection to each other at the same
time (the SIMO case). When one party is obviously
the initiator the messages exchanged are similar to the
802.11i Four-Way Handshake. The advantage of this
protocol over the SIMO case is that it allows the open-
ing party to always receive the last message. The rea-
son for this design decision is that we imagine in most
common situations the party who initiated the connec-
tion will be the first to initiate communication once
the session is established. Thus a Four-Way Protocol
allows the initiating party to confirm that the protocol
was completed successfully. It is impossible for both
parties to confirm the completion of the protocol as
one party must send the last message and will never
know if that message arrives (two army problem).

(Not) acknowledging the receipt of the gtk. In
the Simultaneous open we do not confirm the receipt
of the gtk at the peer as we believe it is unnecessary.
We give our justification below.

1. It is given in 802.11i (see Section 8.4.8 in [1]) that
a desired property of the Four-Way Handshake is
to transfer the gtk from the authenticator to the

18



supplicant. The standard does not state confirm-
ing the reception of the gtk at the supplicant as
a goal. We believe this choice of language was
intentional. It seems natural to have the same re-
quirement for 802.11s.

2. In MSA it is functionally meaningless for the party
receiving the last message of a ptk establishment
protocol to acknowledge the receipt of the gtk dur-
ing the protocol. This stems from the restriction
that a party is forbidden to use the gtk until the
ptk protocol has successfully completed at that
node. Assume that party A is the party receiving
a last message and party B is the party sending a
last message. Once party B has completed its role
in the protocol, B can not know if A has received
the last message. Thus upon completion of any
ptk establishment protocol it is always unknown
to the sender of the last message if the receiver
of the last message is using the gtk (because it’s
unknown whether A is certainly using the ptk).
Thus an acknowledgement of the gtk by the party
receiving the last message is functionally meaning-
less. This is inherent as long as the gtk can not be
installed until the completion of the protocol that
establishes the ptk. It is functionally meaningful,
however, to tie gtk installation (establishing a gtk
session) to the completion of a ptk establishment
protocol.

This issue is further complicated in the peer-to-peer
network of 802.11s as both parties exchange gtks dur-
ing the ptk establishment protocol. Since there must
always be one party that receives the last message of
a protocol, there will always be one party who is un-
able to confirm the use of the gtk at the peer. Thus, if
confirming the installation of the gtk at the peer is a
necessary function of the network, a completely inde-
pendent gtk confirmation protocol must be used after
a successful ptk establishment protocol (like the abbre-
viated handshake). Acknowledging the reception of the
gtk during the ptk establishment protocol will always
be meaningless for one party. We note, though, that
both parties can tie gtk usage to ptk usage – an honest
node will only install the gtk if and only if it has also
installed the ptk. And, of course, the gtk is like all
other values and is verified to be correct.

Independent of our design decision, we feel that the
distinction between the acknowledgement of the receipt
of the gtk and the acknowledgement of the installation
(the use of the gtk) is important to establish. This
distinction should be useful to both the members of
the 802.11s task group as well of those who make use
of the system; without it those individuals may make
design and protocol decisions assuming that principals

within the system are indeed using the gtk when they
are in fact not. However, gtk use can be tied to ptk use,
so that other methods of determining gtk installation
are possible.

Generalized Matching Conversations For
ABBH:SIMO We cannot use the matching con-
versations definition from [2] for the ABBH:SIMO
protocol. Thus, we apply the generalized matching
conversations definition. Let principal X be the
principal from whose view we are establishing the
proof of generalized matching conversation and Y
be the other principal. SIMO1X and SIMO5X will
represent X’s messages, similarly for Y ’s messages.
We need to determine the maximal timing relations
in the ideal world (no adversaries) only running
ABBH:SIMO. As X cannot confirm if Y has received
SIMO5X (it may be the last message sent), SIMO5X
is not part of X’s maximal conversation. Note that
every message must be sent by the correct party before
they are received by the other party in this ideal
world. Thus we get Send(X,msg)<Receive(Y ,msg)
and Send(Y ,msg)<Receive(X,msg) for every message.
Now we simply list what actions must happen after
other actions leaving out the trivial receives after sends
we showed above and other redundant information.

Send(X, SIMO1X) < Receive(X, SIMO1Y) <
(Send(X, SIMO5X) ∧ Receive(X, SIMO5Y))

Send(Y, SIMO1Y) < Receive(Y, SIMO1X) <
Send(Y, SIMO5Y)

This temporal ordering is inherently maximal for X’s
view of an arbitrary run of the ABBH:SIMO proto-
col, so it satisfies the definition of generalized match-
ing conversations for X (Y ’s view will be identical).
The enforcing of send orders within one node can be
accomplished by waiting for acknowledgements from
the MAC layer before proceeding. We enforce that X
has sent its message 1 before receiving a message 1 to
separate the SIMO case from the INIT/RESP case. If
a node X has not sent its message 1, it replies to a
message 1 with a message 2.

We present the strands, preconditions, invariants
and security goals in the SIMO case below. One sub-
tlety of the SIMO strand is the ordering of the nonces
x and y when creating the ptk. Other messages have
clear initiators and responders, so the ordering can be
determined from that. For SIMO, the ordering is de-
pendent on the values of the nonces themselves, with
the smaller nonce ordered first. This could also be ap-
plied to 4WAY without changing the validity of the
corresponding proofs. This might be simpler from an
implementation and standardizations perspective. The
remaining security goals have been moved to the ap-

19



pendix in Section F. We once again use the retrieve
function, thus we assume the relevant preconditions
and postcondition associated with the basic sequences
surrounding the function.

ABBH:INIT = (X, Ŷ , INFOX , gtkX)

[new x; send Ŷ , X̂, “ABBH1”, INFOX , x;

rcve X̂, Ŷ , “ABBH2”, INFOY , y, x, enc0, mic0;
mtch SELECT (INFOX , INFOY )/CS, pmkN ;
mtch RETRIEV E(pmkN)/pmk;
mtch HASHpmk(x, y)/ptkX,Y ;
mtch enc0/ENCptkX,Y

(gtkY );

mtch mic0/HASHptkX,Y
(

X̂, Ŷ , “ABBH2”, INFOY , y, x, enc0);
mtch enc1/ENCptkX,Y

(gtkX);

mtch mic1/HASHptkX,Y
(Ŷ , X̂, “ABBH3”,

INFOX , x, y, enc1);

send Ŷ , X̂, “ABBH3”, INFOX , x, y, enc1, mic1;

rcve X̂, Ŷ , “ABBH4”, y, x, mic2;

mtch mic2/HASHptkX,Y
(X̂, Ŷ , “ABBH4”, y, x)]X

ABBH:RESP = (Y, INFOY , gtkY )

[rcve Ŷ , X̂, “ABBH1”, INFOX , x;
mtch SELECT (INFOX , INFOY )/CS, pmkN ;
mtch RETRIEV E(pmkN)/pmk;
new y; mtch HASHpmk(x, y)/ptkX,Y ;
mtch ENCptkX,Y

(gtkY )/enc0;

mtch HASHptkX,Y
(

X̂, Ŷ , “ABBH2”, INFOY , y, x, enc0)/mic0;

send X̂, Ŷ , “ABBH2”, INFOY , y, x, enc0, mic0;

rcve Ŷ , X̂, “ABBH3”, INFOX , x, y, enc1, mic1;
mtch enc1/ENCptkX,Y

(gtkX);

mtch mic1/HASHptkX,Y
(Ŷ , X̂, “ABBH3”,

INFOX , x, y, enc1);

mtch mic2/HASHptkX,Y
(X̂, Ŷ , “ABBH4”, y, x);

send X̂, Ŷ , “ABBH4”, y, x, mic2]Y

ABBH:SIMO = (X, Ŷ , INFOX , gtkX)

[new x; send Ŷ , X̂, “ABBH1”, INFOX , x;

rcve X̂, Ŷ , “ABBH1”, INFOY , y;
mtch SELECT (INFOX , INFOY )/CS, pmkN ;
mtch RETRIEV E(pmkN)/pmk;
mtch HASHpmk(x, y)/ptkX,Y ;
(mtch ENCptkX,Y

(gtkX)/enc0;

mtch HASHptkX,Y
(Ŷ , X̂,

“ABBH5”, INFOX , x, y, enc0, INFOY )/mic0;

send Ŷ , X̂, “ABBH5”, INFOX , x, y, enc0, mic0) :

(rcve X̂, Ŷ , “ABBH5”, INFOY , y, x, enc1, mic1;
mtch enc1/ENCptkX,Y

(gtkY );

mtch mic1/HASHptkX,Y
(X̂, Ŷ ,

“ABBH5”, INFOY , y, x, enc1, INFOX))]X

ΘABBH,1 := Has(X, pmkX,Y ) ∧Has(Y, pmkY,X)∧

(Has(X, mptkX,T ) ∨Has(Y, mptkX,T ))

ΓABBH,1 := Honest(X̂) ∧ Send(X, m)∧
(Contains(m, Hashptk((“ABBH2”, Ŷ , Ẑ)))∨
Contains(m, Hashptk((“ABBH3”, Ŷ , Ẑ)))∨
Contains(m, Hashptk((“ABBH4”, Ŷ , Ẑ)))∨
Contains(m, Hashptk((“ABBH5”, Ŷ , Ẑ)))∨
Ẑ = X̂

ΦSIMO,MA :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
(Send(X, SIMO1X) < Rcve(Y, SIMO1X))∧
(Send(Y, SIMO1Y) < Rcve(X, SIMO1Y))∧
(Send(Y, SIMO5Y) < Rcve(X, SIMO5Y))∧
(Send(X, SIMO1X) < Rcve(X, SIMO1Y) <
(Send(X, SIMO5X) ∧ Rcve(X, SIMO5Y))∧
(Send(Y, SIMO1Y) < Rcve(Y, SIMO1X) <
Send(Y, SIMO5Y))

ΦSIMO,PTKD :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Has(X, ptkX,Y ) ∧Has(Y, ptkX,Y )

ΦSIMO,GTKD :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X})∧
Rcve(Y, SIMOX5) ⊃
Has(X, gtkY ) ∧Has(Y, gtkX)

ΦSIMO,KF :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
(new (X̂, x) ∧ x ⊆ ptkX,Y ∧ new (Ŷ , y) ∧ y ⊆ ptkX,Y )∧
FirstSend(X, x, X̂, x, SIMO1X)∧
FirstSend(Y, y, Ŷ , y, SIMO1Y)

ΦSIMO,INFO :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
SELECT (INFOX , INFOY ) = CS, pmkN∧
Has(X, CS, pmkN) ∧Has(Y, CS, pmkN)

We give the main theorem of this section below,

Theorem 7.
(i) ΓABBH,1 ∧ ΓABBH,SI,{1,2} `
ΘABBH,1[ABBH:INIT]X
ΦABBH,{AUTH,PTKD,GTKD,KF,INFO},INIT

(ii) ΓABBH,1 ∧ ΓABBH,SI,{1,2} `
ΘABBH,1[ABBH:RESP]Y
ΦABBH,{AUTH,PTKD,GTKD,KF,INFO},RESP

(iii)ΓABBH,1 ∧ ΓABBH,SI,{1,2} `
ΘABBH,1[ABBH:SIMO]X
ΦABBH,{AUTH,PTKD,GTKD,KF,SIMO},SIMO

(iv)ABBH ` ΓABBH,{1,2} ∧ ΓABBH,SI,{1,2}

We omit the proof of ABBH:INIT and ABBH:RESP
because it is nearly identical to the proof of the Four-

20



Way Handshake. The desired security goals are also
nearly identical, proving mutual authentication, key
freshness, session key possession, GTK transfer, and
information selection. The proof of the ABBH:SIMO
security goals is given in the appendix in section F.
We walk through the generalized matching conversa-
tions proof below.

Proof Sketch Generalized Authentication,
SIMO We only need to show the proof from a
single point of view as the roles are symmetric. Let
principal X be the principal from whose view we are
establishing the proof from and let Y be the other
principal. As the proof assumes X has completed
the protocol successfully, we know that SIMO1X was
sent before SIMO5X and SIMO1Y was received before
SIMO5Y. Thus to complete the proof we must show
that Y sent exactly SIMO1Y before SIMO5Y and
received exactly SIMO1X before sending SIMO5Y.
As in previous proofs, we can determine the MIC in
SIMO5Y could have only been sent by Y if X, Y and T
are honest. Since all the variables used in the protocol
are contained in the MIC of SIMO5Y, we know that
X and Y share identical variables. Now using the
honesty of Y we are sure that Y sent SIMO1Y and
received SIMO1X before sending SIMO5Y and that
it was sent exactly as X received it. Again if Y is
honest since X and Y share variables, then Y must
have received SIMO1X exactly as X had sent it. This
gives us generalized authentication.

7 Proof of Key Hierarchy

This section is presented here, for ease of exposition.
In reality, a lot of the effort of proving these results
had to be done before the proofs of the correctness of
the protocols. None of the results in this section rely
on any any previous results. But they do rely on the
protocol definitions given in section 5 and 6. Indeed,
those protocol definitions are critical for this section.

We use the SafeNet construction of [23] to prove
these results. At its core, SafeNet shows that particu-
lar values are always “protected” by a set of keys, that
is, no adversary without a key from that particular set
of keys will not be able to derive the particular value.
This allows us to reason about the possession of that
value based on who has access to particular keys. The
main theorem of this section shows that all protocols
within the MSA definition satisfy the presented secu-
rity invariants.

We do add one axiom to the SafeNet
structure. We claim new Axiom SAF5 as:
SafeMsg(HASHs(M), s,K). This follows from

the fact that using information as the key part of a
keyed hash does not reveal any information about
that information. This is almost a direct consequence
of SAF4 (which states SafeMsg(HASH(M), s,K)).
Depending on how the key is used in the hash, they
could even be equivalent, but we prefer clarity with a
new axiom.

Theorem 8. Let MSA represent all the protocols in
the Mesh Security Architecture and ΓSI,ALL represent
all the security invariants in figure 3. Then ΓSI,ALL

are invariants of MSA. Formally,
MSA ` ΓSI,ALL

Proof sketch: This theorem is proven in two steps.
The first step is a massive induction over all the basic
sequences of all the protocols that could be run by any
participant in a mesh. This induction guarantees that
all messages sent are “safe”, in that critical information
is protected by the listed keys. In the MSA case, the
critical information is another key, lower in the hierar-
chy. From this, we argue the invariant nature of the
SafeNet over MSA. Then, we use the POS and POSL
axioms [23] to state who can potentially have access to
the critical information (that is, various other keys).
By proceeding in this way throughout the entire key
hierarchy, we can establish all the necessary security
invariants. We give a flavor of this type of induction in
Section G of the appendix. The full proof is generally
unenlightening and we do not provide it. We note that
this proof does not depend on any of the analysis done
in proceeding sections. It is simply induction over all
basic sequences and application of secrecy axioms.

8 Composition

The MSA architecture allows for significant variation
in how protocols compose together [4]. Once an es-
tablished state is reached, many protocols (which may
have been run previously to reach the established state)
may be chosen. Reaching an established state may take
a variety of paths, depending on the authentication
mechanism (TLS or PSK) used. Error-handling strate-
gies will cause protocols to restart, or, potentially, dif-
ferent protocols to be run. This introduces a complex
state diagram and complexities of composition.

While staged composition proofs have been pre-
sented [22, 20], the presentation of each has differed.
We provide a slightly different presentation of similar
ideas in Section 8.1. Readers primarily interested in the
proof of MSA can safely skip this section and proceed
to Section 8.2 where the overall MSA security theorem
is presented.

21



8.1 Consistent Composition

We utilize the definitions of role-prefix, staged role, and
staged composition from [20]. Additionally, to add sim-
plicity to our exposition, we use Γ to denote the con-
junction of all invariants within a staged composition
of protocols. That is, Γ is the totality of all the in-
variants from each of the protocols Qi that make up a
composition of protocols Q. This will allow us to state
the following theorem more succinctly.

Theorem 9. Let Q be a staged composition of protocols
Q1, Q2, ..., Qn. Then `Q KOHonest ⊃ Φ, if for all
RComp(〈P1, P2, . . . , Pn〉) ∈ Q, all of the following hold:

(Invariant Induction)
(i) ∀i.∀S ∈ BS(Qi). ` ΘPi ∧ Γ[S]XΓ

(Precondition Inductions)
(ii) Q1 ⊗Q2 ⊗ · · · ⊗Qn ` Start(X) ⊃ ΘP1

(iii)Q1 ⊗Q2 ⊗ · · · ⊗Qn ` ∀i.ΘPi [Pi]XΘPi+1

(iv) ∀i.∀S ∈
⋃

j≥i

BS(Pj).ΘPi [S]XΘPi

The invariant induction step fundamentally states
that every basic sequence that could be reached by a
run through Q maintains the full invariant list (Γ), as
long as that’s step’s preconditions hold. The precon-
dition induction rules enforce three facts. The first
states that the start of protocol Q causes the base
precondition to hold. This starts the induction. The
second states that each step passes from its precondi-
tions to the next step’s preconditions. Note that step
Pi has postcondition Φi, so this step is saying that
Φi ⊃ ΘPi+1 , to guarantee the progress moving forward.
The third precondition invariant allows the backwards
steps, by guaranteeing that no step ever violates any
step’s preconditions (that is, once something is true,
it’s true forever).

We note that this theorem is dependent upon ba-
sic sequences, as its fundamental building block. The
protocols themselves, while useful distinctions in un-
derstanding and modeling the system, are not critical.
In particular, the Qis could be single basic sequences
and the entire theorem continues to make sense. This
allows us to model things at the basic sequence level.
This level of granularity has been suggested before [20],
but we make it explicit.

This allows, for example, the behavior of the
RETRIEV E description. As its own basic sequence,
RETRIEV E allows two different paths through a
larger staged composition. In one path, the basic se-
quence simply returns a locally stored value. In the
other path, an entire protocol might be run. Since
that protocol composes consistently at basic sequence

breaks in the initial protocol, it simply denotes an al-
ternate method of staging the composition of the proto-
cols. It is important, however, that the RETRIEV E
action always be treated as its own basic sequence.
This provides the necessary preconditions at the ba-
sic sequence level. Inductively proving actions with-
out proper consideration of RETRIEV E would lead
to false results. In all protocols using RETRIEV E,
the invariants and various preconditions in the proto-
col were proven against all possible interpretations of
RETRIEV E.

8.2 Composition in MSA

We wish to apply Theorem 9 to the protocols of the
MSA proposal. We view the protocols of staged compo-
sition as the protocols given previously. As mentioned,
we consider arbitrary breaks at the basic sequence level,
for mid-protocol composition as well as overall compo-
sition. We need to prove that all protocols within MSA
(comprising PLE, TLS, 4WAY, MKHSH, GKH, PULL,
PUSH, DEL, ABBH, SIMO) satisfy the necessary con-
ditions for composition.

Theorem 10. Let Q be a specific composition of proto-
cols from MSA and RComp(〈P1, P2, . . . , Pn〉) ∈ Q and
Γ = ΓTLS,SI,{1,2} ∧Γ4WAY,SI,{1,2,3,4} ∧ΓPPD,SI,{1,2} ∧
ΓMKHSH,SI,1 ∧ ΓABBH,SI,{1,2} ∧ ΓGKH,SI,{1,2} ∧
ΓTLS,{1,2} ∧ Γ4WAY,1 ∧ ΓMKHSH,1 ∧ ΓGKH,{1,2} ∧
ΓPPD,{1,2} ∧ ΓABBH,1. Then:

(i) ∀i.∀S ∈ BS(Qi). ` ΘPi ∧ Γ[S]XΓ

(ii) ΘP1

(iii)Φ4WAY ` ΘMKHSH ∧ΘGKH

ΦMKHSH ` ΘPUSH ∧ΘPULL ∧ΘDEL

ΦMKHSH ` ΘABBH ∧ΘSIMO

ΦABBH ` ΘGKH

(iv) ∀i.∀S ∈
⋃

j≥i

BS(Pj).ΘPi [S]XΘPi

Proving all the protocols securely compose is a
lengthy induction process, which we omit for space
purposes. We will give brief justifications of each step
without formal mention of the details.

First, we prove that invariant induction holds across
all the protocols. In previous sections, we proved each
particular protocol’s invariants hold across all its basic
sequences. Since nearly all the invariants are tied to
specific protocol messages, most of these are extremely
straightforward. Those which are not so tied are the
TLS invariants ΓTLS,1 and ΓTLS,2 and the two ordering
invariants ΓGKH,2 and ΓPPD,2. Since the TLS invari-
ants deal with public-key operations not used by other
protocols, they, too, are straightforward. The order-
ing invariants involve counters specific to the GKH

22



protocol and the PUSH, PULL, and DEL protocols
respectively. Those invariants were proven across those
counters in their respective sections and no other pro-
tocol uses those counters, so the invariants are not vi-
olated.

Second, we prove that the induction starts correctly,
that the base preconditions are held at the start of a
session at any node X. This is a precondition assump-
tion about information available (either public-key cre-
dentials or a PSK). This precondition is inherent in the
definition of the start of the protocol.

Third, we prove that each step’s postconditions
match the preconditions of following steps. We have
been noting this throughout the paper. Specifically,
where multiple paths lead to the same condition, we
have verified that the necessary preconditions are all
met for any stage. Since some initial handshake (com-
prising PLE, TLS, 4WAY or PLE, 4WAY with PSK)
must occur first, we show that 4WAY implies the abil-
ity to participate in fuller mesh protocols (as a mesh
point – including MKHSH and GKH). Note that at this
point, a node could attempt ABBH or SIMO, but it is
not guaranteed successfully complete, even in the pres-
ence of no adversary, as one side or the other must have
the correct PMK. Completing MKHSH makes a node a
Mesh Authenticator (MA) and guarantees a full variety
of protocols (PUSH, PULL, DEL, ABBH, SIMO).

Finally, we prove that no step (or combination of
steps) in any protocol violates any precondition. All
preconditions are expressed expressly in terms of Has,
Send, and Receive. Once these states are true, they do
not change, from a security perspective. So, the induc-
tion to prove the continuing truth of all preconditions
is pretty trivial.

We have now shown that we can apply Theorem 9 to
the protocols presented in this paper. In particular, we
have that any reasonable progression through protocols
is secure. In particular, we have shown the following
theorem holds.

Theorem 11. A mesh of nodes, all of which conform
to the proposed specification of MSA (and the minor
modifications of this document), guarantee all the listed
security goals of this paper.

More can be said, too. It isn’t that the whole mesh
must comply. As long as the players in a given proto-
col are honest (and the MKD is honest), the security
of that protocol is ensured. Fundamentally, the Mesh
Security Architecture is sound.

9 Conclusions and Future Work

We have proven the security of the MSA, under stan-
dard assumptions. We have provided and justified a

few recommendations which we hope will be imple-
mented in the final draft of the standard, if this ar-
chitecture is chosen. We also hope that providing a se-
curity proof during the design and review process will
lead to additional efforts in that regard. We feel that
protocol design is important and an analysis of a sys-
tem should be done before implementation, not after.
Along the way, we made a number of contributions to
PCL.

The most important, from our perspective, is the
ability to handle simultaneity, with the introduction of
action groups and associated axioms and proof tech-
niques. The use of SafeNet and other axioms to handle
an entire key hierarchy is also novel, but it is a good
application of existing techniques in an interesting way.
The return(), select(), and retrieve() actions were also
designed to extend naturally to examinations of other
architectures.

The importance of proving security as invariants in-
stead of simply as end goals was introduced in [23], but
the importance of it was not stressed. We feel making
this implicit difference explicit should allow for clearer
and better security proofs in the future. Some security
goals are rightly protocol postconditions. Others must
be verified throughout the run of a protocol.

This paper also takes a deeper dive into the details
of the protocols than is often undertaken. While exam-
ining only the security components (nonces, keys, etc.)
simplifies analysis, it also leaves a gap. Our experi-
ence leads us to believe that gaps in analysis are often
dangerous, as they lead to assumptions about security,
implementation difficulties, and unforeseen attack vec-
tors. Some level of abstraction is necessary, but adding
a model for authenticated information exchange is crit-
ical for many applications.

This paper opens opportunities for applying PCL to
other peer-to-peer protocols, where ordering may not
be as strict as in server-client models. Other protocol
systems, particularly those on standard-track, would
be natural candidates for additional analysis.

The language of PCL also has some avenues for
further development. The concept of breaking basic
sequences was introduced in this paper. The natu-
ral question arises of what might happen if basic se-
quences were not autonomous units but could be bro-
ken. This change would invalidate existing PCL the-
orems, but would close certain potential loopholes.
Combining this with pre- and post-conditions at a
smaller granularity could potentially lead to additional
breakthroughs in the area of proving protocol correct-
ness.

23



References

[1] IEEE standard 802.11-2007. local and metropoli-
tan area networks – specific requirements – part
11: Wireless LAN medium access control and
physical layer specifications.

[2] M. Bellare and P. Rogaway. Entity authentication
and key distribution. In CRYPTO, pages 232–249,
1993.

[3] N. Borisov, I. Goldberg, and D. Wag-
ner. Intercepting mobile communi-
cations: The insecurity of 802.11.
http://www.isaac.cs.berkeley.edu/isaac/wep-
faq.html, 2001.

[4] T. Braskich and S. Emeott. Clarification and up-
date of MSA overview and MKD functionality
text. https://mentor.ieee.org/802.11/documents
doc 11-07/2119r1, July 18 2007.

[5] T. Braskich and S. Emeott. Ini-
tial MSA comment resolution.
https://mentor.ieee.org/802.11/documents doc
11-07/0564r2, May 16 2007.

[6] T. Braskich and S. Emeott. Key dis-
tribution for MSA comment resolution.
https://mentor.ieee.org/802.11/documents doc
11-07/0618r0, May 14 2007.

[7] T. Braskich and S. Emeott. Mesh
key holder protocol improvements.
https://mentor.ieee.org/802.11/documents doc
11-07/1987r1, June 27 2007.

[8] T. Braskich, S. Emeott, and D. Kuhlman. Secu-
rity requirements for an abbreviated msa hand-
shake. https://mentor.ieee.org/802.11/documents
doc 11-07/0770r0, May 15 2007.

[9] A. Datta, A. Derek, J.C.Mitchell, and
B.Warinschi. Computationally sound com-
positional logic for key exchange protocols. In
Proceedings of 19th IEEE Computer Security
Foundations Workshop, pages 321–334, 2006.

[10] A. Datta, A. Derek, J. Mitchell, and D. Pavlovic.
A derivation system for security protocols and its
logical formalization, 2003.

[11] A. Datta, A. Derek, J. C. Mitchell, and
D. Pavlovic. Secure protocol composition. In
FMSE, pages 11–23, 2003.

[12] A. Datta, A. Derek, J. C. Mitchell, and
D. Pavlovic. A derivation system and composi-
tional logic for security protocols. J. Comput. Se-
cur., 13(3):423–482, 2005.

[13] A. Datta, A. Derek, J. C. Mitchell, and A. Roy.
Protocol composition logic (pcl). Electr. Notes
Theor. Comput. Sci., 172:311–358, 2007.

[14] A. Datta, J. Mitchell, F. Muller, and D. Pavlovic.
Authentication for mobile ipv, 2002.

[15] W. Diffie, P. C. van Oorschot, and M. J. Wiener.
Authentication and authenticated key exchanges.
Des. Codes Cryptography, 2(2):107–125, 1992.

[16] N. Durgin, J. Mitchell, and D. Pavlovic. A com-
positional logic for proving security properties of
protocols, 2002.

[17] N. Durgin, J. Mitchell, and D. Pavlovic. A compo-
sitional logic for proving security properties of pro-
tocols. J. Comput. Secur., 11(4):677–721, 2004.

[18] D. Gollmann. What do we mean by entity au-
thentication? In SP ’96: Proceedings of the
1996 IEEE Symposium on Security and Privacy,
page 46, Washington, DC, USA, 1996. IEEE Com-
puter Society.

[19] J. Haasz and S. Hampton.
Amendment: Mesh networking.
http://standards.ieee.org/board/nes/projects/802-
11s.pdf, 2006.

[20] C. He, M. Sundararajan, A. Datta, A. Derek, and
J. C. Mitchell. A modular correctness proof of ieee
802.11i and tls. In ACM Conference on Computer
and Communications Security, pages 2–15, 2005.

[21] H. Krawczyk. Sigma: The ’sign-and-mac’ ap-
proach to authenticated diffie-hellman and its use
in the ike-protocols. In CRYPTO, pages 400–425,
2003.

[22] A. Roy, A. Datta, A. Derek, and J. C. Mitchell.
Inductive proof method for computational secrecy.
2006.

[23] A. Roy, A. Datta, A. Derek, J. C. Mitchell, and
J-P. Seifert. Secrecy analysis in protocol compo-
sition logic. In Proceedings of 11th Annual Asian
Computing Science Conference, 2006.

[24] J. Walker. Unsafe at any key size; an analysis of
the wep encapsulation, 2000.

24



[25] M. Zhao, J. Walker, and W. Steven Con-
ner. Overview of abbreviated handshake pro-
tocol. https://mentor.ieee.org/802.11/documents
doc 11-07/1998r01, June 14 2007.

Appendix

A Proof of Security Goals of
TLS

A.1 Proof of Security for the Client

Matching Conversations, Client:
AA1,ARP,AA4,ΘTLS

[TLS : CLNT]X

Send(X, X̂, T̂ , Nx, V erSUx) <

Rcve(X, T̂ , X̂, Nt, V erSUt, cert1) <

Send(X, X̂, T̂ , cert2, enc2, sig2, hash2) <

Rcve(X, T̂ , X̂, hash3) (2)

ARP,HASH3,ΘTLS

[TLS : CLNT]X

Rcve(X, T̂ , X̂, hash3) ⊃
∃Z.Computes(Z, HashxxKeyX

(handShake2, “server”))∧
Send(Z, HashxxKeyX

(handShake2, “server”))∧
(Send(Z, HashxxKeyX

(handShake2, “server”)) <

Rcve(X, T̂ , X̂, hash3)) (3)

ΓTLS,SI,1,HASH1
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Computes(Z, HashxxKeyX

(handShake2, “server”)) ⊃
Has(Z, xxKeyX) ⊃ Ẑ = X̂ ∨ Ẑ = T̂ (4)

3,4,AA1,ΓTLS,2,ΘTLS

[TLS : CLNT]X
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Send(Z, HashxxKeyX

(Ŷ , T̂ , Ny, V erSUy ,

T̂ , Ŷ , Nz, V erSUt, cert1,

Ŷ , T̂ , cert2, sig2, enc2, hash2, T̂ , Ŷ , “server”)) ⊃
Ẑ = T̂ (5)

3,5,ΘTLS

[TLS : CLNT]X
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Computes(T, HashxxKeyX

(handShake2, “server”)) (6)

6,HASH1,ΘTLS

[TLS : CLNT]X
Has(T, xxKeyX) ∧Has(T, handShake2) (7)

6,7,ΓTLS,2,ΦHONESTY,ΘTLS

[TLS : CLNT]X
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Rcve(T, X̂, T̂ , Nx, V erSUx) <

Send(T, T̂ , X̂, Nt, V erSUt, cert1) <

Rcve(T, X̂, T̂ , cert2, enc2, sig2, hash2) <

Send(T, T̂ , X̂, hash3) (8)

3,8ΘTLS

[TLS : CLNT]X
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Send(T, T̂ , X̂, hash3) <

Rcve(X, T̂ , X̂, hash3) (9)

FS1,AN3,ΘTLS

[TLS : CLNT]X

FirstSend(X, xxKeyX , X̂, T̂ , cert2, enc2, sig2, hash2) (10)

8,10,FS2ΘTLS

[TLS : CLNT]X

Send(X, X̂, T̂ , cert2, enc2, sig2, hash2) <

Rcve(T, X̂, T̂ , cert2, enc2, sig2, hash2) (11)

FS1,AN3,ΘTLS

[TLS : CLNT]X

FirstSend(X, Nx, X̂, T̂ , Nx, V erSUx) (12)

8,12,FS2,ΘTLS

[TLS : CLNT]X

Send(X, X̂, T̂ , Nx, V erSUx) <

Rcve(T, X̂, T̂ , Nx, V erSUx) (13)

FS1,AN3,ΘTLS

[TLS : CLNT]X

Honest(T̂ ) ⊃ FirstSend(T, Nt, T̂ , X̂, Nt, V erSUt, cert1) (14)

8,14,FS2ΘTLS

[TLS : CLNT]X

Honest(T̂ ) ⊃ Send(T, T̂ , X̂, Nt, V erSUt, cert1) <

Rcve(X, T̂ , X̂, Nt, V erSUt, cert1) (15)

8,9,11,13,15,ΘTLS

[TLS : CLNT]X
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Send(X, X̂, T̂ , Nx, V erSUx) <

Rcve(T, X̂, T̂ , Nx, V erSUx) <

Send(T, T̂ , X̂, Nt, V erSUt, cert1) <

Rcve(X, T̂ , X̂, Nt, V erSUt, cert1) <

Send(X, X̂, T̂ , cert2, enc2, sig2, hash2) <

Rcve(T, X̂, T̂ , cert2, enc2, sig2, hash2) <

Send(T, T̂ , X̂, hash3) <

Rcve(X, T̂ , X̂, hash3) (16)

Key Delivery, Client:
AA1,ΘTLS

[TLS : CLNT]X
Has(X, xxKeyX) (17)

7,17,ΘTLS

[TLS : CLNT]X
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Has(X, xxKeyX) ∧Has(T, xxKeyX) (18)

A.2 Proof of Security Goals for the
Server

Security Goals of the Server:

25



ΦTLS,MA,SRVR :=
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Send(X, X̂, T̂ , Nx, V erSUx) <

Rcve(T, X̂, T̂ , Nx, V erSUx) <

Send(T, T̂ , X̂, Nt, V erSUt, cert1) <

Rcve(X, T̂ , X̂, Nt, V erSUt, cert1) <

Send(X, X̂, T̂ , cert2, enc2, sig2, hash2) <

Rcve(T, X̂, T̂ , cert2, enc2, sig2, hash2) <

Send(T, T̂ , X̂, hash3)

ΦTLS,KD,SRVR :=
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Has(X̂, xxKeyX) ∧Has(T̂ , xxKeyX)

Matching Conversations, Server:
AA1,ARP,AA4,ΘTLS

[TLS : SRVR]T

Rcve(T, X̂, T̂ , Nx, V erSUx) <

Send(T, T̂ , X̂, Nt, V erSUt, cert1) <

Rcve(T, X̂, T̂ , cert2, enc2, sig2, hash2) <

Send(T, T̂ , X̂, hash3) (19)

ARP,VER,ΘTLS

[TLS : SRVR]T

Rcve(X, X̂, T̂ , cert2, enc2, sig2, hash2) ⊃
∃Z.Computes(Z, SIGprivX

(handShake1))∧
Send(Z, SIGprivX

(handShake1))∧
(Send(Z, SIGprivX

(handShake1)) <

Rcve(T, X̂, T̂ , cert2, enc2, sig2, hash2)) (20)

ΓTLS,SI,1,HASH1
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Computes(Z, SIGprivX

(handShake1)) ⊃
Has(Z, privX) ⊃ Ẑ = X̂ (21)

21,ΓTLS,1,ΘTLS

[TLS : SRVR]T
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Computes(X, SIGprivX

(handShake1)) (22)

22,SIG1,ΘTLS

[TLS : SRVR]T
Has(X, privX) ∧Has(X, handShake1) (23)

22,23,ΓTLS,1,ΦHONESTY,ΘTLS

[TLS : SRVR]X
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Send(X, X̂, T̂ , Nx, V erSUx) <

Rcve(X, T̂ , X̂, Nt, V erSUt, cert1) <

Send(X, X̂, T̂ , cert2, enc2, sig2, hash2) (24)

20,24,ΘTLS

[TLS : SRVR]T
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Send(X, X̂, T̂ , cert2, enc2, sig2, hash2) <

Rcve(T, X̂, T̂ , cert2, enc2, sig2, hash2) (25)

FS1,AN3,ΘTLS

[new Nx; send X̂, T̂ , Nx, V erSUx]T

FirstSend(T, Nt, T̂ , X̂, Nt, V erSUt, cert1) (26)

24,26,FS2,ΘTLS

[TLS : SRVR]T

Send(T, T̂ , X̂, Nt, V erSUt, cert1) <

Rcve(X, T̂ , X̂, Nt, V erSUt, cert1) (27)

FS1,AN3,ΘTLS

[TLS : SRVR]T

Honest(X̂) ⊃ FirstSend(X, Nx, X̂, T̂ , Nx, V erSUx) (28)

24,28,FS2,ΘTLS

[TLS : SRVR]T

Honest(X̂) ⊃ Send(X, X̂, T̂ , Nx, V erSUx) <

Rcve(T, X̂, T̂ , Nx, V erSUx) (29)

24,25,27,29,ΘTLS

[TLS : SRVR]T
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Send(X, X̂, T̂ , Nx, V erSUx) <

Rcve(T, X̂, T̂ , Nx, V erSUx) <

Send(T, T̂ , X̂, Nt, V erSUt, cert1) <

Rcve(X, T̂ , X̂, Nt, V erSUt, cert1) <

Send(X, X̂, T̂ , cert2, enc2, sig2, hash2) <

Rcve(T, X̂, T̂ , cert2, enc2, sig2, hash2) <

Send(T, T̂ , X̂, hash3) (30)

Key Delivery, Server:
AA1,ΘTLS

[TLS : SRVR]T
Has(T, xxKeyX) (31)

23,31,ΘTLS

[TLS : SRVR]T
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
Has(X, xxKeyX) ∧Has(T, xxKeyX) (32)

B Proof of Security Goals of
Four-Way Handshake

B.1 Proof Security Goals Four-Way,
Candidate MP

AA1,ARP,AA4,Θ4WAY

[4WAY : INIT]X

(Send(X, Ŷ , X̂, INFOX , “IATH1”)∧
Rcve(X, X̂, Ŷ , INFOY , “IATH1”)∧
Send(X, Ŷ , X̂, INFOY , “IATH3”)∧
Rcve(X, X̂, Ŷ , INFOX , “IATH3”)) <

Rcve(X, X̂, Ŷ , “IAUTH5”, y, TNx) <

Send(X, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1) <

Rcve(X, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) <

Send(X, Ŷ , X̂, “IAUTH8”, mic3) (33)

ARP,VER,Θ4WAY

[4WAY : INIT]X

Rcve(X, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) ⊃
∃Z.Computes(Z, HASHptkX,Y

(“IAUTH7”, y, pmkN, INFOY , TNx, enc2))∧
Send(Z, HASHptkX,Y

26



(“IAUTH7”, y, pmkN, INFOY , TNx, enc2))∧
(Send(Z, HASHptkX,Y

(“IAUTH7”, y, pmkN, INFOY , TNx, enc2)) <

Rcve(X, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2)) (34)

Γ4WAY,SI,3,HASH1
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Computes(Z, HASHptkX,Y

(“IAUTH7”, y, pmkN, INFOY , TNx, enc2)) ⊃
Has(Z, ptkX,Y ) ⊃ Ẑ = X̂ ∨ Ẑ = Ŷ ∨ Ẑ = T̂ (35)

34,35,AA1,Γ4WAY,1,Θ4WAY

[4WAY : INIT]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Send(Z, HASHptkX,Y

(“IAUTH7”, y, pmkN, INFOY , TNx, enc2)) ⊃
Ẑ = Ŷ (36)

34,36,Θ4WAY

[4WAY : INIT]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Computes(Y, HASHptkX,Y

(“IAUTH7”, y, pmkN, INFOY , TNx, enc2))∧
Send(Y, HASHptkX,Y

(“IAUTH7”, y, pmkN, INFOY , TNx, enc2)) (37)

37, φHONESTY,Θ4WAY

[4WAY : INIT]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Computes(Y, HASHptkX,Y

(“IAUTH6”, x, pmkN, INFOX , enc1)) (38)

37,38,HASH1,Θ4WAY

[4WAY : INIT]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Has(Y, ptkX,Y )∧
Has(Y, TNx, pmkN, INFOX , INFOY , x, y) (39)

34,37,39, φHONESTY,Θ4WAY

[4WAY : INIT]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
(Send(Y, X̂, Ŷ , INFOY , “IATH1”)∧
Rcve(Y, Ŷ , X̂, INFOX , “IATH1”)∧
Send(Y, X̂, Ŷ , INFOX , “IATH3”)∧
Rcve(Y, Ŷ , X̂, INFOY , “IATH3”)) <

Send(Y, X̂, Ŷ , “IAUTH5”, y, TNx) <

Rcve(Y, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1) <

Send(Y, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) (40)

34,40,Θ4WAY

[4WAY : INIT]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Send(Y, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) <

Rcve(X, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) (41)

FS1,AN3,Θ4WAY

[4WAY : INIT]X

FirstSend(X, x, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1) (42)

40,42,FS2,Θ4WAY

[4WAY : INIT]X

Send(X, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1) <

Rcve(X, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1) (43)

FS1,AN3,Θ4WAY

[4WAY : INIT]X

Honest(Ŷ ) ⊃
FirstSend(Y, y, X̂, Ŷ , “IAUTH5”, y, TNx) (44)

40,44,FS2,Θ4WAY

[4WAY : INIT]X

Honest(Ŷ ) ⊃ Send(Y, X̂, Ŷ , “IAUTH5”, y, TNx) <

Rcve(X, X̂, Ŷ , “IAUTH5”, y, TNx) (45)

40,41,43,45,Θ4WAY

[4WAY : INIT]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
(Send(X, Ŷ , X̂, INFOX , “IATH1”)∧
Rcve(X, X̂, Ŷ , INFOY , “IATH1”)∧
Send(X, Ŷ , X̂, INFOY , “IATH3”)∧
Rcve(X, X̂, Ŷ , INFOX , “IATH3”)∧
Send(Y, X̂, Ŷ , INFOY , “IATH1”)∧
Rcve(Y, Ŷ , X̂, INFOX , “IATH1”)∧
Send(Y, X̂, Ŷ , INFOX , “IATH3”)∧
Rcve(Y, Ŷ , X̂, INFOY , “IATH3”)∧
Send(Y, X̂, Ŷ , “IAUTH5”, y, TNx)) <

Rcve(X, X̂, Ŷ , “IAUTH5”, y, TNx) <

Send(X, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1) <

Rcve(Y, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1) <

Send(Y, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) <

Rcve(X, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) <

Send(X, Ŷ , X̂, “IAUTH8”, mic3) (46)

The other security goal proofs are straightforward and similar
to that of ABBH in Section F, therefore we omit them here.

B.1.1 Proof Security Goals Four-Way, MA

Security Goals of the MA:
Φ4WAY,PTKD,MA :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Has(X, ptkX,Y ) ∧Has(Y, ptkX,Y )

Φ4WAY,GTKD,MA :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Has(X, gtkY ) ∧Has(Y, gtkX)

Φ4WAY,KF,MA :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
(new (X̂, x) ∧ x ⊆ ptkX,Y ∧ new (Ŷ , y) ∧ y ⊆ ptkX,Y )∧
FirstSend(Y, y, X̂, Ŷ , “IAUTH5”, y, TNx)∧
FirstSend(X, x, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1)

Φ4WAY,AUTH,MA :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
(Send(X, Ŷ , X̂, INFOX , “IATH1”)∧
Rcve(X, X̂, Ŷ , INFOY , “IATH1”)∧
Send(X, Ŷ , X̂, INFOY , “IATH3”)∧
Rcve(X, X̂, Ŷ , INFOX , “IATH3”)∧
Send(Y, X̂, Ŷ , INFOY , “IATH1”)∧
Rcve(Y, Ŷ , X̂, INFOX , “IATH1”)∧

27



Send(Y, X̂, Ŷ , INFOX , “IATH3”)∧
Rcve(Y, Ŷ , X̂, INFOY , “IATH3”)∧
Send(Y, X̂, Ŷ , “IAUTH5”, y, TNx)) <

Rcve(X, X̂, Ŷ , “IAUTH5”, y, TNx) <

Send(X, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1) <

Rcve(Y, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1) <

Send(Y, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) <

Rcve(X, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) <

Send(X, Ŷ , X̂, “IAUTH8”, mic3) <

Rcve(Y, Ŷ , X̂, “IAUTH8”, mic3)

Φ4WAY,CS,MA :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
SELECT (INFOX , INFOY ) = CS∧
Has(X, CS) ∧Has(Y, CS)

Matching Conversation MA:
AA1,ARP,AA4,Θ4WAY

[4WAY : MA]Y

(Send(Y, X̂, Ŷ , INFOY , “IATH1”)∧
Rcve(Y, Ŷ , X̂, INFOX , “IATH1”)∧
Send(Y, X̂, Ŷ , INFOX , “IATH3”)∧
Rcve(Y, Ŷ , X̂, INFOY , “IATH3”)) <

Send(Y, X̂, Ŷ , “IAUTH5”, y, TNx) <

Rcve(Y, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1) <

Send(Y, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) <

Rcve(Y, Ŷ , X̂, “IAUTH8”, mic3) (47)

ARP,HASH3,Θ4WAY

[4WAY : MA]Y

Rcve(Y, Ŷ , X̂, “IAUTH8”, mic3) ⊃
∃Z.Computes(Z, HASHptkX,Y

(“IAUTH8”))∧
Send(Z, HASHptkX,Y

(“IAUTH8”))∧
(Send(Z, HASHptkX,Y

(“IAUTH8”)) <

Rcve(Y, Ŷ , X̂, “IAUTH8”, mic3)) (48)

Γ4WAY,SI,3,HASH1
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Computes(Z, HASHptkX,Y

(“IAUTH8”)) ⊃
Has(Z, ptkX,Y ) ⊃ Ẑ = X̂ ∨ Ẑ = Ŷ ∨ Ẑ = T̂ (49)

48,49,AA1,Γ4WAY,1,Θ4WAY

[4WAY : MA]Y
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Send(Z, HASHptkX,Y

(“IAUTH8”)) ⊃
Ẑ = X̂ (50)

48,50,Θ4WAY

[4WAY : MA]Y
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Computes(X, HASHptkX,Y

(“IAUTH8”))∧
Send(X, HASHptkX,Y

(“IAUTH8”)) (51)

51, φHONESTY,Θ4WAY

[4WAY : MA]Y
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Computes(X, HASHptkX,Y

(“IAUTH7”, y, pmkN, INFOY , TNx, enc2)) (52)

ARP,HASH3,Θ4WAY

[4WAY : MA]Y

Rcve(Y, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1) ⊃
∃Z.Computes(Z, HASHptkX,Y

(“IAUTH6”, x, pmkN, INFOX , enc1))∧
Send(Z, HASHptkX,Y

(“IAUTH6”, x, pmkN, INFOX , enc1)) (53)

Γ4WAY,SI,3,HASH1
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Computes(Z, HASHptkX,Y

(“IAUTH6”, x, pmkN, INFOX , enc1)) ⊃
Has(Z, ptkX,Y ) ⊃ Ẑ = X̂ ∨ Ẑ = Ŷ ∨ Ẑ = T̂ (54)

53,54,AA1,Γ4WAY,1,Θ4WAY

[4WAY : MA]Y
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Send(Z, HASHptkX,Y

(“IAUTH6”, x, pmkN, INFOX , enc1)) ⊃
Ẑ = X̂ (55)

53,55,Θ4WAY

[4WAY : MA]Y
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Computes(X, HASHptkX,Y

(“IAUTH6”, x, pmkN, INFOX , enc1))∧
Send(X, HASHptkX,Y

(“IAUTH6”, x, pmkN, INFOX , enc1)) (56)

51,52,56,HASH1,Θ4WAY

[4WAY : MA]Y
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Has(X, ptkX,Y )∧
Has(X, TNx, pmkN, INFOX , INFOY , x, y) (57)

48,51,57, φHONESTY,Θ4WAY

[4WAY : MA]Y
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
(Send(X, Ŷ , X̂, INFOX , “IATH1”)∧
Rcve(X, X̂, Ŷ , INFOY , “IATH1”)∧
Send(X, Ŷ , X̂, INFOY , “IATH3”)∧
Rcve(X, X̂, Ŷ , INFOX , “IATH3”)) <

Rcve(X, X̂, Ŷ , “IAUTH5”, y, TNx) <

Send(X, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1) <

Rcve(X, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) <

Send(X, Ŷ , X̂, “IAUTH8”, mic3) (58)

48,58,Θ4WAY

[4WAY : MA]Y
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Send(X, Ŷ , X̂, “IAUTH8”, mic3) <

Rcve(Y, Ŷ , X̂, “IAUTH8”, mic3) (59)

ARP,VER,Θ4WAY

[4WAY : MA]Y
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X})∧
Rcve(X, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) ⊃
∃Z.Computes(Z, HASHptkX,Y

(“IAUTH7”, y, pmkN, INFOY , TNx, enc2))∧
Send(Z, HASHptkX,Y

(“IAUTH7”, y, pmkN, INFOY , TNx, enc2))∧
(Send(Z, HASHptkX,Y

28



(“IAUTH7”, y, pmkN, INFOY , TNx, enc2)) <

Rcve(Y, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2)) (60)

Γ4WAY,SI,3,HASH1
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Computes(Z, HASHptkX,Y

(“IAUTH7”, y, pmkN, INFOY , TNx, enc2)) ⊃
Has(Z, ptkX,Y ) ⊃ Ẑ = X̂ ∨ Ẑ = Ŷ ∨ Ẑ = T̂ (61)

60,61,AA1,Γ4WAY,1,Θ4WAY

[4WAY : MA]Y
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Send(Z, HASHptkX,Y

(“IAUTH7”, y, pmkN, INFOY , TNx, enc2)) ⊃
Ẑ = Ŷ (62)

60,62,Θ4WAY

[4WAY : MA]Y

Send(Y, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) <

Rcve(Y, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) (63)

FS1,AN3,Θ4WAY

[4WAY : MA]Y

Honest(X̂) ⊃
FirstSend(X, x, X̂, Ŷ , “IAUTH5”, y, TNx) (64)

58,64,FS2,Θ4WAY

[4WAY : MA]Y

Honest(X̂) ⊃
Send(X, X̂, Ŷ , “IAUTH5”, y, TNx) <

Rcve(Y, X̂, Ŷ , “IAUTH5”, y, TNx) (65)

FS1,AN3,Θ4WAY

[4WAY : MA]Y

FirstSend(Y, y, X̂, Ŷ , “IAUTH5”, y, TNx) (66)

58,66,FS2,Θ4WAY

[4WAY : MA]Y

Send(X, X̂, Ŷ , “IAUTH5”, y, TNx) <

Rcve(X, X̂, Ŷ , “IAUTH5”, y, TNx) (67)

58,59,63,65,67,Θ4WAY

[4WAY : MA]Y
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
(Send(X, Ŷ , X̂, INFOX , “IATH1”)∧
Rcve(X, X̂, Ŷ , INFOY , “IATH1”)∧
Send(X, Ŷ , X̂, INFOY , “IATH3”)∧
Rcve(X, X̂, Ŷ , INFOX , “IATH3”)∧
Send(Y, X̂, Ŷ , INFOY , “IATH1”)∧
Rcve(Y, Ŷ , X̂, INFOX , “IATH1”)∧
Send(Y, X̂, Ŷ , INFOX , “IATH3”)∧
Rcve(Y, Ŷ , X̂, INFOY , “IATH3”)∧
Send(Y, X̂, Ŷ , “IAUTH5”, y, TNx)) <

Rcve(X, X̂, Ŷ , “IAUTH5”, y, TNx) <

Send(X, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1) <

Rcve(Y, Ŷ , X̂, “IAUTH6”, x, mic1, INFOX , enc1) <

Send(Y, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) <

Rcve(X, X̂, Ŷ , “IAUTH7”, y, mic2, INFOY , TNx, enc2) <

Send(X, Ŷ , X̂, “IAUTH8”, mic3) <

Rcve(Y, Ŷ , X̂, “IAUTH8”, mic3) (68)

The other security goal proofs are straightforward and similar
to that of ABBH in Section F, therefore we omit them here.

C Security Goals of MKHSH

Security Goals of the MA:
ΦMKHSH,AUTH,MA :=
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(X, “MKH1”, x, X̂, T̂ , INFOX) <

Rcve(T, “MKH1”, x, X̂, T̂ , INFOX) <

Send(T, “MKH2”, x, t, X̂, T̂ , INFOT , mic0) <

Rcve(X, “MKH2”, x, t, X̂, T̂ , INFOT , mic0) <

Send(X, “MKH3”, x, t, X̂, T̂ , INFOX , mic1) <

Rcve(T, “MKH3”, x, t, X̂, T̂ , INFOX , mic1) <

Send(T, “MKH4”, x, t, X̂, T̂ , INFOT , mic2) <

Rcve(X, “MKH4”, x, t, X̂, T̂ , INFOT , mic2)

ΦMKHSH,MPTKD,MA :=
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Has(X, mptkX,T ) ∧Has(T, mptkX,T )

ΦMKHSH,GTKD,MA :=
KOHonest(mptkX,T , {mkdkX,T }) ⊃ Has(T, gtkX)

ΦMKHSH,KF,MA := KOHonest(mptkX,T , {mkdkX,T }) ⊃
(new (X̂, x) ∧ x ⊆ mptkX,T ∧ new (T̂ , t) ∧ t ⊆ mptkX,T )∧
FirstSend(X, x, “MKH1”, x, X̂, T̂ , INFOX)∧
FirstSend(T, t, “MKH2”, x, t, X̂, T̂ , INFOT , mic0)

ΦMKHSH,INFO,MA := KOHonest(mptkX,T , {mkdkX,T }) ⊃
SELECT (INFOX , INFOT ) = CS∧
Has(X, CS) ∧Has(T, CS)

Security Goals of the MKD:
ΦMKHSH,AUTH,MKD :=
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(X, “MKH1”, x, X̂, T̂ , INFOX) <

Rcve(T, “MKH1”, x, X̂, T̂ , INFOX) <

Send(T, “MKH2”, x, t, X̂, T̂ , INFOT , mic0) <

Rcve(X, “MKH2”, x, t, X̂, T̂ , INFOT , mic0) <

Send(X, “MKH3”, x, t, X̂, T̂ , INFOX , mic1) <

Rcve(T, “MKH3”, x, t, X̂, T̂ , INFOX , mic1) <

Send(T, “MKH4”, x, t, X̂, T̂ , INFOT , mic2)

ΦMKHSH,MPTKD,MKD := ΦMKHSH,MPTKD,INIT

ΦMKHSH,GTKD,MKD := ΦMKHSH,GTKD,MA

ΦMKHSH,KF,MKD := ΦMKHSH,KF,INIT

ΦMKHSH,INFO,MKD := ΦMKHSH,INFO,INIT

D Group Key Handshake

D.1 Security Goals of the Group Key
Handshake

Security Goals, Sender:

29



ΦGKH,KD,SNDR :=
KOHonest(mptkX,T , {mkdkX,T }) ⊃ Has(Y, gtkX)

ΦGKH,Auth,SNDR :=
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(X, “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1) <

Rcve(Y, “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1) <

Send(Y, “GKH2”, ngtkcX,Y , mic2, Ŷ , X̂) <

Rcve(X, “GKH2”, ngtkcX,Y , mic2, Ŷ , X̂)

Security Goals, Receiver:
ΦGKH,Auth,RCVR :=
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(X, “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1) <

Rcve(Y, “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1) <

Send(Y, “GKH2”, ngtkcX,Y , mic2, Ŷ , X̂) (69)

We omit the proof of these security goals as it is nearly iden-
tical to the proof of delete.

D.2 Proof of ordering
In this section we present one of the most technically challenging
proofs. We show that ΓGKH,2 and ΘGKH,2 hold over every basic
sequence of the Group Key Handshake.

Proof of ordering, sender:
AA2,Start(X)
[]X
¬Send(X, m) ∧ ¬Send(Y, m) ⊃ ΘGKH,2, ΓGKH,2 (70)

AA1,AA2,ΘGKH,2

[mtch ngtkcX,Y /Increment(gtkX,Y );
return ngtkcX,Y ;mtch enc1/ENCptkX,Y

(gtkX);

mtch mic1/HASHptkX,Y
(

“GKH1”, ngtkcX,Y , X̂, Ŷ , enc1);

send “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1]X
¬Send(X, m)∧
IsLess(currgtkcX,Y , Increment(globalgtkcX,Y )) ⊃
ΘGKH,2 (71)

AA1,ΘGKH,2,ΓGKH,2

[mtch ngtkcX,Y /Increment(gtkX,Y );
return ngtkcX,Y ;mtch enc1/ENCptkX,Y

(gtkX);

mtch mic1/HASHptkX,Y
(

“GKH1”, ngtkcX,Y , X̂, Ŷ , enc1);

send “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1]X

Honest(X̂) ∧ ¦- Send(X, m)∧
m 6= “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1∧
Contains(m, gtkc′X,Y ) ⊃
IsLess(gtkc′X,Y , Increment(gtkcX,Y )) (72)

AA4,ΘGKH,2,ΓGKH,2

[mtch ngtkcX,Y /Increment(gtkX,Y );
return ngtkcX,Y ;mtch enc1/ENCptkX,Y

(gtkX);

mtch mic1/HASHptkX,Y
(

“GKH1”, ngtkcX,Y , X̂, Ŷ , enc1);

send “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1]X

Honest(X̂) ∧ ¦- Send(X, m)∧
m 6= “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1 ⊃
Send(X, m) <

Send(X, “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1) (73)

72,73,ΘGKH,2,ΓGKH,2

[mtch ngtkcX,Y /Increment(gtkX,Y );
return ngtkcX,Y ;mtch enc1/ENCptkX,Y

(gtkX);

mtch mic1/HASHptkX,Y
(

“GKH1”, ngtkcX,Y , X̂, Ŷ , enc1);

send “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1]X

Honest(X̂) ∧ Send(X, m0) ∧ Send(X, m1)∧
Contains(m0, gtkc′X,Y ) ∧ Contains(m1, gtkcX,Y )∧
IsLess(gtkc′X,Y , gtkcX,Y ) ⊃ Send(X, m0) < Send(X, m1) (74)

74,AA2,ΘGKH,2,ΓGKH,2

[mtch ngtkcX,Y /Increment(gtkX,Y );
return ngtkcX,Y ;mtch enc1/ENCptkX,Y

(gtkX);

mtch mic1/HASHptkX,Y
(

“GKH1”, ngtkcX,Y , X̂, Ŷ , enc1);

send “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1]X

Honest(X̂) ∧ ¬Send(Y, m) ⊃ ΓGKH,2 (75)

AA2,ΘGKH,2,ΓGKH,2

[rcve “GKH2”, ngtkcX,Y , mic2, Ŷ , X̂;
mtch mic2/HASHptkX,Y

(

“GKH2”, ngtkcX,Y , Ŷ , X̂)]X
¬Send(X, m) ∧ ¬Send(Y, m) ⊃ ΘGKH,2 ∧ ΓGKH,2 (76)

Proof of ordering, receiver:
AA2Start(Y )
[]Y
¬Send(Y, m) ∧ ¬Send(X, m) ⊃ ΘGKH,2, ΓGKH,2 (77)

AA1,ΘGKH,2

[rcve “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1;

IsLess(gtkc′X,Y , ngtkcX,Y );

mtch enc1/ENCptkX,Y
(gtkX);

mtch mic1/HASHptkX,Y
(

“GKH1”, ngtkcX,Y , X̂, Ŷ , enc1);
return ngtkcY,T ;
mtch mic2/HASHptkX,Y

(

“GKH2”, ngtkcX,Y , Ŷ , X̂);

send “GKH2”, ngtkcX,Y , mic2, Ŷ , X̂]Y
IsLess(currgtkcX,Y , Increment(globalgtkcX,Y ))
⊃ ΘGKH,2 (78)

AA1,ΘGKH,2,ΓGKH,2

[rcve “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1;

IsLess(gtkc′X,Y , ngtkcX,Y );

mtch enc1/ENCptkX,Y
(gtkX);

mtch mic1/HASHptkX,Y
(

“GKH1”, ngtkcX,Y , X̂, Ŷ , enc1);
return ngtkcY,T ;
mtch mic2/HASHptkX,Y

(

“GKH2”, ngtkcX,Y , Ŷ , X̂);

send “GKH2”, ngtkcX,Y , mic2, Ŷ , X̂]Y

Honest(Ŷ ) ∧ ¦- Send(Y, m)∧
m 6= “GKH2”, ngtkcX,Y , mic2, Ŷ , X̂∧
Contains(m, gtkc′X,Y ) ⊃
IsLess(gtkc′X,Y , currgtkcX,Y ) (79)

AA4,ΘGKH,2,ΓGKH,2

[rcve “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1;

30



IsLess(gtkc′X,Y , ngtkcX,Y );

mtch enc1/ENCptkX,Y
(gtkX);

mtch mic1/HASHptkX,Y
(

“GKH1”, ngtkcX,Y , X̂, Ŷ , enc1);
return ngtkcY,T ;
mtch mic2/HASHptkX,Y

(

“GKH2”, ngtkcX,Y , Ŷ , X̂);

send “GKH2”, ngtkcX,Y , mic2, Ŷ , X̂]Y

Honest(Ŷ ) ∧ ¦- Send(Y, m)∧
m 6= “GKH2”, ngtkcX,Y , mic2, Ŷ , X̂ ⊃
Send(Y, m) <

Send(Y, “GKH2”, ngtkcX,Y , mic2, Ŷ , X̂) (80)

79,80,AA2,ΘGKH,2,ΓGKH,2

[rcve “GKH1”, ngtkcX,Y , mic1, X̂, Ŷ , enc1;

IsLess(gtkc′X,Y , ngtkcX,Y );

mtch enc1/ENCptkX,Y
(gtkX);

mtch mic1/HASHptkX,Y
(

“GKH1”, ngtkcX,Y , X̂, Ŷ , enc1);
return ngtkcY,T ;
mtch mic2/HASHptkX,Y

(

“GKH2”, ngtkcX,Y , Ŷ , X̂);

send “GKH2”, ngtkcX,Y , mic2, Ŷ , X̂]Y

Honest(Ŷ ) ∧ ¬Send(X, m) ⊃ ΓGKH,2 (81)

E Push, Pull and Del

E.1 Push and Pull

Remainder of invariants of Push, Pull and Del:

ΓPPD,3 := Honest(Ẑ)∧
(Send(Z, m0) ∧ Send(Z, m1)∧
Contains(m0, HASHmptkZ,X

(plc′Z,X , PULL2HASH)))∧
Contains(m0, HASHmptkZ,X

(plcZ,X , PULL2HASH)))∧
IsLess(plc′Z,X , plcZ,X) ⊃ Send(Z, m0) < Send(Z, m1))

ΓPPD,4Honest(Ẑ)∧
(Send(Z, m0) ∧ Send(Z, m1)∧
Contains(m0, HASHmptkZ,X

(pdc′Z,X , PUSH1HASH)))∧
Contains(m0, HASHmptkZ,X

(pdcZ,X , PUSH1HASH)))∧
IsLess(pdc′Z,X , pdcZ,X) ⊃ Send(Z, m0) < Send(Z, m1))

ΓPPD,5Honest(Ẑ)∧
(Send(Z, m0) ∧ Send(Z, m1)∧
Contains(m0, HASHmptkZ,X

(pdc′Z,X , DEL1HASH)))∧
Contains(m0, HASHmptkZ,X

(pdcZ,X , DEL1HASH)))∧
IsLess(pdc′Z,X , pdcZ,X) ⊃ Send(Z, m0) < Send(Z, m1))

ΓPPD,6Honest(Ẑ)∧
(Send(Z, m0) ∧ Send(Z, m1)∧
Contains(m0, HASHmptkZ,X

(pdc′Z,X , DEL2HASH)))∧
Contains(m0, HASHmptkZ,X

(pdcZ,X , DEL2HASH)))∧
IsLess(pdc′Z,X , pdcZ,X) ⊃ Send(Z, m0) < Send(Z, m1))

Goals of Push and Pull, MKD:
ΦPull,Auth,MKD :=
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(Y, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Send(T, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,

TNx, enc1, mic2)

ΦPush,Auth,MKD :=
KOHonest(mptkX,T , {mkdkX,T }) ⊃
(Send(T, Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0)∧
Send(Y, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1)) <

Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Send(T, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2)

Proof Authentication PULL, MKD:
AA1,ARP,AA4,ΘPPD,1,2

[PULL : MKD]T

Honest(T̂ ) ⊃
Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Send(T, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2) (82)

ARP,HASH3,ΘPPD,1,2

[PULL : MKD]T
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) ⊃
∃Z.Computes(Z, HASHmptkY,T

(

Ŷ , T̂ , “PULL1”, nplcY,T , X̂, pmkNX,Y ))∧
Send(Z, HASHmptkY,T

(

Ŷ , T̂ , “PULL1”, nplcY,T , X̂, pmkNX,Y )) <

Rcve(Y, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) (83)

ΓPPD,SI,1,HASH1
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Computes(Z, HASHmptkY,T

(

Ŷ , T̂ , “PULL1”, nplcY,T , X̂, pmkNX,Y )) ⊃
Has(Z, mptkY,T ) ⊃ Ẑ = T̂ ∨ Ẑ = Ŷ (84)

83,84,AA1,ΓPPD,1,ΘPPD,1,2

[PULL : MKD]T
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(Z, HASHmptkY,T

(

Ŷ , T̂ , “PULL1”, nplcY,T , X̂, pmkNX,Y )) ⊃
Ẑ = Ŷ (85)

83,85,ΘPPD,1,2

[PULL : MKD]T
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Computes(Y, HASHmptkY,T

(

Ŷ , T̂ , “PULL1”, nplcY,T , X̂, pmkNX,Y ))∧
Send(Y, HASHmptkY,T

(

Ŷ , T̂ , “PULL1”, nplcY,T , X̂, pmkNX,Y )) (86)

86,HASH1,ΘPPD,1,2

[PULL : MKD]T
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Has(Y, mptkY,T )∧
Has(Y, Ŷ , T̂ , nplcY,T , “PULL1”, X̂, pmkNX,Y ) (87)

83,86,87, φHONESTYΘPPD,1,2

[PULL : MKD]T
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(Y, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) (88)

31



82,88,ΘPPD,1,2

[PULL : MKD]T
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(Y, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Send(T, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2) (89)

Proof Authentication Push MKD:
AA1,ARP,AA4,ΘPPD,1,2

[PUSH : MKD]T

Honest(T̂ ) ⊃
Send(T, Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) (90)

89,ΘPPD,1,2

[PUSH : MKD]T
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(Y, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Send(T, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2) (91)

90,91,ΘPPD,1,2

[PUSH : MKD]T
KOHonest(mptkX,T , {mkdkX,T }) ⊃
(Send(T, Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0)∧
Send(Y, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1)) <

Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Send(T, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2) (92)

Goals of Push and Pull, MA:
Φ{PUSH,PULL},KD,MA :=

KOHonest(mptkX,T , {mkdkX,T }) ⊃ Has(Y, pmkX,Y )

ΦPull,Auth,MA :=
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(Y, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Send(T, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2) <

Rcve(Y, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2)

ΦPush,Auth,MA :=
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(T, Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Rcve(Y, Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Send(Y, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Send(T, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2) <

Rcve(Y, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2)

Proof of Authentication PULL, MA:
ARP,HASH3,ΘPPD,1,2

[PULL : MA]Y

Rcve(Y, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2) ⊃

∃Z.Computes(Z, HASHmptkY,T
(Ŷ , T̂ , “PULL2”,

nplcY,T , X̂, pmkNX,Y , TNx, enc1))∧
Send(Z, HASHmptkY,T

(Ŷ , T̂ , “PULL2”,

nplcY,T , X̂, pmkNX,Y , TNx, enc1)) <

Rcve(Y, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2) (93)

ΓPPD,SI,1,HASH1
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Computes(Z, HASHmptkY,T

(Ŷ , T̂ , “PULL2”,

nplcY,T , X̂, pmkNX,Y , TNx, enc1)) ⊃
Has(Z, mptkY,T ) ⊃ Ẑ = T̂ ∨ Ẑ = Ŷ (94)

93,94,AA1,ΓPPD,1,ΘPPD,1,2

[PULL : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(Z, HASHmptkY,T

(Ŷ , T̂ , “PULL2”,

nplcY,T , X̂, pmkNX,Y , TNx, enc1)) ⊃
Ẑ = T̂ (95)

93,95,ΘPPD,1,2

[PULL : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Computes(T, HASHmptkY,T

(Ŷ , T̂ , “PULL2”,

nplcY,T , X̂, pmkNX,Y , TNx, enc1))∧
Send(T, HASHmptkY,T

(Ŷ , T̂ , “PULL2”,

nplcY,T , X̂, pmkNX,Y , TNx, enc1)) (96)

96,HASH1,ΘPPD,1,2

[PULL : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Has(T, mptkY,T )∧
Has(T, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,

TNx, enc1, mic2) (97)

89,96,97, φHONESTY,ΘPPD,1,2

[PULL : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(Y, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Send(T, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2) (98)

93,98,ΘPPD,1,2

[PULL : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(Y, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Send(T, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2) <

Rcve(Y, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2) (99)

Proof of Authentication PUSH MA:
AA1,ARP,AA4,ΘPPD,1,2

[PUSH : MA]Y

Rcve(Y, Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Send(Y, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) (100)

99,ΘPPD,1,2

32



[PUSH : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(Y, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Send(T, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2) <

Rcve(Y, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2) (101)

ARP,HASH3,ΘPPD,1,2

[PUSH : MA]Y

Rcve(Y, Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0) ⊃
∃Z.Computes(Z, HASHmptkY,T

(

Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y ))∧
Send(Z, HASHmptkY,T

(

Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y )) <

Rcve(Y, Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0) (102)

ΓPPD,SI,1,HASH1KOHonest(mptkX,T , {mkdkX,T }) ⊃
Computes(Z, HASHmptkY,T

(

Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y )) ⊃
Has(Z, mptkY,T ) ⊃ Ẑ = T̂ ∨ Ẑ = Ŷ (103)

102,103,AA1,ΓPPD,1,ΘPPD,1,2

[PUSH : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(Z, HASHmptkY,T

(

Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y )) ⊃
Ẑ = T̂ (104)

102,104,ΘPPD,1,2

[PUSH : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Computes(T, HASHmptkY,T

(

Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y ))∧
Send(T, HASHmptkY,T

(

Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y )) (105)

105,HASH1,ΘPPD,1,2

[PUSH : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Has(T, mptkY,T )∧
Has(T, Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0) (106)

102,105,106, φHONESTY,ΘPPD,1,2

[PUSH : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(T, Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Rcve(Y, Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0) (107)

100,101,107,ΘPPD,1,2

[PUSH : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(T, Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Rcve(Y, Ŷ , T̂ , “PUSH1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Send(Y, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Rcve(T, T̂ , Ŷ , “PULL1”, nplcY,T , X̂, pmkNX,Y , mic1) <

Send(T, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,
TNx, enc1, mic2) <

Rcve(Y, Ŷ , T̂ , “PULL2”, nplcY,T , X̂, pmkNX,Y ,

TNx, enc1, mic2) (108)

E.2 Delete

Security Goals Del, MA:
ΦDel,Auth,MA := KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(T, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Rcve(Y, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Send(Y, T̂ , Ŷ , “DEL2”, npdcY,T , X̂, pmkNX,Y , mic1)

Proof of Authentication:
AA1,ARP,AA4ΘPPD,1,2

[DEL : MA]Y

Honest(Ŷ ) ⊃
Rcve(Y, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Send(Y, T̂ , Ŷ , “DEL2”, npdcY,T , X̂, pmkNX,Y , mic1) (109)

ARP,HASH3,ΘPPD,1,2

[DEL : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Rcve(Y, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) ⊃
∃Z.Computes(Z, HASHmptkY,T

(

Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y ))∧
Send(Z, HASHmptkY,T

(

Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y )) <

Rcve(T, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) (110)

ΓPPD,SI,1,HASH1KOHonest(mptkX,T , {mkdkX,T }) ⊃
Computes(Z, HASHmptkY,T

(

Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y )) ⊃
Has(Z, mptkY,T ) ⊃ Ẑ = T̂ ∨ Ẑ = Ŷ (111)

110,111,AA1,ΓPPD,1,ΘPPD,1,2

[DEL : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(Z, HASHmptkY,T

(

Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y )) ⊃
Ẑ = T̂ (112)

110,112,ΘPPD,1,2

[DEL : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Computes(T, HASHmptkY,T

(

Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y )∧
Send(T, HASHmptkY,T

(

Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y )) (113)

113,HASH1,ΘPPD,1,2

[DEL : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Has(T, mptkY,T )∧
Has(T, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) (114)

110,113,114, φHONESTY,ΘPPD,1,2

[DEL : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(T, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Rcve(Y, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) (115)

109,115,ΘPPD,1,2

33



[DEL : MA]Y
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(T, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Rcve(Y, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Send(Y, T̂ , Ŷ , “DEL2”, npdcY,T , X̂, pmkNX,Y , mic1) (116)

Security Goals Del, MKD:
ΦDel,Auth,MKD :=
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(T, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Rcve(Y, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Send(Y, T̂ , Ŷ , “DEL2”, npdcY,T , X̂, pmkNX,Y , mic1) <

Rcve(T, T̂ , Ŷ , “DEL2”, npdcY,T , X̂, pmkNX,Y , mic1)

Proof of Auth, MKD:
ARP,HASH3,ΘPPD,1,2

[DEL : MKD]T

Rcve(T, T̂ , Ŷ , “DEL2”, npdcY,T , X̂, pmkNX,Y , mic1) ⊃
∃Z.Computes(Z, HASHmptkY,T

(

Ŷ , T̂ , “DEL2”, npdcY,T , X̂, pmkNX,Y ))∧
Send(Z, HASHmptkY,T

(

Ŷ , T̂ , “DEL2”, npdcY,T , X̂, pmkNX,Y )) <

Rcve(T, T̂ , Ŷ , “DEL2”, npdcY,T , X̂, pmkNX,Y , mic1) (117)

ΓPPD,SI,1,HASH1KOHonest(mptkX,T , {mkdkX,T }) ⊃
Computes(Z, HASHmptkY,T

(

Ŷ , T̂ , “DEL2”, npdcY,T , X̂, pmkNX,Y )) ⊃
Has(Z, mptkY,T ) ⊃ Ẑ = T̂ ∨ Ẑ = Ŷ (118)

117,118,AA1,ΓPPD,1,ΘPPD,1,2

[DEL : MKD]T
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(Z, HASHmptkY,T

(

Ŷ , T̂ , “DEL2”, npdcY,T , X̂, pmkNX,Y )) ⊃
Ẑ = Ŷ (119)

117,119,ΘPPD,1,2

[DEL : MKD]T
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Computes(Y, HASHmptkY,T

(

Ŷ , T̂ , “DEL2”, npdcY,T , X̂, pmkNX,Y ))∧
Send(Y, HASHmptkY,T

(

Ŷ , T̂ , “DEL2”, npdcY,T , X̂, pmkNX,Y )) (120)

120,HASH1,ΘPPD,1,2

[DEL : MKD]T
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Has(Y, mptkY,T )∧
Has(Y, T̂ , Ŷ , “DEL2”, npdcY,T , X̂, pmkNX,Y , mic1) (121)

116,120,121, φHONESTY,ΘPPD,1,2

[DEL : MKD]T
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(T, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Rcve(Y, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Send(Y, T̂ , Ŷ , “DEL2”, npdcY,T , X̂, pmkNX,Y , mic1) (122)

117,122,ΘPPD,1,2

[DEL : MKD]T
KOHonest(mptkX,T , {mkdkX,T }) ⊃
Send(T, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Rcve(Y, Ŷ , T̂ , “DEL1”, npdcY,T , X̂, pmkNX,Y , mic0) <

Send(Y, T̂ , Ŷ , “DEL2”, npdcY,T , X̂, pmkNX,Y , mic1) <

Rcve(T, T̂ , Ŷ , “DEL2”, npdcY,T , X̂, pmkNX,Y , mic1) (123)

F ABBH

F.1 Security Goals Initiator and Re-
sponder, ABBH

Goals Initiator:
ΦABBH,MA,INIT :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Send(X, Ŷ , X̂, “ABBH1”, INFOX , x) <

Rcve(Y, Ŷ , X̂, “ABBH1”, INFOX , x) <

Send(Y, X̂, Ŷ , “ABBH2”, INFOY , y, x, enc0, mic0) <

Rcve(X, X̂, Ŷ , “ABBH2”, INFOY , y, x, enc0, mic0) <

Send(X, Ŷ , X̂, “ABBH3”, INFOX , x, y, enc1, mic1) <

Rcve(Y, Ŷ , X̂, “ABBH3”, INFOX , x, y, enc1, mic1) <

Send(Y, X̂, Ŷ , “ABBH4”, y, x, mic2) <

Rcve(X, X̂, Ŷ , “ABBH4”, y, x, mic2)

ΦABBH,PTKD,INIT := ΦSIMO,PTKD

ΦABBH,GTKD,INIT := ΦSIMO,GTKD

ΦABBH,KF,INIT := ΦSIMO,KF

ΦABBH,INFO,INIT := ΦSIMO,INFO

Goals Responder:
ΦABBH,MA,RESP :=
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Send(X, Ŷ , X̂, “ABBH1”, INFOX , x) <

Rcve(Y, Ŷ , X̂, “ABBH1”, INFOX , x) <

Send(Y, X̂, Ŷ , “ABBH2”, INFOY , y, x, enc0, mic0) <

Rcve(X, X̂, Ŷ , “ABBH2”, INFOY , y, x, enc0, mic0) <

Send(X, Ŷ , X̂, “ABBH3”, INFOX , x, y, enc1, mic1) <

Rcve(Y, Ŷ , X̂, “ABBH3”, INFOX , x, y, enc1, mic1) <

Send(Y, X̂, Ŷ , “ABBH4”, y, x, mic2)

ΦABBH,PTKD,RESP := ΦSIMO,PTKD

ΦABBH,GTKD,RESP := ΦSIMO,GTKD

ΦABBH,KF,RESP := ΦSIMO,KF

ΦABBH,INFO,RESP := ΦSIMO,INFO

F.2 Proof Security Goals, SIMO

Generalized Authentication:
AA1,ARP,AA4,ΘSIMO

[ABBH : SIMO]X

Send(X, Ŷ , X̂, “ABBH1”, INFOX , x) <

Rcve(X, X̂, Ŷ , “ABBH1”, INFOY , y) <

(Rcve(X, X̂, Ŷ , “ABBH5”, INFOY , y, x, enc1, mic1)∧
Send(X, Ŷ , X̂, “ABBH5”, INFOX , x, y, enc0, mic0)) (124)

ARP,HASH3,ΘSIMO

[ABBH : SIMO]X

Rcve(X, X̂, Ŷ , “ABBH5”, INFOY , y, x, enc1, mic1) ⊃
∃Z.Computes(Z, HASHptkX,Y

(X̂, Ŷ ,

“ABBH5”, INFOY , y, x, enc1, INFOX))∧
Sends(Z, HASHptkX,Y

(X̂, Ŷ ,

34



“ABBH5”, INFOY , y, x, enc1, INFOX)) <

Rcve(X, X̂, Ŷ , “ABBH5”, INFOY , y, x, enc1, mic1) (125)

ΓABBH,SI,1HASH1
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Computes(Z, HASHptkX,Y

(X̂, Ŷ ,

“ABBH5”, INFOY , y, x, enc1, INFOX)) ⊃
Has(Z, ptkX,Y ) ⊃ Ẑ = X̂ ∨ Ẑ = Ŷ ∨ Ẑ = T̂ (126)

125,126,AA1,ΓABBH,1,ΘSIMO

[ABBH : SIMO]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Send(Z, HASHptkX,Y

(X̂, Ŷ ,

“ABBH5”, INFOY , y, x, enc1, INFOX)) ⊃
Ẑ = Ŷ (127)

125,127,ΘSIMO

[ABBH : SIMO]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Computes(Y, HASHptkX,Y

(X̂, Ŷ ,

“ABBH5”, INFOY , y, x, enc1, INFOX))∧
Send(Y, HASHptkX,Y

(X̂, Ŷ ,

“ABBH5”, INFOY , y, x, enc1, INFOX)) (128)

128,HASH1,ΘABBH

[ABBH : SIMO]X
Has(Y, ptkX,Y ) ∧Has(Y,

X̂, Ŷ , “ABBH5”, INFOY , y, x, enc1, mic1) (129)

128,129, φHONESTY,ΘSIMO

[ABBH : SIMO]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Send(Y, X̂, Ŷ , “ABBH1”, INFOY , y) <

Rcve(Y, Ŷ , X̂, “ABBH1”, INFOX , x) <

Send(Y, X̂, Ŷ , “ABBH5”, INFOY , y, x, enc1, mic1) (130)

125,130,ΘSIMO

[ABBH : SIMO]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Send(Y, X̂, Ŷ , “ABBH5”, INFOY , y, x, enc1, mic1) <

Rcve(X, X̂, Ŷ , “ABBH5”, INFOY , y, x, enc1, mic1) (131)

FS1,AN3, θABBH

[ABBH : SIMO]X

FirstSend(X, x, Ŷ , X̂, “ABBH1”, INFOX , x) (132)

132,FS2, θABBH

[ABBH : SIMO]X

Send(X, Ŷ , X̂, “ABBH1”, INFOX , x) <

Rcve(Y, Ŷ , X̂, “ABBH1”, INFOX , x) (133)

FS1,AN3, θABBH

[ABBH : SIMO]X

Honest(Ŷ ) ⊃
FirstSend(Y, y, X̂, Ŷ , “ABBH1”, INFOY , y) (134)

130,134,FS2, θABBH

[ABBH : SIMO]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Send(Y, X̂, Ŷ , “ABBH1”, INFOY , y) <

Rcve(Y, X̂, Ŷ , “ABBH1”, INFOY , y) (135)

124,130,131,133,135,ΘSIMO

[ABBH : SIMO]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
(Send(X, Ŷ , X̂, “ABBH1”, INFOX , x) <

Rcve(Y, Ŷ , X̂, “ABBH1”, INFOX , x))∧
(Send(Y, X̂, Ŷ , “ABBH1”, INFOY , y) <

Rcve(Y, X̂, Ŷ , “ABBH1”, INFOY , y))∧
(Send(Y, X̂, Ŷ , “ABBH5”, INFOY , y, x, enc1, mic1) <

Rcve(X, X̂, Ŷ , “ABBH5”, INFOY , y, x, enc1, mic1))∧
(Send(X, Ŷ , X̂, “ABBH1”, INFOX , x) <

Rcve(X, X̂, Ŷ , “ABBH1”, INFOY , y) <

(Rcve(X, X̂, Ŷ , “ABBH5”, INFOY , y, x, enc1, mic1)∧
Send(X, Ŷ , X̂, “ABBH5”, INFOX , x, y, enc0, mic0)))∧
(Send(Y, X̂, Ŷ , “ABBH1”, INFOY , y) <

Rcve(Y, Ŷ , X̂, “ABBH1”, INFOX , x) <

Send(Y, X̂, Ŷ , “ABBH5”, INFOY , y, x, enc1, mic1)) (136)

Proof ptk Delivery, SIMO:
AA1,ΘSIMO

[ABBH : SIMO]X
Has(X, ptkX,Y ) (137)

129,137,ΘSIMO

[ABBH : SIMO]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
Has(X, ptkX,Y ) ∧Has(Y, ptkX,Y ) (138)

Proof gtk Delivery, SIMO:
AA1,ΘSIMO

[ABBH : SIMO]X
Has(X, gtkY ) (139)

AA1,ΘSIMO

[ABBH : SIMO]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X})∧
Rcve(Y, SIMOX5) ⊃ Has(Y, enc1) (140)

138,139,140,DEC,ΘSIMO

[ABBH : SIMO]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X})∧
Rcve(Y, SIMOX5) ⊃
Has(X, gtkY ) ∧Has(Y, gtkX) (141)

Proof Key Freshness, SIMO:
ptkX,Y = HASHpmk(x, y) (142)

FS1,AN3,ΘSIMO

[ABBH : SIMO]X

Honest(Ŷ ) ⊃ new (Ŷ , y)∧
FirstSend(Y, y, X̂, Ŷ , “ABBH1”, INFOY , y) (143)

FS1,AN3,ΘSIMO

[ABBH : SIMO]X

Honest(X̂) ⊃ new (X̂, x)∧
FirstSend(X, x, Ŷ , X̂, “ABBH1”, INFOX , x) (144)

130,142,143,144,ΘSIMO

[ABBH : SIMO]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃

35



(new (X̂, x) ∧ x ⊆ ptkX,Y ∧ new (Ŷ , y) ∧ y ⊆ ptkX,Y )∧
FirstSend(X, x, Ŷ , X̂, “ABBH1”, INFOX , x)∧
FirstSend(Y, y, X̂, Ŷ , “ABBH1”, INFOY , y) (145)

Proof Info, SIMO:
CS, pmkN = SELECT (INFOX , INFOY ) (146)

AA1,ΘSIMO

[ABBH : SIMO]X
Has(X, CS, pmkN) (147)

129,146,147,PROJΘSIMO

[ABBH : SIMO]X
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
SELECT (INFOX , INFOY ) = CS, pmkN∧
Has(X, CS, pmkN) ∧Has(Y, CS, pmkN) (148)

G Secrecy Proof

G.1 Proof of SafeNets

NET0,
SafeNet(xxKeyX , {privX , privT , xxKeyX})∧
SafeNet(ptkX,Y , {pmkX,Y , pmkY,X})∧
SafeNet(gtkX , {ptkX,Y1 , . . . ptkX,Yn})
[]X

Honest(X̂) ⊃
SendsSafeMsg(X, xxKeyX , {privX , privT , xxKeyX}),
SendsSafeMsg(X, ptkX,Y , {pmkX,Y , pmkY,X}),
SendsSafeMsg(X, gtkX , {ptkX,Y1 , . . . ptkX,Yn}) (149)

SAF0
SafeNet(xxKeyX , {privX , privT , xxKeyX})∧
SafeNet(ptkX,Y , {pmkX,Y , pmkY,X})∧
SafeNet(gtkX , {ptkX,Y1 , . . . ptkX,Yn})
[new x; send Ŷ , X̂, “ABBH1”, INFOX , x]X
SafeMsg(ABBH1, xxKeyX , {privX , privT , xxKeyX})∧
SafeMsg(ABBH1, ptkX,Y , {pmkX,Y , pmkY,X})∧
SafeMsg(ABBH1, gtkX , {ptkX,Y1 , . . . ptkX,Yn}) (150)

150,NET2,NET3,
SafeNet(xxKeyX , {privX , privT , xxKeyX})∧
SafeNet(ptkX,Y , {pmkX,Y , pmkY,X})∧
SafeNet(gtkX , {ptkX,Y1 , . . . ptkX,Yn})
[new x; send Ŷ , X̂, “ABBH1”, INFOX , x]X

Honest(X̂) ⊃
SendsSafeMsg(X, xxKeyX , {privX , privT , xxKeyX}),
SendsSafeMsg(X, ptkX,Y , {pmkX,Y , pmkY,X}),
SendsSafeMsg(X, gtkX , {ptkX,Y1 , . . . ptkX,Yn}) (151)

NET2,
SafeNet(xxKeyX , {privX , privT , xxKeyX})∧
SafeNet(ptkX,Y , {pmkX,Y , pmkY,X})∧
SafeNet(gtkX , {ptkX,Y1 , . . . ptkX,Yn})
[rcve X̂, Ŷ , “ABBH2”, INFOY , y, x, enc0, mic0;
mtch SELECT (INFOX , INFOY )/CS, pmkN ]X

Honest(X̂) ⊃
SendsSafeMsg(X, xxKeyX , {privX , privT , xxKeyX}),
SendsSafeMsg(X, ptkX,Y , {pmkX,Y , pmkY,X}),
SendsSafeMsg(X, gtkX , {ptkX,Y1 , . . . ptkX,Yn}) (152)

NET2,

SafeNet(xxKeyX , {privX , privT , xxKeyX})∧
SafeNet(ptkX,Y , {pmkX,Y , pmkY,X})∧
SafeNet(gtkX , {ptkX,Y1 , . . . ptkX,Yn})
[mtch RETRIEV E(pmkN)/pmk]X

Honest(X̂) ⊃
SendsSafeMsg(X, xxKeyX , {privX , privT , xxKeyX}),
SendsSafeMsg(X, ptkX,Y , {pmkX,Y , pmkY,X}),
SendsSafeMsg(X, gtkX , {ptkX,Y1 , . . . ptkX,Yn}) (153)

SAF0,SAF2,SAF4,SAF5,
SafeNet(xxKeyX , {privX , privT , xxKeyX})∧
SafeNet(ptkX,Y , {pmkX,Y , pmkY,X})∧
SafeNet(gtkX , {ptkX,Y1 , . . . ptkX,Yn})
[mtch HASHpmk(x, y)/ptkX,Y ;
mtch enc0/ENCptkX,Y

(gtkY );

mtch mic0/HASHptkX,Y
(

X̂, Ŷ , “ABBH2”, INFOY , y, x, enc0);
mtch enc1/ENCptkX,Y

(gtkX);

mtch mic1/HASHptkX,Y
(Ŷ , X̂, “ABBH3”,

INFOX , x, y, enc1);

send Ŷ , X̂, “ABBH3”, INFOX , x, y, enc1, mic1]X
SafeMsg(ABBH3, xxKeyX , {privX , privT , xxKeyX})∧
SafeMsg(ABBH3, ptkX,Y , {pmkX,Y , pmkY,X})∧
SafeMsg(ABBH3, gtkX , {ptkX,Y1 , . . . ptkX,Yn}) (154)

154,NET2,NET3,
SafeNet(xxKeyX , {privX , privT , xxKeyX})∧
SafeNet(ptkX,Y , {pmkX,Y , pmkY,X})∧
SafeNet(gtkX , {ptkX,Y1 , . . . ptkX,Yn})
[mtch HASHpmk(x, y)/ptkX,Y ;
mtch enc0/ENCptkX,Y

(gtkY );

mtch mic0/HASHptkX,Y
(

X̂, Ŷ , “ABBH2”, INFOY , y, x, enc0);
mtch enc1/ENCptkX,Y

(gtkX);

mtch mic1/HASHptkX,Y
(Ŷ , X̂, “ABBH3”,

INFOX , x, y, enc1);

send Ŷ , X̂, “ABBH3”, INFOX , x, y, enc1, mic1]X

Honest(X̂) ⊃
SendsSafeMsg(X, xxKeyX , {privX , privT , xxKeyX}),
SendsSafeMsg(X, ptkX,Y , {pmkX,Y , pmkY,X}),
SendsSafeMsg(X, gtkX , {ptkX,Y1 , . . . ptkX,Yn}) (155)

NET2,
SafeNet(xxKeyX , {privX , privT , xxKeyX})∧
SafeNet(ptkX,Y , {pmkX,Y , pmkY,X})∧
SafeNet(gtkX , {ptkX,Y1 , . . . ptkX,Yn})
[rcve X̂, Ŷ , “ABBH4”, y, x, mic2;

mtch mic2/HASHptkX,Y
(X̂, Ŷ , “ABBH4”, y, x)]X

Honest(X̂) ⊃
SendsSafeMsg(X, xxKeyX , {privX , privT , xxKeyX}),
SendsSafeMsg(X, ptkX,Y , {pmkX,Y , pmkY,X}),
SendsSafeMsg(X, gtkX , {ptkX,Y1 , . . . ptkX,Yn}) (156)

G.2 Proof Security Invariants Always
Hold

POS
KOHonest(privX , {}) ⊃
SafeNet(privX , {}) ∧Has(Z, privX) ⊃
Ẑ = X̂ (157)

36



157,POS
KOHonest(xxKeyX , {privX , privT , xxKeyX}) ⊃
SafeNet(xxKeyX , {privX , privT , xxKeyX})∧
Has(Z, xxKeyX) ⊃ Ẑ = X̂ ∨ Ẑ = T̂ (158)

158,POS
KOHonest(pmkmkdX , {xxKeyX}) ⊃
SafeNet(pmkmkdX , {xxKeyX}) ∧Has(Z, pmkmkdX) ⊃
Ẑ = X̂ ∨ Ẑ = T̂ (159)

158,POS
KOHonest(mkdkX,T , {xxKeyX}) ⊃
SafeNet(mkdkX,T , {xxKeyX}) ∧Has(Z, mkdkX,T ) ⊃
Ẑ = X̂ ∨ Ẑ = T̂ (160)

160,POS
KOHonest(mptkX,T , {mkdkX,T }) ⊃
SafeNet(mptkX,T , {mkdkX,T }) ∧Has(Z, mptkX,T ) ⊃
Ẑ = X̂ ∨ Ẑ = T̂ (161)

159,161,POS
KOHonest(pmkX,Y , {pmkmkdX , mptkY,T }) ⊃
SafeNet(pmkX,Y , {pmkmkdX , mptkY,T }) ∧Has(Z, pmk) ⊃
Ẑ = X̂ ∨ Ẑ = Ŷ ∨ Ẑ = T̂ (162)

162,POS
KOHonest(ptkX,Y , {pmkX,Y , pmkY,X}) ⊃
SafeNet(ptkX,Y , {pmkX,Y , pmkY,X}) ∧Has(Z, ptkX,Y ) ⊃
Ẑ = X̂ ∨ Ẑ = Ŷ ∨ Ẑ = T̂ (163)

163,POS
KOHonest(gtkX , {ptkX,Y1 , . . . ptkX,Yn}) ⊃
SafeNet(gtkX , {ptkX,Y1 , . . . ptkX,Yn})∧
Has(Z, gtkX) ⊃ Has(Z, ptkX,Yi

) (164)

H Invariant Proofs
Proof that Invariants hold over INIT’s Basic Sequences

Proof Invariants ABBH, INIT:
AA2,Start(X)
[]X
¬(Send(X, m)∧
(Contains(m, Hashptk((Ẑ, Ŷ ), “ABBH2”))∨
Contains(m, Hashptk((Ẑ, Ŷ ), “ABBH3”))∨
Contains(m, Hashptk((Ẑ, Ŷ ), “ABBH4”))∨
Contains(m, Hashptk((Ẑ, Ŷ ), “ABBH5”)))
⊃ ΓABBH,1 (165)

AA5,ΓABBH,1

[new x; send Ŷ , X̂, “ABBH1”, INFOX , x]X
¬(Send(X, m)∧
(Contains(m, Hashptk((Ẑ, Ŷ ), “ABBH2”))∨
Contains(m, Hashptk((Ẑ, Ŷ ), “ABBH3”))∨
Contains(m, Hashptk((Ẑ, Ŷ ), “ABBH4”))∨
Contains(m, Hashptk((Ẑ, Ŷ ), “ABBH5”)))
⊃ ΓABBH,1 (166)

AA2,ΓABBH,1

[rcve X̂, Ŷ , “ABBH2”, INFOY , y, x, enc0, mic0;
mtch SELECT (INFOX , INFOY )/CS, pmkN ]X

ΓABBH,1 (167)

AA2,ΓABBH,1

[mtch RETRIEV E(pmkN)/pmk]X
ΓABBH,1 (168)

AA1,AA5,ΓABBH,1

[mtch HASHpmk(x, y)/ptkX,Y ;
mtch enc0/ENCptkX,Y

(gtkY );

mtch mic0/HASHptkX,Y
(

X̂, Ŷ , “ABBH2”, INFOY , y, x, enc0);
mtch enc1/ENCptkX,Y

(gtkX);

mtch mic1/HASHptkX,Y
(Ŷ , X̂, “ABBH3”,

INFOX , x, y, enc1);

send Ŷ , X̂, “ABBH3”, INFOX , x, y, enc1, mic1]X
Send(X, m)∧
Contains(m, Hashptk((Ẑ, Ŷ ), “ABBH3”)) ∧ Ẑ = X̂∧
(¬(Send(X, m)∧
(Contains(m, Hashptk((Ẑ, Ŷ ), “ABBH2”))∨
Contains(m, Hashptk((Ẑ, Ŷ ), “ABBH4”))∨
Contains(m, Hashptk((Ẑ, Ŷ ), “ABBH5”))))) ⊃
ΓABBH,1 (169)

AA2,ΓABBH,1

[rcve X̂, Ŷ , “ABBH4”, y, x, mic2;

mtch mic2/HASHptkX,Y
(X̂, Ŷ , “ABBH4”, y, x)]X

ΓABBH,1 (170)

37


