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Abstrat. Consider the jaobian of a hyperellipti genus two urve de�ned

over a �nite �eld. Under ertain restritions on the endomorphism ring of

the jaobian we give an expliit desription all non-degenerate, bilinear, anti-

symmetri and Galois-invariant pairings on the jaobian. From this desription

it follows that no suh pairing an be omputed more e�iently than the Weil

pairing.

To establish this result, we need an expliit desription of the representation

of the Frobenius endomorphism on the ℓ-torsion subgroup of the jaobian. This

desription is given. In partiular, we show that if the harateristi polynomial

of the Frobenius endomorphism splits into linear fators modulo ℓ, then the

Frobenius is diagonalizable.

Finally, under the restrition that the Frobenius element is an element of a

ertain subring of the endomorphism ring, we prove that if the harateristi

polynomial of the Frobenius endomorphism splits into linear fators modulo ℓ,

then the embedding degree and the total embedding degree of the jaobian

with respet to ℓ are the same number.

1. Introdution

In [12℄, Koblitz desribed how to use ellipti urves to onstrut a publi key

ryptosystem. To get a more general lass of groups, and possibly larger group or-

ders, Koblitz [13℄ then proposed using jaobians of hyperellipti urves. Sine Boney

and Franklin [2℄ proposed an identity based ryptosystem by using the Weil pairing

on an ellipti urve, pairings have been of great interest to ryptography [8℄. The

next natural step then was to onsider pairings on hyperellipti urves. Galbraith

et al [9℄ survey the reent researh on pairings on hyperellipti urves.

The pairing in question is usually the Weil or the Tate pairing; both pairings

an be omputed with Miller's algorithm [16℄. The Tate pairing is usually preferred

beause it an be omputed more e�iently than the Weil pairing, f. [7℄, and it is

non-degenerate over a possible smaller �eld extension than the Weil pairing, f. [11℄

and [23℄. For ellipti urves, in most ases relevant to ryptography the question

of non-degeneray is not an issue, f. [1℄. This result has been generalized to any

abelian variety de�ned over a �nite �eld by Rubin and Silverberg [20, Theorem 3.1℄.

The proof in [20℄ uses intrinsi properties of the Frobenius endomorphism on the

abelian variety. This indiates the importane of knowing the representation of

the Frobenius endomorphism on torsion subgroups of the abelian variety. This

representation has impliitly been given by Rük [21, proof of Lemma 4.2℄.

2000 Mathematis Subjet Classi�ation. Primary 14H40; Seondary 11G15, 14Q05, 94A60.

Key words and phrases. Jaobians of hyperellipti urves of genus two, Frobenius endomor-

phism, pairings, embedding degree, omplex multipliation.

Researh supported in part by a PhD grant from CRYPTOMAThIC.

1



2 C.R. RAVNSHØJ

Cryptographially, it is essential to know the number of points on the jaobian.

Currently, the omplex multipliation method [24, 10, 4℄ is the only e�ient method

to determine the number of points of the jaobian of a genus two urve de�ned over

a large prime �eld [10℄. The omplex multipliation method onstruts a jaobian

with endomorphism ring isomorphi to the ring of integers OK in a quarti CM

�eld K, i.e. a totally imaginary, quadrati �eld extension of a quadrati number

�eld. In the present paper we onsider the more general situation where OK is

embedded into the endomorphism ring.

1.1. Notation and assumptions. Consider a hyperellipti urve C of genus two

de�ned over a �nite �eld Fq of harateristi p. We assume that the jaobian JC

of C is irreduible. Identify the q-power Frobenius endomorphism ϕ on JC with a

root ω ∈ C of the harateristi polynomial P ∈ Z[X ] of ϕ; f. setion 4. We then

assume that the ring of integers of Q(ω) is embedded into the endomorphism ring

End(JC). Let ℓ 6= p be a prime number dividing the order of JC(Fq). Assume that

ℓ is unrami�ed in Q(ω), and that ℓ ∤ q − 1.

1.2. Results. Under these assumptions, in setion 5 we give an expliit desription

of all non-degenerate, bilinear, anti-symmetri, Galois-invariant pairings on the ℓ-
torsion subgroup of the jaobian of a hyperellipti urve of genus two, given by the

following theorem.

Theorem 5.1 (Anti-symmetri pairings). Let notation and assumptions be as

above. Choose a basis B of JC[ℓ], suh that ϕ is represented either by a diagonal

matrix or a matrix on the form given in theorem 4.2 with respet to B. If JC(Fq)[ℓ]
is yli, then all non-degenerate, bilinear, anti-symmetri and Galois-invariant

pairings on JC[ℓ] are given by the matries

Ea,b =









0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0









, a, b ∈ F×
ℓ

with respet to B.

This result implies that the Weil pairing is non-degenerate on the same �eld

extension as the Tate pairing, and that no non-degenerate, bilinear, anti-symmetri

and Galois-invariant pairing on JC[ℓ] an be omputed more e�etive than the Weil

pairing. To end the desription of pairings on JC, in setion 6 we give an expliit

desription of the Tate pairing.

The proof of Theorem 5.1 uses an expliit desription of the representation of

the Frobenius endomorphism on the jaobian of a hyperellipti urve of genus two,

given by the following theorem.

Theorem 4.2 (Matrix representation). Let notation and assumptions be as above.

Then either ϕ is diagonalizable on JC[ℓ], or ϕ is represented on JC[ℓ] by a matrix

on the form

M =









1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c









with c 6≡ q + 1 (mod ℓ) with respet to an appropriate basis of JC[ℓ].
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Perhaps even more interesting, we prove that if the harateristi polynomial of

the Frobenius endomorphism splits into linear fators modulo ℓ, then the Frobenius

is diagonalizable.

Theorem 4.7 (Diagonal representation). Let notation and assumptions be as

above. Then ϕ is diagonalizable on JC[ℓ] if, and only if, the harateristi poly-

nomial of ϕ splits into linear fators modulo ℓ.

The proofs are given in setion 4. Theorem 4.2 and 4.7 also holds, if ℓ | q − 1
and ℓ is uneven. The proofs are similar in this ase, but due to the mov-attak [15℄

and the attak by Frey-Rük [6℄, the ase ℓ | q − 1 is not of ryptographi interest.

Therefore, this ase is omitted.

Finally, in setion 7 we assume that the endomorphism ring of the jaobian

is isomorphi to the ring of integers in a quarti CM �eld K. Assuming that

the Frobenius endomorphism under this isomorphism is given by an η-integer and

that the harateristi polynomial of the Frobenius endomorphism splits into linear

fators over Fℓ, we prove that if the disriminant of the real sub�eld of K is not

a quadrati residue modulo ℓ, then all ℓ-torsion points are Fqk -rational. Here, k is

the multipliative order of q modulo ℓ.

2. Hyperellipti urves

A hyperellipti urve is a smooth, projetive urve C ⊆ Pn of genus at least two

with a separable, degree two morphism φ : C → P1
. Throughout this paper, let C

be a hyperellipti urve of genus two de�ned over a �nite �eld Fq of harateristi p.
By the Riemann-Roh Theorem there exists a birational map ψ : C → P2

, mapping

C to a urve given by an equation of the form

y2 + g(x)y = h(x),

where g, h ∈ Fq[x] are polynomials of degree at most six [3, hapter 1℄.

The set of prinipal divisors P(C) on C onstitutes a subgroup of the degree 0

divisors Div0(C). The jaobian JC of C is de�ned as the quotient

JC = Div0(C)/P(C).

The jaobian is de�ned over Fq, and the points on JC de�ned over the extension

Fqd is denoted JC(Fqd).
Let ℓ 6= p be a prime number. The ℓn-torsion subgroup JC[ℓn] < JC of elements

of order dividing ℓn is then isomorphi to (Z/ℓnZ)4, i.e. JC[ℓn] is a Z/ℓnZ-module

of rank four; f. [14, Theorem 6, p. 109℄.

The multipliative order of q modulo ℓ plays an important role in ryptography.

De�nition (Embedding degree). Consider a prime number ℓ 6= p dividing the order
of JC(Fq). The embedding degree of JC(Fq) with respet to ℓ is the multipliative
order of q modulo ℓ, i.e. the least number k, suh that qk ≡ 1 (mod ℓ).

Throughout this paper we onsider a prime number ℓ 6= p dividing the order

of JC(Fq), and assume that JC(Fq) is of embedding degree k > 1 with respet to ℓ.
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Figure 1. Representation of an endomorphism ψ ∈ End(JC)
on the Tate module Tℓ(JC). The horizontal maps [ℓ] are the

multipliation-by-ℓ map.

Closely related to the embedding degree we have the total embedding degree.

De�nition (Total embedding degree). Consider a prime number ℓ 6= p dividing

the order of JC(Fq). The total embedding degree of JC(Fq) with respet to ℓ is the
least number κ, suh that JC[ℓ] ⊆ JC(Fqκ).

Remark 2.1. If JC[ℓ] ⊆ JC(Fqκ), then ℓ | qκ−1; f. [5, orollary 5.77, p. 111℄. Hene,
the total embedding degree is a multiple of the embedding degree.

3. The tame Tate pairing

Let F be an algebrai extension of Fq. Let x ∈ JC(F)[ℓ] and y =
∑

i aiPi ∈ JC(F)
be divisors with disjoint support, and let ȳ ∈ JC(F)/ℓJC(F) denote the divisor lass
ontaining the divisor y. Furthermore, let fx ∈ F(C) be a rational funtion on C

with divisor div(fx) = ℓx. Set fx(y) =
∏

i f(Pi)
ai
. Then

eℓ(x, ȳ) = fx(y)

is a well-de�ned pairing JC(F)[ℓ] × JC(F)/ℓJC(F) −→ F×/(F×)ℓ, the Tate pairing ;

f. [8℄.

Theorem 3.1. If the �eld F is �nite and ontains the ℓth roots of unity, then the

Tate pairing eℓ is bilinear and non-degenerate.

Proof. Hess [11℄ gives a short and elementary proof of this result. �

Now let F = Fqk . Raising to the power

qk−1
ℓ

gives a well-de�ned element in the

subgroup µℓ < F×
qk of the ℓth roots of unity. This pairing

êℓ : JC(Fqk)[ℓ] × JC(Fqk)/ℓJC(Fqk) −→ µℓ

is alled the tame Tate pairing.

Corollary. The tame Tate pairing êℓ is bilinear and non-degenerate.

4. Tate representation of the Frobenius endomorphism

Let Zℓ denote the ring of ℓ-adi integers. An endomorphism ψ : JC → JC indues

a Zℓ-linear map

ψℓ : Tℓ(JC) → Tℓ(JC)

on the ℓ-adi Tate-module Tℓ(JC) of JC; f. [14, hapter VII, �1℄. The map ψℓ is
given by ψ as desribed in �gure 1. Hene, ψ is represented on JC[ℓ] by a matrix

M ∈ Mat4(Fℓ).
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De�nition (Diagonal representation). An endomorphism ψ ∈ End(JC) is diagona-
lizable or have a diagonal representation on JC[ℓ], if ψ an be represented on JC[ℓ]
by a diagonal matrix M ∈ Mat4(Fℓ) with respet to an appropriate basis of JC[ℓ].

Let f ∈ Z[X ] be the harateristi polynomial of ψ, f. [14, pp. 109�110℄, and
let f̄(X) ∈ Fℓ[X ] be the harateristi polynomial of the restrition of ψ to JC[ℓ].
Then f is a moni polynomial of degree four, and by [14, Theorem 3, p. 186℄,

f(X) ≡ f̄(X) (mod ℓ).

Sine C is de�ned over Fq, the mapping (x, y) 7→ (xq , yq) is a morphism on C.

This morphism indues the q-power Frobenius endomorphism ϕ on the jaobian JC.

Let P be the harateristi polynomial of ϕ. Consider an algebrai integer ω ∈ C
with P (ω) = 0 in C. By the homomorphism Z[ω] → End(JC) given by ω 7→ ϕ we

will identify ϕ with ω.
Sine End(JC) is a �nitely generated, torsion free Z-module [17, Theorem 1℄, we

may de�ne EndQ(JC) = End(JC) ⊗ Q. Notie that Q(ω) ⊆ EndQ(JC). Throughout
this paper we assume that ℓ is unrami�ed in Q(ω).

Remark 4.1. It is well-known that ℓ is unrami�ed in Q(ω) if, and only if, ℓ divides
the disriminant of the �eld extension Q(ω)/Q; see e.g. [19, Theorem 2.6, p. 199℄.

Hene, almost any prime number ℓ is unrami�ed in Q(ω). In partiular, if ℓ is large,
then ℓ is unrami�ed in Q(ω).

We prove the following theorem.

Theorem 4.2 (Matrix representation). Let C be a hyperellipti urve of genus two

de�ned over a �nite �eld Fq of harateristi p with irreduible jaobian. Identify

the q-power Frobenius endomorphism ϕ on JC with a root ω ∈ C of the harateristi

polynomial P ∈ Z[X ] of ϕ. Assume that the ring of integers of Q(ω) under this

identi�ation is embedded in End(JC). Consider a prime number ℓ 6= p dividing the

order of JC(Fq). Assume that ℓ is unrami�ed in Q(ω), and that ℓ ∤ q − 1. If ϕ is

not diagonalizable on JC[ℓ], then ϕ is represented on JC[ℓ] by a matrix on the form

(1) M =









1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c









with c 6≡ q + 1 (mod ℓ) with respet to an appropriate basis of JC[ℓ].

The proof of theorem 4.2 uses a number of lemmas. At �rst we notie that if

a power of an endomorphism is trivial on the ℓ-torsion subgroup of JC, then so is

also the endomorphism.

Lemma 4.3. Let notation and assumptions be as in theorem 4.2. Consider an

endomorphism α ∈ Q(ω). If ker[ℓ] ⊆ ker(αn) for some number n ∈ N, then ker[ℓ] ⊆
ker(α).

Proof. Sine ker[ℓ] ⊆ ker(αn), it follows that αn = ℓβ for some endomorphism

β ∈ End(JC); see e.g. [18, Remark 7.12, p. 37℄. Notie that β = αn

ℓ
∈ Q(ω). Let

f ∈ Z[X ] be the harateristi polynomial of β. Sine f(β) = 0 and f is moni, β
is an algebrai integer. So β ∈ OQ(ω), whene α

n ∈ ℓOQ(ω). Sine ℓ is unrami�ed

in Q(ω) by assumption, it follows that α ∈ ℓOQ(ω), i.e. ker[ℓ] ⊆ ker(α). �
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We will examine the representation of ϕ on JC[ℓ]. A �rst, basi observation is

given by the following lemma.

Lemma 4.4. Let notation and assumptions be as in theorem 4.2. Then either

JC(Fqk)[ℓ] is of dimension two as a Fℓ-vetorspae, or all ℓ-torsion points of JC are

Fqk-rational.

Proof. By the non-degeneray of the Tate pairing on JC(Fqk)[ℓ], the dimension

over Fℓ is at least two. If JC(Fqk)[ℓ] is of dimension at least three over Fℓ, then the

restrition of the qk-power Frobenius endomorphism ϕk to JC(Fqk)[ℓ] is represented
by a matrix on the form

M =









1 0 0 m1

0 1 0 m2

0 0 1 m3

0 0 0 m4









.

Notie that m4 = detM ≡ deg(ϕk) = q2k ≡ 1 (mod ℓ). Thus, the harateristi

polynomial of ϕk satis�es P (X) ≡ (X − 1)4 (mod ℓ), i.e. ker[ℓ] ⊆ ker(ϕk − 1)4. By
Lemma 4.3 it follows that ker[ℓ] ⊆ ker(ϕk − 1). But then JC[ℓ] ⊆ JC(Fqk), i.e. all
ℓ-torsion points of JC are Fqk -rational. �

By [20, proof of Theorem 3.1℄ we know that JC[ℓ] as a vetor spae over Fℓ is
isomorphi to a diret sum of ϕ-invariant subspaes. From this we get a partial

desription of the representation of ϕ on JC[ℓ].

Lemma 4.5. Let notation and assumptions be as in theorem 4.2. We may hoose a

basis (x1, x2, x3, x4) of JC[ℓ], where ϕ(x1) = x1, ϕ(x2) = qx2 and ϕ(x3) ∈ 〈x3, x4〉.
If ϕ(x3) /∈ 〈x3〉, then ϕ an be represented on JC[ℓ] by a matrix on the form

M =









1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c









.

If c ≡ q + 1 (mod ℓ), then ϕ is diagonalizable.

Proof. Let P̄ ∈ Fℓ[X ] be the harateristi polynomial of the restrition of ϕ
to JC[ℓ]. Sine ℓ | |JC(Fq)|, 1 is a root of P̄ . Assume that 1 is an root of P̄
with multipliity d. Sine the roots of P̄ our in pairs (α, q/α), also q is a root of

P̄ with multipliity d. Hene, we may write

P̄ (X) = (X − 1)d(X − q)dQ̄(X),

where Q̄ ∈ Fℓ[X ] is a polynomial of degree 4 − 2d, and Q̄(1) · Q̄(q) 6≡ 0 (mod ℓ).
Let U = ker(ϕ− 1)d, V = ker(ϕ− q)d and W = ker(Q̄(ϕ)). Then U , V and W are

ϕ-invariant subspaes of the Fℓ-vetorspae JC[ℓ], dimFℓ
(U) = dimFℓ

(V ) = d, and
JC[ℓ] ≃ U ⊕ V ⊕W .

If d = 1, then hoose xi ∈ JC[ℓ], suh that U = 〈x1〉, V = 〈x2〉 andW = 〈x3, x4〉.
Then (x1, x2, x3, x4) establishes the �rst part of the lemma. Hene, we may assume

that d = 2. Now hoose x1 ∈ U , suh that ϕ(x1) = x1, and expand this to a

basis (x1, x2) of U . Similarly, hoose a basis (x3, x4) of V with ϕ(x3) = qx3. With
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respet to the basis (x1, x2, x3, x4), ϕ is then represented by a matrix on the form

M =









1 α 0 0
0 1 0 0
0 0 q β
0 0 0 q









.

Notie that

Mk =









1 kα 0 0
0 1 0 0
0 0 1 kqk−1β
0 0 0 1









.

Hene, the restrition of ϕk to JC[ℓ] has the harateristi polynomial (X − 1)4, i.e.
JC[ℓ] ⊆ JC(Fqk). But then Mk = I, whene α ≡ β ≡ 0 (mod ℓ). So if d = 2, then
the �rst part of the lemma is established by (x1, x3, x2, x4). Thus, the �rst part of
the lemma is proved.

Now hoose a basis (x1, x2, x3, x4) of JC[ℓ] aordingly to the �rst part of the

lemma. Assume that ϕ(x3) /∈ 〈x3〉. Then the set (x1, x2, x3, ϕ(x3)) is a basis

of JC[ℓ]. With respet to this basis, ϕ is represented by a matrix on the given form.

If c ≡ q + 1 (mod ℓ), then ϕ is diagonalizable. �

Remark 4.6. Notie that if P̄ (X) = (X − 1)2(X − q)2, then ϕ is represented by

the diagonal matrix diag(1, 1, q, q) with respet to an appropriate basis of JC[ℓ],
JC(Fq)[ℓ] is bi-yli and JC[ℓ] ⊆ JC(Fqk).

With lemma 4.5 we an �nally prove theorem 4.2.

Proof of theorem 4.2. If ϕ(x3) ∈ 〈x3〉, then ϕ is represented by a matrix on the

form

M =









1 0 0 0
0 q 0 0
0 0 α β
0 0 0 qα−1









with respet to (x1, x2, x3, x4). If α
2 6≡ q (mod ℓ), then M is diagonalizable, i.e. ϕ

an be represented by a diagonal matrix on JC[ℓ]. So assume that α2 ≡ q (mod ℓ).
Then

M2k =









1 0 0 0
0 1 0 0
0 0 1 2kα−1β
0 0 0 1









,

i.e. the restrition of ϕ2k
to JC[ℓ] has the harateristi polynomial (X − 1)4. But

then JC[ℓ] ⊆ JC(Fq2k) by Lemma 4.3, i.e. M2k = I. So β ≡ 0 (mod ℓ), and ϕ is

diagonalizable.

Thus, if ϕ is not diagonalizable on JC[ℓ], then ϕ(x3) /∈ 〈x3〉, whene ϕ is repre-

sented on JC[ℓ] by a matrix on the form (1) with respet to an appropriate basis of

JC[ℓ]. �

Sine the roots of the harateristi polynomial P of the Frobenius ϕ are all of

absolute value

√
q, we an determine whether the Frobenius is diagonalizable on

JC[ℓ] diretly from the roots of P modulo ℓ. From this it follows that if P splits

into linear fators modulo ℓ, then the Frobenius is diagonalizable.
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Theorem 4.7 (Diagonal representation). Let notation and assumptions be as in

theorem 4.2. Then ϕ is diagonalizable on JC[ℓ] if, and only if, the harateristi

polynomial of ϕ splits into linear fators modulo ℓ.

Proof. The �only if� part is trivial. We prove the �if� part.

Let P̄ ∈ Fℓ[X ] be the harateristi polynomial of the restrition of ϕ to JC[ℓ].
Assume at �rst that JC(Fq)[ℓ] is yli. If P̄ (X) = (X − 1)2(X − q)2, then JC[ℓ]
is bi-yli by Remark 4.6. So P̄ (X) 6= (X − 1)2(X − q)2. If P̄ has only simple

roots, then ϕ is diagonalizable. Hene, we may assume that P̄ has a double root

ᾱ ∈ Fℓ. The roots of P̄ our in pairs (ᾱ, q/ᾱ). Thus, if ᾱ ∈ {1, q}, then P̄ (X) =
(X − 1)2(X − q)2. So ᾱ /∈ {1, q}, and it follows that ϕ an be represented on JC[ℓ]
by a matrix on the form

M =









1 0 0 0
0 q 0 0
0 0 α β
0 0 0 α









,

where α ≡ ᾱ (mod ℓ). Let ακ ≡ 1 (mod ℓ). Then

Mκ =









1 0 0 0
0 1 0 0
0 0 1 κακ−1β
0 0 0 1









,

i.e. the restrition of ϕκ to JC[ℓ] has the harateristi polynomial (X − 1)4. But
then JC[ℓ] ⊆ JC(Fqκ) by Lemma 4.3, i.e. Mκ = I. So β ≡ 0 (mod ℓ), and ϕ is

diagonalizable.

Then assume that JC(Fq)[ℓ] is bi-yli. Then JC[ℓ] ⊆ JC(Fq) by Lemma 4.4,

and it follows that ϕ an be represented on JC[ℓ] by a matrix on the form

M =









1 0 0 0
0 1 0 0
0 0 q α
0 0 0 q









.

As above, it follows that α ≡ 0 (mod ℓ), whene ϕ is diagonalizable. �

Remark 4.8. Assume that P splits into linear fators modulo ℓ. If JC(Fq)[ℓ] is
yli, then ϕ is diagonalizable on JC[ℓ], and the the total embedding degree κ of

JC(Fq) with respet to ℓ is given by the multipliative order of a root α ∈ Fℓ of P̄ .
If JC[ℓ] is not yli, then JC[ℓ] ⊆ JC(Fqk) by Lemma 4.4, i.e. κ = k. Hene, κ is

easy to determine.

5. Anti-symmetri pairings on the jaobian

On JC[ℓ], a non-degenerate, bilinear, anti-symmetri and Galois-invariant pairing

ε : JC[ℓ] × JC[ℓ] → µℓ < F×
qk

exists, e.g. the Weil pairing. Sine ε is bilinear, it is given by

ε(x, y) = xTEy

for some matrix E ∈ Mat4(Fℓ) with respet to a basis (x1, x2, x3, x4) of JC[ℓ]. Sine
ε is Galois�invariant,

∀x, y ∈ JC[ℓ] : ε(x, y)q = ε(ϕ(x), ϕ(y)).
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This is equivalent to

∀x, y ∈ JC[ℓ] : q(xTEy) = (Mx)TE(My),

where M is the representation of ϕ on JC[ℓ] with respet to (x1, x2, x3, x4). Sine
(Mx)TE(My) = xTMTEMy, from the Galois-invarians of ε it follows that

∀x, y ∈ JC[ℓ] : xT qEy = xTMTEMy,

or equivalently, that qE = MTEM .

Now let ζ be a primitive ℓth root of unity. Let

ε(x1, x2) = ζa1 , ε(x1, x3) = ζa2 , ε(x2, x3) = ζa4
and ε(x3, x4) = ζa6 .

Assume at �rst that ϕ is not diagonalizable on JC[ℓ]. By Galois-invarians and

anti-symmetry we then see that

E =









0 a1 a2 qa2

−a1 0 a4 a4

−a2 −a4 0 a6

−qa2 −a4 −a6 0









.

Sine MTEM = qE, it follows that

a2q(c− (1 + q)) ≡ a4q(c− (1 + q)) ≡ 0 (mod ℓ).

Thus, a2 ≡ a4 ≡ 0 (mod ℓ), f. Theorem 4.2. So

(2) E =









0 a1 0 0
−a1 0 0 0
0 0 0 a6

0 0 −a6 0









.

Sine ε is non-degenerate, a2
1a

2
6 = detE 6≡ 0 (mod ℓ).

Now assume that ϕ is represented by a diagonal matrix diag(1, q, α, q/α) with

respet to an appropriate basis (x1, x2, x3, x4) of JC[ℓ]. Let ε(x1, x4) = ζa3
and

ε(x1, x4) = ζa5
. Then it follows from MTEM = qE that

a2(α− q) ≡ a3(α− 1) ≡ a4(α − 1) ≡ a5(α− q) ≡ 0 (mod ℓ).

If α ≡ 1, q (mod ℓ), then JC(Fq) is bi-yli. Hene the following theorem holds.

Theorem 5.1 (Anti-symmetri pairings). Let C be a hyperellipti urve of genus

two de�ned over a �nite �eld Fq of harateristi p with irreduible jaobian. Iden-

tify the q-power Frobenius endomorphism ϕ on JC with a root ω ∈ C of the hara-

teristi polynomial P ∈ Z[X ] of ϕ. Assume that the ring of integers of Q(ω) under
this identi�ation is embedded in End(JC). Choose a basis B of JC[ℓ], suh that ϕ is

represented either by a diagonal matrix or a matrix on the form given in theorem 4.2

with respet to B. Consider a prime number ℓ 6= p dividing the order of JC(Fq).
Assume that ℓ is unrami�ed in Q(ω), and that ℓ ∤ q − 1. If JC(Fq)[ℓ] is yli, then
all non-degenerate, bilinear, anti-symmetri and Galois-invariant pairings on JC[ℓ]
are given by the matries

Ea,b =









0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0









, a, b ∈ F×
ℓ

with respet to B.
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Corollary. Under the assumptions of theorem 5.1,

(1) the Weil-pairing is non-degenerate on JC(Fqk)[ℓ], and
(2) no non-degenerate, bilinear, anti-symmetri and Galois-invariant pairing

on JC[ℓ] × JC[ℓ] an be omputed more than eight times as e�etive as the

Weil-pairing.

Proof. By a preomputation, a basis (x1, x2, x3, x4) of JC[ℓ] an be found, suh that

the Weil-pairing is given by the matrix E1,1; f. the notation of theorem 5.1. To

ompute the Weil-pairing of A,B ∈ JC[ℓ], we only need to �nd the oordinates of

A and B in this basis. Now assume a non-degenerate, bilinear, anti-symmetri and

Galois-invariant pairing ε on JC[ℓ]×JC[ℓ] exists, suh that ε an be omputed more

than eight times as e�etive the Weil-pairing. By a preomputation we an �nd

the matrix representation Ea,b of ε. Write A =
∑

i αixi. Then

α1 = −a−1ε(x2, A), α2 = a−1ε(x1, A),

α3 = −b−1ε(x4, A), α4 = b−1ε(x3, A).

Similarly we �nd the oordinates of B. Hene, the Weil-pairing of A and B an be

omputed by at most eight pairing omputations with ε, a ontradition. �

6. Matrix representation of the tame Tate pairing

The tame Tate pairing indues a pairing τℓ : JC[ℓ] × JC[ℓ] → µℓ by

τℓ(x, y) = êℓ(x, ȳ).

In this setion we will examine the matrix representation of this pairing.

Let x, y ∈ JC[ℓ] = JC(Fqκ)[ℓ] be divisors with disjoint support, and hoose fun-

tions fx, fy ∈ Fqκ(C) with div(fx) = ℓx and div(fy) = ℓy. The Weil pairing

eℓ : JC[ℓ] × JC[ℓ] → µℓ is then de�ned by

eℓ(x, y) =
fx(y)

fy(x)

Notie that

(3) eℓ(x, y) =
τℓ(x, y)

τℓ(y, x)

Now hoose an appropriate basis (x1, x2, x3, x4) of JC[ℓ], suh that the Weil pairing

is represented by the matrix

W =









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0









with respet to this basis. Notie that x1 ∈ JC(Fq), so τℓ(x1, x1) = 1.
By (3) it follows that τℓ is represented by a matrix on the form

T =









0 a1 a2 a3

a1 − 1 d2 a4 a5

a2 a4 d3 a6

a3 a5 a6 − 1 d4
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with respet to the basis (x1, x2, x3, x4). Sine τℓ is Galois-invariant, it follows

that MTTM = qT, where M is the representation of ϕ on JC[ℓ] with respet to

(x1, x2, x3, x4).
Assume at �rst that the Frobenius ϕ is not diagonalizable on JC[ℓ]. Then ϕ is

represented by a matrix M on the form given in theorem 4.2, and it follows from

MTTM = qT, that

T =









0 a1 0 0
a1 − 1 0 0 0

0 0 d3 a6

0 0 a6 − 1 qd3









,

where 2a6 ≡ d3c+ 1 (mod ℓ).
Now assume that ϕ is represented by a diagonal matrix diag(1, q, α, q/α) with

respet to an appropriate basis (x1, x2, x3, x4) of JC[ℓ]. It then follows that

ai(α− q) ≡ aj(α− 1) ≡ d2(q − 1) ≡ dj(α
2 − q) ≡ 0 (mod ℓ)

for i ∈ {2, 5} and j ∈ {3, 4}. Hene the following theorem is established.

Theorem 6.1. Let C be a hyperellipti urve of genus two de�ned over a �nite

�eld Fq of harateristi p with irreduible jaobian. Identify the q-power Frobenius
endomorphism ϕ on JC with a root ω ∈ C of the harateristi polynomial P ∈ Z[X ]
of ϕ. Assume that the ring of integers of Q(ω) under this identi�ation is embedded

in End(JC). Consider a prime number ℓ 6= p dividing the order of JC(Fq). Assume

that ℓ is unrami�ed in Q(ω), and that JC(Fq) is of embedding degree k > 1 with

respet to ℓ. If JC(Fq)[ℓ] is yli, then the tame Tate pairing is represented on

JC[ℓ] × JC[ℓ] by a matrix on the form

T =









0 a1 0 0
a1 − 1 0 0 0

0 0 d3 a6

0 0 a6 − 1 d4









with respet to an appropriate basis of JC[ℓ]. Furthermore, the following holds.

(1) If the q-power Frobenius endomorphism is not diagonalizable on JC[ℓ], then
d4 ≡ qd3 (mod ℓ) and 2a6 ≡ d3c+ 1 (mod ℓ).

(2) If the q-power Frobenius endomorphism is diagonalizable on JC[ℓ], and

JC[ℓ] 6⊆ JC(Fq2k ), then d3 ≡ d4 ≡ 0 (mod ℓ).
(3) Assume JC(Fqk)[ℓ] is bi-yli.

(a) If ℓ3 ∤ |JC(Fqk)|, then a1 6≡ 0, 1 (mod ℓ).

(b) If ℓ3 | |JC(Fqk)| and ℓ2 ∤ |JC(Fq)|, then a1 ≡ 0 (mod ℓ).

Proof. Write JC(Fqk)[ℓ] = 〈x1〉 ⊕ 〈x2〉, where JC(Fq)[ℓ] = 〈x1〉. If ℓ2 ∤ |JC(Fq)| and
ℓ3 ∤ |JC(Fqk)|, then JC(Fqk)/ℓJC(Fqk) ≃ JC(Fqk)[ℓ]. By Theorem 3.1 it then follows

that a1 6≡ 0, 1 (mod ℓ). On the other hand, if ℓ3 | |JC(Fqk)|, then x2 ∈ ℓJC(Fqk),
i.e. a1 ≡ 0 (mod ℓ). �

Corollary. Assume ℓ3 ∤ |JC(Fqk)|. If the Frobenius is not diagonalizable on JC[ℓ],
then either

(1) a point x ∈ JC[ℓ] with τℓ(x, x) 6= 1 exists, or

(2) τℓ is non-degenerate on JC[ℓ].
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Proof. Choose an appropriate basis (x1, x2, x3, x4) of JC[ℓ], suh that the Frobenius

is represented by a matrixM on the form given in theorem 4.2, and τℓ is represented
by a matrix T on the form given in Theorem 6.1 with respet to this basis. Sine

MTTM = qT, it follows that d3c ≡ 2a6 − 1 (mod ℓ). Hene, if 2a6 6≡ 1 (mod ℓ),
then d3 6≡ 0 (mod ℓ), and τ is a self-pairing on JC[ℓ]. If 2a6 ≡ 1 (mod ℓ) and d3 ≡ 0
(mod ℓ), then τℓ is non-degenerate on JC[ℓ]. �

7. Complex multipliation urves

In this setion we assume that the endomorphism ring of the jaobian is iso-

morphi to the ring of integers in a quarti CM �eld K, i.e. a totally imaginary,

quadrati �eld extension of a quadrati number �eld. Assuming that the Frobe-

nius endomorphism under this isomorphism is given by an η-integer and that the

harateristi polynomial of the Frobenius endomorphism splits into linear fators

over Fℓ, we prove that if the disriminant of the real sub�eld of K is not a quadrati

residue modulo ℓ, then all ℓ-torsion points are Fqk -rational.

7.1. Complex multipliation. An ellipti urve E with Z 6= End(E) is said to

have omplex multipliation. Let K be an imaginary, quadrati number �eld with

ring of integers OK . K is a CM �eld, and if End(E) ≃ OK , then E is said to have

CM by OK . More generally a CM �eld is de�ned as follows.

De�nition (CM �eld). A number �eld K is a CM �eld, if K is a totally imaginary,

quadrati extension of a totally real number �eld K0.

We only onsider quarti CM �eld, i.e. CM �elds of degree [K : Q] = 4.

Remark 7.1. Consider a quarti CM �eld K. Let K0 = K ∩ R be the real sub�eld

of K. Then K0 is a real, quadrati number �eld, K0 = Q(
√
D). By a basi result

on quadrati number �elds, the ring of integers of K0 is given by OK0
= Z + ξZ,

where

ξ =

{√
D, if D 6≡ 1 (mod 4),

1+
√
D

2 , if D ≡ 1 (mod 4).

Sine K is a totally imaginary, quadrati extension of K0, a number η ∈ K exists,

suh that K = K0(η), η
2 ∈ K0. The number η is totally imaginary, and we may

assume that η = iη0, η0 ∈ R. Furthermore we may assume that −η2 ∈ OK0
; so

η = i
√
a+ bξ, where a, b ∈ Z.

Let C be a hyperellipti urve of genus two. Then C is said to have CM by OK ,

if End(JC) ≃ OK . The struture of K determines whether JC is irreduible. More

preisely, the following theorem holds.

Theorem 7.2. Let C be a hyperellipti urve of genus two with End(JC) ≃ OK ,

where K is a quarti CM �eld. Then JC is reduible if, and only if, K/Q is Galois

with bi-yli Galois group.

Proof. [22, proposition 26, p. 61℄. �

Theorem 7.2 motivates the following de�nition.

De�nition (Primitive, quarti CM �eld). A quarti CM �eld K is alled primitive

if either K/Q is not Galois, or K/Q is Galois with yli Galois group.
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7.2. Jaobians with omplex multipliation. The CMmethod for onstruting

urves of genus two with presribed endomorphism ring is desribed in detail by

Weng [24℄, Gaudry et al [10℄ and Eisenträger and Lauter [4℄. In short, the CM

method is based on the onstrution of the lass polynomials of a primitive, quarti

CM �eld K with real sub�eld K0 of lass number h(K0) = 1. The prime power q
has to be hosen suh that q = xx̄ for a number x ∈ OK . By [24℄ we will restrit

ourselves to the ase x ∈ OK0
+ ηOK0

.

Now assume that JC has CM by a primitive, quarti CM �eld K = Q(η), where
η = i

√
a+ bξ and

(4) ξ =

{√
D if D 6≡ 1 (mod 4)

1+
√
D

2 if D ≡ 1 (mod 4)

Here, D is a square-free integer, and K0 = Q(
√
D).

De�nition (η-integer). An integer α ∈ OK is an η-integer, if α ∈ OK0
+ ηOK0

.

If the q-power Frobenius endomorphism ϕ under the isomorphism End(JC) ≃ OK

is given by an η-integer ω, then we an express the harateristi polynomial P of

ϕ in terms ω. Together with Remark 4.6 it follows from this that if P splits into

linear fators over Fℓ and D is not a quadrati residue modulo ℓ, then all ℓ-torsion
points are Fqk -rational. This result is given by the following theorem.

Theorem 7.3. Let C be a hyperellipti urve of genus two de�ned over a �nite

�eld Fq of harateristi p and with End(JC) ≃ OK , where K is a primitive, quar-

ti CM �eld with real sub�eld Q(
√
D). Assume that the q-power Frobenius endo-

morphism ϕ under this isomorphism is given by an η-integer ω. Consider a prime

number ℓ 6= p dividing |JC(Fq)|. Assume that ℓ is unrami�ed in Q(ω), and that the

harateristi polynomial P̄ of the restrition of ϕ to JC[ℓ] splits into linear fators

over Fℓ. Let k be the multipliative order of q modulo ℓ. If D is not a quadrati

residue modulo ℓ, then all the ℓ-torsion points of JC are Fqk -rational.

Proof. Write

ω = c1 + c2ξ + (c3 + c4ξ)η, ci ∈ Z.

Sine D is not a quadrati residue modulo ℓ, it follows by lemma 7.4 that c2 ≡ 0
(mod ℓ) and P̄ (X) = (X − 1)2(X − q)2. By theorem 4.7 it then follows that if

q 6≡ 1 (mod ℓ), then the q-power Frobenius endomorphism is represented by the

diagonal matrix diag(1, 1, q, q) on JC[ℓ] with respet to an appropriate basis, whene
JC[ℓ] ⊆ JC(Fqk). On the other hand, if q ≡ 1 (mod ℓ), then P̄ (X) = (X − 1)4, i.e.
also in this ase JC[ℓ] ⊆ JC(Fqk). �

Lemma 7.4. Let notation and assumptions be as in theorem 7.3. Write

ω = c1 + c2ξ + (c3 + c4ξ)η, ci ∈ Z.

(1) If c2 6≡ 0 (mod ℓ), then D is a quadrati residue modulo ℓ.
(2) If c2 ≡ 0 (mod ℓ), then P̄ (X) = (X − 1)2(X − q)2.

Proof. At �rst, assume that D 6≡ 1 (mod 4). Sine the onjugates of ω are given

by ω1 = ω, ω2 = ω̄1, ω3 and ω4 = ω̄3, where

ω3 = c1 − c2
√
D + i(c3 − c4

√
D)

√

a− b
√
D,
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it follows that the harateristi polynomial of ϕ is given by

P (X) =
4
∏

i=1

(X − ωi) = X4 − 4c1X
3 + (2q + 4(c21 − c22D))X2 − 4c1qX + q2.

Dividing P (X) by (X − 1)(X − q) it then follows that αX + β ≡ 0 (mod ℓ), where

β ≡ q(−q2 + (4c1 − 2)q + (−1 + 4c22D − 4c21 + 4c1)) (mod ℓ)

Sine β ≡ 0 (mod ℓ), it follows that 4c22D ≡ (2c1 − q − 1)2 (mod ℓ). So if c2 ≡ 0
(mod ℓ), then 2c1 ≡ q + 1 (mod ℓ), and it follows that P̄ (X) = (X − 1)2(X − q)2.

If D ≡ 1 (mod 4), then

ω3 = c1 + c2
1 −

√
D

2
+ i

(

c3 + c4
1 −

√
D

2

)

√

a+ b
1 −

√
D

2
,

and it follows that the harateristi polynomial of ϕ is given by

P (X) = X4 − 2cX3 + (2q + c2 − c22d)X
2 − 2qcX + q2,

where c = 2c1+c2. Dividing P (X) by (X−1)(X−q) it then follows that αX+β ≡ 0
(mod ℓ), where

β ≡ −q(q2 + (2 − 2c)q + (1 − 2c+ c2 − c22D)) (mod ℓ).

Sine β ≡ 0 (mod ℓ), it follows that c22D ≡ (c− q − 1)2 (mod ℓ). As before it then
follows that if c2 ≡ 0 (mod ℓ), then P̄ (X) = (X − 1)2(X − q)2. �
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