A Meet-in-the-Middle Collision Attack
Against the New FORK-256

Markku-Juhani O. Saarinen

Information Security Group
Royal Holloway, University of London
Egham, Surrey TW20 OEX, UK.

m saari nen@ hul . ac. uk

Abstract. We show that 22 collision attack exists against the FORK-256
Hash Function. The attack is surprisingly simple compaoegkisting published
FORK-256 cryptanalysis work, yet is the best known resubiagt the new,
tweaked version of the hash. The attack is based on “syfitihe message
schedule and compression function into two halves in a rimetite-middle
attack. This in turn reduces the space of possible hashi@umogsults, which
leads to significantly faster collision search. The attarktsgy is also applicable
to the original version of FORK-256 published in FSE 2006.

Keywords: FORK-256, Hash Function Cryptanalysis, Meet-in-the-rtédd
Attack.

1 Introduction

FORK-256 is a dedicated hash function that produces a 23@bh from a message of
arbitrary size. The original version of FORK-256 was présdrin the first NIST hash
workshop and at FSE 2006 [1]. Several attacks have beemedttigainst this original
version, namely:

— Matusiewicz, Contini, and Pieprzyk attacked FORK-256 bipgishe fact that the
functions f andg in the step function were not bijective in the original versi
They used microcollisions to find collisions of 2-branch ROR56 and collisions
of full FORK-256 with complexity of2126-6 in [3].

— Independently, Mendel, Lano, and Preneel published thisicol-finding attack on
2-branch FORK-256 using microcollisions and raised pad#silof its expansion
[5].

— At FSE 2007 [4], Matusiewicz et al. published the result §fd8d another attack
which finds a collision with complexity a'°® and memory o5,

In response to these attacks the authors of FORK-256 haeathegroposed a
new, tweaked version of FORK-256 [2], which is supposedsistant to all before-
mentioned attacks. We will present a simple attack whicléskest currently known
against the new version of FORK-256, and also applicabledgtevious version.

2 Description of New FORK-256

New FORK-256 (hereafter FORK-256) is a Merkle-Damgard haigth a 256-bit (8-
word) internal state and a 512-bit (16-word) message blBakiding and chaining de-
tails are similar to those of the SHA and the MD families ofth&sctions.

FORK-256 is entirely built on shift, exlusive-or, and adiglit operations on 32-hit
words. In this paper we use the following notation for thegerations:

x®y Bitwise exclusive-or betweenandy.
r@By Equalto(z +y) mod 232,
rBy Equalto(z —y) mod 232.

x < y Circular left shift of 32-bit wordr by y bits.

The compression function of FORK-256 consists of four irefefent “branches”.
Each one these branches takes in the 256-bit (8-word) cltpirdlue and a 512-bit
(16-word) message block to produce a 256-bit result. These lfranch results are
combined with the chaining value to produce the final comgioesfunction result.
Figure 1 illustrates the branch structure.

CViq

Branch| |Branch| |Branch |[Branch
1 2 3 4

L L

VAR
N

[
(W)

CV;

Fig. 1. Overall structure of four branches of FORK-256. Note thatlthes are 256 bits wide; the
addition symbols represent eight 32-bit modular additionzarallel.

The four branches are structurally equivalent, but difiesdheduling of the message
words and round constants. Each branch is computed in digfg,8 < s < 7. Each
step utilizes two message words and two round constants.

The scheduling of the message block woldg0) . .. 15] in each branch is given in
Table 1. Round constani$0 . .. 15] are given in Table 2 and their schedule in Table 3.
The original description uses auxiliary tablesnd p; for convenience we use (“left

word”), b (“right word”), « (“left constant”), and3 (“right constant”) in this description
as follows:

al*) = Mlo;(2s)]

b = Mloj(2s + 1))
o = 3p;(29)]
B = 8[p; (25 + 1))

FORK-256 uses two 32-bit Boolean functiofisand g, which were redefined for
the New FORK-256 to avoid microcollisions.

fl@) =20 (r < 15) @ (v < 27)
g(x) =20 ((z K 7)B (r « 25)).

Following the convention of the FORK-256 specification(18f;[0..7] be the result
of the compression function iteratiemndC'V[0..7] the Initialization Vector, given in
Table 4.

Each branchy processes eight input Wordﬁjo) [t] = C'V,]t] to eight output words

R;S) [t], 0 <t < 7. Figure 2 illustrates the step function. FbK s < 7:

9(R;"[0]Ba;

ts = g(R;" 4] Bb;")

ta=f(R] @B 8)
RV[0] = RY[7) @ (ts << 8)
R;erl)[l] _ Rg_s) 0] B ags) | ag_s)
R§s+1)[2] _ R‘gs)[l] Bt
RV = (RY2] B (1 << 13)) @ 1
RV = RY 3] @ (t2 << 17)
R[5 = RO 4@ b @ 50
R;s+1)[6] - R§.S) [5] B ¢
REV[7) = (RY[6]B (13 << 3)) @ ta

The final result of the compression function for each word ¢t < 7is
CVinl] = v, @ (RPt@RY[) @ (RY[] 8 RYH)).

If 7 is the final iterationC'V;, is the final hash value.

3 Observations

Each branch of the compression function uses each messadé\ijo . . . 15] exactly
once. Due to diffusion properties of the step function, ragesvords that are scheduled
for the last steps do not affect all output words.

Consider the sixth output word of each branBleEf) [5]. The last step is defined as:

R®[5] = RV mol" 8",

J

Furthermore we “open upR§7) [4] in the previous step:
(Mg — p©) (6) (6) (6)
R;VA] = R3] @ (9(R;7[0]Ba;” B B;7) < 17).

Ignoring the round constantsf) andﬁj(s), we can observe that the only message
words in steps 6 and 7 aﬁectir@§8) [5] are a§6) and b§7), the latter having a linear
effect. Constantég.ﬁ) anda§.7) have no effect in the computation of this word.

By thus inspecting the step function and the message wosdisthin Table 1, it is
easy to verify thafr,; [5] satisfies the following properties:

Branch 1:R§8) [5] is independent oM [14] = a§7).

Branch 2:R§8) [5] is linearly dependent of/[1] = bg).

Branch 3:R{” [5] is independent o [1] = a!”.
[5]

Branch 4:R{¥ [5] is independent of/[14] = b\

() (9 (2 () (9 (9 (s) (9
RO] RO RRL O RTBl R Rl RG] Ry[T]

af"—ff b —~H
—{/ —{ 9
<< 13 << 3P
ol*offy B~
—{g] D —{ /] D
(1~ (8-

REMV0] RV RETV[2] RETV[E] RV RV RV RSV

Fig. 2. The new FORK-256 step iteration.

We shall use these simple observations to construct arkaagainst FORK-256.
We note that due to the fact the message word schedule isdsheteeen the old and
new versions of FORK-256, the same four observations — amsitime general attack —
apply to both versions, although there are important tecimifferences between the
old and the new version. The complexity of the attack is timeestor both.

4 A Collision Attack

The main strategy of the attack is to use a fast method forrfqndiessages that hash
into a significantly smaller subset of possible hash valMéssdo this by forcing the
sixth word of the compression function to remain constaet ¢ive hash function itera-
tion, CV1[5] = CV[5], thereby generating hashes in a subset of 2iz& Assuming
uniform distribution, a full collision can be expected aftgZ x 2%" ~ 21123 hashes
in the small subset have been found.

The value ofCV1[5] is combined from the four branches and the initializatioo-ve

tor as follows:
CVi[5] = OV (5] B (R [5) B RS [5]) @ (R{Y[5] B R{[5])).

By substitutingC'V'1 [5] = C'V([5] and regrouping branches 2 and 3 on the left side
and branches 1 and 4 on the right side, we obtain the followawgssary and sufficient
condition forCV,[5] = CV[5]:

RY 518 RY[5] = R [5)8 RY[5).

Our attack is based on choosing two message wdf@l§ and M [14] in a specific
way to satisfyC'V'1[5] = CV[5], which is possible due to the observations given in
the previous section. The values of the fourteen other myessards are arbitrary and
can be chosen at random (as long as they remain constangthtoe two phases of
the attack). The two phases can be repeated any number af iinpeoduce sufficient
amount of hashes in the subset.

4.1 First Phase

SetM|[1] = 0 and loop oveM/[14] = 0,1,2,---, 232 — 1. Compute branches 2 and 3
for eachM [14] to obtainz = R{¥[5]8 R{¥[5). Placer and/[14] into a look-up table
so that the value o#/[14] can be immediately retrieved based on the corresponding
value (i.e.M[14] is indexed byr).

Note that since the mapping froid[14] to = is not surjective, about/e ~ 36.8%
of the values ofr will never occur (when the mapping is modeled as random). On
the other hand, many can be obtained with more than one valueldf14]. Using
a straightforward lookup cannot handle the latter situmthut simple data structures
with negligible expansion exist that can be used for thesesal'he table does not need
to be larger than 16 gigabyte32(bits x 232 entries).

4.2 Second Phase

Loop over the23? values of M [1]. Compute branches 1 and 4 for edefj1] to obtain
Y= R§8) = Rff) [5] B M|[1]. TheM[1] term is included due to the linear dependence

of R;E” [5] on it (this is also whyM[1] is set to zero in the first phase).

In each step, perform a look-up. If a match or matches y are found, the nec-
essary and sufficient condition is satisfied and we have fauntessage (or rather,
a pair of M[1] and M|[14] values) that produces one or more hashes that satisfy
CV4[5] = CVyl[5].

4.3 Runtime Analysis

Each loop step in the second phase produces one match irottpltable on average.
This is due to the fact that even though the mapping is no¢stivg, there is a total of
232 M [14] entries in the table. Hence approximate®y hashes with the property are
produced in the second phase.

Since computation of only two branches out of four are negtiiedcomputational
effortin the first and second phases is roughly equivale2ttdull hash computations
each, or23? total. If the full 8 words in phase 1 are not stored, branchaa®3 need
to be computed again to reproduce a full hash, bringing tte tmmber to3 x 231,
The average cost of producing a hash in #3& subset therefore i% hash function
invocations.

Unfortunately we have been unable to come up with a methodilifing “mem-
oryless” random-walk collision search methods such asethiscussed in [6]. This
is due to the fact that the algorithm outlined above only vgoirk “batches” of232
to obtain a favorable average cost for each hash with theedkpropertyCV;[5] =
CV[5]. The memory requirement is therefore equivalent to runtimg requirement,

%\/g « 2% _ 9ll2.9
5 Further Work

The same observations about the effectd/ffl| and M [14] on the final hash can be
easily be adopted into a pre-image attack that recoversilies of these two message
words with23? effort, rather thar2* as expected in a brute-force search.

It may be possible to “fix” more than 32 bits by using additibwards of keying
material besided/[1] and M[14] in the attack. This would naturally lead to a more
effective overall collision attack. Termi& [0] and M [5] appear to be good candidates
as they are only used in steps 5 and 6 of branches 2 and 3, tigsfygand are therefore
not fully diffused at the end of step 7.

6 Conclusion

We have presented 212 collision attack against the new, improved version of the
hash function FORK-256. This represents a speed improveafdactor2'>4 over a
straightforward collision search. The attack strategyipssingly simple, and can also
be applied against the original version of FORK-256 in dlighmodified form.

7 Acknowledgements

The author would thank Keith Martin and the INDOCRYPT Progi@ommittee mem-
bers for essential quality control and helpful commentsaRcial support for this work
was provided by Nixu Ltd. and Academy of Finland.

References

1. D. HONG, D. CHANG, J. SUNG, S. LEE, S. HONG, J. LEE, D. MOON, AND S. CHEE.
“A New Dedicated 256-Bit Hash Function: FORK-256." FSE 20DBICS 4047, Springer-
Verlag, pp. 195 — 209, 2006.

2. D. HONG, D. CHANG, J. SUNG, S. LEE, S. HONG, J. LEE, D. MOON, AND S. CHEE.
“New FORK-256." Cryptology ePrint Archive 2007/185, JWQ07.

3. K. MATUSIEWICZ, S. CONTINI, AND J. REPRZYK. “Weaknesses of the FORK-256 Com-
pression Function.” Cryptology ePrint Archive 2006/31&¢6nd version), Nov., 2006.

4. K. MATUSIEWICZ, T. PEYRIN, O. BILLET, S. CONTINI, AND J. REPRZYK. “Cryptanaly-
sis of FORK-256." Preproceeding of FSE 2007, 2007.

5. F. MENDEL, J. LANO, AND B. PRENEEL. “Cryptanalysis of Reduced Variants of the
FORK-256 Hash Function.” CT-RSA, LNCS 4377, Springer-¥gtlpp. 85 — 100, 2007.

6. P.vaN OORsScHOT ANDM. WIENER. “Parallel collision search with cryptanalytic applica-
tions.” Journal of Cryptology, 12 (1999), pp. 1 — 28, 1999.

Step

Branch 1
(5) b(é)
1

Branch 2
aés) bé.s)

Branch 3
a:(;) bé.s)

Branch 4
af) bz(:)

~No ok~ WNEO

[0] M[1]
(2] M[3]
[4] MI5]

Mi6] M][7]
MI8] MI9]
MI10] M[11]
M[12] M[13]
M[14] M[15]

M
M
M

MT14] M[15]
M[11] M9
MI8] M[10]
M[3] M4]
M[2] M[13]
Mo] MI5)
Ml6] MI7)
M[12] M[1]

MT7] M6]
MI10] M[14]
M[13] M[2]
MI9] M[12]
M[11] M[4]
M[15) MI8] | M
MI5) M[O]
M[1] M[3]

M5 M[12]
M[1] M[g]
M[15] M[0]
M[13] M[11]
M[3] MI10]
M[2]

Table 1. Message word schedule for FORK-256. It is easy to obsertérthaanch 2 and branch
3, M[1] only affects the result in the last stef[[14] is used in the last and next-to-last steps in

branches 1 and 4, correspondingly. These observationsacdsinthe attack.

0[0] =0x428a2f 98 §[1] =0x71374491
0[2] =0xb5cO0f bef §[3] = 0xe9b5dbab
0[4] =0x3956c25b §[5] =0x59f 111f1
0[6] =0x923f 82a4 §[7] =0xablc5ed5
0[8] =0xd807aa98 §[9] =0x12835h01
0[10] =0x243185be §[11] =0x550c7dc3
0[12] =0x72be5d74 §[13] =0x80deblfe
0[14] =0x9bdc06a7 §[15] =0xc19bf 174
Table 2.Round constants.
Step | Branch1l Branch 2 Branch 3 Branch 4
s [aof? g7 ol B o) 8 | ol B
0 o[0] O[1] | 6[15] &[14] | 6[1] 4[0] | 6[14] 4[15]
1 0[2) 6[3] | 0[13] 6[12] | 6[3] O[2] | d[12] 4[13]
2 o[4] 46[5] | o[11] 46[10] | &[5] O[4] | [10] O[11]
3 o[6] o[7] | 4[9] o[8] | o[7] 4[6] | 4[8] 4[9]
4 o[8] 46[9] | o[7] o[6] | S[9] O[8] | 4[6] O[T
5 | 6[10] 6[11]) | &[5] 6[4] | d[11] 6[10] | o[4] O[5]
6 | d[12] 4[13]| 4[3] 4[2] |4[13] 4[12] | 4[2] O[3
7 | 6[14] 6[15] | o[1] 6[0] | O[15] 46[14] | S[0] O[1]
Table 3. Round constant schedule.
CV[0] =0x6a09e667 CV,[1] =0xbb67ae85
CVy[2] =0x3c6ef 372 CV[3] =0xab4f f 53a
CVy[4] =0x510e527f CV,[5] =0x9b05688c
CVy[6] =0x1f 83d9ab CV,[7] =0x5be0Ocd19

Table 4. Initialization Vector.

