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Abstract

One day, you suddenly find that a private key corresponding to your Identity is up for sale at
e-Bay. Since you do not suspect a key compromise, perhaps it must be the PKG who is acting
dishonestly and trying to make money by selling your key. How do you find out for sure and even
prove it in a court of law?

This paper introduces the concept of Accountable Authority Identity based Encryption (A-
IBE). A-IBE is a new approach to mitigate the (inherent) key escrow problem in identity based
encryption schemes. Our main goal is to restrict the ways in which the PKG can misbehave.
In our system, if the PKG ever maliciously generates and distributes a decryption key for an
Identity, it runs the risk of being caught and prosecuted.

In contrast to other mitigation approaches, our approach does not require multiple key gen-
eration authorities.

1 Introduction

The notion of identity based encryption (IBE) was introduced by Shamir [Sha84] as an approach
to simplify public key and certificate management in a public key infrastructure (PKI). Although
the concept was proposed in 1984 [Sha84], it was only in 2001 that a practical and fully functional
IBE scheme was proposed by Boneh and Franklin [BF01]. Their construction used bilinear maps
and could be proven secure in the random oracle model. Following that work, a rapid development
of identity based PKI has taken place. A series of papers [CHK03, BB04a, BB04b, Wat05, Gen06]
striving to achieve stronger notions of security led to efficient IBE schemes in the standard model.
There now exist hierarchical IBE schemes [GS02, HL02, BBGO5], identity based signatures and
authentication schemes [CC03, FS86, FFS88] and a host of other identity based primitive.

In an IBE system, the public key of a user may be an arbitrary string like an e-mail address or
other identifier. This eliminates certificates altogether; the sender could just encrypt the message
with the identity of the recipient without having to first obtain his public key (and make sure that
the obtained public key is the right one). Of course, users are not capable of generating a private key
for an identity themselves. For this reason, there is a trusted party called the private key generator
(PKG) who does the system setup. To obtain a private key for his identity, a user would go to the
PKG and prove his identity. The PKG would then generate the appropriate private key and pass it
on to the user.

Since the PKG is able to compute the private key corresponding to any identity, it has to
be completely trusted. The PKG is free to engage in malicious activities without any risk of being
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confronted in a court of law. The malicious activities could include: decrypting and reading messages
meant for any user, or worse still: generating and distributing private keys for any identity. This, in
fact, has been cited as a reason for the slow adoption of IBE despite its nice properties in terms of
usability. It has been argued that due to the inherent key escrow problem, the use of IBE is restricted
to small and closed groups where a central trusted authority is available [ARP03, LBD 04, Gen03].

One approach to mitigate the key escrow problem problem is to employ multiple PKGs [BFO01].
In this approach, the master key for the IBE system is distributed to multiple PKGs; that is, no
single PKG has the knowledge of the master key. The private key generation for an identity is done
in a threshold manner. This is an attractive solution and successfully avoids placing trust in a single
entity by making the system distributed. However, this solution comes at the cost of introducing
extra infrastructure and communication. It is burdensome for a user to go to several key authorities,
prove his identity to each of them and get a private key component (which has to be done over a
secure channel). Further, maintaining multiple independent entities for managing a single PKI might
be difficult in a commercial setting (e.g., the PKI has to be jointly managed by several companies).

To the best of our knowledge, without making the PKG distributed, there is no known solution
to mitigate the problem of having to place trust in the PKG.

A New Approach. In this paper, we explore a new approach to mitigate the above trust problem.
Very informally, the simplest form of our approach is as follows:

e In the IBE scheme, there will be an exponential (or super-polynomial) number of possible
decryption keys corresponding to every identity ID.

e Given one decryption key for an identity, it is intractable to find any other.

e A users gets the decryption key corresponding to his identity from the PKG using a secure key
generation protocol. The protocol allows the user to obtain a single decryption key djp for his
identity without letting the PKG know which key he obtained.

e Now if the PKG generates a decryption key dj for that identity for malicious usage, with all
but negligible probability, it will be different from the key djp which the user obtained. Hence
the key pair (dp,d|p) is a cryptographic proof of malicious behavior of the PKG (since in
normal circumstances, only one key per identity should be in circulation).

The PKG can surely decrypt all the user message passively. However, the PKG is severely
restricted as far as the distribution of the private key d| is concerned. The knowledge of the key djy
enables an entity F to go to the honest user U (with identity ID and having key dip) and together
with him, sue the PKG by presenting the pair (d|p, dip) as a proof of fraud (thus potentially closing
down its business or getting some hefty money as a compensation which can be happily shared by
E and U). This means that if the PKG ever generates a decryption key for an identity for malicious
purposes, it runs the risk that the key could fall into “right hands” which could be fatal.

The above approach can be compared to a regular (i.e., not identity based) PKIs. In a regular
PKI, a user will go to a CA and get a certificate binding his identity with his public key. The CA
could surely generate one more certificate binding a malicious public key to his identity. However, two
certificates corresponding to the same identity constitute a cryptographic proof of fraud. Similarly
in our setting, the PKG is free to generate one more decryption key for his identity. However, two
decryption keys corresponding to the same identity constitute a proof of fraud. Of course, there are
important differences. In a regular PKI, the CA has to actively send the fraudulent certificate to
potential encrypters (which is risky for the CA) while in our setting, the PKG could just decrypt
the user messages passively. However, we believe that the IBE setting is more demanding and ours
is nonetheless a step in the right direction.



We call an identity based encryption scheme of the type discussed above as an accountable
authority identity based encryption (A-IBE) scheme. We formalize this notion later on in the paper.
We remark that what we discussed above is a slight simplification of our A-IBE concept. Given a
decryption key for an identity, we allow a user to compute certain other decryption keys for the same
identity as long as all the decryption keys computable belong to the same family (a family can be
seen as a subspace of decryption keys). Thus in this case, two decryption keys belonging to different
families is a cryptographic proof of malicious behavior of the PKG.

Although the concept of A-IBE is interesting, we do not expect it to be usable on its own. We
see this concept more as a stepping stone to achieving what we call a black-box accountable authority
identity based encryption discussed later in this section.

Our Constructions. We formalize the notion of accountable authority identity based encryption
and present two construction for it; one very efficient but based on a strong assumption, the other
somewhat inefficient but based on the standard decisional BDH assumption.

Our first construction is based on the identity based encryption scheme recently proposed by
Gentry [Gen06]. The scheme is the most efficient IBE construction known to date without random
oracle. Apart from computational efficiency, it enjoys properties such as short public parameters
and a tight security reduction (albeit at the cost of using a strong assumption). Remarkably, we are
able to convert Gentry’s scheme to a A-IBE scheme without any changes whatsoever to the basic
cryptosystem. We are able to construct a secure key generation protocol as per our requirement for
the basic cryptosystem and then present new proofs of security to show that the resulting system is
a A-IBE system.

Our second construction of accountable authority identity based encryption is based on the
decisional BDH assumption and uses the IBE scheme of Waters [Wat05] and the Fuzzy IBE scheme
of Sahai and Waters [SWO05] as building blocks. We remark that the construction is not very efficient
and requires several pairing operations per decryption.

Black-box Accountable Authority Identity based Encryption. In accountable authority
identity based encryption, as explained we consider the scenario when a PKG generates and tries to
distribute a decryption key corresponding to an identity. A-IBE specifically assumes that the key
is a well-formed decryption key. However, one can imagine a scenario where the PKG constructs a
malformed decryption key which, when used in conjunction with some other decryption process, is
still able to decrypt the ciphertexts. In the extreme case, there could a black box (using an unknown
key and algorithm) which is able to decrypt the ciphertexts. Given such a box, a third party (such as
the court of law), possibly with the cooperation of the PKG and the user, should be able to trace the
box back to its source. That is, it should be able to determine whether it was the PKG or the user
who was involved in the creation of this black box. We call such a system as black-box accountable
authority identity based encryption system. This is a natural extension of the A-IBE concept and is
related to the concept of black-box traitor tracing in broadcast encryption [CFN94]!.

We stress that black-box A-IBE is really what one would like to use in practice. Our second
construction based on Fuzzy IBE [SWO05] leads to a construction of black box A-IBE in a weak
model as we discuss later on. However, the construction of full black-box A-IBE scheme is left as an
important open problem in the current work.

Related Work. To our knowledge, A-IBE is the first approach for any kind of mitigation to the
problem of trust in the PKG without using multiple PKGs. On the multiple PKGs side, Boneh and
Franklin [BF01] proposed an efficient approach to make the PKG distributed in their scheme using
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techniques from threshold cryptography. Lee et al [LBD"04] proposed a variant of this approach us-
ing multiple key privacy agents (KPAs). Also relevant are the new cryptosystems proposed by Gentry
[Gen03] and Al-Riyami and Paterson [ARP03]. Although their main motivation was to overcome
the key escrow problem, these works are somewhat orthogonal to ours since these cryptosystems are
not identity based.

2 Preliminaries

2.1 Bilinear Maps

We present a few facts related to groups with efficiently computable bilinear maps.
Let G and G2 be two multiplicative cyclic groups of prime order p. Let g be a generator of Gy
and e be a bilinear map, e : G; x G; — Ga. The bilinear map e has the following properties:

1. Bilinearity: for all u,v € Gy and a,b € Z,, we have e(u?,v?) = e(u,v)?.
2. Non-degeneracy: e(g,g) # 1.

We say that G, is a bilinear group if the group operation in G; and the bilinear map e : G; xG; —
Gy are both efficiently computable. Notice that the map e is symmetric since e(g?, g°) = e(g, 9)® =
b ,a
e(9’,9%)-

2.2 Complexity Assumptions

We state our complexity assumptions below.

Decisional Bilinear Diffie-Hellman (BDH) Assumption Let a,b,c, z € Z, be chosen at ran-
dom and g be a generator of G;. The decisional BDH assumption [BB04a, SW05] is that no prob-
abilistic polynomial-time algorithm B can distinguish the tuple (4 = g%, B = ¢°,C = ¢° e(g, g)%)
from the tuple (A = g%, B = ¢*,C = ¢° e(g,9)?) with more than a negligible advantage. The
advantage of B is

Pr[B(A, B, C, e(g,g)abc) =0] - Pr[B(A, B,C,e(g,9)%) = 0]

where the probability is taken over the random choice of the generator g, the random choice of
a,b,c,z in Zy, and the random bits consumed by B.

Decisional Truncated g-ABDHE Assumption The truncated augmented bilinear Diffie-Hellman
exponent assumption (truncated g-ABDHE assumption) was introduced by Gentry [Gen06] and is
very closely related to the -BDHE problem [BBG05, BGW05] and the q-BDHI problem [BB04a,
DYO05]. Let g be a generator of G;. The decisional truncated g-ABDHE assumption is: given a

vector of ¢ + 3 elements s ,
q q
(a )7g7ga7g(a )7"'7g(a ))

attl)

(¢.9
no PPT algorithm B can distinguish e(g, ¢')( from a random element Z € Gy with more than a
negligible advantage. The advantage of B is defined as

Pr(B(¢, ¢ "), g,9% 9, ..., g1 e(g,4) ")) = 0]
—Pr[B(g, g "), g,9% 9, ..., 9%, Z) = 0]

where the probability is taken over the random choice of generator ¢, g’ € Gy, the random choice
of a € Zy, the random choice of Z € G2, and the random bits consumed by B.



Computational g-SDH Assumption The g-Strong Diffie-Hellman assumption (q-SDH assump-
tion) was introduced by Boneh and Boyen [BB04c| for the construction of short signatures where
it was proven to be secure in the generic group model. This assumption was also later used in the
construction of short group signatures [BBS04]. Let g be a generator of G;. The g-SDH assumption
is defined in (G, G) as follows. Given a vector of g + 1 elements

(9,9% 9, ..., ")

no PPT algorithm A can compute a pair (r,g"/(®*7)) where r € Z, with more than a negligible
advantage. The advantage of A is defined as

PrlA(g, g% ¢, ..., g} = (r, g/ (@+1)]

2.3 Miscellaneous Primitives

Zero-knowledge Proof of Knowledge of Discrete Log Informally, a zero-knowledge proof of
knowledge (ZK-POK) of discrete log protocol enables a prover to prove to a verifier that it possesses
the discrete log r of a given group element R in question. Schnorr [Sch89] constructed an efficient
number theoretic protocol to give a ZK-POK of discrete log. The protocol was further improved by
[CS9T7].

A ZK-POK protocol has two distinct properties: the zero-knowledge property and the proof of
knowledge properties. The former implies the existence of a simulator S which is able to simulate
the view of a verifier in the protocol from scratch (i.e., without being given the witness as input).
The latter implies the existence of a knowledge-extractor Ext which interacts with the prover and
extracts the witness using rewinding techniques. For more details on ZK-POK systems, we refer the
reader to [BG92].

1-out-of-2 Oblivious Transfer Informally speaking, a 1-out-of-2 oblivious transfer protocol
[EGLS85] allows a receiver to choose and receive exactly one of the two string from the sender, such
that the other string is computationally hidden from the receiver and the choice of the receiver is com-
putationally hidden from the sender. Various efficient constructions of 1-out-of-2 oblivious transfer
are known based on specific assumptions such factoring or Diffie-Hellman (see [NP0O1, GHO7, CNS07]
and the references therein).

3 The Definitions and the Model

An Accountable Authority Identity Based Encryption (A-IBE) scheme consists of five components.

Setup This is a randomized algorithm that takes no input other than the implicit security param-
eter. It outputs the public parameters PK and a master key MK.

Key Generation Protocol This is an interactive protocol between the public parameter generator
PKG and the user U. The common input to PKG and U are: the public parameters PK and the
identity ID (of U) for which the decryption key has to be generated. The private input to PKG is
the master key MK. Additionally, PKG and U may use a sequence of random coin tosses as private
inputs. At the end of the protocol, U receives a decryption key dp as its private output.
Encryption This is a randomized algorithm that takes as input: a message m, an identity ID, and
the public parameters PK. It outputs the ciphertext C.

Decryption This algorithm takes as input: the ciphertext C' that was encrypted under the identity
ID, the decryption key dip for ID and the public parameters PK. It outputs the message m.



Trace This algorithm associates each decryption key to a family of decryption keys. That is, the
algorithm takes as input a well-formed decryption key dip and outputs a decryption key family
number ng.

Some additional intuition about the relevance of trace algorithm is as follows. In a A-IBE system,
there are a super-polynomial number of families of decryption keys. Each decryption key d|p for an
identity ID will belong to a unique decryption key family (denoted by the number ng). Roughly
speaking, in the definitions of security we will require that: given a decryption key belonging to a
family, it should be intractable to find a decryption key belonging to a different family (although it
may be possible to find another decryption key belonging to the same family).

To define security for an accountable authority identity based encryption system, we first define
the following games.

The IND-ID-CPA game The IND-ID-CPA game for A-IBE is very similar to the IND-ID-CPA for
standard IBE [BFO01].
Setup The challenger runs the Setup algorithm of A-IBE and gives the public parameters PK to
the adversary.
Phase 1 The adversary runs the Key Generation protocol with the challenger for several distinct
adaptively chosen identities ID!,...,ID? and gets the decryption keys dpt,-..,dpa.
Challenge The adversary submits two equal length messages mg and m; and an identity ID not
equal to any of the identities quries in Phase 1. The challenger flips a random coin b and encrypts
my with ID. The ciphertext C' is passed on to the adversary.
Phase 2 This is identical to Phase 1 except that adversary is not allowed to ask for a decryption
key for ID.
Guess The adversary outputs a guess b’ of b.

The advantage of an adversary A in this game is defined as Pr[b = b] — %

We note that the above game can extended to handle chosen-ciphertext attacks in the natural
way by allowing for decryption queries in Phase 1 and Phase 2. We call such a game to be the
IND-ID-CCA game.

The FindKey game The FindKey game for A-IBE is defined as follows.

Setup The adversary (acting as an adversarial PKG ) generates and passes the public parameters
PK and an identity ID on to the challenger. The challenger runs a sanity check on PK and aborts
if the check fails.

Key Generation The challenger and the adversary then engage in the key generation protocol to
generate a decryption key for the identity ID. The challenger gets the decryption djp as output and
runs a sanity check on it to ensure that it is well-formed. It aborts if the check fails.

Find Key The adversary outputs a decryption key d|5. The challenger runs a sanity check on djp
and aborts if the check fails.

Let SF denote the event that trace(d|p) = trace(dp), i.e., djp and dip belong to the same
decryption key family. The advantage of an adversary A in this game is defined as Pr[SF].

We note that the above game can be extended to include a decryption phase where the adversary
adaptively queries the challenger with a sequence of ciphertexts C1, ..., C,,. The challenger decrypts
C; with its key dip and sends the resulting message m;. This phase could potentially help the
adversary deduce information about the decryption key family of dip if it is able to present a
maliciously formed ciphertext and get the challenger try to decrypt it.

However, if the adversary was somehow restricted to presenting only well-formed ciphertexts, the
decrypted message is guaranteed to contain no information about the decryption key family (since
decryption using every well-formed key would lead to the same message). This can be achieved by



adding a ciphertext sanity check phase during decryption. In both of our constructions, we take this
route instead of adding a decryption phase to the FindKey game.

The ComputeNewKey game The ComputeNewKey game for A-IBE is defined as follows.
Setup The challenger runs the Setup algorithm of A-IBE and gives the public parameters PK to
the adversary.

Key Generation The adversary runs the Key Generation protocol with the challenger for several
distinct adaptively chosen identities ID', ..., DY and gets the decryption keys dpt,...,dps.

New Key Computation The adversary outputs two decryption keys dllD and d|2D for an identity
ID. The challenger runs a key sanity check on both of them and aborts if the check fails.

Let DF denote the event that trace(djy) # trace(dd), i.e., diy and di belong to different de-
cryption key families. The advantage of an adversary A in this game is defined as Pr[DF].

We also define a Selective-ID ComputeNewKey game where the adversary has to declare in
advance (i.e., before the setup phase) the identity ID for which it will do the new key computation.
The advantage of the adversary is similarly defined to be the probability of the event that it is able
to output two decryption keys from different decryption key families for the pre-declared identity ID.
This weakening of the game can be seen as similar to weakening of the IND-ID-CPA game by some
previously published papers [CHK03, BB04a, SW05, GPSWO06].

Definition 1 An accountable authority identity based encryption scheme is IND-ID-CPA secure if
all polynomial time adversaries have at most a negligible advantage in the IND-ID-CPA game, the
FindKey game and the ComputeNewKey game. IND-ID-CCA security for A-IBE is defined similarly.

4 Construction based on Gentry’s Scheme

Our first construction of accountable authority identity based encryption is based on the identity
based encryption scheme recently proposed by Gentry [Gen06]. The scheme is the most efficient IBE
construction known to date without random oracle. Apart from computational efficiency, it enjoys
properties such as short public parameters and a tight security reduction. This comes at the cost of
using a stronger assumption known as the truncated g-ABDHE which is a variant of an assumption
called ¢-BDHE introduced by Boneh, Boyen and Goh [BBGO5].

We are able to convert Gentry’s scheme to a A-IBE scheme without any changes whatsoever
to the basic cryptosystem. We are able to construct a secure key generation protocol as per our
requirement for the basic cryptosystem and then present new proofs of security to show the negligible
advantage of the adversary in the three games of our A-IBE model. Our proofs are based on the
truncated g-ABDHE and the g-SDH assumption (see Section 2). The end result is a A-IBE scheme
which is as efficient as the best known IBE scheme without random oracle.

4.1 The Construction

Let Gi be a bilinear group of prime order p, and let g be a generator of G;. In addition, let
e : G; x Gy — Gy denote a bilinear map. A security parameter, s, will determine the size of the
groups.

As discussed before, the basic cryptosystem (i.e., Setup, Encryption and Decryption) is identical
to Gentry’s [Gen06]. For completeness, we describe the whole A-IBE scheme. Parts of this section
are taken almost verbatim from [Gen06].

Setup The PKG picks random generators g, hi, ho, h3 € G1 and a random « € Z,. It sets g1 = g“.
The published public parameters PK and the master key MK are given by

PK =g,91,h1,h2,hs MK =«



Additionally, we assume that a function H behaving as a universal one-way hash function is
available to all parties.

Key Generation Protocol This is the protocol through which a user U with an identity ID
can securely get a decryption key dip from PKG . As in [Gen06], PKG aborts if ID = a. The key
generation protocol proceeds as follows.

1. The user U selects a random 7 € Z, and sends R = h] to the PKG .

2. U gives to PKG a zero-knowledge proof of knowledge of the discrete log (as in Section 2) of R
with respect to hi.

3. The PKG now chooses three random numbers 7/, TID,2,TID,3 € Zp. It then computes the following
values

(', hip.1), (rip;2, kb 2), (T1D,3, Pup,3)

where hjp; = (Rg~")/(@=1D) and hipi = (hig~mo)1/(@=1D) 4 19 3}
and sends them to the user U.

4. U computes rip 1 = r'/r and hip 1 = (thJ)l/’". Note that since th,1 = (h’l"g*’"/)l/(a*'D), hip,1 =
((h{)l/r(g_rl)l/r)l/@‘_m) = (hlg_”'Dvl)l/(o‘_'D). It sets the decryption key dip = {(71ps, hiD ;) :
ie€{1,2,3}}.

5. U now runs a key sanity check on djp as follows. It computes ¢g®'° = g;/¢'® and checks if
e(hipi» g 'P) Z e(hig="pi, g) for i € {1,2,3}. U aborts if the check fails for any i.

At the end of this protocol, U has a well-formed decryption key d\p for the identity ID.

Encryption To encrypt a message m € Go using identity ID € Z,,, generate a random s € Z, and
compute the ciphertext C as follows

C = (979", elg.9)°, me(g,h1)™", e(g, h2)’e(g, hy)™)

where for C' = (u,v,w,y), we set 8 = H(u,v,w).

DeCI &pti()ll l() (leCI}/[)‘ a Ci[)lle] ‘eX C — ('LL, 'U’ ’LU’ y) 1 1 1 y I 9 Se /,)) = H ('LL, ’U’ ’u)) and test
Whe(hel W th (lent t I) t
y p— e(u, h|D72h|D736)U |D,2 7|D,3ﬁ

If the above check fails, output L, else output

m = w-e(u, hip,1)v""®!

For additional intuition about the system and its correctness, we refer the reader to [Gen06]. We
also note that the ciphertext sanity check in the decryption algorithm rejects all invalid ciphertexts
as shown in [Gen06].

Trace This algorithm takes a well-formed decryption key dip = {(rips, hip;) : ¢ € {1,2,3}} and
outputs the decryption key family number np = rp ;. Hence if rp; = T;D,l for two decryption
keys dip and djp, then trace(d|y) = trace(dip) (i.e., the two keys belong to the same decryption key
family).



4.2 Security Proofs

Theorem 1 The advantage of an adversary in the IND-ID-CCA game is negligible for the above
accountable authority identity based encryption scheme under the decisional truncated ¢-ABDHE
assumption.

PROOF SKETCH: The proof in our setting very much falls along the lines of the proof of IND-ID-
CCA security of Gentry’s scheme [Gen06]. Here we just give a sketch highlighting the only difference
from the one in [Gen06].

The only difference between [Gen06] and our setting is how a decryption key d|p is issued for an
identity ID. In the proof of [Gen06]|, PKG was free to choose a decryption key dip on its own and pass
it on to the user. PKG in fact chose rp; using a specific technique depending upon the truncated
q-ABDHE problem instance given. In our setting, however, PKG and the user U engage in a key
generation protocol where 7p ; is jointly determined by both of them (via the choice of numbers r
and ). Hence PKG does not have complete control over TID1-

The above problem can be solved as follows. PKG generates a decryption key dip = {(rip 4, hip,i)
i € {1,2,3}} on its own exactly as in [Gen06] and then “forces” the output of U to be the above
key during key generation. Recall that during the key generation protocol, U first chooses a random
r € Zyp and sends R = h] to the PKG . U then gives to PKG a zero-knowledge proof of knowledge of
the discrete log of R. The proof of knowledge property of the proof system implies the existence of
a knowledge extractor Ext (see Section 2). Using Ext on U during the proof of knowledge protocol,
PKG can extract the discrete log r (by rewinding U during protocol execution) with all but negligible
probability. Now PKG sets ' = rrip ;. It then sends (7“’,h{D71 = hip1), ("p,2; M 2), (TD,3; D 3) tO
U.

The user U will compute rip1 = 7'/, ip1 = (hip 1)1/7. Hence, PKG has successfully forced the
decryption key dip to be the key chosen by it in advance. W

Theorem 2 Assuming that computing discrete log is hard in G, the advantage of an adversary in
the FindKey game is negligible for the above accountable authority identity based encryption scheme.

PRrROOF: Let there be a PPT algorithm A that has an advantage € in the FindKey game in the
above A-IBE construction. We show how to build a simulator B that is able to solve discrete log in
G1 with the same advantage e. B proceeds as follows.

B runs the algorithm A and gets the public parameters PK = (g, g1, h1, ho, hg) and the identity
ID from A. It then invokes the challenger, passes on hy to it and gets a challenge R € 1. The goal
of B would be to find the discrete log r of R w.r.t. hy.

B engages in the key generation protocol with A to get a decryption key for ID as follows. It
sends R to A and now has to give a zero-knowledge proof of knowledge of the discrete log of R.
The zero-knowledge property of the proof system implies the existence of a simulator & which is
able to successfully simulate the view of A in the protocol (by rewinding A), with all but negligible
probability. B uses the simulator & to simulate the required proof even without of knowledge
of r. B then receives the string (r’,hiDyl), (D2, Mip,2), ("D 3, lip,3) from A. As before, B runs a

key sanity check by testing if e(hip;, g*~'P) L e(hig—"pi, g) for i € {2,3}. For i = 1, B tests if

e(h{Dvi,ga_'D) L e(Rg™ ,g). If any of these tests fail, B aborts as would an honest user in the key
generation protocol.

Now with probability at least €, A outputs a decryption key (passing the key sanity check and
hence well-formed) dj such that its decryption key family number n/ equals the decryption key
family number of the key dip, where d|p is defined (but unknown to B) as (r’/r, (h|p 1)1/”, (1D,2, D ,2),
(rip,3, ip,3)). After computing n/ from djy (by running trace on it), B computes r = r’'/n’. B
outputs 7 as the discrete log (w.r.t. hy) of the challenge R and halts. W



Theorem 3 The advantage of an adversary in the ComputeNewKey game is negligible for the above
accountable authority identity based encryption scheme under the computational g-SDH assumption

PRrROOF: Let there be a PPT algorithm A that has an advantage € in the ComputeNewKey game
in the above A-IBE construction. We show how to build a simulator B that is able to solve the
computational q-SDH assumption with the same advantage €. B proceeds as follows.

The functioning of B in this proof is very similar to that of the simulator in the IND-ID-CPA
proof of Gentry’s scheme [Gen06]. B invokes the challenger and gets as input the q-SDH problem
instance (g, 91,92, .- .,9q), where g; = g,

B generates random polynomials f;(x) € Z,[x] of degree g for i € {1,2,3}. It computes h; = g/ i(@)
using (g, 91,92, - - -, g¢) and sends the public parameters PK = (g, g1, h1, he, h3) to the algorithm A.

B now runs the key generation protocol with .4 (possibly multiple times) to pass on the decryption
keys dip1, ..., dpe for the identities IDY,...,ID? chosen adaptively by A. For an identity ID, B runs
the key generation protocol as follows. If ID = «, B uses a to solve the ¢-SDH problem immediately.
Otherwise, let Fip ;(x) denote the (¢ — 1) degree polynomial Fip;(x) = (fi(x) — fi(ID))/(x — ID).
B computes the decryption key dip = {(rp,;, ki) : ¢ € {1,2,3}} where rp; = f;(ID) and hip; =
g"P.i(®) Note that this is a valid private key since hip ; = gtfi(®)=fi(ID))/(a=ID) — (1, g=fi(ID))1/(a=ID),
Now B forces the output of A to be the key d\p during the key generation protocol (see proof of
Theorem 1). For more details on why this decryption key appears to be correctly distributed to A,
we refer the reader to [Gen06].

Now with probability at least €, A outputs two decryption keys (passing the key sanity check
and hence well-formed) djy = {(rllei, h,lDJ)} and diy = {(rﬁli, h|2D7i)} for i € {1,2,3} for an identity
ID such that trace(d}y) # trace(d}). This means that r|1D71 # r|2D71. B then computes

r2 ol
(hllD,l/h|2D71)1/( ID,1 |D,1)
(hig™ "1 /hy g~ "b.1)1/ (Tib1=7ip, 1) (@=1D)
gl/(a—ID)

Finally, B outputs (—ID, gl/ (O‘*'D)) as a solution to the g-SDH problem instance given and halts.
[ |

5 Construction based on Decisional BDH Assumption

Our second construction of accountable authority identity based encryption is based on the decisional
BDH assumption which is considered to be relatively standard in the groups with bilinear maps.
However, the construction is not very efficient and requires several pairing operations per decryption.

We use two cryptosystems as building blocks in this construction: the identity based encryption
scheme proposed by Waters [Wat05] and the fuzzy identity based encryption (FIBE) scheme proposed
by Sahai and Waters [SWO05]. Our first idea is to use an IBE scheme derived from the FIBE
construction of Sahai and Waters [SWO05]. In FIBE, the encryption is done with a set of attributes
which will be defined by the identity in our setting. Additionally, we add a set of dummy attributes
in the ciphertext. During the key generation protocol, the user gets the set of attributes as defined
by his identity as well as a certain subset of the dummy attributes. Very roughly, the subset is such
that it can be used to decrypt the ciphertext part encrypted with dummy attributes.

The main properties we need (to add accountability) are derived from the above IBE scheme
constructed using FIBE [SWO05]. However, as is the case with FIBE, the IBE scheme is only secure in
the selective-ID model. To achieve full security, we use the Waters cryptosystem [Wat05] in parallel
with the FIBE scheme. We remark that Waters cryptosystem is only used to achieve full security
and any other fully secure IBE scheme (e.g., [BB04b]) based on a standard assumption could be
used. We treat the Waters cryptosystem as a black box as we do not require any specific properties
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from it. Although we are able to achieve full security in the IND-ID-CCA game, we do need to use
the selective-ID model for the ComputeNewKey game.

5.1 The Construction

As before, (&1 is a bilinear group of prime order p, and let g be a generator of G;. In addition, let
e: G1 x G1 — Gy denote a bilinear map.

We represent the identities as strings of a fixed length ¢;p (since an identity ID € Z,, {ip is
the number of bits required to represent an element in Z,). Let {4, be a number which is decided
by a statistical security parameter ;. Let £ = f;p + fsp. We define the following sets: S =
{1,...,6},Sip=A{1,...,4ip},Ssp = {¢ip + 1,...,¢}. We shall denote the ith bit of the identity ID
with ID;. Our construction follows.

Setup Run the setup algorithm of the Waters cryptosystem [Wat05] and get the public parameters
PK,, and master key MK,,. Now, for each 7 € S, choose two numbers ¢; o and ¢; 1 uniformly at random
from Z, such that all 2¢ numbers are different. Also choose a number y uniformly at random in Z,.
The published public parameters are PK = (PK,,, PKs,,), where:
Psz = ({(T’ld = tm‘) S Sa] € {0’ 1}}7Y = e(gvg)yag)
The master key MK = (MK,,, MKs,,), where:

MKy = ({(ti) -7 € 5,5 €{0,1}},9)

Key Generation Protocol The key generation protocol between PKG and a user U (with the
identity ID) proceeds as follows.

1. U aborts if the published values in the set {T;; : i € S,j € {0,1}} are not all different.

2. PKG generates a decryption key d,, for identity ID using MK, as per the key generation
algorithm of the Waters cryptosystem. It sends d,, to U.

3. PKG generates ¢ random numbers 71,...,7, from Z, such that ry +--- + 7, =v.

4. PKG computes the key components dg,; = g”/t"v'Di for all ¢ € Syp and sends them to U. It
also computes key components dg,; j = g"i/tii for all i € Ssp,j € {0,1} and stores them.

5. PKG and U then engage in /), executions of a 1-out-of-2 oblivious transfer protocol where PKG
acts as the sender and U acts as the receiver. In the ith execution (where i € S;,), the private
input of PKG is the key components dsy i 0,dsw,i,1 and the private input of U is a randomly
selected bit b;. The private output of U is the key component dgy ; p, -

6. U sets dsw = ({dsw,i}ticsip» 1bis dsw,ib; Jies,,) and runs a key sanity check on dg,, by checking
if:

?
Y = H e(n,lD“dsw,i) H e(T’i,bwdsw,i,bi)

iES[D ’iESsp
U aborts if the above check fails. Finally, U sets its decryption key dip = (dy, dsw)-
Encryption To encrypt a message m € Go under an identity ID, break the message into two
random shares m; and mg such that m; @mo = m. Now choose a random value s € Z, and compute

the ciphertext C' = (Cy, Csy). Cy is the encryption of m; with ID using the public parameters PK,,
as per the encryption algorithm of the Waters cryptosystem and Cj,, is computed as follows.

Cow = (C, = mQYS,C” =gq°, {(Cl = E,IDZ-S) 11 € S[D}, {(Cm’ = Tm’s) 11 € Ssp,j S {0, 1}})
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Decryption To decrypt the ciphertext C' = (Cy,, Csy) using the decryption key dip = (dy, dsw),
first run a ciphertext sanity check on Cy,, by checking if:

e(Ci, 9) Z e(T;p;, C"), i€ Srp, and

e(Cijyg) = e(T,;,C"), i€ Sy, j€{0,1}

If any of the above check fails, output L. It is easy to see that this check ensures that {(C; =
Tip,°) 11 € Sip}, {(Cij =T;;°) 1 i € Ssp,j € {0,1}} where s is the discrete log of C” w.r.t. g. This
ensure that all invalid ciphertexts are rejected. In the appendix, we sketch an alternative technique
of doing ciphertext sanity check which requires only two pairing operations.

If the ciphertext sanity check succeeds, recover the share m; by running the decrypt algorithm
of Waters cryptosystem on C,, using d,,. The share my is recovered by the following computations:

C’// H e(Ciadsw,i) H e(Ci,bi7d8w,i,bi)

iES[D iessp
= mze(g,g)sy/ H e(gsti,mi’gm/ti,mi) H e(gSti’bi,gri/ti’bi)
iES]D iESSp
=mae(g,9)*/ [[ elg. 9)°"
€S
= m2

Finally, output m = my @ mo.

Trace This algorithm takes a well-formed decryption key dip = (dy,dsy) where the compo-
nent dsy = ({dsw,i}tics;p»10is dsw,ib; Jies,,) and outputs the decryption key family number np =
b, p+10be, ,420. . .0bg, where o denotes concatenation.

5.2 Security Proofs

Theorem 4 The advantage of an adversary in the IND-ID-CPA game is negligible for the above
traceable identity based encryption scheme under the decisional BDH assumption.

The above theorem follows trivially from the IND-ID-CPA security of Waters construction [Wat05].
Given an adversary to break the IND-ID-CPA security of our construction, it is straightforward to
construct an adversary to break the IND-ID-CPA security of Waters construction. We shall omit the
details from this paper.

Similar to [Wat05], we remark that with small modifications, it is possible to achieve IND-ID-CCA
security by using techniques of Canetti, Halevi and Katz [CHKO04]. We can also use other methods
[BK05, BMWO5] to achieve greater efficiency.

Theorem 5 Assuming that the underlying 1-out-of-2 oblivious transfer protocol is secure®, the ad-
vantage of an adversary in the FindKey game is negligible for the above traceable identity based
encryption scheme.

PROOF SKETCH: Recall that in the key generation phase, A and the challenger will engage in /g,

executions of a 1-out-of-2 oblivious transfer phase where the challenger select /s, bits by, , 11, b¢, 42, - - -

and gets the corresponding key components. Now if A is able to to output a decryption key from
the same decryption key family, this implies that it is able to successfully guess the bit string

2 As discussed in Section 2, the existence of 1-out-of-2 oblivious transfer is implied by the decisional BDH assumption.
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by, ,+10bg, ,420. . .0by (of super-logarithmic size) used during the oblivious transfer phase. Hence, it
is easy to construct a simulator B to break the security of the underlying oblivious transfer protocol.
We shall omit the details from this paper. B

Theorem 6 The advantage of an adversary in the Selective-ID ComputeNewKey game is negligible
for the above traceable identity based encryption scheme under the decisional BDH assumption

ProOOF: To simplify the notation in the proof, we will do it in two stages. In the first stage,
we take an assumption, very similar to the computational Diffie-Hellman assumption, called the
computational MDH assumption (i.e., Modified Diffie-Hellman). We show that computational MDH
implies the decisional (in fact, computational) BDH. In the second stage, we prove that the advantage
of an adversary in the Selective-ID ComputeNewKey game is negligible under the computational
MDH assumption.

The computational MDH assumption is that given the tuple (g%, ¢*), no PPT algorithm O can
compute ¢*/® with more than a negligible advantage. Given an oracle O to solve MDH problem, we
show how to construct an oracle P to solve the decisional BDH assumption. P takes as input the
BDH instance (A = g%, B = ¢°,C = ¢°,Z) and invokes O three times as follows. First pass on the
tuple (A, B) and get the result D;. Then pass on the tuple (D1, A) and get the result Dy. Finally,
pass on the tuple (D3, A) and get the result D. It is easy to see that if O returned the correct answer

for all three queries, D = ¢?. P then checks if Z z e(D,C) and returns 0 if the check fails and 1
otherwise. It can be shown that if the probability of success of O is €, the probability of success of
P is €3.

We now proceed to the second stage. Let there be a PPT algorithm A that has a non-negligible
advantage € in the Selective-ID ComputeNewKey game in the above A-IBE construction. We show
how to build a simulator B that is able to solve the computational MDH assumption with a non-
negligible advantage €/2(,,. B proceeds as follows. It takes as input the MDH problem instance
A = g% B = g¢*. It invokes A and gets the identity ID on which A would like to do the new key
computation. B sets up the public parameters as follows. Run the setup algorithm of the Waters
cryptosystem [Wat05] and get the public parameters PK,, and master key MK,,. For each i € S5,
choose two numbers t;o and t;,1 uniformly at random from Z,. For each i € Sip,j € {0,1}, if
J = ID;, define t; ; = btg’j (even though b is unknown), else define ¢; ; = t;j. Now select a random
index ind € S, and a random bit indbit € {0,1}. For each i € Sy, j € {0,1}, if i = ind and
j = indbit, define t; ; = t;j, else define t; ; = bt;j. Let bit(t; ;) denote a function such that it is 0 if
ti; = t; ; and 1 otherwise.

The published public parameters are PK = (PK,,, PKj,,), where:

PKyw = ({(T;; = 9"7) i € 5,5 € {0,1}},Y = e(g,9)", 9)

B now runs the key generation protocol with .4 (possibly multiple times) to pass on the decryption
keys dp1,...,dpe for the identities ID,...,ID? chosen adaptively by A.

For an identity ID" # ID, B runs the key generation protocol as follows. Choose an arbitrary
number k € Srp such that ID}, # IDg. For all i € S,i # k, choose random r} and define r; = br}
(note that since b is unknown, r; is unknown to B). B computes the decryption key components as
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follows:

For all i € Sip,i # k,

J gri/t""Dg if bit(t;)pr) =0  (¢;p is known in this case)

S’LU,%’ = T;/t/ ' '
g

! .
“0;  Otherwise

For i =k,

(ga/gm+~--+ri_1+ri+1+--~+r4)l/ti,lD;

dsw,; = (ti,ID,’L- is known in this case)

For all i€ Sy, 7 € {0,1},

do o — gri/tis i bit(ti;) = 0
sw,i,j = gré/ti,j Otherwise

It is easy to verify that the above key components are correctly constructed. Having these key
components, B completes rest of key generation protocol as usual. The adversary A gets as output
a decryption key dip = dy, dsw.

For the identity ID itself, the key generation protocol is slightly more subtle. For alli € S,1i # ind,
choose random r} and define r; = br (note that since b is unknown, r; is unknown to B). B computes
the decryption key components as follows:

For all i € Syp,

dowi = gr"/t""Di (ti,IDi is unknown for all 7)

For ¢ =1ind, j = indbit

(gtl/gﬁ+-~~+7"i—1+7’i+1+'~~+7“4)1/t¢,j

dsw,i,j = (t;,; is known in this case)

For all ¢ € Sy, i #ind, j € {0,1},

d - g”/ti’j if b’it(ti’ﬂzo
o g"/ti  Otherwise

Again, it is easy to verify that the above key components are correctly constructed. Note that
we are missing one decryption key component: d_, . .= Our hope is that the algorithm A will
not ask for it (and instead will ask for dsw,ind,bitind} d{lring the 1-out-2-oblivious transfer phase. B
sets this component to some random value and proceeds with rest of the protocol. With probability
1/2 (since bitind is randomly chosen), the bit b;,4 chosen by A equals bitind and hence A gets a
valid decryption key d|p. If this is not the case, B aborts and outputs Fail.

Now with probability at least €, A outputs two decryption keys (passing the sanity check and
hence well-formed) djy and d?, from different decryption key families. This means that there exists
at least one i € S, such that b} # b?. With probability at least 1/{sy,, ind = i (since ind is randomly

chosen). If that is not the case, B aborts and outputs Fail. Otherwise let k£ be such that bfnd = bitind.
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We remark that for all i € Srp, bit(t;p,) = 1 and for all i € Sy, bit(t; ,») = 1. B now computes:

/

k A\, k bk
H (dsw,i) 1P H (dsw,i,bf) "

’iGS[D iESsp

— H (gri/btg,lDi)t;,lDi H (g

’iES[D iESSp
r;/b
it
€S
a/b

. ’ /
Tz/bti,bk )ti,bk
1 K

B now output ¢%/® as the solution to the given computational MDH problem and halts. M

Extension to black-box A-IBE in a weak model. The above construction also leads to black
box A-IBE in a weak model where the malicious PKG is not allowed to make decryption queries.
Here we only provide a sketch of the modifications required to realize such a weak black box A-
IBE. The basic idea is to further encrypt the ciphertext so that the ciphertext sanity check is no
longer possible. During the setup phase, PKG additionally publishes the public parameters for any
fully secure IBE scheme. Let Ejp(m) denotes the encryption of a message m with identity ID as
per that IBE scheme (using the published public parameters). During encryption, in place of C; j,
the encrypter instead publishes Ej;; = Fipoo;(Ci ;) for all i € Sgp,j € {0,1}. As part of the key
generation protocol, a user additionally gets the decryption keys for identity IDoiob; for all ¢ € S
(during oblivious transfers). Thus, a user can recover Cj, for all i € S, and hence can recover the
message as explained in the decryption algorithm. Given a black box, tracing is done as follows. For
each i € S, the judge first sets Ej; o to be an encryption of a random string (instead of an encryption
of C; ) and measures the advantage of the box in decrypting the message successfully. Similarly, the
judge then sets I; 1 to be an encryption of a random string and measures the decryption advantage.
If there exists ¢ for which these advantage are either both negligible or both non-negligible, PKG is
implicated. Else, let b, be 0 if the advantage was non-negligible in the first case and 1 otherwise. If
trace(dip) = b}, 1100y, 190 - -ob, the user (with decryption key dip) is implicated. Otherwise, PKG
is implicated. The security of this scheme can be shown using a standard hybrid argument.

The above extension also reflects the main technical challenge that needs to be overcome in order
to achieve full black box A-IBE. On one hand we require that during regular operation, the outcome
of the decryption of a ciphertext should not leak information about the decryption key family of the
user (this is enforced by a ciphertext sanity check in the current paper). On the other hand, during
tracing, a judge should be able to extract enough information about the key family from the black
box in order to determine the source of the box. Thus, one needs to have a careful formulation of
when and how much information about the key family is leaked by the decryption queries.

6 Future Work

This work motivates some interesting open problems. The most important one is the construction
of a black-box accountable authority identity based encryption as discussed in Section 1. It will also
be interesting to see if this approach can be combined with the multiple PKG approach in a fruitful
manner.

Finally, it remains to be seen if the same approach to mitigate the key escrow problem can be
profitably used in other related setting like attribute based encryption [SW05, GPSWO06].
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Subsequent Work. In a recent work, Goyal, Sahai and Waters [GSWO07] solve the problem of
black-box A-IBE. Their work builds on the techniques from this paper and more advanced attribute
based encryption schemes [GPSW06, OSWO07].
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Appendix

A Efficient Ciphertext Sanity Check in the Second Construction

To decrypt the ciphertext C' = (Cy, Csy) using the decryption key dip = (dy,dsw), the efficient
ciphertext sanity check on Cy, is run as follows. First choose ¢;p + 2{,, random numbers s; p,,% €
Srp and SZ"j,Z' S Ssp,j S {0, 1}. Now check if:

o e T ey)ie(en M T 7y)

1€STD 1€Ssp,j€{0,1} 1€SIp 1€Ssp,j€{0,1}

If the above check fails, output L. It can be shown that the above check rejects an invalid
ciphertext with all but negligible probability (while the previous check was perfect).
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