On Factoring Arbitrary Integers with Known Bits

Mathias Herrmann, Alexander May

Faculty of Computer Science, TU Darmstadt, 64289 Darmsteitmany
herrmann@rbg.informatik.tu-darmstadt.de, may @infdikta-darmstadt.de

Abstract: We study thefactoring with known bits problemwhere we are given a
composite integeN = pip2 ... p,- and oracle access to the bits of the prime factors
pi,t = 1,...,r. Our goal is to find the full factorization oV in polynomial time
with a minimal number of calls to the oracle. We present arags algorithm that
efficiently factorsiV given(1 — %HT) log N bits, whereH,. denotes the'" harmonic
number.

1 Introduction

One of the most challenging tasks in algorithmic number théoto efficiently find the
factorization of a composite numbéf. The security of the most popular public key
cryptosystem RSA is based on the difficulty of the factoi@aproblem. Thus, it is no
surprise that considerable efforts have been made to Idveerdmputational complexity
of factorization algorithms. In the Turing machine modkég turrently best algorithms —
the Elliptic Curve Method and the Number Field Sieve — regisirbexponential time.

On the other hand, another interesting line of researclbksitad in the last two decades
that deals with relaxations of the factorization problenickirare solvable in polynomial
time. A natural relaxation is to provide additional limitedacle access to the prime fac-
tors’ bits. This relaxation is motivated by cryptographiagtice, where several side-
channels are known that leak bits of the factors.

Rivest and Shamir [RS86] showed in 1985, that for an RSA-redN = pg an amount
of %1ogN of the bits ofp is sufficient to factorN. This result was improved by Cop-
persmith [Cop96] in 1996 tq% log N bits, and in 1997 again by Coppersmith [Cop97] to
% log N bits.

In 1999, Boneh, Durfee and Howgrave-Graham [BDHG99] gdizredithe Coppersmith
result to moduli of the forndV = p*q. They showed thaitkf—w log N bits are sufficient to
find the factorization ofV in polynomial time. One should notice that this result cales
with the one of Coppersmith for the RSA case, whete 1.

Recently, Santoso, Kunihiro, Kanayama and Ohta [SKKOO6pgalized the factorization
with known bits approach to square-free modiili= p; ... p,, where all prime factors
pi,i = 1,...,r have the same bit-size. Santoso et al showed that the ftdirfaation of

N can be found giver(l — ﬁ) log N bits.

We would like to remark that this result domet coincide with Coppersmith’s bound for
the RSA case, in which = 2. Moreover, as opposed to the results of Coppersmith and
Boneh, Durfee, Howgrave-Graham the approach in [SKKOOBGptsigorous. Santoso et
al. model the factorization problem as a lattice-basedfinding problem for am-variate
polynomial. The authors use a heuristic algorithm of Co@orp4] for finding a root of a
multivariate polynomial equation. The root in turn yieldkthe prime factors.

Our contribution: We present aigorous algorithm for factoring square-free integers
N = p1po ... p-. As opposed to [SKKOO06], we solve the factorization probitratively

by finding one prime factor oW in each iteration. This allows us to model the factorization
as a root finding problem for modular univariate polynomiakherefore, we can use
Coppersmith’s rigorous algorithm for finding the roots ofuamiate polynomial equations.

Our factorization algorithm requires only a total @f — %HT) log N bits, whereH, =
Yoy % is ther*" harmonic number. This improves upon the bound of Santosb &ira
all . Moreover, for the RSA-case= 2 the bound coincides with the Coppersmith bound
of i log N bits. The complexity of our factorization algorithm is potymial in (log IV,).

We also consider the case where the prime fagtpase not of the same bit-size. We show
that in our iterative process of factoring, it is best to rean each iteration the smallest
prime factorp;. The smallerp; is relative to the other factors, the less bits we need to
discover it. Consequently, the case where all prime fadoesf the same bit-size turns
out to be the worst case for our algorithm in terms of the nunob@racle calls. Thus,
(1- %HT) log N bits is an upper bound for general integers of the fovre= p1ps .. . p,..

Furthermore, our algorithm easily extends to integersehatain arbitrary prime powers,
i.e. ther primes factorg; must not necessarily be distinct. Once again, we can shadw tha
our upper bound holds, and the more multiplicittedas, the less oracle calls are required
in our algorithm.

We would like to point out that our results have implicatidos fast variants of RSA,
which make use of multiprime RSA moduli. Application for sumoduli have been
proposed by Boneh, Shacham [BS02] in order to speed up thed®8Aption/signing
process.

2 The Factorization Algorithm

At Eurocrypt 96, Coppersmith presented a method for findimglsroots of univariate
modular polynomials [Cop96]. We will use the result in thfereulation of May [MayQ7]:

Theorem 1. Let N be an integer of unknown factorization with a divigoe> N”. Let
f»(z) be a univariate, monic polynomial of degrée Furthermore, letcy be a function
that is upper-bounded by a polynomiallisg V. Then we can find all solutions, for the
equationf,(xz) = 0 mod b with

2
|xo| < cNNﬁT Q)

in polynomial time inlog N, 9).

Now we present a method to factor an integer of the fa¥m= pip> - ... - p, given
access to an oracle which delivers bitsrof 1 of the primes, applying the method from
Coppersmith. We compute the prime factors in an iterativermea |.e. we start by looking
at a polynomial with a small root modulo one of the prime fastof N, w.l.o.g.p;, and
continue with a polynomial which has a small root modulo angrfactor ofN, = pﬁl and
so on.

Algorithm 1 Factorization Algorithm
Input: », N =p;---p,Wlo.g.pi <ps<...<p,
N — N
fori=1tor —1do .
p; < Call Oracle forﬁ log N most significant bits of prime facter, of N’
p; < Apply Theorem 1 with the polynomigl,, = p; + =
N M
end for
Output: p1,...,p-

Theorem 2. Let N be a composite square-free integer with prime factars . ., p,. of
the same bit-size. If we have approximationgof . . , p,_; with

lpi — pi| < N7o=7D0)
then we can factoNV in polynomial time inlog N, r).
The construction ofy,...p,_1 requires(l - }HT) log N calls to the oracle.

Proof. The polynomialf; = p; + « has the small rogt; — p; modulop;. Our goal is
to find this root, which yields the prime factpy. To apply Theorem 1, we need to bound
the size of the divisor used. For at least one of the prim@faate have,; > N+. From
the assumption we made, we knay > %N% for all ¢, since all factors have the same
bit-size.

To obtain a boung, we rewrite%N% — N+ ®&~ . Hence we defing — i @.
The degree of; equals 1 and with the parametey = 4+ we obtain the following upper
bound on the size of the roots

BNE N TN S g4t G)N% — N (3)
In order to recovep; we need to knowt — & = “Zllog N most significant bits of
p1. Givenp; we can simplifyN to N, = ﬂl = po...p-. Now consider the polynomial
fo = P2 +x2. We know thatf; has a smallproot modulo a divisor &f,;, namelyp,. Along
the lines off; we establish a lower bound on the size of the divisor. But is thse, the
size is different, since we don’t considar but N,. Analog to the above, we obtain a
bound on the size of the divisor by
No

1
pr=—2—>=
P3 ... Pr 2

I @

i _ 1 1 —
W|th 62 - =1 - m, 62 — 1 we Compute
63 L — 2 +—3 1 = S 1 s
- (r—1) logg N g2 - r—
N2 =N, e (Z) NV = (Z) Ny (9)

To expressV; in terms of N, we use a similar argumentation as before. Sjncel N+

for at least ong, we can upper boung < 2N+ forallias they have all the same bit-size.
ThenN, = pﬂl > %N“%. Continuing equation (5) we obtain

1 1 1 1
1\t ;2 1\ ¢ 1 —1 (r—1)2 1\ 72 1
- N(Tfl) > - N > (= N-1

Hence we may apply Theorem 1 witk, = 47 and obtain

1)
472 N,* > N7G-D (6)

Thus we require: — ﬁ = T&;j) log N most significant bits of..

1 oI o
For thei-th prime we have; = ﬁ > %N{'—Hrl = NZ-HIH g2 Ni and
N S (€ s i L B (7)
Cpr D (%)Tﬁ(iil)NP:‘H ifi—12> %
Then
) 1 2(T7i+]‘)+(i271) 1 e r
NF s J(§) TN i -1 < g (8)
i (Lyzo= 5 N7 ifi—1>1%

By using the case differentiation, we prevert from being exponential im. It is based

on the fact, that at most of the primes can be of siz%aN%. We then have to choosg;, as
2(r—i+1)+(i—1)
4 20r—it1) respectivelyﬁ(rf#l). The maximum oty in the intervall <i <r —1

is 2v/2. Therefore the requirement of Theorem 1 g to be polynomial inlog N is
fulfilled.

In this fashion we formulate bounds on the required appraxions forr — 1 of the prime
factors of NV (we get the last one for free). Eventually we are interesteéde total number
of bits required to factor the composite numBér Summing up the values for thg, we
need the following number of oracle calls:

1 « —q 1
-y g N = (1——Hr) log N)
Tizlr—z—i-l r

O

Our algorithm improves on a recent result from Santoso, Kuomj Kanayama, Ohta

[SKKOO06]. They require(% + ﬁ) log N high bits for each of the prime factors,

which sums up to— log N bits in total. Additionally our algorithm is rigorous, i.et
does not depend on a heuristic assumption like the one in {3

3 Unbalanced Prime Factors

In the previous section we assumed the prime factors of asfjaa integer to be balanced.
In this section we will show that this is actually the worssegi.e. the number of required
bits gets smaller if the prime factors are unbalanced. Rieshotice that for unbalanced
prime factors the order in which they are processed does mdKlerence.

We will argue that it is a better choice to use the small priawtdrs first. Suppose we have
anintegetN = pips...p, andp; = N p, = N2, We will examine in which order the
first two prime factors should be processed.

Taking firstp; and therpsy, the number of required oracle calls is
2

b
by — bi + by — 1 2b + Remaining (20)
-0

Switching the order of the first two primes, we require

2

b
by — b3 + by — 1 —1b2 + Remaining (12)

oracle calls. Th&Remainingpart is equal for both cases. Now we are interested under
what condition we get a smaller number of required bits uisgip;, thenp,. Thus,
b3 b?

by — b2 4 by — — 2 <by— b2+ b —
1 1+2 1_b1_2 2+1 1—b2

This can be reduced to the condition
by < bo (12)

Hence we require less oracle calls if we start with the smddletor. Using the same
argumentation on other pairs of primes we eventually obtfaén the number of oracle
calls is minimal if the prime factors are processed from $esato largest. This reflects in
the preconditiop; < ps < ... < p, of Algorithm 1.

Now we can state the main theorem of this section.

Theorem 3. The result)
(1 — —HT) log N (13)
T

from equation(9) is an upper bound for the number of required bits to factor driteary
square-free composite integer.

Proof. Proof by induction over the number of prime factors:
Base Caseletr = 2andN = p1ps. SUppos®; = Nb1,

From Theorem 1 we obtain that we can recaidng N bits of p; and therefore we require
by — b? log N bits. The maximum ob; — b7 is reached fob; = 1.

Hypothesis:

For a composite number with— 1 distinct prime factors the worst case of oracle calls is
in the balanced case.

Inductive Step:
Let N = pips...p,. Assumep; = N is the smallest factor, then < 1

We need to find the maximum number of required bits. l.e. welneenaximizeh; —
b? + bits required for the rest with the constrainb < b; < % From the induction
hypothesis we derive that the number of bits for the remgipiart of V is in the worst
case1- >, ! r=1-i)5o N,, whereN, =]\i ExpressingV, in terms of N, we obtain
the foIIowmg functlon to optimize

r—1

1 r—1—1
by —b2+(1—0 14
1= b7+ (1)r_1; p— (14)
We achieve the maximum value in the intenvak b; < 1 forb; = = N2 is then of size
N and has by the hypothems— 1 balanced prime factors Thus each prime factor is
of sizeNb with b = =1 L = 1,
This completes the proof. O
4 Prime Powers
Theorem 4. The result .
(1 — —HT) log N (15)
T

from equation(9) is an upper bound for the number of required bits to factor driteary
composite integer.

As in the proof for the unbalanced case we will need to begih thie smallest of the prime
powers. In this case however it is not that easy to see whdtesmaeans. Therefore we
will define the following:

Definition 1. A prime powen” is said to besmallerthan a prime powey' if the number
of oracle calls to recovep is less.

We will now show by induction that balanced prime factordwékponent; = 1 are the
worst case in the sense of required oracle calls.

Proof. Base Caser = 2

Let N = phpl andp; = N®,ps = NY. Suppose’ is the smallest prime power, then
x — kx? <y — ly?, which reduces in this case te< k, since we havézx + ly = 1. The
number of oracle calls our algorithm requires equals kz2?. The maximum ofy — kz?

is obtained forr = 1 = 1 andk = 1. Sincel < kit follows | = 1 andy = 3.

Hypothesis:

For a composite number with — 1 prime powers the worst case of oracle calls is for
exponents; = 1 and balanced prime factors.

Inductive Step:
LetN = p1 p2 cophr Assumqy’f1 is thesmallesffactor.

As in the proof for unbalanced prime factors, we seek for tagimum of required oracle

calls. The number of oracle calls z) = = — kyx? + remaining. By induction

hypothesis, the number of oracle calls of the remaining) i;tlda worst case of exponents

k; = 1equal to— > Ml k=il)40 N, with Ny = s = N'=Fz_ Expressing
1

n—ky—1

N5 interms of N gives the final function to be maximized

n—kl—l

1 n—k —i—1
e . _ !
flx)y=z—kaz*+ (1 x)n—kl ;:1 e —

To obtain the correct bound, we need to formulate the sidelition of p¥' being the
smallest factor. l.e. the number of required oracle calless than for the smallest factor
of the rest. By the hypothesis the remaining prlmes are bebhrand have exponents

k; = 1. The size ob, (i > 2) is therefore equal t&V,' ~ T — N+h =2y and the number of

oracle calls for the first prime of the rema|n|ng4sM (1 ’“,;f) log N. The required
side condition is therefore:

n—kl n—kl
(16)
n—kl—l
0<
_(n—kl)Q—kl *

Using an appropriate method for solving optimization peold with inequalities as side
conditions (e.g. Karush-Kuhn-Tucker), the computatioovehthat the maximum is at-
tained forz = L andk; = 1.

Dividing N by p; leaves us withV, = N5 By the hypothesis the worst case ¥

il;sthelbalanced, therefope = N® with b = =1 . L. — 1. Further by the hypothesis
This completes the proof. O
References

[BDHG99] D. Boneh, G. Durfee, and N. Howgrave-Graham. thg)szkq for Large r, Ad-
vances in Cryptology, CRYPTO’'9%pringer, LNC$S1666:326—-337, 1999.

[BS02]
[Cop9s6]

[Cop97]

[Cor04]

[May07]

[RS86]

[SKKOO06]

D. Boneh and H. Shacham. Fast variants of RSA, 2002.

Don Coppersmith. Finding a Small Root of a Bivariateger Equation; Factoring with
High Bits Known. INEUROCRYPJTpages 178-189, 1996.

D. Coppersmith. Small Solutions to Polynomial Bépres, and Low Exponent RSA
Vulnerabilities. Journal of Cryptology10(4):233—-260, 1997.

Jean-Sébastien Coron. Finding Small Roots of igat@ Integer Polynomial Equations
Revisited. In Christian Cachin and Jan Camenisch, edEWROCRY P volume 3027
of Lecture Notes in Computer Scienpages 492-505. Springer, 2004.

Alexander May. Using LLL-Reduction for Solving RSa#d Factorization Problems:
A Survey. LLL+25 Conference in honour of the 25th birthday of the LLgaithm,
2007.

RL Rivest and A. Shamir. Efficient factoring based amtipl information. EURO-
CRYPT'85 pages 31-34, 1986.

Bagus Santoso, Noboru Kunihiro, Naoki Kanayanmal Kazuo Ohta. Factorization of
Square-Free Integers with High Bits Known. In Phong Q. Ngugelitor, VIETCRYPT
volume 4341 oL ecture Notes in Computer Sciengages 115-130. Springer, 2006.

