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Abstract. The recent successful attack on the widely used hash function, the MD5 Message Digest
Algorithm, was a breakthrough in cryptanalysis. The original paper, published in 2004 by Wang et
al., described this attack in an obscure and elliptical manner. Hawkes, Paddon, and Rose subsequently
presented the attack in more detail, but even their paper contained numerous unproven statements
and several significant errors. In a seven-step process, this paper will explicate their work, prove many
of their assertions, and provide original corrections and illustrations to make the differential attack
on MD5 more accessible to the mathematically literate reader. First, this paper will augment their
introductory material by comparing their unorthodox description of MD5 to the original notation of
Ron Rivest. Second, it will provide original examples for conditions that they present for the 7. Third,
it will elaborate on the description of the first block of the differential, showing why and how the
conditions on the T} are determined. Fourth, it will develop a step by step analysis of the description
of the second block of the differential based only on the table that Hawkes, Paddon, and Rose provide.
Fifth, it will supply original proofs of their assertions regarding the conditions for the propagation of
the differences through the f; functions for the first block. Sixth, it will give both assertions and proofs
for the propagation of the differences through the f: functions for the second block. Finally, it will
correct two significant errors in the work of Hawkes, Paddon, and Rose. It will demonstrate that the
complexity of the attack is only about half as great as they believed, and it will show that their Case
Two does not succeed in fulfilling the conditions required for the collision differential to hold.
Keywords: MD5, Collision, Hash function, Differential cryptanalysis.

1 Introduction

For thirteen years, no one was able to find a collision for the cryptographic hash function MD5 [1]. The
successful attack demonstrated by X. Wang, D. Feng, X. Lai, and H. Yu in 2004 [2] represented a significant
achievement in cryptanalysis. After their paper was published, cryptographers struggled to comprehend the
elusive attack. A year later, Hawkes, Paddon, and Rose [3] developed a method to explicate the collision that
Wang et al. had found, yet even their paper was terse and schematic, and it contained several important
errors. This paper utilizes a step-wise approach and employs a variety of original techniques to make the
differential attack on MD5 more comprehensible to a wider audience.

The two-iteration attack on MD5 consists of finding two messages, each two blocks (1024 bits) in length,
that produce identical 128-bit message digests. Processing the first block of each message produces a small
difference, which is eliminated in processing the second block. The vast majority of the conditions that Wang
et al. set for the attack occur in round 1 of each iteration. These conditions preclude a second pre-image
attack. Using single-message modification, however, two messages can be created in such a way as to fulfill



every condition in the first round of each iteration. Thus, in calculating the complexity of the attack, only
conditions for rounds 2 to 4 need to be considered. We will show that the complexity of the attack is 242.

This paper is organized as follows. Section 2 presents a brief history of the cryptanalysis on MD5. Section 3
presents the notation that Hawkes, Paddon, and Rose used in explaining the attack. Section 4 provides the
new description of MD5 introduced in [3] and then compares this description of the algorithm to the original
description in [1]. Section 5 discusses the message construction necessary for the attack to succeed. Section 6
supplies original examples for the conditions on the T; presented in [3] and describes the differential for both
the first and second blocks, demonstrating how a collision is obtained at the end of the attack. It also specifies
the probabilities that the T} will hold in each step. Section 7 presents the conditions for the propagation of
the differences through the f; functions for both the first and second blocks. Section 8 provides proofs for
all of the assertions made in section 7. Finally, section 9 describes various errors in [3], some trivial, some
minor, and two quite significant.

The original papers on the cryptanalysis of MD5 are only accessible to experts in the field. This paper
provides necessary explanations and fills in the gaps to make the attack more comprehensible to a larger
audience and to answer many questions which might naturally occur to educated readers. Many original
examples, explanations, illustrations, and corrections are provided. It is hoped that this paper will foster
understanding of a major mathematical achievement and facilitate further advances in the field.

2 Brief History of the Cryptanalysis on MD5

MD5 was designed by Ron Rivest in 1991 after it became apparent that MD5’s predecessor, MD4 [4], was no
longer secure. Rivest amended his earlier hash function by implementing a fourth round, by adding a unique
additive constant to each step, by changing G function in round 2 to make it less symmetric, by ensuring
that each step adds in the result of the previous step, by altering the order in which the input words are
accessed in rounds 2 and 3, and by attempting to optimize the magnitude of the shift function in order
to increase the avalanche effect. With these improvements, MD5 became one of the most widespread hash
functions ever created, yet it also became the target of much cryptanalytic research.

The first major accomplishment in the cryptanalysis of MD5 came in 1993 when B. den Boer and A.
Bosselaers [5] discovered the first pseudo-collision. Three years later, H. Dobbertin [6] found a collision for
MD5 using predetermined initial values and input words. It was not until 2004, however, that Wang et
al. discovered the first real collision for MD5. This paper sparked great excitement in the cryptographic
community, and many of the leading cryptanalyst sought to understand and expand on the collision attack.
Later in 2004, P. Hawkes, M. Paddon, and G. Rose presented one of the most comprehensive analyses into
how the collision in [2] was actually obtained. Early in the following year, X. Wang and H. Yu [7] presented
their method to find collisions in reasonable time. Also in 2005, J. Liang and X. Lai [8] improved on [7] by
removing unnecessary conditions and by discovering more efficient pathways, speeding up the attack about
30-fold. The following year, J. Black, M. Cochran, and T. Highland [9] further improved on [7] by providing
insight into both single and multi-message modification and by presenting new multi-message modification
techniques to make Wang and Yu’s attack even faster. Probably the best known cryptanalyst on MD5 after
Wang and Yu is V. Klima, whose 2005 publication [10] combined with a 2006 publication by M. Stevens [11]
to find an attack which succeeded in finding collisions in a matter of minutes. Then, in April of 2006, Klima
developed the fastest known attack on MD5 using a method known as tunneling [12]. His algorithm can find
collisions in an average of 17 seconds.



3 Notation

MDS5 is based on processing 32-bit words. We denote the i*" bit of a 32-bit word, a, as a;. Then, “A” represents
the bitwise AND operation with (a A b)[i] = a[i] A b[i], 0 < ¢ < 31, “V” represents the bitwise OR operation
with (a V b)[i] = ali] V b[i], 0 < i < 31, and “@” represents the bitwise exclusive-OR operation with (a
® b)[i] = a[i] ® b[i], 0 < i < 31. Also, addition and subtraction modulo 232 are represented by “+” AND
“”  respectively. In addition, we denote the bitwise complement of z as —z, so that ~z = 232 - 1 - z. The
ROTL"(X) function denotes the rotation of the bits in X by r positions to the left.

We also employ some shorthand techniques. When we consider several bit conditions, say, X[a], X[b],
X|c], and X[d], we denote is as follows:

Xla, b, ¢, d] = (X[a], X[b], X[c], X[d]).

We write the bits in descending order, and if bits are adjacent to one another, we may combine them. For
example,

Xla-b, c] = (X]a], X[a-1], ..., X[b + 1], X[b], X[c]).
If we want to set individual bits in a set to a specific value, then, for example, we may write:

Xla-b,¢c]=1X[a]=1,X[a-1]=1,.., X[b+1] =1, X[ =1, X][c], =

4 Description of MD5

We will now present how MD5 is described in [3] and demonstrate how the unorthodox description is
essentially the same as that of [1].

4.1 Padding

A message of arbitrary length is padded so that its length will be congruent to 0 mod 512.

4.2 Parsing

The padded message is divided into 512-bit blocks Mo, My, ..., My. Then each block, M; is divided into 16,
32-bit words MY, M| ... M,

4.3 Message Expansion

Each iteration of MD5 processes one, 512-bit message block, and the 64 steps of one iteration process each
of the 16, 32-bit words, Wy, exactly 4 times. The order in which the message words are processed for a single
iteration of MD5 is described below:

XY, Z)=(XAY)®(XAZ),0<t<15
XYZ) (ZAX)®D(ZAY), 16 <t <31;
)=XaYaZ, 32 <t < AT,
Y=Y @ (XVZ), 48 <t < 63.



Note that for each r, 0 < r < 3, the values of Wig,10, Wigri1, ..., Wigrs15 form a permutation in the words
of the message block.

This notation means that, for each iteration, the message words are applied in the following manner. In
the first round (steps 0 to 15), the message words are inputted into MD5 “in order,” so that My is the input
word into step 0, M; is the input word into step 1, Ms is the input word into step 2, and so on until My5 is
the input word into step 15. In the second round (steps 16 to 31), the message words are inputted into MDS5,
so that M4 5x16(mod16) = Msi(modie)y = Mi is the input word into step 16, M1 5x17(modi6) = Ms6(mod16)
= Mg is the input word into step 17, M5y 18(modi6) = Moi1(modie) = M1 is the input word into step 18,
and so on until Mjy5x31(modi6) = Mis6(modisy = Mi2 is the input word into step 31. In the third round
(steps 32 to 47), the message words are inputted into MD5, so that Ms 4 3%32(modi6) = M101(mod1s) = Ms is
the input word into step 32, that Ms_ 3x33(mod16) = Mi04(mod16) = Ms is the input word into step 33, that
M5 3x34(mod16) = Mio7(mod16) = M1 is the input word into step 34, and so on until that Mz, 3. 47(mod16) =
Mi46(mod16) = Ma is the input word into step 47. In the fourth round (steps 48 to 63), the message words are
inputted into MD5, so that M7y 48(modi6) = M336(modis) = Mo is the input word into step 48, M7y 49(mod16)
= M343(mod16) = My is the input word into step 49, M7y 50(modi6) = M350(mod16) = Mi4 is the input word
into step 50, and so on until M7y 63(mod16) = Masa1(mod16) = Mo is the input word into step 63.

4.4 Register Update

After each iteration of MD5, the intermediate hash values, IHV [0], IHV® [1], IHV [2], and IHV [3], are

updated, where each IH V(i) denotes the intermediate hash value before hashing the ith 512-bit block. The
four words, IH V0 [, are initialized to predetermined constants. We denote Qu¢—3, Qut—2, Qat—1, Qut, 1 <
t < 16, to be our chaining variables. They are initialized after the first iteration as

Qo = VL], Q_y = 1HVP[2], Q_, = IHVD[3), Q_y = IHVV[0].
Then, each IH ) [1] are calculated as follows:

VO[] = THVD[0] + Qgy, THV[3] = IHVID[3] + Qg
THV[2] = THV V(2] + Qgy, THVV[1] = IHVI" V(1] + Qg4

In other words, each IH V(i) [7] is the value of one of the four, 32-bit registers after i-1 iterations of the
compression function. Relating this notation to that of [1], we find that IH VI9[0] is equivalent to the chaining
variable a, IHV(Y[3] is equivalent to the chaining variable d, IHV(Y[2] is equivalent to the chaining variable

¢, IH V(Z)[l} is equivalent to the chaining variable b since MD5 operates on a, b, ¢, and d in the order a, d, c,
b. Consequently, each Q4;—3 is equivalent to a;, each Q442 is equivalent to d;, each QQ4:—1 is equivalent to
¢t, each Q4 is equivalent to b;. This means that, for example, Q17 = Quy5_35 = a5, Qss = Qux14_2 = di4,
Q31 = Quys_1 = cs, and Quq = Quy1; = b11. Thus, our calculations for the intermediate hash values,

HVO[0] = IHVD([0] + Qgy, IHVO[3] = IHVIV[3] + Qg
IHVD[2] = THVV(2] 4+ Qgs, IHVV[1] = IHVI D[] 4 Qga,

could be expressed as



IHV(?)[O] = IHV(Z}l)[O] + g, IHV(Z:)[?’] _ IHV(Z:—l)[?)] + oy,
IHV(Z)[Q] _ IH‘/(’L—I)[2] + ¢, IHV(Z)[I] _ IHV(Z_l)[l] .

We denote our calculations in the former way, however, because it facilitates our later presentation of Wang
and Yu’s attack.

Each round of MD5 consists of a 32-bit input word, W4, a left rotation by S(¢) € [0,31], a predetermined
32-bit constant, AC;, addition modulo 232, and a non-linear function, f;, which is defined as

F(X,Y,Z)=(XAY)® (X ANZ),0<t<15;
JGX)YY,Z)=(ZAX)D(ZAY), 16 <t <31,
R(X.Y,2) = HX,)Y,Z)=XaoY®Z, 32 <t < AT;
IX,)Y,Z)=Y & (X VZ), 48 <t < 63.

where each f; takes three, 32-bit words as input and yields one, 32-bit word as output. The compression
function modifies the register as follows:

Ti = fe(Qe, Qr—1, Qe—2) + Qi—3 + AC, + Wy;
Ry = ROTL*(T}); Q1 = Qi + Ry

After all 64 steps of an iteration are complete, the resulting values, Qgq, G2, @3, and Qgy are added
to IHV[0], IHV[3], IHV[2], and IHV[1] of the previous round, respectively. These four sums comprise the
new intermediate hash value. When the last message block is processed, the new intermediate hash value
becomes the message digest. Up until the last message block, the algorithm proceeds to update the registers
using the next message block.

Relating this to [1], each W; represents X [k], each S(t) represents < s, each AC; represents T'[i], and
each f; represents either F, G, H, or I, where the order in which the input words are used is described above
and values for the left rotation and the constants are predetermined. Furthermore, the value of (11, which
is expressed in [3] as

Qi1 = Q1 + ROTLS D (f,(Q4, Qi—1,Q1—2) + Q1—3 + AC;, + W)

is more familiarly represented as

aiv1 = b + ((ai + ¢(bi,ci,di) + X[k] + T[i]) < s),
dig1 = ¢i + ((bs + O(ciydiyai1) + X[k] + T[i]) < s),
civ1 = di + ((ci + O(di, @iy, biv1) + X[k] + T[i]) < s),
biv1 = air1 + ((di + ¢(ait1,biv1,cip1) + X[k] + T[i]) < s).

where could be the F, G, H, or I function. The values of Qg;, @2, @3, and Qg4 are equivalent to aigs, dig,
c16, big, respectively, They are added to the intermediate hash value of the previous round to obtain the
new intermediate hash value.
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5 Message Construction

The collision found in [7] consists of two message blocks of data where the first message is comprised of
(M | N) and the second message is comprised of (M’ | N'). When split into 32-bit words, (My, My, ..., Mis |
No, N1, ..., Ni5) and (M, M, ..., My5 | Ny, Ny, ..., Nj5), the following conditions must be satisfied according
to [7):

M4 - M4 = i231, M{I - Mll = +215, M{4 - M14 = i231, MZ/ = Mi OtheI‘WiSG,
Nli - N4 = :|:231, Nil - N11 = —215, N{4 - N14 = :|:2317 Nll = Nl otherwise.

The message expansion transforms the message block into the input word sequence Wy, 0 < ¢ < 63. For
the first message blocks M and M’ we have:

W, - Wy = Wiy - Waz = Wi, - War = Wy - Weo = £231,
Wl/l - W11 == Wllg - W18 == Wé4 - W34 == Wél - W61 = +215,
Wiy - Wiy = Whs - Wag = Wiy - Was = Wiy - Wso = £231,

and W; = W;. For the second message blocks N and N, we have:

Wi - Wy = Wiy - Wag = Wiz - War = W - Weo = £2%,
Wiy - Wiy = Wig - Wig = Wi, - Wy = W{, - We = =217,
Wiy - Wig = Wig - Was = Wig - Was = Wiy - Wso = 4231,

and W/ = W;. Note that for all four of the AW, which are equal to £23!, Wang and Yu asserted that these
AW; are equal to +23!. This is not an inconsistency, however, since £23! = 423! (mod 232).

To verify that the only non-zero differences occur with Wy, Was, Wsr, Wso, W11, Wis, Wi, We1, Wiy,
Was, Wss, and Wiy for both blocks, we note the following. From [7], we know that the only differences in
the original message are in My, My, and M;,. Because we have that

FX,Y,Z)=(XAY)® (X NZ),0<t<15
Jax,v,2)=(ZAX)®(ZAY), 16 <1< 31;

XY D)= gixv. 2 =xovez 32 < t <47
I(X,Y,2) =Y & (X VZ), A8 <t < 63.

we must find three values of t for each round such that the result of the addition and reduction modulo 16
is equal to 4, 11, or 14. For the first round, it is obvious that ¢ = 4, 11, 14. Thus, the only differences are in
Wy, W11, and Wiy4. For the second round, we find that ¢ = 23, 18, 25 since

145 x 23 (mod 16) = 116 (mod 16) = 4,
145 x 18 (mod 16) = 91 (mod 16) = 11,
145 x 25 (mod 16) = 126 (mod 16) = 14.

Thus, the only differences are in Wa3, Wig, and Was. For the third round, we find that ¢ = 37, 34, 35 since

5+3 x 37 (mod 16) = 116 (mod 16) = 4,
5+3 x 34 (mod 16) = 107 (mod 16) = 11,
5+3 x 35 (mod 16) = 110 (mod 16) = 14.



Thus, the only differences are in W37, W34, and Wss. For the fourth round, we find that ¢ = 60, 61, 50
since

7 x 60 (mod 16) = 420 (mod 16) = 4,
7 x 61 (mod 16) = 427 (mod 16) = 11,
7 x 50 (mod 16) = 350 (mod 16) = 14.

Thus, the only differences are in Wgo, Wg1, and Wiyg.

6 Description of the Differential

In describing the first and second blocks of the differential, we use the following equations:

0Ty = 0f1(Qt, Qr—1,Qi—2) + 0Q¢—3 + dW;,
0Q1 = 0Q; + 0 Ry.

Note that since the AC; are predetermined constants, AAC; = 0, so we have not inserted AAC; in our
calculation of AT;.

Tables 1 and 2 on the following two pages summarize the differential in [7] for the first and second blocks,
listing the values of AQy, Afi, AQi—3, AWy, S(t), and AR;. The columns of AQ;, Afy, AQi—3, AW, and
AR give the result of the appropriate add-difference. For example, AQ; = @} - Q; (mod 232). To save space,

, +
e a difference of the form +27 is denoted j, and

o a difference of the form —27 is denoted ;.

Note that since —23! = +23! = 423! we usually input “£” in front of bit 31. The only time that the
congruency does not hold is when bit 31 is rotated to some other bit position. In this case, we must distinguish
between —23! and —23' by setting a condition. Also note that the propagation of the differences through
the f; functions will be discussed in section 7.

6.1 Conditions on T}

In creating table 1, it is necessary that we place restrictions on T; to ensure that the rotation of T3, i.e., Ry, will
produce the correct add-difference. We impose three restrictions on T; and provide examples to explain them.

Condition I:

e A given add-difference usually must not propagate past the bit position for T; which is rotated to bit
R[31]. Otherwise, the rotation will carry that add-difference to low order bits, which will result in the
wrong add-difference for R;.

To understand what this means, consider the following example. Suppose that T, = 428. Also, suppose that
S(t) = 22, so upon rotation, we should have R; = 42822730 = 239 T} could be written as

AT, = 00000000000000000000000 + 00000000.
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Afi + AQi—s + AWy, and

AQi—1 + ARi—1, AT,

ROTLSW(ATy) .

Table 1. The first block of the differential. Recall that AQ:

(most of the time) AR,



t §Qt 6ft 5Qt—3 5Wt 6Tt S(t) (SRt
+ + + +
0 31,25 31 31 7
+ + + + + + +
1 31,25 31 31,25 25 12 5
+ 4+ + + + 4 + + + o+
2 31,25,5 25 31,25 31,26 17 16,11
+ + + + + + - + - = + + - - - - - -
3 31,25,16,11,5 31,27,25,21,11 31,25 26,21,1 22 16, 11,
+ + 4+ — + + - — 4 + + + + + + - + + -+ — 4+ + +
4 31,25,5,1 30,26,18, 3,1 31,25 31 30, 26,25,18,2,1 7 25,10,8,5,1,0
+ + - + + + + - - - - - - + + + - - - - - - = =+ = =
5 31,10,8,6,0 | 30,28,26,25,20,8,5,4 31,25,5 30, 28,26,20,8,4 | 12 | 20,16,10,8,6,0
+ - = - - = = - -+ + + + + + e - + + -
6 31,20,1 5,21,16,11,10,5,3 | 31,25,16,11, 5 31,21,10,3 17 7,20,16, 6
£+ - - + - + £ + 4 - -+ + + - + = + +
7 31,27, 6 31,27,1 31,25,5,1 27,25,16,5,1 22 27,23,17,15,6
+ - - 4 + + - + 4+ - - + - + 4+ + + + + + + 4+ +
8 31,23,17,15 25,16, 6 31,10,7,6,0 31,25,16,9,8,0 7 23,16,15,6,0
+ + 4+ + - 4+ 4+ + — - = + + - —
9 31,6,0 31,26, 16,0 31,20,1 6,20, 0 12 12, 6,0
+ + + 4 + - - — —
10 31,12 31,6 31,27,6 7 17 12
+ + + - - + — - = - —
11 31 31 31,23,17,15 | 15 23,17 22 13,
+ - - + + + + + + 4+ + + + +
12 31,13, 7 31,17 31,6,0 17,6, 0 7 24,13,7
+ + + - + + — —
13 31,24 31,13 31,12 12 12 2
+ + + + + + 4+ + +
14 31 30,18 31 31 30,18 17 15,3
+ 4+ + + - + — - - - - - —
15 31,15, 3 31,25 31,13, 7 25,13, 7 22 29,15, 3
+ — + + + + +
16 31,29 31 31,24 24 5 29
+ + +
17 31 31 31 9
+ + + + - + +
18 31 31 31,15, 3 15 3 14 17
+ + + + — — —
19 31,17 31 31,29 29 20 17
+ + +
20-21 31 31 31
+ + + + + +
22 31 31 31,17 17 14 31
+ +
23 31 31 20
+ +
24 31 31 5
+ +
25 31 31 9
26-33
— — +
34 15 15 16 31
+ + +
35 31 31 31 23
+
36 31 4
+ + +
37 31 31 31 11
+ + +
38-49 31 31 31
+ + +
50 31 31 31 15
+ + +
51-59 31 31 31
+ + +
60 31 31 31 6
+ + + — —
61 31 31 31 15 15 10 25
+ — + +
62-63 31,25 31 31

Table 2. Sequence of add-differences for rounds 16 to 63 of the second block. Recall that AQ: = AQ¢—1 + AR:—1,
AT, = Afy + AQi—3 + AW,, and (most of the time) AR, = ROTLY(AT).
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Upon applying S(t), we have
AR; = 0+ 000000000000000000000000000000.
This is desired since AR, = +28+22=30 — 1930 T could also be written as
AT, = 0000000000000000000000 + —00000000
since ATy = +2° - 28 = 428, Upon applying S(t), we have
AR; = + — 000000000000000000000000000000.
This would also suffice since AR, = +23! - 230 = 4230 But T, could be written as
AT; = 000000000000000000000 + — — 00000000
since ATy = +210 - 29 - 28 = 498 However, upon applying S(t), we have
AR; = — — 00000000000000000000000000000+.

But this is equal to —231 - 230 4 20 = 239 4 20 (mod 232), which is not what we wanted. As we stated
earlier, the add-difference must not propagate past the bit position for 7; which is rotated to bit R;[31] since
the rotation would carry that add-difference to low order bits. That is exactly what happened during the
last part of the example. For the first two parts, the add-difference did not propagate past the bit position
for T; which is rotated to bit R:[31], so there was no problem. For the last part, however, the add-difference
propagated past the bit position for T; which is rotated to bit R:[31], so there was a carry to a low order
bit, which resulted in the wrong add-difference for R;[31].

Condition II:

e A given add-difference may sometimes have to propagate past a certain bit position in 7T} to ensure that
the rotation will carry to low order bits in order to obtain the correct add-difference for R;.

This means is that sometimes it is useful for a bit to be rotated so that it carries to a low order bit in order
to cancel out another low order bit. Suppose, for example, that we would like to cancel out the —2° term of
@: in our calculation of

AT, = +212 4 24 4 22
and a shift of magnitude 19 for step ¢. If we apply the shift function, we would get
AR, = £212H19=31 | 94+19=23 | 92419=21 _ 1931 | 923 | 921
which clearly cannot cancel out —2°. However, suppose we write our add-difference of AT; as
AT, = 4213 2912 | 94 | 92,
This is, of course, the same value for AT} since
AT, = (+213 2 212) 4 24 4 22 = 4212 4 24 4 22,
But, expressing AT} in this manner will give us

ARt — +213+19:32£0(mod32) _ 212+19:31 + 24+19:23 + 22+19:21 — 7231 + 223 + 221 + 20.
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Since AQy11 = AQ; + ARy, the —2° term of AQ, will be cancelled out by the 4+2° term of AR;.

Condition III:

e An add-difference must not propagate past bit 31 before rotation since this will yield in an undesirable
result.

For example, suppose that the desired add-difference is AT; = —2%° and that T}[j] = 0, 25 < j < 31. Then,
the second message will have T/[j] = 1, 25 < j < 31, since

ATy =T - T, = 2% + 226 4 227 4 228 4 929 4 930 4 931 = 925 (;od 232).
Now suppose that S(t) = 12. Applying the rotation, we should have AR, = —225+12=37=5(mod32) _ _95
However, for our example, we have

Z 49it12 (mod 32) __ Z+2J‘

7j=25
But this is not the desired add-difference since
ARy = 425 + 26 4+ 27 4 28 4 29 4 210 4 211 — 421295 £ 95,

Thus, we must ensure that that this add-difference does not propagate past bit 31, so we must have that
at least one bit of T;[j], 25 < j < 31, be equal to 1. Consider the following example. Suppose for our add-
difference AT; = —225 that T;[j] = 0, 25 < j < 30, and that 73[31] = 1. Then, the second message will have
T{[j] =1, 25 < j < 30, and T/[31] = 0 since

ATy, = T] - Ty = 425 + 226 4 227 4 928 4 929 4 230 931 — 225,

_925+12=37=5(mod32) _ _95

Suppose again S(¢) = 12. Applying the rotation, we should have R; = , and, for

our example, we have

31
AR, = Z 4it12 (mod 32) _ 931+12(mod32) _ 2_1_2]
Jj=25

which is exactly what we wanted since

ARy = 2% 4+ 26 427 428 1 29 1 210 4 o1l — _95

6.2 Description of the First Block of the Differential

Steps 0 to 3:

~Af, = AQy_5 = 0, AW, = 0.

— AT, = Afy+ AQi—s3+ AW, =0+0+0=0.
— Condition(s) on AT}: none

— ATt:0:>ARf:0
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— AQ41 = AQy + AR, =0+ 0=0.
Step 4:

— AQ4 = 0.

Af4 = 0, AQl = O7 and AW4 = —231.

— ATy = Afs+ AQq + AWy =0 + 0 + (-231) = 231,
Condition(s) on ATy:

— ATy[31] = 1 ensures that the add difference is -23! (condition III). The probability that this condition
holds is (271) since ATy[31] = 1 rather than ATy[31] = (0, 1).

S(4) =7, so ATy = -231 = AR, = -231+7=38=6(mod32) — 96
— AQs = AQq + ARy =0 + (-2°) = -26.

Step 5:

— AQs = -25.
— Af5 = +219 =+ 211, AQQ = 0, and AW5
ATy = Afs + AQy + AWs = (+219 + 211 + 0 + 0 = +219 4 214
— Condition(s) on ATs:
o A= (+2'9 4+ 21 must not propagate past bit 19 since we do not want to affect low order bits upon
rotation (condition I). The probability that this condition holds is 271 x (1 - 27%) since T5[19] = 0
and 0 € T5[18 - 11] to ensure there is no propagation past bit 19.
° 5(5) — 12, SO AT5 — +219 + 211 = AR5 — +219+12:31 + 211+12:23 _ +231 + 223.
o AQs = AQs + AR5 = (-25) 4 (423! + 223) = £231 4 223 _ 26,

Step 6:

— AQg = 231 4 223 _ 26,

Afﬁ = —214 - 210, AQg = O, and AWG = 0.

AT = Afs + AQs + AW = (21 - 219) 4+ 0 + 0 = 214 - 210,
— Condition(s) on ATg:

o A = (-2') must propagate to bit 15 since we want to affect bit 0 upon rotation (condition II). Thus,
-2 is rewritten as -2'° + 214, The probability that this condition holds is 271 since having Tg[14]
= 0 will ensure the appropriate propagation.

o A = (-219) must not propagate past bit 13 (bit 14 has already been specified) since we do not want
to affect any more low order bits upon rotation (condition I). The probability that this condition
holds is (1 - 27%) since 1 € Tg[13 - 10] to ensure there is no propagation past bit 13.

_ S(G) _ ]_77 SO ATG _ _215 4 214 _ 210 = AR(} _ _215+17:3220(mod32) 4 214+17:31 _ 210+17:27 — +231 _
227 _ 20,
— AQ7 = AQs+ ARg = (£231 + 223 - 26) 4 (231 - 227 _ 20) = 227 4 923 _ 96 _ 20,
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e the add-differences (£231) and (+23!) cancel each other out modulo 232.
Step T:

— AQy = -227 4 223 .26 _ 20,

Afy = -227 925 1 916 1 910 L 95 _ 92 AQ, = 0, and AWy = 0.

— ATy = Afr + AQy + AWy = (-227-225 1216 1 210 1 95 _92) 4 (0 4 (0 =-227 - 2% 4 216 4 210 4 95
- 22,

— Condition(s) on AT:

o A = (-227-225 4 216) must not propagate past bit 31 since we do not want to affect lower order bits
(condition IIT). The probability that this condition holds is (1 - 275) x (1-272) x (1 -27?) since 1
€ T[31 - 27], 1 € T%[25, 25], and 0 € T%[24 - 16] to ensure there is no propagation past bit 31.

o A = (+2'9 + 25) must propagate to bit 11 since we want to affect bit 1 upon rotation (condition
I1). Thus, +2'0 4 25 is written as +2'% - 29 - 28 - 27 _ 26 _ 25, The probability that this condition is
275 since T%[9 - 5] = 1, where each of the five bits contains a 27! chance of being a 1.

e A = (-2?) must not propagate past bit 9 since we do not want to affect any more low order bits upon
rotation (condition I). The probability that this condition holds is (1 - 27%) since 1 € T%[9 - 2] to
ensure there is no propagation past bit 9.

— S(7) = 22,50 ATy = -2%7 225 4 216 ol _ 99 98 97 _96_25_22 o

AR, = —92T+22=19=17 _ 925+422=47T=15 | 916+22=38=6 | 911+22=33=1 _ 92+22=24
4 (—20+22=81 _ 98422=80 _ 9T+22=20 _ 96422=28 _ 95+22=27)

:+227
= 4277 — 2% — 21T _ 215 4 26 4 o1,

— AQs = AQ7 + ARy = (-2%7 4228 - 26 - 20) 4 (4:227 - 224 - 217 . 215 1 96 4 21) = 223 _ 217 _ 215 4 20,
e the add-differences (-227) and (4227) cancel each other out,
e the add-differences (+22%) and (-224) combine to yield (-2%?3),
o the add-differences (-26) and (+2°) cancel each other out, and
e the add-differences (-2°) and (4+2!) combine to yield (+2°).

Step 8:

_ AQS — _223 _ 217 _ 215 + 20.
Afg = 42312224 4 216 1 210 4 98 4 96 AQy =-26, and AWy = 0.
ATy = Afs + AQs + AWy = (4231 - 224 4 216 4 210 4 98 4 26) 4 (-26) 4+ 0 = £231 - 224 4 216 4
210 4 28,
o the add-differences (+2°) and (-2°) cancel each other out.
— Condition(s) on ATg:
o ATg[31] = 1 ensures that the add difference is -23! (condition IIT). The probability that this condition
holds is (271) since ATg[31] = 1 rather than AT5[31] = (0, 1).
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o A= (-224 4 216 1 210 4 28) must not propagate past bit 24 since we do not want to affect low order
bits upon rotation (condition I). The probability that this condition holds is (271) x (1 —278) x
(1-27%) x (1 —272) since T3[24] = 1, 0 € T3[23 - 16], 0 € Tx[15 - 10], and 0 € T3[9, 8] to ensure
there is no propagation past bit 24.

_ 5(8) =7, s0 ATS — 931 _ 924 + 916 + 910 + 28 — ARS —_ _231+7:3826(mod32) _ 924+7=31 + 916+7=23 +
QLO+7=17 | 98+7=15 _ 931 4 923 | 917 | 915 _ 96
_ AQQ — AQg + ARg — (_223 _ 217 _ 215 + 20) + (_231 + 223 + 217 + 215 _ 26) — i231 _ 26 + 20-

e the add-differences (-22%) and (+223) cancel each other out,

e the add-differences (-217) and (+2!7) cancel each other out, and

e the add-differences (-2'°) and (+2'%) cancel each other out.

Step 9:

— AQg = 4231 - 26 4 90,
— Afg = 4231 4226 923 _ 920 4 96 4 90 AQg = £231 4 223 - 26 and AW, = 0.
— ATy = Afy + AQe+ AWy = (£231 + 226 - 223 _ 920 4 96 4 90) + (£23! + 22 - 20) 4 0 = 4226 - 220
+ 2°.
e the add-differences (£23') and (+23!) cancel each other out modulo 232,
e the add-differences (-223) and (4223) cancel each other out, and
e the add-differences (+25) and (-26) cancel each other out.
— Condition(s) on ATy:
o A = (+226 - 220) must not propagate past bit 31 since we do not want to affect lower order bits
(condition IIT). The probability that this condition holds is (1 - 276) x (1 - 275) since 0 € Tp[31 -
26] and 1 € Ty[25 - 20] to ensure there is no propagation past bit 31.
o A = (+2%) must not propagate past bit 19 since we do not want to affect any more low order bits
upon rotation (condition I). The probability that this condition holds is (1 - 272°) since 0 € Tp[19 -
0] to ensure there is no propagation past bit 19.
_ 5(9) =12, so ATQ — +226 _ 920 4 20 ARQ — +226+12:38£6(mod32) _ 220+12:32£0(m0d32) 4 90+12=12
=422 4 26 - 20,
— AQ1o0 = AQg + ARg = (231 - 26 + 29) + (4212 4 26 - 20) = 4231 4 212,
e the add-differences (-26) and (+26) cancel each other out.
o the add-differences (+2°) and (-2°) cancel each other out.

Step 10:

— AQ1p = 4231 4 212

~ Afio = -223 4 218 1 96 4 90 AQ, — 227 4 923 _ 96 _ 90 and AW, = 0.

ATyo = Af1o + AQ7 + AWy = (-223 4 213 4 26 4 20) 4 (=227 4223 _ 26 _ 20) 4 0 = -227 + 213,
e the add-differences (-223) and (+223) cancel each other out,
e the add-differences (+25) and (-2°) cancel each other out, and
o the add-differences (+2°) and (-2°) cancel each other out.

— Condition(s) on ATj:
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e A = (-227) must not propagate past bit 31 since we do not want to affect lower order bits (condition
III). The probability that this condition holds is (1 - 27°) since 1 € T1o[31 - 27] to ensure there is
no propagation past bit 31.
o A = (4+2'3) must not propagate past bit 14 since we do not want to affect any more low order bits
upon rotation (condition I). The probability that this condition holds is (1 - 272) since 0 € T}o[14,
13] to ensure there is no propagation past bit 14.
_ S(lo) =17, so ATy = 927 4 213 ARy = _227+17:44512(mod32) 4 913+17=30 _ +230 - 912
— AQu = AQio + ARy = (£23" +2%) + (4290 - 2'2) = £231 4 2%,
o the add-differences (+2'2) and (-2'2?) cancel each other out.

Step 11:

— AQll — i231 + 230.
— Afi1 =-28-20, AQg =-223 - 217 - 215 4 20 and AW, = +215.
— ATy = Afin 4+ AQs + AWy = (28 - 2°) 4 (-22% - 217 - 215 4+ 20) + (4:215) = 223 - 217 - 28,

e the add-differences (-2'°) and (42!°) cancel each other out, and

o the add-differences (-2Y) and (+2°) cancel each other out, and

— Condition(s) on ATjy:

o A = (-2% _ 2!7) must not propagate past bit 31 since we do not want to affect lower order bits
(condition IIT). The probability that this condition holds is (1 - 279) x (1 - 275) since 1 € T11[31 -
23] and 1 € T71[22 - 17] to ensure there is no propagation past bit 31.

e A = (-2%) must not propagate past bit 9 since we do not want to affect any more low order bits upon
rotation (condition I). The probability that this condition holds is (1 - 272) since 1 € T1;[9, 8] to
ensure there is no propagation past bit 9.

_ S(ll) =922 so ATy, = _923 _ 917 _ 98 _ ARy, = _223+22:45213(mod32) _ 217+22:39E7(mod32) _ 98+22=30
— _230 _ 213’ _ 27.
— AQiz = AQu + ARy = (4231 4 230) 4 (:230 . 213 L 97T) — 4931 _ 913 _ 97,
o the add-differences (+23%) and (-23°) cancel each other out.

Step 12:

— AQp = £231 - 213 27,
- Afi2 = 49231 4 2I7 4 27, AQg = 4231 026 4 207 and AW75 = 0.
— ATyy = Afia + AQg + AWig = (£231 + 217 4+ 27) 4 (£231 - 26 4+ 20) + 0 = +217 4 26 + 20,

o the add-differences (£231) and (+23!) cancel each other out modulo 232, and

e the add-differences (+27) and (-2°) combine to yield (+26).

Condition(s) on AThs:

o A = (4217 + 26 + 29) must not propagate past bit 24 since we do not want to affect any more
low order bits upon rotation (condition I). The probability that this condition holds is (1 —278) x
(1—27) x (1—275) since 0 € T12[24 - 17], 0 € T12[16 - 6], and 0 € T12[5 - 0] to ensure there is no
propagation past bit 24.
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— S(12) = 7,50 DeltaT}s = +2'7 + 26 4+ 20 = ARy = 4217H7=24 4 96+7=13 4 90+7=7 — 1924 | 213
27,
— AQ1s = AQ12 + ARyp = (£231 - 213 - 27) 4 (422 + 213 4 27) = £231 4 224,
e the add-differences (£23!) and (423!) cancel each other out modulo 232,
e the add-differences (-2'%) and (+2'3) cancel each other out, and
e the add-differences (-27) and (+27) cancel each other out.

Step 13:

— AQus = 4231 4 224,
— Af1z = £231 - 213 AQqo = £23! + 22 and AWy3 = 0.
ATz = Af1z + AQro + AWz = (£231 - 213) + (£231 + 212) + 0 = -212,
e the add-differences (£23') and (£23!) cancel each other out modulo 232, and
o the add-differences (-2'3) and (+2!2) combine to yield (-212).
— Condition(s) on ATjs:
o A = (-2!2) must not propagate past bit 19 since we do not want to affect any more low order bits
upon rotation (condition I). The probability that this condition holds is (1 - 27%) since 1 € T13[19 -
12] to ensure there is no propagation past bit 19.
- 5(13) = 12, SO AT13 = -212 = Ang = —212+12=24 = —224. AQ14 = AQ13 + AR13 = (iQSl + 224) +
(-224) = +23%,
e the add-differences (+224) and (-22%) cancel each other out.

Step 14:

— AQqq = £23%.
— Afig = 2231 4 218 AQq; = £231 + 230 and AWy, = £231.
ATy = Afig + AQuy + AWy = (£230 4 218) 4 (£251 4 230) 4 (£231) = 930 4 218,
o the add-differences (£231) and (£23!) cancel each other out modulo 232, and
e the add-differences (+23%) and (£23!) combine to yield (-23°) modulo 232.
— Condition(s) on ATyy:
o A = (-230 + 218) must not propagate past bit 31 since we do not want to affect lower order bits
(condition IIT). The probability that this condition holds is (1 - 272) x (1 - 2712) since 1 € T14[31,
30] and 0 € T14[29 - 18] to ensure there is no propagation past bit 31.
— S(14) = 17, s0 ATyy = -230 4 218 = ARy, = -930+17=4T=15(m0d32) 4 9I8+17=35=3(mod32) — 915 4 93,
— AQi5 = AQus + ARyy = (£231) 4+ (215 4 23) — 4231 _ 915 4 93

Step 15:

— AQq5 = £231 - 215 4 23,
— Aflg, = :|:231 + 225, Ang = :|:231 - 213 - 27, and AW15 = 0.
— ATy5 = Afis + AQ12 + AWy = (£231 4 225) 4 (£231 - 213 - 27) 4 0 = 4225 - 213 _ 27,
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e the add-differences (£231) and (4:23!) cancel each other out modulo 232.
— Condition(s) on ATjs:

o A = (4225 - 213) must not propagate past bit 31 since we do not want to affect lower order bits
(condition IIT). The probability that this condition holds is (1 - 277) x (1 - 27'2) since 0 € Ty5[31 -
25] and 1 € T}5[24 - 13] to ensure there is no propagation past bit 31.

e A = (-27) must not propagate past bit 9 since we do not want to affect any more low order bits upon
rotation (condition I). The probability that this condition holds is (1 - 273) since 1 € T15[9 - 7] to
ensure there is no propagation past bit 9.

_ 5(15) =22, 50 AT15 _ +225 _ 9213 _ 97 AR15 _ +225+22:47515(m0d32) _ 213+22:35£3(m0d32) _ 9T+22=29
=-2%9 4 215 23,
— AQ1s = AQ15 + ARys = (£231 - 215 4 2%) 4 (-2%9 4 215 - 23) = 4231 - 929,
e the add-differences (-2'°) and (+2!%) cancel each other out, and
e the add-differences (+23) and (-2%) cancel each other out.

Step 16:

— AQIG = 4931 _ 929
— Afig = £231, AQq3 = £23! + 224 and AWy = 0.
ATy = Afig + AQ3 + AWig = (£231) + (£231 + 224) + 0 = +224,
o the add-differences (£23') and (+23!) cancel each other out modulo 232.
Condition(s) on AT}g:
o A = (4+22%) must not propagate past bit 26 since we do not want to affect any more low order bits
upon rotation (condition I). The probability that this condition holds is (1 - 273) since 0 € T16[26 -
24] to ensure there is no propagation past bit 26.
S(16) = 5, s0 ATyg = +224 = ARy = +224+5=29 — 4929,
AQ17 = AQ1s + ARye = (£2%1 - 2%9) + (+2%9) = £231.
o the add-differences (-22%) and (+22°) cancel each other out.

Step 17:

— AQy7 = £23%
Af17 = :|:2317 AQ14 = Zl:231, and AW17 =0.
- AT17 = Afl? + AQ14 + AW17 = (:|:231) + (:|:231) +0=0.
e the add-differences (£23') and (4+23!) cancel each other out modulo 232.
Condition(s) on AT}7: none
- AT17 =0= AR17 = 0.
— AQis = AQi7 + ARy7 = (£2°1) + (0) = £2°".

Step 18:

— AQus = +2%.
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- Aflg = :|:2317 AQ15 = :|:2‘ﬂ - 215 + 237 and Ang = +215.
— ATig = Afis + AQus + AWyg = (£231) + (£231 - 21% 4 23) 4 (421%) = +23.
o the add-differences (£23') and (£23!) cancel each other out modulo 232, and
o the add-differences (-21°) and (+2'%) cancel each other out.
— Condition(s) on ATjs:
o A = (+23) must not propagate past bit 17 since we do not want to affect any more low order bits
upon rotation (condition I). The probability that this condition holds is (1 - 271%) since 0 € Tyg[17
- 3] to ensure there is no propagation past bit 17.
— S(18) = 14, s0 ATyg = +2% = ARz = 423114 =17 = 4217, AQ19 = AQ15 + ARz = (£231) + (4+-217)
= 4231 + 217,

Step 19:

— AQqg = £231 + 217,
- Aflg = :|:231, AQlG = :|:231 - 229, and Ang = 0.
— ATig = Afig + AQig + AWyg = (£231) + (£231 - 229) 4 0 = 229,
o the add-differences (£23') and (4+23!) cancel each other out modulo 232.
Condition(s) on AThg:
o A = (-229) must not propagate past bit 31 since we do not want to affect lower order bits (condition
IIT). The probability that this condition holds is (1 - 272) since 1 € Tyg[31 - 29] to ensure there is
no propagation past bit 31.
_ 5(19) = 20, so AT19 = _929 Ang _ _229+20:49£17(m0d32) — 917
— AQ20 = AQ1g9 + ARyg = (£23! + 27) 4 (-2'7) = +23L
o the add-differences (+2'7) and (-2!7) cancel each other out.

Steps 20 and 21:

AQ, = £231,
Afy = £231 AQy_3 = +23!, and AW, = 0.
— AT, = Afi+ AQy—3+ AW, = (£231) + (£231) + 0 = 0.
e the add-differences (£231) and (4:23!) cancel each other out modulo 232.
Condition(s) on AT;: none
— ATt:()ﬁARtO
— AQi+1 = AQy + ARy = (£231) + 0 = £23%.

Step 22:

— AQqp = £23L.
— Afgr = £231 AQ19 = £23! 4+ 217, and AWy, = 0.
— ATy = Afag + AQ1g + AWay = (£231) 4 (£231 + 217) + 0 = 4217,
o the add-differences (£231) and (4:23!) cancel each other out modulo 232.
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— Condition(s) on ATss:

o A = (+2'7) must not propagate past bit 17 since we do not want to affect lower order bits (con-
dition I). The probability that this condition holds is (27!) since Tp[17] = 0 to ensure there is no
propagation past bit 17.

— 5(22) = 14, SO ATQQ = +217 = ARQQ = +217+14:31 = +231.
— AQ23 = AQa2 + ARgy = (£2%) + (£2%1) = 0.
e the add-differences (£23') and (4+23!) cancel each other out modulo 232.

Step 23:

- Af23 = 0, AQQO = :|:231, and AWQS = :|:231.
ATps = Afaz + AQz0 + AWag = 0 4 (£231) 4 (£231) = 0.
e the add-differences (£23') and (+23!) cancel each other out modulo 232.
Condition(s) on AT53: none
- AT23 =0= ARQ?, = 0.
— AQ2 = AQ23 + AR5 =0 + 0 =0,

Step 24:

— AQ24 = 0.
— Afoy = £231 AQo1 = £231, and AWoy = 0.
— ATyy = Afog + AQo1 + AWay = (£231) + (£231) + 0= 0.
e the add-differences (£231) and (4:23!) cancel each other out modulo 232.
— Condition(s) on ATy4: none
— ATy, = 0= ARy = 0.
- AQ25:AQ24+AR24:0+0:0.

Step 25:

— Afos =0, AQae = 231, and AWy = £231,
— ATps = Afos + AQ2e + AWas = 0 + (£231) + (£231) = 0.
e the add-differences (£231) and (4:23!) cancel each other out modulo 232.
— Condition(s) on ATy5: none
— ATy =0 = AR25 = 0.
- AQ26:AQ25+AR25:0+0:O.

Steps 26 to 33:
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- Afy = AQy3 = AW, = 0.

— AT, = Afi+ AQi—3+ AW, =0+ 0+ 0=0.
— Condition(s) on AT;: none

- ATt:()iARt:O

- AQt+1:AQt+ARt:O+O:0

Step 34:

— AQ34 = 0.

— Af3y =0, AQ31 = 0, and AW3y = +215.

— ATy = Afzy + AQz1 + AWay = 0 + 0 + (+219%) = +215.
Condition(s) on ATjy:

e A = (+2'%) must not propagate past bit 15 since we do not want to affect lower order bits (con-
dition I). The probability that this condition holds is (27!) since T3*[15] = 0 to ensure there is no
propagation past bit 15.

— 5(34) = 16, 50 ATyy = +21% = ARy, = 4215716=31 — 4931,
- AQ35 = AQ34 + AR34 =0+ (ﬂ:231) = £231

Step 35:

— AQs35 = +231.
— Afss = £231 AQs3p = 0, and AWss = £231,
— ATs5 = Afss + AQs2 + AWss = (£231) + 0 + (£231) = 0.
o the add-differences (£23') and (423!) cancel each other out modulo 232.
— Condition(s) on ATj35: none
- AT35 =0= AR35 = 0.
— AQs3 = AQ35 + AR35 = (:|:231) +0 =423,

Step 36:

— AQ3¢ = +231.

— Afss = 0, AQs3 = 0, and AWsg = 0.

- AT36:Af36+AQ33+AW36:O+O+0:O
— Condition(s) on ATs6: none

— AT36 =0= AR36 = 0.

— AQ37 = AQ36 + AR36 = (:|:231) +0=+23.

Step 37:



— AQs7; = +231,
Af37 = :|:2317 AQ34 = 0, and AW37 = :|:231.
— ATy = Afsr + AQzq + AWzp = (£231) + 0 + (£231) = 0.

o the add-differences (£23') and (+23!) cancel each other out modulo 232.

Condition(s) on AT37: none
- AT37 =0= AR37 = 0.
— AQss = AQ37 + ARz7y = (£231) + 0 = £231.

Steps 38 to 49:

AQ, = £231,
— Aft = :|:231, AQt_g = :|:231, and AWt = 0.
ATy = Afi+ AQu—3+ AW, = (£231) + (£231) + 0 = 0.

o the add-differences (£23') and (423!) cancel each other out modulo 232.

— Condition(s) on ATy: none
ATt:()iARt:O
- AQtJ’_l - AQt + ARt - (:|:231) + O - 0

Step 50:

— AQsp = +231.
Af50 = O, AQ47 = :|:231, and AW50 = :|:231.
— ATsg = Afsg + AQur + AWsg = 0 + (£231) + (£231) = 0.

e the add-differences (£23') and (423!) cancel each other out modulo 232.

Condition(s) on AT5g: none
— AT50 =0= AR{)O = 0.
AQs1 = AQs0 + ARsp = (£2%) + 0 = £2°1,

Steps 51 to 59:

- AQt = :|Z231.
Afy = £231 AQy_3 = +23!, and AW, = 0.
— AT} = Afit AQi—3+ AW, = (£2°1) + (£2°1) + 0 =0.

e the add-differences (£231) and (4:23!) cancel each other out modulo 232.

— Condition(s) on ATy: none
ATt:0:>ARt:0
- AQt+1 = AQt + ARt == (:l:231) + 0 = O

Step 60:

21
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— AQ(}O = 4231,
- Afﬁo = O, AQ58 = :|:231, and AW(;O = :|:231
— ATgo = Afeo + AQss + AW = 0 + (£2°1) + (£2°1) = 0.
e the add-differences (£23') and (423!) cancel each other out modulo 232.
— Condition(s) on ATgg: none
- ATgO =0= ARGO = 0.
- AQGl = AQGO + ARGO = (:|:231) + 0= :|:231.

Step 61:

— AQe1 = £23%.
— Afe1 = :|:2317 AQss = :|:2317 and AWg; = +215,
— ATg = Afer + AQss + AWy = (£231) 4 (£231) + (42'5) = +215,
o the add-differences (£23') and (423!) cancel each other out modulo 232.
Condition(s) on ATg;:
o A = (+2'%) must not propagate past bit 21 since we do not want to affect lower order bits (condition
I). The probability that this condition holds is (1 - 277) since 0 € AT;[21 - 15] to ensure there is
no propagation past bit 21.
— 5(61) = 10, SO ATﬁl = +215 = ARGl = +215+10:25 = +225.
— AQe2 = AQe1 + ARg1 = (£231) + (42%°) = £2%1 4 225,

Steps 62 to 63:

AQ, = +2%1 4 225,
Aft = :|:231, AQtfg = :|:231, and AWt = 0.
ATy, = Afi+ AQy 3+ AW, = (£231) + (£231) + 0 = 0.
o the add-differences (£23') and (423!) cancel each other out modulo 232.

Condition(s) on AT}: none
— AthoiARtZO
— AQi11 = AQy + ARy = (£231 + 2%) + 0 = 4231 4 225,

Assuming that all of our conditions are met, the final result of the differential for the first block is

AQgy = ATHV V0] = 231,
AQgz = ATHVWV[3] = +£231 4 225,
AQes = ATHV M [2] = 231 4 925,
AQgs = ATHVW[1] = +£231 4 225,

Thus, we have:
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ATHVW0] = ATHVO[0] + AQs
ATHVW[3] = ATHVO[3] + AQg2 = (0
ATHVW[2] = ATHVO[2] + AQg3 = (0
ATHVW[1] = ATHVO[1] + AQes = (0

+ 4+

The second block begins with

ATHVO[0] = (0) + (£231) = £231,
ATHVW[3] = (0) + (223 + 225) = 4231 4 225,
ATHVV[2] = (0) + (£23! + 225) = 4231 4 925,
ATHVW1] = (0) + (223 4 225) = +231 4 225,

6.3 Description of the Second Block of the Differential

Step 0:

AQo = ATHVM[1] = £231 4 2%,
— Afy = £231, AQ_5 = ATHVWY[0] = £23!, and AW, = 0.
ATy = Afy + AQ-5 + AWy = (£231) + (£231) + 0 =0.
e the add-differences (£23') and (423!) cancel each other out modulo 232.
— Condition(s) on ATy: none
ATO:O:>ARO:O.
AQ = AQo + ARy = (231 4 225) 4+ 0 = £231 + 225,

Step 1:

AQp = £231 + 225,
— Afy = 4231 AQ_y = ATHVW[3] = £231 + 225 and AW, = 0.
— ATy = Af) + AQ_o + AWy = (£231) + (4231 + 225) 4+ 0 = +2%5.
o the add-differences (£23') and (423!) cancel each other out modulo 232.
Condition(s) on AT}:

o A = (+22%) must not propagate past bit 31 since we do not want to affect lower order bits (condition
III). The probability that this condition holds is (1 - 277) since 0 73[31 - 25] to ensure there is no
propagation past bit 31.

_ S(l) =12, so ATl — +225 = ARl — +225+12=37E5(m0d32) — _,'_25.
— AQe = AQ; + ARy = (£23 + 225) + (4+25) = £231 4+ 225 4 95,

Step 2:

— AQy = 231 4 225 4 95,
— Afy =422 AQ_, = ATHVW[2] = £231 + 2% and AW, = 0.
— ATy = Afy + AQ_1 + AWy = (+2%) + (£231 + 22°) + (0 = £231 4 226,
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e the add-differences (+22°) and (+2%°) combine to yield (+229).
— Condition(s) on AT5:

o AT,[31] = 0 ensures that the add difference is 423! (condition IIT). The probability that this condition
holds is (271) since AT3[31] = 0 rather than T3[31] = (0, 1).

e A = (+225) must not propagate past bit 31 since we do not want to affect lower order bits (condition
II1). The probability that this condition holds is (1 - 27%) since 0 € T[31 - 26] to ensure there is no
propagation past bit 31.

_ 5(2) _ 17’ S0 ATQ _ +231 + 226 = AR2 _ +231+17:48516(m0d32) =+ 226+17:43511(mod32) _ +216 =+ 211'
— AQ3 = AQz + ARy = (+2°! + 2% 4 2°) + (420 4 2M) = +23! 4 2% 4 210 4 211 4 95,

Step 3:

_ AQ3 — j:231 + 225 + 216 + 211 + 25.
— Afy = 42312227 4 925 _ 921 _oll  AQ = ATHVI[1] = £231 + 225 and AW,
_ ATg — Af?, + AQO + AW?, — (:l:231 _ 227 + 225 _ 221 . 211) + (:|:231 + 225) +0= _226 _ 221 _ 211.
o the add-differences (£231) and (+23!) cancel each other out modulo 232, and
o the add-differences (-227), (+22%), and (+2%) combine to yield (-225).
— Condition(s) on ATj:
o A = (-226 - 221 _211) must not propagate past bit 31 since we do not want to affect lower order bits
(condition IIT). The probability that this condition holds is (1 - 27%) x (1 -275) x (1 - 2719) since
1 € T3[31 - 26], 1 € T3[25 - 21], and 1 € T5[20 - 11] to ensure there is no propagation past bit 31.

_ S(-?)) =22.50 ATg —_926 _921 _oll ARg —_ _226+22:48£16(mod32) _ 221+22:43£11(m0d32) _ 211+22:33£1(m0d32)

— _216 _ 211 _ 21.
—_ AQ4 — AQS + AR;; — (:|:231 + 225 + 216 + 211 + 25) + (_216 _ 211 _ 21) — :|:231 + 225 + 25 _ 21.
o the add-differences (+216) and (-2!%) cancel each other out, and
o the add-differences (+2'1) and (-2!!) cancel each other out.

Step 4:

— AQq = £231 + 225 2521,
COAfy = 4230 4 926 918 4 92 4 9l AQ, = 4931 4 2% and AW, = +231.
— ATy = Afy + AQy + AWy = (230 4 226 - 218 1 22 4 21) 4 (£231 4 2%%) 4 (£2%1) = 4230 + 226 4
225 _ 218 + 23 _ 21.
e the add-differences (£23') and (4+23!) cancel each other out modulo 232.
Condition(s) on ATy:
o A= (+230 4+ 226 4 225) must not propagate past bit 31 since we do not want to affect lower order
bits (condition IIT). The probability that this condition holds is (1 - 272) x (1 - 27%) x (271) since
0 € Ty[31, 30], 0 € T4[29 - 2°], and T4[25] = O to ensure there is no propagation past bit 31.
o A= (-2'8 + 23 _ 21) must not propagate past bit 24 since we do not want to affect lower order bits
(condition I). The probability that this condition holds is (1 - 277) x (1-271%) x (1 -272) since 1
€ Ty[24 - 18], 0 € Ty[17 - 3], and 1€ T4[2, 1] to ensure there is no propagation past bit 24.
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_ S(4) =7, 50 ATy = +230 + 926 + 925 _ 918 + 23 _9l AR, = +230+7:37E5(mod32) + 226+7:33£1(m0d32)
4 225+7:32£0(m0d32) _ 918+7=25 + 93+7=10 _ 91+7=8 _ 925 4 210 _ 98 + 25 4 ol + 20
_ AQE) — AQ4 + AR4 — (:|:231 +225 + 25 _21) + (_225 + 210_28 + 25 + 21 + 20) — :|:231 + 210_ 28 +
26 + 20,
o the add-differences (+22°) and (-22°) cancel each other out,
e the add-differences (+2°) and (+2°) combine to yield (+2°), and
e the add-differences (-2') and (+2') cancel each other out.

Step 5:

— AQs = 231 4 21098 4 96 4 90,
— Afs = 4230 4228 926925 220 98 95 2% AQ, = 423! + 2% + 25 and AW;.
— ATs = Afs + AQqy + AWy = (4230 + 278 - 220 - 225 - 220 98 . 95 _ 24) 4 (4231 +2%° 4 25) 4+ 0 =
_230 + 228 _ 226 _ 220 _ 28 _ 24.
e the add-differences (+23°) and (4:23!) combine to yield (-23°) modulo 232,
e the add-differences (-22°) and (+22°) cancel each other out, and
e the add-differences (-2°) and (+2°) cancel each other out.
— Condition(s) on ATs:
o A = (-239 4 228 _ 226 _ 220) myust not propagate past bit 31 since we do not want to affect lower
order bits (condition III). The probability that this condition holds is (1 - 272) x (1 -272) x (1 -
272) x (1-27%) since 1 € T5[31, 30], 0 € T5[29, 28], 1 € T5[27, 2°], and 1 € T5[25 - 20] to ensure
there is no propagation past bit 31.
e A = (-2% - 2%) must not propagate past bit 19 since we do not want to affect lower order bits
(condition I). The probability that this condition holds is (1 - 2712) x (1 - 27%) since 1 € T5[19 - §]
and 1 € T5[7 - 4] to ensure there is no propagation past bit 19.
_ 5(5) =12, so AT5 — _930 4 228 _ 926 _ 920 _ 98 _ 94 AR5 — _230+12:42210(mod32) 4 228+12:4028(mod32)
_ 926+12=38=6(mod32) _ 920+12=32=0(mod32) _ 98+12=20 _ 94+12=16 __ 920 _ 916 _ 910 | 98 _ 96 _ 90
— AQs = AQs + AR5 = (£231 +210-2% 4 26 4 20) 4 (-220 - 216 - 210 4 98 . 96 90) — 4931 _ 920 _ 216,
the add-differences (+2!°) and (-2!°) cancel each other out,
the add-differences (-2%) and (+2%) cancel each other out, and
the add-differences (+2%) and (-2°) cancel each other out.
the add-differences (+2°) and (-2°) cancel each other out.

o~~~ ~

Step 6:

_ AQG — :|:231 _ 220 _ 216'
— Afg=-225 921216 L 911 _ 910 _ 95 4 93 AQy = 4251 4 925 1 916 4 911 4 95 and AW = 0,
— ATy = Afs + AQs + AW = (-2%5 - 221 - 216 911 _ 910 _ 95 4 93) 4 (4231 4 225 4 216 4 211 4 25)
40 = £231 - 221 - 210 4 93,
e the add-differences (-22°) and (+22°) cancel each other out,
e the add-differences (-216) and (+2%) cancel each other out,
o the add-differences (-2'!) and (42!!) cancel each other out, and
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o the add-differences (-2°) and (42°) cancel each other out.
— Condition(s) on ATg:
o ATg[31] = 0 ensures that the add difference is +23! (condition III). The probability that this condition
holds is (27') since ATg[31] = 0 rather than T5[31] = (0, 1).
e A = (-22!) must not propagate past bit 31 since we do not want to affect lower order bits (condition
IIT). The probability that this condition holds is (1 - 2711) since 1 € Tg[31 - 21] to ensure there is
no propagation past bit 31.
o A = (-2'° 4+ 23) must not propagate past bit 14 since we do not want to affect lower order bits
(condition I). The probability that this condition holds is (1 - 27%) x (1 - 277) since 1 € T5[14 - 10]
and 0 € Tg[9 - 3] to ensure there is no propagation past bit 14.
_ S(G) = 17, so ATG _ +231 _ 921 _ 910 + 923 = AR(; — +231+17:48£16(mod32) _ 221+17:38£6(mod32) _
QL0+17=27 | 93+17=20 _ 927 4 920 | 916 _ 96
_ AQ7 — AQ6+ ARﬁ — (:|:231 _ 220 _ 216) + (_227 + 220 + 216 _ 26) — :|:231 _ 227 _ 26.
o the add-differences (-22°) and (-22") cancel each other out, and
o the add-differences (-216) and (+2!°) cancel each other out.

Step 7:

— AQ; = 231 - 227 _ 96,
— Afy = 4931 2927 4 916 AQ, — 49231 1 925 4 95 _ 91 and AW, = 0.
— AT; = Afr + AQq + AWy = (£231 - 227 4 216) 4 (1231 4 225 4 25 - 21) 4 0 = 227 4 225 4 216
25 - 21,
e the add-differences (£23') and (4+23!) cancel each other out modulo 232.
— Condition(s) on ATx:

o A = (-227 4 225 4+216) must not propagate past bit 31 since we do not want to affect lower order
bits (condition IIT). The probability that this condition holds is (1 - 27°) x (1 -272) x (1 - 279)
since 1 € Ty[31 - 27], 0 € T%[25, 25], and 0 € T%[24 - 16] to ensure there is no propagation past bit
31.

e A = (+2° - 2!) must not propagate past bit 9 since we do not want to affect lower order bits
(condition I). The probability that this condition holds is (1 - 27%) x (1 - 27%) since 0 € T%[9 - 5]
and 1 € Tr[4 - 1] to ensure there is no propagation past bit 9.

_ 5(7) =22, s0 AT7 — 927 + 925 + 216 4 25 _ 9l AR7 — _227+22:49517(mod32) 4 225+22:47El5(mod32)
1 9164+22=38=6(mod32) | 95+22=27 _ 91+22=23 _ 4927 _ 923 _ 917 | 915 | 96
— AQg — AQ7 + AR7 — (i231 _ 227 _ 26) + (+227 _ 223 _ 217 + 215 + 26) — i231 _ 223 _ 217 + 215-
o the add-differences (-227) and (+227) cancel each other out, and
e the add-differences (-2°) and (+26) cancel each other out.

Step 8:

— AQB — :t231 _ 223 _ 217 + 215'
— Afg = 4225 4 216 _ 96 AQy = +231 4 210 _ 98 1 96 4 90 4nd AW,
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— ATy = Afs + AQs + AWy = (+2%° + 216 - 26) 4 (4231 4 210 98 4 96 4 920y 4 = £231 4 225 4
216 4 210 28 4 20,

o the add-differences (-2°) and (+26) cancel each other out.

— Condition(s) on ATg:

e AT3[31] = 1 ensures that the add difference is -23! (condition IIT). The probability that this condition
holds is (27') since ATg[31] = 1 rather than T[31] = (0, 1).

e A = (+22%) must not propagate past bit 31 since we do not want to affect lower order bits (condition
III). The probability that this condition holds is (1 - 277) since 0 € Tg[31 - 25] to ensure there is no
propagation past bit 31.

o A = (+216 + 210 _ 28 + 20) must not propagate past bit 24 since we do not want to affect lower
order bits (condition I). The probability that this condition holds is (1-27%) x (1-27%) x (1-272)
x (1-27%) since 0 € Tg[24 - 16], 0 € Tx[15 - 10], 1 € T3[9, 8], and 0 € T3[7 - 0] to ensure there is no
propagation past bit 24.

_ 5(8) =17,50 ATS — 4931 + 925 + 916 + 210 _ 98 + 20 — ARS _ _231+7:38£6(m0d32) + 225+7:32£O(m0d32)
4 QI6+T=23 | 9l0FT=1T _ 98+7=15 | 90+7=7 _ 4923 4 91T oI5 | (97 _ 96} | 90 — 1923 | 917 _ 915 |
20 + 20,

— AQg = AQs + ARg = (£231 - 223 - 217 4 215) 4 (4223 4 217 _ 215 _ 26 4 90) = 4231 4 26 4 20,

o the add-differences (-22%) and (+223) cancel each other out,

o the add-differences (-2'7) and (+2'7) cancel each other out, and

e the add-differences (+2'°) and (-2'%) cancel each other out.

Step 9:

— AQy = 23 4 26 4 20,
Afg = £231 2926 4 916 | 90 A — 4931 _ 920 _ 916 and AW, = 0.
— ATy = Afg + AQs + AWy = (£231 - 226 4 216 4 20) 4 (£231 - 220 - 216) 4 0 = 226 - 220 4 20,

e the add-differences (£23!) and (4:23!) cancel each other out modulo 232, and

e the add-differences (+2'6) and (-2!%) cancel each other out.

Condition(s) on ATy:

o A = (-2%6 _ 220) must not propagate past bit 31 since we do not want to affect lower order bits
(condition IIT). The probability that this condition holds is (1 - 27¢) x (1 - 27%) since 1 € Ty[31 -
26] and 1 € Ty[25 - 20] to ensure there is no propagation past bit 31.

e A = (+2%) must not propagate past bit 19 since we do not want to affect lower order bits (condition
I). The probability that this condition holds is (1 - 272%) since 0 € Ty[19 - 0] to ensure there is no
propagation past bit 19.

_ S(g) =12, so ATQ — 926 _ 920 + 20 — ARQ _ _226+12:38£6(m0d32) _ 220+12:32£0(mod32) 4 90+12=12 _
4212 - 262 20,
— AQ1o = AQg + ARy = (£231 + 26 4 20) 4 (4212 - 26 . 20) = 4231 4 212,
o the add-differences (+2°) and (-2°) cancel each other out, and
e the add-differences (+2°) and (-2°) cancel each other out.

Step 10:
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— AQip = +23! + 212,
AflO = :|:231 + 26, AQ7 = :|:231 - 227 - 26, and AWlO = 0.
ATy = Af1o + AQ7 + AWyg = (£231 4 26) 4 (£231 - 227 . 26) 4 0 = 227,
e the add-differences (£23') and (£23!) cancel each other out modulo 232, and
e the add-differences (+25) and (-26) cancel each other out.
— Condition(s) on ATjy:
o A = (-227) must not propagate past bit 31 since we do not want to affect lower order bits (condition
III). The probability that this condition holds is (1 - 27°) since 1 € Typ[31 - 27] to ensure there is
no propagation past bit 31.
S(IO) =17, so ATlO = 927 ARIO — _227+17:44512(mod32) — 912
— AQu1 = AQ1o + ARyo = (£2°! + 2%) 4 (-212) = +231.
e the add-differences (+2'2) and (-2'2) cancel each other out.

Step 11:

— AQq = £23%.
Afi = £231 AQg = 4231 - 223 - 217 4 215 and AWy, = -21°.
ATy = Afyy + AQs + AWy = (£231) 4 (4231 - 923 _ 917 4 915) 4 (1915) — 923 _ 917,
e the add-differences (£23!) and (423!) cancel each other out modulo 232, and
e the add-differences (+2'°) and (-2!%) cancel each other out.
Condition(s) on ATjs:
o A = (-2% - 2'7) must not propagate past bit 31 since we do not want to affect lower order bits
(condition IIT). The probability that this condition holds is (1 - 279) x (1 - 275) since 1 € T11[31 -
23] and 1 € T11[22 - 17] to ensure there is no propagation past bit 31.
S(ll) =22 s0 ATy, = _923 _ 917 ARy = _223+22:45513(m0d32) _ 217+22:3957(m0d32) — 913 _ 9T,
— AQi2 = AQu + ARy = (£231) + (=217 - 27) = £231 - 213 - 97,

Step 12:

— AQ1p = £231 - 213 27,
— Afio = £231 + 217 AQy = +£231 + 26 4+ 20 and AWy, = 0.
ATys = Af12 + AQg + AWig = (£231 4 217) + (£231 4 26 4 20) + 0 = 217 + 26 + 20
e the add-differences (£231) and (4:23!) cancel each other out modulo 232.
Condition(s) on AT}s:
o A= (4+2'7 + 26 4+ 20) must not propagate past bit 24 since we do not want to affect lower order bits
(condition I). The probability that this condition holds is (1 - 27%) x (1 -27!) x (1 -27) since 0
€ T12[24 - 17], 0 € T12[16 - 6], and 0 € T12[5 - 0] to ensure there is no propagation past bit 24.
— 5(12) = 7,50 ATy = +2'7 4 26 4 20 = ARy, = 217H7=24 | 0HT=13 4 904T=T — 1924 4 913 4 27,
AQiz = AQ12 + ARjp = (£231 - 213 - 27) + (422 + 213 4 27) = £231 4 224,
e the add-differences (-2'3) and (42!3) cancel each other out, and
e the add-differences (-27) and (+27) cancel each other out.
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Step 13:

— AQuz = £2°1 + 2%,
- Aflg = :|:231 - 213, AQlO = :|:231 + 212, and Ang =0.
— ATy = Afis + AQo + AWyg = (£231 - 213) 4 (£231 + 212) 4 0 = 212,
e the add-differences (£231) and (4:23!) cancel each other out modulo 232.
e the add-differences (-2'3) and (+2'2) combine to yield (-212).
— Condition(s) on ATjs:
o A = (-2!2) must not propagate past bit 19 since we do not want to affect lower order bits (condition
I). The probability that this condition holds is (1 - 278) since 1 € T13[19 - 12] to ensure there is no
propagation past bit 19.
— 5(13) = 12, s0 ATy3 = 2! = ARy3 = -212F12=24 — 924,
— AQ14 = AQ13 + ARy3 = (£231 4 224) + (-224) = £23L,
o the add-differences (+22%) and (-224) cancel each other out.

Step 14:

— AQqq = £231.
— Afig = +230 4+ 218 AQq; = +£231, and AWy, = +231
ATy = Afio + AQu1 + AWqg = (+2%0 + 218) 4 (£231) + (£231) = 4230 4 218,
o the add-differences (£23') and (423!) cancel each other out modulo 232.
e Condition(s) on AT}y:
o A = (4239 + 218) must not propagate past bit 31 since we do not want to affect lower order bits
(condition IIT). The probability that this condition holds is (1 - 272) x (1 - 2712) since 0 € T14[31,
30] and 0 € T14[29 - 18] to ensure there is no propagation past bit 31.
5(14) _ 177 S0 AT14 — +230 + 918 = AR14 — +230+17:47El5(mod32) 4 218+17:3553(m0d32) — +215 +
23.
AQ15 = AQ1y + ARyg = (£231) + (4215 + 23) = £231 4 215 4 23,

Step 15:

— AQq5 = £231 + 215 4 23,
Afis = £231 2225 AQpo = £231 - 213 - 27 and AW;5 = 0.
— ATy5 = Afis + AQua + AWy = (£231 - 225) 4 (£231 - 213 - 97) 4 0 = -225 - 213 _ 97
e the add-differences (£23!) and (4:23!) cancel each other out modulo 232.
Condition(s) on AT}5:
o A = (-2% - 213) must not propagate past bit 31 since we do not want to affect lower order bits
(condition IIT). The probability that this condition holds is (1 - 277) x (1 - 27'2) since 1 € Ty5[31 -
25] and 1 € T15[24 - 13] to ensure there is no propagation past bit 31.
e A = (-27) must not propagate past bit 9 since we do not want to affect any more low order bits upon
rotation (condition I). The probability that this condition holds is (1 - 273) since 1 € T15[9 - 7] to
ensure there is no propagation past bit 9.
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_ S(15) — 9292 g0 AT15 — 925 _ 913 _ 97 = AR15 —_ _225+22:47215(m0d32) _ 213+22:35£3(m0d32) _ 97+22=29
— _229 _ 215, _ 23.
— AQ16 = AQ15 + ARy5 = (£231 4 215 4 23) + (229 - 215 _ 23) = 4231 _ 229,
e the add-differences (+2'°) and (-2!°) cancel each other out, and
o the add-differences (+23) and (-23) cancel each other out.

Step 16:

— AQqe = £231 - 229
AflG = :|:2317 Ang = :|:231 + 2247 and AW16 = 0.
— ATig = Afis + AQ13 + AWig = (£231) + (£231 + 22) + 0 = 4224
e the add-differences (£23!) and (4:23!) cancel each other out modulo 232.
— Condition(s) on ATjyg:
o A = (4+22%) must not propagate past bit 2¢ since we do not want to affect any more low order bits
upon rotation (condition I). The probability that this condition holds is (1 - 272) since 0 € T14[26 -
24] to ensure there is no propagation past bit 26.
S(16) = 5, s0 ATy = +224 = ARy = +22415=29 = 1229,
AQ17 = AQis + ARy = (£2°! - 2%9) + (42%) = £231,
o the add-differences (-22%) and (+22°) cancel each other out.

Step 17:

— AQuy = +231,
— Afip = £231 AQuy = £231, and AWy, = 0.
- AT17 = Afl? + AQ14 + AW17 = (:|:231) + (:|:231) +0=0.
o the add-differences (£23') and (+23!) cancel each other out modulo 232.
— Condition(s) on ATj7: none
— AT17 =0= AR17 = 0.
— AQ1s = AQ17 + ARy7 = (£231) + (0) = £23%.

Step 18:

— AQqs = £23L.
— Aflg = :|:2317 AQ15 = :|:231 + 215 + 23, and Ang = —215.
ATig = Afig + AQ1s + AWig = (£231) + (£231 + 215 4 23) 4 (-215) = +23.
o the add-differences (£23') and (£23!) cancel each other out modulo 232, and
e the add-differences (+2'°) and (-2'%) cancel each other out.
Condition(s) on AT}s:
e A = (+23) must not propagate past bit 17 since we do not want to affect any more low order bits
upon rotation (condition I). The probability that this condition holds is (1 - 2715) since 0 € T1g[17
- 3] to ensure there is no propagation past bit 17.
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- S(18) = 14, SO ATlg = +23 = Ang = +23+14:17 = +217. Ang = AQlS + Ang = (:l:2‘ﬂ) + (+217)
= 4231 + 217,

Step 19:

— Ang — 4931 + 217
Afig = £231, AQ1s = £23! - 227, and AWy = 0.
ATyg = Afrg + AQre + AWig = (£231) + (£231 - 229) 4+ 0 = -2%9.
e the add-differences (£23!) and (4:23!) cancel each other out modulo 232.
— Condition(s) on ATjg:
o A = (-229) must not propagate past bit 31 since we do not want to affect lower order bits (condition
IIT). The probability that this condition holds is (1 - 273) since 1 € Tyg[31 - 29] to ensure there is
no propagation past bit 31.
5(19) = 20, so ATyg = 2929 ARy = _929+20=4917(mod32) _ _917
AQ20 = AQ19 + ARjg = (£231 + 217) 4 (-217) = £231.
e the add-differences (+217) and (-2'7) cancel each other out.

Steps 20 to 21:

- AQt = :l:231.
— Aft = :|:231, AQt_g = :|:231, and AWt = 0.
ATt == Aft+ AQt_3+ AWt - (i231) + (Z|:231) + 0 - O
o the add-differences (£23') and (+23!) cancel each other out modulo 232.
Condition(s) on AT}: none
— ATt:0:>ARt 0.
AQiy1 = AQy + ARy = (£231) + 0 = £23%.

Step 22:

— AQap = £23%.
Afog = £231 AQ19 = £231 4+ 217, and AW,y = 0.
— ATy = Afag + AQ19 + AWay = (£231) 4 (£231 + 217) + 0 = 4217,
o the add-differences (£23') and (+23!) cancel each other out modulo 232.
— Condition(s) on AThs:

e A = (4+2'7) must not propagate past bit 17 since we do not want to affect lower order bits (con-
dition I). The probability that this condition holds is (271) since T2[17] = 0 to ensure there is no
propagation past bit 17.

5(22) = 14, s0 ATy = +2'7 = ARy = +217H14=31 — 4951,
AQa23 = AQ2s + ARgy = (£231) + (£231) = 0.
e the add-differences (£231) and (4:23!) cancel each other out modulo 232.
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Step 23:

- Afgg = O, AQQO = :|:231, and AW23 = :|:231
— ATys = Afos + AQop + AWag = 0 + (£231) + (£231) = 0.
e the add-differences (£231) and (4:23!) cancel each other out modulo 232.
Condition(s) on AT53: none
- AT23 =0= AR23 = 0.
AQoy = AQa3 + AR93 = 04 0 = 0.

Step 24:

— AQ24 = 0.
Afoy = £231 AQo = £2%1, and AW,y = 0.
AT24 = Af24 + AQQl + AW24 = (:|:231) + (:|:231) + 0 = 0
o the add-differences (£23') and (+23!) cancel each other out modulo 232.
— Condition(s) on ATy4: none
— AT24 =0= AR24 =0.
AQas = AQ24 + ARy =0+ 0 =0.

Step 25:

AQ25 = 0.
Af25 = 0, AQQQ = i231, and AW25 = i231.
— AT = Afos + AQog + AWos = 0 + (£231) + (£23) = 0.
o the add-differences (£23') and (423!) cancel each other out modulo 232.
Condition(s) on ATb5: none
- AT25 =0= ARQE, = 0.
— AQos = AQo5 + ARy =0+ 0= 0.

Steps 26 to 33:

— Afy = AQi—3 = AW; = 0.

ATy = Afy + AQy—3+ AW, =0+ 0+ 0=0.
Condition(s) on AT}: none

- ATt:()jARt:O

- AQt+1:AQt+ARt:O+0:0

Step 34:
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— AQ34 = 0.

Afsy =0, AQz; = 0, and AWy, = +215.

ATsy = Afsy + AQs1 + AWsy = 0 + 0 + (-2'9) = =215,

— Condition(s) on ATjsy:

o A = (-2'5) must not propagate past bit 15 since we do not want to affect lower order bits (condition I).

The probability that this condition holds is (271!) since 734[15] = 1 to ensure there is no propagation
past bit 15.

- S(34) = 16, so AT34 =205 = AR34 = -25+16=31 — 931

AQs5 = AQ3s + AR3q = 0 + (£231) = £23%

Step 35:

— AQ35 = 4231,
— Af35 - i231, AQ32 = 0, and AW35 = i231.
— ATy = Afss + AQsp + AWss = (£231) + 0 + (£231) = 0.
o the add-differences (£23') and (423!) cancel each other out modulo 232.
Condition(s) on AT3s5: none
- AT35 =0= AR35 = 0.
AQs6 = AQ35 + ARgs = (£231) + 0 = £231.

Step 36:

— AQ3 = £23%.

- Afg(; = 0, AQgg = 0, and AW36 = 0.

— ATz = Afzs + AQ33 + AW36 =0+ 0+ 0 = 0.
Condition(s) on AT36: none

— ATgG =0= ARgG = 0.

AQ37 = AQ3s + ARz = (:|:231) +0 =423,

Step 37:

— AQyy = +231,
— Afsr = £231 AQ34 = 0, and AW;3, = £23%,
— ATy = Afsy + AQsq + AWsp = (£231) + 0 + (£231) = 0.
o the add-differences (£23') and (+23!) cancel each other out modulo 232.
— Condition(s) on AT57: none
- AT37 =0= AR37 = 0.
AQss = AQs7 + ARgy = (£231) + 0 = £231.

Steps 38 to 49:
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—AQ, = 4231,
Afy = £231 AQ;_3 = +23!, and AW, = 0.
— AT, = Afi+ AQu_s+ AW, = (£231) + (£231) + 0 = 0.
o the add-differences (£23') and (+23!) cancel each other out modulo 232.
Condition(s) on AT}: none
AT, = 0= AR; = 0.
— AQup1 = AQ; + AR, = (£2%1) + 0 = 0.

Step 50:

— AQsp = +231.
- Af50 = 0, AQ47 = :|:231, and AW50 = :|:231
— ATsg = Afso + AQur + AWso = 0 + (£2%1) + (£2%) = 0.
o the add-differences (£23') and (423!) cancel each other out modulo 232.
— Condition(s) on ATsp: none
— AT50 = 0= AR50 = 0.
— AQs = AQso + AR5y = (£231) + 0 = £231,

Steps 51 to 59:

AQ, = £231
Afy = £231 AQy_3 = +231 and AW, = 0.
— AT, = Afi+ AQy_3+ AW, = (£231) + (£231) + 0 = 0.
e the add-differences (£23') and (423!) cancel each other out modulo 232.
Condition(s) on AT;: none
— AT, = 0= AR; = 0.
AQip1 = AQ + ARy = (£2°) + 0 = 0.

Step 60:

— AQeo = £23%.
Afeo = 0, AQs7 = +231 and AW0 = £231.
— ATgo = Afeo + AQss + AW = 0 + (£2°1) + (£2°) = 0.
e the add-differences (£231) and (4:23!) cancel each other out modulo 232.
— Condition(s) on ATgg: none
- ATgO =0= ARGO = 0.
— AQe1 = AQpo + ARgp = (£231) + 0 = £23%.

Step 61:



— AQg = £231.
— Afﬁl = i2317 AQ58 = i231, and AWGI = +215.
— ATy = Afe1 + AQss + ARy = (£231) + (£231) + (-21%) = 215,
e the add-differences (£23!) and (4:23!) cancel each other out modulo 232.
Condition(s) on ATg;:
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o A = (-2'%) must not propagate past bit 21 since we do not want to affect lower order bits (condition
I). The probability that this condition holds is (1 - 277) since 1 € ATg;[21 - 15] to ensure there is

no propagation past bit 21.
S(Gl) = 10, SO AT61 = —215 = ARGl = —215+10:25 = —225.
— AQe2 = AQe1 + ARgy = (£2°1) + (-2%°) = £231 - 2%,

Steps 62 to 63:

AQ, = 4231 - 925,
Aft = :|:231, AQtfig = :|Z231, and AWt =0.
— AT, = Afit AQi_s + AW, = (£231) + (£231) + 0 = 0.
o the add-differences (£23') and (+23!) cancel each other out modulo 232.
— Condition(s) on AT}: none
ATt:0:>ARt:0
— AQup1 = AQ; + AR, = (£231 - 225) 4 0 = +231 925

Assuming all of our conditions are met, the end result of the differential for the second block is

AQg = £2%,
AQgy = £2°1 - 22°,
AQgs = £2%1 - 2%,
AQgs = +231 - 225,

Thus, we have our collision:
AIHVP[0] = ATHVY[0] + AQgy = (£231) + (£231) =0,
ATHVP[3] = ATHVV 3] + AQey = (£23! - 225) 4 (£231 + 2%5)

ATHV?[2] = ATHVY[2] + AQgs = (4231 - 225) 4 (£231 4 2%5)
AIHVO[1] = AIHVIV[1] + AQey = (£231 - 225) 4 (£231 4 225)

6.4 Summary of the Probabilities of the Conditions for the First Block

= 0,
= 07
= 0.

For each step in both blocks, the probabilities for the conditions on the AT; were presented. These prob-
abilities will now be summarized. For the first block, we have the following. Note that only the steps with

conditions are shown.

Step 4: (271) = 0.500



Step 5: (271) x (1-278) = 0.498

Step 6: (271) x (1-27%) = 0.469

Step 7: (1-27°) x (1-272) x (1-279) x (1-27%) x (27°) = 0.0226
Step 8: (271) x (271) x (1-278) x (1-27%) x (1-272) =0.184
Step 9: (1-27%) x (1-27%) x (1-272%) =0.969

Step 10: (1-275) x (1-273) = 0.848

Step 11: (1-279) x (1-279) x (1-272) =0.737

Step 12: (1-278) x (1-2711) x (1-27%) = 0.980 Step 13: (1 - 278) = 0.996
Step 14: (1-272) x (1-2712) = 0.750

Step 15: (1-277) x (1-2712) x (1-273) = 0.868

Step 16: (1 - 273) = 0.875

Step 18: (1 - 2715) = 1.000

Step 19: (1-273) = 0.875

Step 22: (27!) = 0.500

Step 34: (271) = 0.500

Step 61: (1-277) = 0.992

We denote Pj_g3 to be the probability that the conditions on AT} will hold for all 64 steps of the first
block. P}_g; is simply the product of the probabilities shown above. We find that it is:

P} g3 ~ 3.54 x 107° ~ 27148,

Thus, for a random message, all of the conditions for AT} will hold with probability 2748, Suppose we define
a “AT;-good” message M to be a message such that the conditions for the first round (steps 0 to 15) of the
first block are satisfied. A cryptanalyst can readily compute “AT;-good” messages by using single-message
modification. The probability that a “AT;-good” message satisfies all of the conditions for the first iteration
is then the probability that it satisfies all the probabilities from rounds 2 to 4 (steps 16 to 63). We find this
probability, Pls_44 to be

Pls 3 ~ 0.190 ~ 2724,
Thus, with probability 2724, a cryptanalyst using single-message modification can satisfy all the conditions
for AT; of the first block.
6.5 Summary of the Probabilities of the Conditions for the Second Block

The probability of the conditions on the AT; for each step of the second block is as follows. Note that only
the steps with conditions are shown.

Step 1: (1-277) = 0.992

Step 2: (271) x (1-27%) = 0.492

Step 3: (1-276) x (1-27%) x (1-2%0) =0.953

Step 4: (1-272) x (1-27%) x (271 x (1-277) x (1-271%) x (1-272) = 0.262
Step 5: (1-272) x (1-272) x (1-272) x (1-279) x (1-2712) x (1-271) = 0.389
Step 6: (271) x (1-271) x (1-275) x (1-277) = 0.480

Step 7: (1-27%) x (1-272) x (1-2792) x (1-27%)x (1-27%) =0.659

Step 8: (271) x (1-277) x (1-272) x (1-27%) x (1-272) x (1-278) =0.364
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Step 9: (1-276) x (1-27%) x (1-272%) =0.969
Step 10: (1 - 27°) = 0.969

Step 11: (1-279) x (1-275) =0.982

Step 12: (1-278) x (1-2711) (1-27%) =0.980
Step 13: (1 - 278) = 0.996

Step 14: (1-272) x (1-2712) = 0.750

Step 15: (1-277) x (1-271%) x (1-27%) = 0.868
Step 16: (1 -273) = 0.875

Step 18: (1 - 271%) = 1.000

Step 19: (1 -273) = 0.875

Step 22: (271) = 0.500

Step 34: (271) = 0.500

Step 61: (1 -277) = 0.992

We denote P? g5 to be the probability that the conditions on AT} will hold for all 64 steps of the second
block. P} 44 is simply of the probabilities shown above. We find that it is:

P01763 ~ 6.07 x 1074 ~ 2-10.7,

Thus, for a random message, all of the conditions for AT} will hold with probability 27197, Again, a crypt-
analyst can readily compute “T;-good” messages using single-message modification. The probability that a
“Ty-good” message satisfies all of the conditions for the first iteration is then the probability that it satisfies
steps 16 to 63. We find this probability, P%_43 to be

Pk g3 ~ 0.190 ~ 2724,

Thus, with probability 2724, a cryptanalyst using single-message modification can satisfy all the conditions
for AT; of the second block.

7 Conditions for the Propagation of the Differences Through the f; Functions

In presenting the conditions of the propagation of the differences through the f; functions, we have proven
all of the assertions made in [3] regarding bit conditions for the first block except for those mentioned in the
sections labeled “Obtaining the Correct AQ;.” The discussions provided for those conditions were sufficient.
For all other conditions, however, proofs were necessary to provide to explain why each assertion was made.
Therefore, after each assertion, the number of the proof that corresponds to that assertion is given. The
proofs are then presented in section 8. Note that only the conditions for Case One are presented. (We will
prove in section 9 that the conditions required for Case Two do not produce the desired collision differential.)
For the second block, all of the assertions regarding bit conditions are original, based only on a few tables
in [3]. As with the first block, after each assertion, the number of the proof that corresponds to that assertion
is given. The proofs are then presented in section 8.

7.1 Conditions for the Propagation of the Differences Through the f; Functions for the
First Block

Round 1: f; = F(X, Y, Z)
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Steps 0 to 4:

We have Q;_2 = 0, Q;—1 = 0, and Q; = 0, so we will obtain f; = 0. There are no conditions for these
steps.

Step 5:
We have Q3 = 0, Q4 = 0, and Q5 = -25, and we want to obtain f5 = +2!° + 21,

Obtaining the Correct Qs5:

~ Qs[21-6] =0
- Qs =1

The Constant Bits of @5:
Q5[] =0,5 € [31-23,5-0]

— To obtain f5[j] = 0, no conditions are required for Qs € [31 - 23, 5 - 0].

The Non-Constant Bits of Qs5:
Qslj] = +1, 5 € [21 - 6]

— To obtain f5[j] = 0, we require Qs[j] = Q4[] for j € [21, 20, 18 - 12, 10 - 6]. See proof 12.
— To obtain f5[j] = +1, we require Q3[j] = 0 and Q4[j] = 1 for j € [19, 11]. See proof 14.

Qslj] =-1,j € [22]

— To obtain f5[j] = 0, we require Qs[j] = Q4[j] for j € [22]. See proof 13.

Summary of the conditions for step 5:

— Q3[19,11] = Q5[21- 6] = 0
- Q4[197 11] = Q5[22] =1
— Qs[21, 20, 18 - 12, 10 - 6] = Q4[21, 20, 18 - 12, 10 - 6]

Step 6:
We have Q4, Q5 = -25, and Q¢ = £23' + 223 - 26 and we want to obtain fg = -2 - 210,

Obtaining the Correct Qg:

- Q23] =0
- Qsl6] =1
The Constant Bits of Qg:
Qﬁ[]] :Oaj € [30_245 22_775_0]

— To obtain fg
— To obtain fg
— To obtain fg
— To obtain fg]

)| = -1, we require Qg[j] = 1 for j € [22]. See proof 25.

| = +1, we require Qg[j] = 1 for j € [21 - 15, 13 - 10]. See proof 23.
l

]

[y

= 0, we require Qg[j] = 0 for j € [14, 9 - 7]. See proof 22.
= 0, we need no requirements for Qg[30 - 24, 5 - 0].

<
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The Non-Constant Bits of Qg:
Qslj] = +1, 5 € [23]

— To obtain fs[j] = 0, we require Q4[j] = Qs[j] for j € [23]. See proof 12.
QG[]] = _17j € [6]

— To obtain fg[j] = 0, we require Q4[j] = 0 for j € [6]. See proof 26.
Qelj] = £1,j € [31]

— To obtain fg[j] = 0, we require Q4[j] = Qs5[j] for j € [31]. See proof 1.

Summary of the conditions for step 6:
- Q4[6} = Q6[233 147 9- 7] =0

— Qg[22-15,13-10,6] = 1
— Qa[31, 23] = @5[31, 23]

Step 7:

We have Q5 = -26, Qg = £231 + 223 - 26 and Q; = -227 4 223 - 26 _ 20 and we want to obtain f; =
_227 _ 225 + 216 + 210 + 25 _ 22.

Obtaining the Correct Q7:

— Q7[30-26,10-6,4-0] =0
— Qq[25-23,11,5] =1

The Constant Bits of Q7:
Q7lj] =0,j € [22-12]

— To obtain f7[j] = 0, we require Q7[j] = 1 for j € [22]. See proof 20.
— To obtain f7[j] = 0, we require Q7[j] = 1 for j € [21 - 17, 15 - 12]. See proof 18.
— To obtain fr7[j] = +1, we require Q7[j] = 0 for j € [16]. See proof 19.

The Non-Constant Bits of Q7:
Q7lj] = +1,5 € [30- 26,10 -6, 4 - 0]

To obtain fr[j] = 0, we require Qs[j] = Qs[j] for j € [30 - 28, 26, 4, 3, 1, 0]. See proof 12.

| =
— To obtain f7[j] = +1, we require Qg[j] = 1 for j € [10]. See proof 28.
— To obtain f7[j] = 0, we require Qg[j] = 0 for j € [9 - 7]. See proof 27.
— To obtain f7[j] = 0, we need no requirements for Q7[6]. See proof 9.
— To obtain f7[j] = -1, we require Qs[j] = 1 and Qg[j] = 0 for j € [27, 2]. See proof 15.

Q7[j] =-1,j € [25 - 23, 11, 5]

To obtain fr[j] = -1, we require Qs[j] = 0 and Qg[j] = 1 for j € [25]. See proof 17.
To obtain f7[j] = 0, we require Qs[j] = Qs[j] for j € [24]. See proof 13.
— To obtain fr[j] = 0, we require Q5[j] = 0 for j € [23]. See proof 26.

To obtain f7[j] = 0, we require Qg[j] = 1 for j € [11]. See proof 29.
— To obtain f7[j] = +1, we require Q5[j] = 1 and Qg[j] =

= 0 for j € [5]. See proof 16.
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Q7lj] = £1,5 € [31]

— To obtain fy[j]

= 1, we require Q7[j] = Qs[j] @s[j] for j € [31]. See proof 2.

Summary of the conditions for step 7:

— Qs[25, 23] = Qg]9, 8, 5, 2] = Q7[30 - 26,16, 10-6,4-0] =0

- Qs
- Q7

Step 8:

30 - 28, 26, 24, 4, 3, 1, 0] = Qg[30 - 28, 26, 24, 4, 3, 1, 0]

[
— Qs[5 2] = Qg[27, 25, 11, 10] = Q7[25 - 17, 15 - 11, 5] = 1
[
[31] = Q6[31] ® Q5[31]

We have Qs = £231 + 223 - 26, Q; = -2%7 4 223 _ 26 _ 20, and Qs = -2 - 2'7

want to obtain fg =

:|:231 _ 224 + 216 + 210 + 26 + 20.

Obtaining the Correct Qg:

— Qs[19-17,15,0] =0
— Qs[23, 20, 16] = 1

The Constant Bits of Qs:

Qslj] = 0,7 € [31 -

— To obtain fg[j] =
To obtain fs[j] =
— To obtain fg[j] =
To obtain fg[j] =
] =
] =
] =

To obtain fg
— To obtain fg
To obtain fg

24,22, 21, 14 - 1]

1, we need no requirements for Qg[31]. See proof 3.

0, we require Qg[j] = 0 for j € [30 - 26, 9, 7, 4 - 1]. See proof 22.

= 0, we require Qg[j] = 0 for j € [25, 11, 5]. See proof 24.

-1, we require Qg[j] = 1 for j € [24]. See proof 25.
+1, we require Qs[j] = 1 for j € [10, 8]. See proof 23.
+1, we require Qs[j] = 1 for j € [6]. See proof 32.

0, we need no requirements for Qg[22, 21, 14 - 12].

The Non-Constant Bits of Qs:

Qslj] = 41,5 € [19- 17,15, 0]

— To obtain f3[j]
— To obtain f3[j]

= 0, we require Qglj] = Q7[j] for j € [19 - 17, 15]. See proof 12.
= 0, we require Qg[j] = 1 for j € [0]. See proof 35.

QS[]] = ']-vj € [237 207 16]

— To obtain fg[7]
— To obtain fg[j]
— To obtain fg[7]

= 0, we need no requirements for Qs[23]. See proof 10.
= 0, we require Qs[j] = Q7[j] for j € [20]. See proof 13.

= +1, we require Qg[j] = 1 and Q7[j] = 0 for j € [16]. See proof 16.

Summary of the conditions for step 8:

— Q4[16] = Qg[30 - 25,19 - 17, 15, 11,9, 7, 5- 0] = 0
- Q6[167 0} - Q7[0] = Q8[247 23a 207 167 107 87 6} =1

— Qg[20 - 17, 15]

= Q+[20 - 17, 15]

- 215 4+ 20 and we
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Step 9:

We have Q7 = -227 4+ 223 - 26 _ 20 Qg = -223 - 217 _ 215 1 90 and Q¢ = £23! - 26 4+ 20 and we
want to obtain fy = £231 + 226 _ 923 _ 920 4 96 4 90

Obtaining the Correct Qq:

— Qo[7,6,1] =0
- QQ[& 0] =1

The Constant Bits of Qg:
QQ[]] :Ovj € [30'975'2]

— To obtain fy[j
— To obtain fy[j
— To obtain fy[j
— To obtain fy[j
— To obtain fy[j
J
[j
J

= 0, we require Qg[j] = 1 for j € [30 - 27, 10, 9, 4 - 2]. See proof 18.
= +1, we require Qg[j] = 0 for j € [26]. See proof 19.

= 0, we require Qg[j] = 1 for j € [25, 24, 11, 5]. See proof 20.

= -1, we need no requirements for (Q9[23]. See proof 34.

= -1, we require Qg[j] = 1 for j € [20]. See proof 25.

= 0, we require Qg[j] = 0 for j € [19 - 17, 15]. See proof 22.

= 0, we require Qg[j] = 0 for j € [16]. See proof 24.

= 0, we need no requirements for Qg9[22, 21, 14 - 12].

— To obtain fo|
— To obtain fo
— To obtain fy]

]
]
]
]
]
]
]
]

The Non-Constant Bits of Qq:
QQ[]] = +17] € [77 67 ”

— To obtain fo[j] = 0, we require Qg[j] = 0 for j € [7, 1]. See proof 27.
— To obtain fy[j] = +1, we require Qs[j] = 1 for j € [6]. See proof 28.

Qolj] =-1,7 €8, 0]

— To obtain fy[j] = 0, we require Qg[j] = 1 for j € [8]. See proof 29.
— To obtain fy[j] = +1, we need no requirements for Qg[0]. See proof 8.

Qolj] = +1, j € [31]
— To obtain fy[j] = 1, we require Qq[j] = Qs[j] Q7[j] for j € [31]. See proof 4.

Summary of the conditions for step 9:

- Q8[73 1] - Q9[263 19 - 153 73 6’ 1] =0
— Qs[8, 6] = Q9[30 - 27, 25,24,20,11-8,5-2,0] =1
— Qo[31] = Qs[31] © Q7[31]

Step 10:

We have Qg = -223 - 217 - 215 4 20 Qg = +231 - 26 4 20 and Q9 = £23! + 2'2, and we want to
obtain fig = -223 4+ 213 4 26 4 20,

Obtaining the Correct Q1¢:
— Q1o[13] =0
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- Quof12] =1

The Constant Bits of Q1¢:
Q1olj] =0, € [30 - 14, 11 - 0]

— To obtain fig
— To obtain fig

lj -1, we require Q1p[j] = 0 for j € [23]. See proof 21.
[
— To obtain fio[j
lj
[
i

[

0, we require Q19[j] = 1 for j € [20, 16]. See proof 20.

0, we require Q19[j] = 1 for j € [19 - 17, 15]. See proof 18.
] 8
] =

— To obtain fig
— To obtain fig
— To obtain fig
— To obtain fig[j
— To obtain fig[j

0, we require Q1p[j] = 0 for j € [8]. See proof 24.

0, we require Q19[j] = 0 for j € [7, 1]. See proof 22.

+1, we require Q19[j] = 1 for j € [6]. See proof 23.

= +1, we require Qqo[j] = 0 for j € [0]. See proof 37.

= 0, we need no requirements for Q10[30 - 24, 22, 21 14, 11 -9, 5 - 2].

| =
]
]
]
]
]
]
1=

The Non-Constant Bits of Q1¢:
Quolj] = +1, 5 € [13]

— To obtain fio[j] = +1, we require Qg[j] = 0 and Qq[j] = 1 for j € [13]. See proof 14.
Quolj] =-1,7 € [12]

— To obtain f1o[j] = 0, we require Qs[j] = Qo[j] for j € [12]. See proof 13.
Quolj] = £1,j € [31]

— To obtain fio[j] = 0, we require Q10[31] = Q9[31] Qs[31] for j € [31]. See proof 2.

Summary of the conditions for step 10:

— Qs13] = Q10[23, 13, 8,7, 1,0 = 0
— Qo[13] = Q10[20 - 15, 12, 6] = 1
- Qsl12] = Qo[12]
= Q10[31] = Qo[31] ® Qs[31]
Step 11:

We have Qg = £231 - 26 + 20 Q19 = £23! 4+ 2'2 and Q11 = 23! + 230, and we want to obtain fi;

Obtaining the Correct Q11:
- Q1130 =0

The Constant Bits of ()11:
Qu1[j] = 0,75 € [29 - 0]

— To obtain fi1[j] = 0, we require Q11[j] = 0 for j € [13]. See proof 22.

— To obtain f11[j] = 0, we require Q11[j] = 0 for j € [12]. See proof 24.

— To obtain f11[j] = -1, we require Q11[j] = 0 for j € [8, 0}. See proof 21.

— To obtain f11[j] = 0, we require Qq1[j] = 1 for j € [7, 6, 1]. See proof 18.
] =

— To obtain fi1[j 0, we need no requirements for Q11[29 14,11-9,5 - 2].

=-28 4+ 20,
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The Non-Constant Bits of Q11:
Qulj] = +1,j € [30]
— To obtain f11[j] = 0, we require Qg[j] = Q1o[j] for j € [30]. See proof 12.
Qulj]l = £1, 5 € [31]

— To obtain fi1[j] = 0, we require Qg[j] = Q10[j] for j € [31]. See proof 5. Note that since we already have
Q10[31] = Q9[31] Qs[31] from step 10, we obtain Qg[31] = 0.

Summary of the conditions for step 11:

— Qs[31] = Q11[13, 12, 8,0] =0

- Q11[77 67 1] =1

— Qo[30] = Q10[30]

— Qo[31] = Q10[31]
Step 12:

We have Q9 = £23! + 212, Q7 = £23' + 230 and Qo = +23' - 213 - 27, and we want to obtain fio
= £231 4+ 217 4 27,

Obtaining the Correct Q12:

— Qu2[18-13,7 =0
— Q12[19, 8] =1

The Constant Bits of ()1s:
Q12[j] = 0,7 € [30 - 20, 12- 9,6 - (]

— To obtain fi2[j] = 0, we require Q12[j] = 0 for j € [30]. See proof 22.
— To obtain fi3[j] = 0, we require Q12[j] = 1 for j € [12]. See proof 20.
— To obtain fi12[j] = 0, we need no requirements for Q12[29 - 20, 11 - 9, 6 - 0].

The Non-Constant Bits of Q1s:
Qi2lj] = +1,7 € [18 - 13, 7]

— To obtain fi2[j] = -1, we require Q19[j] = 1 and Qq1[j] = 0 for j € [18, 17]. See proof 15.
To obtain f12[j] = 0, we require Q1o[j] = Qu1[j] for j € [16 - 14]. See proof 12.

] ]

]

S

— To obtain fi[j] = 0, we require Qq1[j] = 0 for j € [13]. See proof 27.
To obtain fi2[j] = +1, we require Q19[j] = 0 and Q11[j] = 1 for j € [7]. See proof 14.

Qi2[j] =-1,5 €[19, 8

— To obtain fi2[j] = +1, we require Q1g[j] = 1 and Q11[j] = 0 for j € [19]. See proof 16.
— To obtain fi2[j] = 0, we require Q10[j] = Q11[j] for j € [8]. See proof 13.

Qu2[j] = £1, j € [31]
— To obtain fi2[j] = 1, we require Q10[j] = Q11[j] for j € [31]. See proof 6.

<

<

Summary of the conditions for step 12:
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— Qu1[19 - 17, 13] = Q12[30, 18 - 13, 7] = 0
— Quo[19 - 17] = Q12[19, 12, 8] = 1
— Quo[31, 16 - 14, 8, 7] = Q11[31, 16 - 14, 8, 7]

Step 13:

We have Q1 = +231 + 239 Qo = £231 - 213 - 27 and Q3 = £23! + 2?4, and we want to obtain fi3
= 931913,

Obtaining the Correct (13:

- Q13[25] - 0
- Qu3[24] =1

The Constant Bits of Q13:
Qus[j] =0, 7 € [30 - 26, 23 - 0]

— To obtain fi3

[7] = 0, we require Q13[j] = 1 for j € [30]. See proof 18.

To obtain fi3[j] = -1, we require Q13[j] = 1 for j € [19]. See proof 25.
— To obtain fi3[j] = +1, we require Qq3[j] = 1 for j € [18 - 13]. See proof 23.
To obtain fi3[j] = 0, we require Q13[j] = 0 for j € [8]. See proof 24.
l
]

— To obtain fi3[j] = 0, we require Q13[j] = 0 for j € [7]. See proof 22.
To obtain fi13[j] = 0, we need no requirements for Q13[29 - 26, 23 - 20, 12 - 9, 6 - 0].

The Non-Constant Bits of Q13:
Qi3] = +1, 5 € [25]

— To obtain fi3[j] = 0, we require Q11[j] = Q12[j] for j € [25]. See proof 12.
Qusl[j] =-1,j € [24]

— To obtain fi3[j] = 0, we require Q11[j] = Q12[j] for j € [24]. See proof 13.
Qus[j] = £1, j € [31]

— To obtain f13[j] = 1, we require Q11[j] = Q12[j] for j € [31]. See proof 6.

Summary of the conditions for step 13:
— (13[25, 8,7 =0

— Q13]30,24,19-13] =1
— Q11[31, 25, 24] = Q1[31, 25, 24]

Step 14:
We have Q19 = £231 - 213 227 Q15 = £231 + 224 and Q14 = £23!, and we want to obtain f14 = +23 + 218,

Obtaining the Correct (Q14: No conditions required

The Constant Bits of ()14:
Q14lj] =0, 5 € [30 - 0]




— To obtain fi4[j] = 0, we require Q14[j] = 0 for j € [25]. See proof 22.

— To obtain fi4[j] = 0, we require Q14[j] = 0 for j € [24]. See proof 24.

— To obtain fi14[j] = 0, we require Q14[j] = 1 for j € [19, 8]. See proof 20.

— To obtain fi4[j] = +1, we require Q14[j] = 0 for j € [18]. See proof 19.

— To obtain fi4[j] = 0, we require Q14[j] = 1 for j € [17 - 13, 7]. See proof 18.

— To obtain fi4[j] = 0, we need no requirements for Q14[30 - 26, 23 - 20, 12 - 9, 6 - 0].

The Non-Constant Bits of Q14:
Qualj] = £1, 5 € [31]

— To obtain fi4[j] = 1, we require Q12[j] = Q13[j] for j € [31]. See proof 6.

Summary of the conditions for step 14:

— Q14[25,24,18] =0
— Qu19,17-13,8,7] =1
= Q12[31] = Q13[31]

Step 15:
We have Q13 = £23! + 224 Q4 = £231, and Q5 = £23! - 215 + 23 and we want to obtain fi5

Obtaining the Correct Q15:

- Q53] =0
— Qus[15] = 1
The Constant Bits of Q15:
QlS[ﬂ = 0;] € [30 - 167 14 - 47 2- 0]

— To obtain fi5[j] = 0, we require Q15[j] = 0 for j € [25]. See proof 19.
— To obtain fi5[j] = 0, we require Q15[j] = 1 for j € [24]. See proof 20.
— To obtain f15[j] = 0, we need no requirements for Q15[30 - 26, 23 - 16, 14 - 4, 2 - 0].

The Non-Constant Bits of Q15:
Qus[i] = +1, 5 € [3]

— To obtain fi5[j] = 0, we require Q13[j] = Q14[j] for j € [3]. See proof 12.
Qs[j] = -1, j € [15]

— To obtain fi5[j] = 0, we require Q13[j] = Q14[j] for j € [8]. See proof 13.
Qs[j] = £1, j € [31]

— To obtain f15[j] = 1, we require Q13[j] = Q14[j] for j € [31]. See proof 6.

Summary of the conditions for step 15:

- @15[25,3] =0
— Q15[24, 15] =1

45
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— @13[31, 15, 3] = Q14[31, 15, 3]

Round 2: f; = G(X, Y, Z)
Step 16:

We have Q4 = +23!, Q15 = £23' - 215 4 23 and Qi = +23! - 22°, and we want to obtain fig =
+231,

Obtaining the Correct Q1¢:
- Q6[29] =1

The Constant Bits of Q14:
Qua[j] =0, j € [30 - O]

— To obtain fig[j] = 0, we require Q14[j] = 0 for j € [29]. See proof 39.

— To obtain fig[j] = 0, we require Q14[j] = 1 for j € [15]. See proof 40.

— To obtain fig[j] = 0, we require Q14[j] = 1 for j € [3]. See proof 41.

— To obtain fi6[j] = 0, we need no requirements for 14[30, 28 - 16, 14 - 4, 2 - 0].

The Non-Constant Bits of Q14:
Qulj] = £1, j € [31]

— To obtain fig[j] = 1, we require Q15[j] = Q1¢lj] for j € [31]. See proof 38.

Summary of the conditions for step 16:

— Q14[29] =0

— Q14]15, 3] =1

— Q15[31] = Q16[31]
Step 17:

We have Q5 = £231 - 215 4 23 Q4 = £231 - 229 and Q7 = £23!, and we want to obtain fi; =
49231,

Obtaining the Correct QQ17: No conditions required

The Constant Bits of Q15:
Q5[] = 0,7 €[30-16, 14 - 4,2 - 0

— To obtain fi7[j] = 0, we require Q15[j] = 1 for j € [29]. See proof 40.
— To obtain f17[j] = 0, we need no requirements for Q15[30, 28 - 16, 14 - 4, 2 - 0].

The Non-Constant Bits of Q15:
Qis[j] = +1, 5 € [3]

— To obtain fi7[j] = 0, we require Q16[j] = Q17[j] for j € [3]. See proof 43.




Qis[j] =-1, 7 € [15]

— To obtain fi7[j] = 0, we require Q1¢[j] = Q17[j] for j € [15]. See proof 42.
Q5[] = £1, 5 € [31]

— To obtain fi7[j] = 1, we require Q1¢[j] = Q17[j] for j € [31]. See proof 38.
Summary of the conditions for step 17:

- @15[29] =1
— Q16[31, 15, 3] = Q17[31, 15, 3]

Step 18:

We have Q6 = £23' - 229, Q17 = +23', and Q15 = 23!, and we want to obtain f1g3 = +23.

Obtaining the Correct Q1s: No conditions required

The Constant Bits of Q14:
Q16[j] =0, 5 € [30, 28 - 0]

— To obtain fi1s[j] = 0, we need no requirements for Q14[30, 28 - 0].

The Non-Constant Bits of Q14:
Q6] =-1, 7 € [29]

— To obtain fi1s[j] = 0, we require Q17[j] = Q1s[j] for j € [15]. See proof 42.
Quelj] = £1, j € [31]
— To obtain fi1s[j] = 1, we require Q17[j] = Qis[j] for j € [31]. See proof 38.

Summary of the conditions for step 18:
— Q17[31, 29] = Q15[31, 29]
Step 19:

We have Q7 = £231, Q15 = £231, and Q9 = +23! + 27, and we want to obtain fijg = 231

Obtaining the Correct Q19:

— Quo[17] =0

The Constant Bits of Q17:
Q17[5] = 0,5 € [30 - 0]

— To obtain fig[j] = 0, we require Q17[j] = 0 for j € [17]. See proof 44.
— To obtain f1g[j] = 0, we need no requirements for Q17[30 - 18, 16 - 0].

The Non-Constant Bits of Q17:
Qi7[j] = £1, 5 € [31]

47
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— To obtain fig[j] = 1, we require Q13[j] = Q19[j] for j € [31]. See proof 38.
Summary of the conditions for step 19:

— Q17[17] = Q19[17] =0
= Q1s[31] = Q19[31]

Step 20:

We have Q15 = £231, Q19 = +231 + 217, and Qo9 = £23', and we want to obtain fyy = +23!.

Obtaining the Correct QQ29: No conditions required

The Constant Bits of Q1s:
Qs[j] = 0,5 € [30 - 0]

— To obtain fa[j] = 0, we require Q1s[j] = 1 for j € [17]. See proof 41.
— To obtain fao[j] = 0, we need no requirements for Q15[30 - 18, 16 - 0].

The Non-Constant Bits of Q1s:
Quslj] = +1, 5 € [31]

— To obtain fa[j] = 1, we require Q19[j] = Qalj] for j € [31]. See proof 38.

Summary of the conditions for step 20:

- Qus[17 =1
= Q19[31] = Q20[31]
Step 21:

We have Q9 = £231 + 217, Q99 = £231 | and Q91 = £23!, and we want to obtain fo; = +23%.

Obtaining the Correct (Q21: No conditions required

The Constant Bits of Q1g:
Q19[j] = 0, j € [30- 18, 16 - 0]

— To obtain f2;1[j] = 0, we need no requirements for Q19[30 - 18, 16 - 0].

The Non-Constant Bits of Q1g:
Quolj] = +1, 5 € [17]

— To obtain fo1[j] = 0, we require Qoo[j] = Q21[j] for j € [17]. See proof 43.
ng[j} =41,75 € [31}

— To obtain fo1[j] = 1, we require Qg[j] = Q21]7] for j € [31]. See proof 38.

Summary of the conditions for step 21:

— Q20][31, 17] = Q21[31, 17]
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Step 22:
We have Qo9 = £231, Q21 = +231, and Qo0 = 23!, and we want to obtain foy = £231.

Obtaining the Correct (Q22: No conditions required

The Constant Bits of Q0:
Q0[] =0, 5 € [30 - 0]

— To obtain fa3[j] = 0, we need no requirements for Q20[30 - 0].

The Non-Constant Bits of Q:
Q20lj] = £1,j € [31]

— To obtain fa[j] = 1, we require Q21[j] = Q22[j] for j € [31]. See proof 38.

Summary of the conditions for step 22:

= @Q21[31] = @22[31]
Step 23:

We have Qg1 = £23, Q2o = +23!, and Q93 = 0, and we want to obtain fas = 0.

Obtaining the Correct (23: No conditions required

The Constant Bits of (o1:
Q21j] =0, j € [30 - 0]

— To obtain fa3[j] = 0, we need no requirements for Q2130 - 0].

The Non-Constant Bits of Q1:
Q21[j] = £1, j € [31]

— To obtain fa3[j] = 0, we require Q23[j] = 0 for j € [31]. See proof 45.

Summary of the conditions for step 23:
— @Q23[31] =0
Step 24:

We have Qa3 = 23!, Q23 = 0, and Qo4 = 0, and we want to obtain foy = £231.

Obtaining the Correct (Q24: No conditions required

The Constant Bits of Qo5:
ng[ﬂ = O,] c [30 - 0}

— To obtain fa4[j] = 0, we need no requirements for Q22[30 - 0].
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The Non-Constant Bits of Qa2:
Qalj] = £1, 5 € [31]

— To obtain fay[j] = 1, we require Q24[j] = 1 for j € [31]. See proof 46.

Summary of the conditions for step 24:
— Q2[31] =0
Steps 25 to 31:

We have Q;—2 = 0, Q;—1 = 0, and Q; = 0, so we will obtain f; = 0. There are no conditions for these
steps.

Round 3: f; = H(X, Y, Z)

In round 3, the only differences in the @); occur in the most significant bit. The sign of the most signif-
icant bit is important only when it is rotated to some other bit position. However, during round 3, the
differences in the most significant bits are always cancelled out by differences in the most significant bit in ei-
ther f;, Q¢_3, or W;. Therefore, in round 3, the sign on the difference the most significant bit does not matter.

Steps 32 to 34:

We have Q;_2 = 0, @Q;—1 = 0, and Q; = 0, so we will obtain f; = 0. There are no conditions for these
steps.

Step 35:

We have Q33 = 0, Q34 = 0, and Q35 = £23', so we will obtain f35 = £23!. See proof 47.

Step 36:

We have Q34 = 0, Q35 = £231, and Q36 = +23!, so we will obtain fs5 = 0. See proof 48.

Steps 37 to 47:

We have Q;_o = £231, Q;—1 = £23!, and Q; = £23!, so we will obtain f, = £23!. See proof 49.

Round 4: f; = I(X, Y, Z)

The values of Q46 and Q47 each have two possibilities, (AQ4, AQ47) = (+1, -1). Thus, there are four

combinations of (AQu6,AQa7). In [7], (AQu6,AQ47) = (+1, -1) were chosen as the initial values for the
fourth round of the first iteration. Thus, we must impose two conditions:

— AQu = +1 = Que =0
—AQur =-1=Qur =1
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Steps 48 to 49:

We have AQ_o = £231, AQ,_, = £23, and AQ; = £23', and we want to obtain Af, = +23!. Thus,
we require that AQ;_> = AQ; = Qi_2 = Q¢. See proof 50.

Step 50:

We have AQus = £23!, AQg = £23!, and AQs9 = £23!, and we want to obtain Afsy = 0. Thus, we
require that AQus = -AQs50 = Qus = Q50. See proof 51.

Steps 51 to 59:

We have AQ;_ o = £231, AQ;_; = +23! and AQ; = £23!, and we want to obtain Af, = £23!. Thus,
we require that AQ¢_o2 = AQy = Qi—2 = Q4. See proof 50.

Step 60:

We have AQss = 23!, AQs9 = £23!, and AQgy = £23!, and we want to obtain Afgy = 0. Thus, we
require that AQss = -AQgsp = Q58 = Qeo- See proof 51.

Step 61:

We have AQsg = £23', AQgo = £23!, and AQg; = £23', and we want to obtain Afg; = £23!. Thus,
we require that AQsg = AQs1 = @59 = Q1. See proof 50.

Step 62:

Obtaining the Correct AQgz:

- Q62 [25] - 0

We have AQgo = 23!, AQg1 = 23!, and AQgz = 23! + 22°, and we want to obtain Afgy = 23'. Thus, we
must impose two conditions. First, to obtain Afgs = £1, we require that AQgy = AQg2 = Qso = Qg2- See
proof 50. Second, to obtain fg2[25] = 0, we require that Qg[25] = 0. See proof 52.

Step 63:
Obtaining the Correct Qgs:

— Q63[25] =0

We have Qg1 = 231, Qg2 = 23! + 22°, and Qg3 = 23! + 22°, and we want to obtain fg3 = 23!. Thus, we
must impose two conditions. First, to obtain fg3[31] = +1, we require that Qg1 = Qsz = Qs1 = Qe3- See
proof 50. Second, to obtain fg3[25] = 0, we require that Qg1[25] = 1. See proof 53.
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7.2 Conditions for the Propagation of the Differences Through the f; Functions for the
Second Block

Round 1: f; = F(X, Y, Z)

The values of Q_5 and Q_; in the second iteration are the same as the values of (Jg2 and Qg3 in the
first iteration, respectively. But Q_; is now described as £23! + 226 - 225 to ensure that the second block
differential holds. Since we have rewritten )_; in this manner, we must impose the following conditions:

- Q-1[26] =0
- Q125 =1
Step 0:

We have Q_p = +231 + 2% Q_; = £231 + 2% and Qy = +£23! + 225, and we want to obtain f, =
+9231,

Obtaining the Correct Qq:

= Qo[25] =0

The Constant Bits of Qq:
Qolj] =0, j € [30 - 26, 24 - 0]

— To obtain fy[j] = 0, we require Qo[j] = 0 for Qo[26]. See proof 22.
— To obtain fy[j] = 0, no conditions are required for Qy[30 - 27, 24 - 0].

The Non-Constant Bits of Qg : Qolj] = +1, j € [25]

— To obtain fy[j] = 0, no conditions are required for Qo[25]. See proof 9.
Qolj] = £1, 5 € [31]
— To obtain fy[j] = 1, we require Q_s[j] = Q_1[j] for j € [31]. See proof 6.

Summary of the conditions for step 0:

- AQ()[26, 25] = 0
- Q2[31] = Q1[31]

Step 1:

We have Q_; = +231 + 225 Qp = £23! 4+ 225 and Q, = +23' + 2?5, and we want to obtain f; =
49231,

Obtaining the Correct Q1:

— @Q1[25] =0
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The Constant Bits of @Q1:
Q1j] = 0,5 € [30 - 26, 24 - 0]

— To obtain fi[j] = 0, no conditions are required for @1[30 - 26, 24 - 0].

The Non-Constant Bits of Q;:
Q1lj] = +1, j € [25]

— To obtain f1[j] = 0, no conditions are required for Q1[25]. See proof 11.
Qufj] = £1,j € [31]
— To obtain fi[j] = 1, we require Q_1[j] = Qo[j] for j € [31]. See proof 6.

Summary of the conditions for step 1:

— Q125 =0
— Q_1[31] = Qo[31]

Step 2:

We have Qo = +23! 4+ 225, Q; = £23! + 22° and @y = £23' + 22 4+ 25 and we want to obtain fo
= 4225,
Obtaining the Correct Qs:

~ Q25,5 = 0

The Constant Bits of Qs:
Q2[j]=0,7 €[30-26,24-6,4-0]

— To obtain f3[j] = 0, no conditions are required for Q2[30 - 26, 24 - 6, 4 - 0].

The Non-Constant Bits of Qs:
QQ[]] = +1v] € [257 5]

— To obtain f3[j] = +1, no conditions are required for Q2[25]. See proof 7.
— To obtain fa[j] = 0, we require Qo[j] = Q1[j] for j € [5]. See proof 12.

Q2[j] = +1, j € [31]
— To obtain f3[j] = 0, we require Qq[j] = Q1[j] for j € [31]. See proof 5.

Summary of the conditions for step 2:

~ Q25,5 =0

= Qo[5] = Q1[5]

= Qo[31] = @1[31]
Step 3:

We have Q; = £23! + 22 Qy = +231 4+ 225 4+ 25 and Q3 = +231 + 225 4+ 216 4 211 4 25 and we
want to obtain f3 = £231 - 227 4 225 _ 921 _ 911,

Obtaining the Correct Q3:
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— Q5[30,21,12,7] =0
— Q329 - 25,20 - 16, 11, 6, 5] = 1

The Constant Bits of Q3:
Qslj] =0,5 €[24-22,15-13,10- 8,4 - 0]

— To obtain f3[j] = 0, no conditions are required for Q3[24 - 22, 15 - 13, 10 - 8, 4 - 0].

The Non-Constant Bits of Q3:
Qslj] = +1, 5 € [30, 21, 12, 7]

— To obtain f3[j] = 0, we require Q1[j] = Q2[j] for j € [30, 12, 7]. See proof 12.
— To obtain f3[j] = -1, we require Q1[j] = 1 and Q2[j] = 0 for j € [21]. See proof 15.

Qs[j] = -1, € [29 - 25, 20 - 16, 11, 6, 5]

— To obtain f3[j
To obtain f3
— To obtain f3
To obtain f3

Qslj] = +1, j € [31]

— To obtain f3[j] = 1, we require Q1[j] = Q2[j] for j € [31]. See proof 6.

| = 0, we require Q1[j] = Q2[j] for Q3[29, 28, 20 - 16, 6]. See proof 13.

| = -1, we require Q1[j] = 0 and Q2[j] = 1 for j € [27, 11]. See proof 17.
| = +1, no conditions are required for Q3[25]. See proof 8.

] = 0, we require Q1[j] = 0 for j € [5]. See proof 26.

<

=

<

Summary of the conditions for step 3:

— Q1[27, 11] = Q2[21] = Q5[30, 21,12, 7] =0
— Q1[21] = Q2[27, 11] = Q4[29 - 25, 20 - 16, 11, 6, 5] = 1
— Q1[31- 28, 26,20 - 16, 12, 7 - 5] = Q2[31 - 28, 26, 20 - 16, 12, 7 - 5]

Step 4:

We have Qp = 231 + 225 4 95 Qy = 231 4 225 4 216 4 911 | 95 and Q, = +2% + 2%5 4 25 .
2! and we want to obtain f; = £231 4 226 _ 218 1 92 4 9ol

Obtaining the Correct Q4:

— Q4]26,5,3-1]=0
— Q4[25,4] =1

The Constant Bits of Qy4:
Qa[j] =0,j € [30- 27,24 -6, 0]

— To obtain f4[j
To obtain f,
— To obtain f,
To obtain f,

= 0, we require Q4[j] = 0 for j € [30, 21, 12, 7]. See proof 22.

= 0, we require Q4[j] = 0 for j € [20, 19, 17, 16, 11, 6]. See proof 24.
= -1, we require Q4[j] = 1 for j € [29 - 27, 18]. See proof 25.

= 0, no conditions are required for Q4[24 - 22, 15 - 13, 10 - 8, 0].

<

e

]
]
]
l

<

The Non-Constant Bits of Q4:
Q4[]] = +1a.7 € [267 57 3 - 1}
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— To obtain f4[j] = -1, we require Qz[j] = 1 for j € [26]. See proof 36.
To obtain fy[j] = 0, no conditions are required for Q4[5]. See proof 9.
— To obtain fy[j] = 0 we require Q2[j] = Q3[j] for j € [3]. See proof 12.
— To obtain f4[j] = +1, we require Q2[j] = 0 and Q3[j] = 1 for j € [2, 1]. See proof 14.

Qa [j] =-1,7j € [25, 4]

— To obtain f4[j] = 0, no conditions are required for Q4[25]. See proof 10.
— To obtain fy[j] = 0, we require Q2[j] = Qs[j] for j € [4]. See proof 13.

Qalj] = +1, 5 € [31]

— To obtain f4[j] = 1, we require Q2[j] = Q3[j] for j € [31]. See proof 6.

Summary of the conditions for step 4:

— Qa[2,1] = Q4[30, 26, 21 - 19, 17,16, 12,11, 7-5,3-1] =0
— Q2[26] = Q3]2, 1] = Q4[29 - 27, 25, 18, 4] = 1
— @231, 4, 3] = Q3[31, 4, 3]

Step 5:

We have Q3 = £231 + 22 4 216 4 21l | 95 (, = 4231 1 2254 25 _ 21 and Q5 = £23! 4 29 + 26
+ 29 and we want to obtain fs = +23°0 + 227 4 225 220 _ 98 _ 96 4 94

Obtaining the Correct Qs5:

— (5[12,8,0/ =0
— Qs[11-9,7,6] =1

The Constant Bits of @5:
Qs[j] = 0,7 € [30-13,5- 1]

— To obtain f5[j] = 0, we require Q5[j] = 1 for j € [30, 21]. See proof 18.

— To obtain f5[j] = -1, we require Qs[j] = 0 for j € [29, 28, 20]. See proof 21.
— To obtain f5[j] = 0, we require Q5[j] = 1 for j € [27, 19 - 16]. See proof 20.
— To obtain f5[j] = -1, we require Qs[j] = 0 for j € [26, 5]. See proof 33.

— To obtain f5[j] = —1, no conditions are required for Q5[25]. See proof 34.

— To obtain f5[j] = -1, we require @5[j] = 1 for j € [4]. See proof 25.

— To obtain f5[j] = 0, we require Q5[j] = 0 for j € [3 - 1]. See proof 22.

— To obtain f5[j] = 0, no conditions are required for Q5[24 - 22, 15 - 13].

The Non-Constant Bits of Qs5:
Q5[.7] - +1a] S [127 87 77 O]

— To obtain f5[j] = 0, we require Q4[j] = 0 for j € [12, 7]. See proof 27.
— To obtain f5[j] = -1, we require Qs[j] = and Q4[j] = 0 for j € [8]. See proof 15.
— To obtain f5[j] = 0, we require Q3[j] = Q4[j] for j € [0]. See proof 12.

@slj] =-1,7 € [11-9, 6]
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— To obtain f5[j] = 0, we require Q4[j] = 0 for j € [11, 6]. See proof 31.

— To obtain f5[j] = 0, we require Q3[j] = Qa[j] for j € [10, 9]. See proof 13.
Qslj] = £1, 5 € [31]

— To obtain f5[j] = 1, we require Q3[j] = Q4[j] for j € [31]. See proof 6.

Summary of the conditions for step 5:

— Q4[12, 11, 8, 6] = Q4[7] = Q5[29 - 26, 20, 12, 8,5, 3 - 0] = 0
— Qs[8] = Q5[30, 27, 21,19-16,11-9,7,6,4] = 1
— Qs[31, 10, 9, 0] = Q4[31, 10, 9, 0]

Step 6:

We have Qg = £231 + 2254 25 _ 21 Qg = 4231 4 29 4 26 4 20 and Qg = £23! - 220 _

want to obtain fg = -22° - 221 - 216 _ 211 _ 910 95 4 93

Obtaining the Correct Qg:

~ Qs[20, 16] = 0
~ Qol21,17] = 1

The Constant Bits of Qg:
Qslj] = 0,5 € [30 - 22, 19, 18, 15 - 0]

— To obtain fs[j] = 0, we require Qg[j] = 1 for j € [26, 2, 1]. See proof 18.

— To obtain fg[j] = -1, we require Qg[j] = 0 for j € [25]. See proof 21.

— To obtain fg[j] = 0, we require Qg[j] = 0 for j € [12, 8, 7, 0]. See proof 22.

— To obtain fg[j] = -1, we require Qg[j] = 1 for j € [11, 10, 6]. See proof 25.

— To obtain fg[j] = 0, we require Qg[j] = 0 for j € [9]. See proof 24.

— To obtain fs[j] = +1, we require Qg[j] = 0 for j € [5, 3]. See proof 19.

— To obtain fg[j] = 0, we require Qg[j] = 1 for j € [4]. See proof 20.

— To obtain fg[j] = 0, no conditions are required for Qg[30 - 27, 24 - 22, 19, 18, 15 - 13].

The Non-Constant Bits of Qg:
Q¢lj] = +1, 5 € [20, 16]

— To obtain fg[j] = 0, we require Q4[j] = Qs[j] for j € [20]. See proof 12.
— To obtain fg[j] = +1, we require Q4[j] = 0 and Qs[j] = 1 for j € [16]. See proof 14.

Qelj] = -1, € [21, 17]

— To obtain fs[j] = -1, we require Q4[j] = 0 and Qs[j] = 1 for j € [21, 17]. See proof 17.
Qslj] = £1, j € [31]

— To obtain fg[j] = 0, we require Q4[j] = Qs5[j] for j € [31]. See proof 5.

Summary of the conditions for step 6:

— Q4[21, 17, 16] = Qg[25, 20, 16, 12,9- 7,5 -3, 0] = 0

16
27,

and we
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— Qs[21, 17, 16] = Qg[26, 21, 17, 11, 10, 6, 4, 2, 1] = 1

— Q4[20] = Q5[20]
— Q431] = Q5[31]
Step 7:

We have Q5 = £231 4+ 29 4+ 26 4 20 Qg = 231 - 220 _ 216 and @, = 23! - 227 - 26, and we want
to obtain f; = £231 - 227 4 216,

Obtaining the Correct Q7:

— Q7[27,8-6]=0
~ Qq[28,9] =1

The Constant Bits of Q7:
Q71 =0, j € [30, 29, 26 - 10, 5 - 0]

— To obtain f7[j] = 0, we require Q7[j] = 0 for j € [21, 17]. See proof 24.
To obtain fr[j] = 0, we require Q-[j] = 0 for j € [20]. See proof 22.
— To obtain f7[j] = +1, we require Q7[j] = 1 for j € [16]. See proof 23.
— To obtain f7[j] = 0, we require Q7[j] = 1 for j € [12, 0]. See proof 18.
[j]
]

To obtain f[j] = 0, we require Q7[j] = 1 for j € [11, 10]. See proof 20.
To obtain f7[j] = 0, no conditions are required for Q7[30, 29, 26 - 22, 19, 18, 15 - 13, 5 - 1].

The Non-Constant Bits of Q7:
Q7[.7] = +]-7] € [277 8 - 6}

— To obtain fr[j] = -1, we require Qs[j] = 1 and Qg[j] = 0 for j € [27]. See proof 15.
— To obtain f7[j] = 0, we require Qg[j] = 0 for j € [8, 7]. See proof 27.
— To obtain f7[j] = 0, we require Qg[j] = 1 for j € [6]. See proof 30.

Q7lj] =-1,7 € [28,9]

— To obtain f7[j] = 0, we require Q5[j] = Qg[j] for j € [28]. See proof 13.
— To obtain f7[j] = 0, we require Qs[j] = 0 for j € [9]. See proof 31.

Q-[j] = £1, 5 € [31]
— To obtain f7[j] = 1, we require Q5[j] = Qg[j] for j € [31]. See proof 6.

Summary of the conditions for step 7:

— Qs[27,9 - 7] = Qq[27, 21, 20, 17, 8 - 6] = 0
— @s[27] = Qs[6] = Q7[28, 16, 12- 9, 0] = 1
— Q5[31, 28] = Qs[31, 28]

Step 8:

We have Qg = +231 - 220 - 216 Q. = 4231 _ 227 _ 26 and Qg = +23' - 223 - 217 4+ 215 and we want
to obtain fg = 4225 4+ 216 _ 26,

Obtaining the Correct Qg:
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— Qs[25 - 23,16] = 0
— Qs[26, 17, 15] = 1

The Constant Bits of Qs:
Qs[j] =0, j € [30 - 27, 22 - 18, 14 - 0

— To obtain fg[j] = 0, we require Qg[j] = 0 for j € [28]. See proof 24.

— To obtain fs[j] = 0, we require Qg[j] = 0 for j € [27]. See proof 22.

— To obtain fg[j] = 0, we require Qg[j] = 1 for j € [21]. See proof 20.

— To obtain fg[j] = 0, we require Qg[j] = 1 for j € [20]. See proof 18.

— To obtain fg[j] = -1, we require Qg[j] = 1 for j € [9]. See proof 25.

— To obtain fg[j] = —|—1 we require Qg[j] = 1 for j € [8 - 6]. See proof 23.
| =

0, no conditions are required for Qs[30, 29, 22, 19, 18, 14 - 10, 5 - 0].

To obtain fg[j
The Non-Constant Bits of Qs:
Qslj] = +1, 5 € [25 - 23, 16]

— To obtain fg[j] = +1, we require Qg[j] = 0 and Q7[j] = 1 for j € [25]. See proof 14.
— To obtain fs[j] = 0, we require Qs[j] = Qr[j] for j € [24, 23]. See proof 12.
— To obtain fg[j] = +1, we require Q7[j] = 1 for j € [16]. See proof 28.

QS[]] = _17j € [263 177 15]

— To obtain fs[j] = 0, we require Qg[j] = Q7[j] for j € [26, 15]. See proof 13.
— To obtain fg[j] = 0, we require Q7[j] = 0 for j € [17]. See proof 31.

Qslj] = £1, j € [31]
— To obtain fg[j] = 0, we require Qg[j] = Q7[j] for j € [31]. See proof 5.
Summary of the conditions for step 8:

- Qe[2
— Q:[25 16] Q8[26, 21, 20, 17, 15, 9 - 6] =1
— Q6[26 24, 23, 15] Q7[26, 24, 23, 15}

— Qe[31] = Q7[31]

Step 9:

5] = Q7[17) = Qs[28, 27, 25 - 23, 16] = 0

We have Q7 = +231 - 227 - 26 Qg = £231 - 223 - 217 1 215 and Qg = 23! + 26 + 2°, and we want
to obtainfo = £231 - 226 4 216 4 90,

Obtaining the Correct Qg:

— Q9. 1] =0
— Qo[8-6,0] =1

The Constant Bits of Qg:
Qolj] =10, € [30-10, 5 - 2]

— To obtain fy[j] = 0, we require Qqg[j] = 1 for j € [28]. See proof 20.
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— To obtain fy
To obtain fg
— To obtain fy

[1] = 0, we require Qg[j] = 1 for j € [27]. See proof 18.
]
lj]
— To obtain fy[j]
lj]
lj]

= -1, we require Q9[j] = 1 for j € [26]. See proof 25.
0, we require Qg[j] = 0 for j € [25 - 23]. See proof 22.
0, we require Qg[j] = 0 for j € [17, 15]. See proof 24.
= 41, we require Qg[j] = 1 for j € [16]. See proof 23.
0, no conditions are required for Qg[30, 29, 22 - 18, 14 - 10, 5 - 2].

To obtain fo
— To obtain fy

The Non-Constant Bits of Qq:
QQ[]] = +17j € [97 1]

— To obtain fg[j] = 0, we require Qg[j] = 1 for j € [9]. See proof 30.
— To obtain fy[j] = 0, we require Q7[j] = Qs[j] for j € [1]. See proof 12.

Qolj] = -1, € [8-6, 0]

— To obtain fy[j] = 0, we require Qg[j] = 1 for j € [8 - 6]. See proof 29.
— To obtain fy[j] = +1, we require Q7[j] = 1 and Qs[j] = 0 for j € [0]. See proof 16.

Qolj] = £1, j € [31]
— To obtain fy[j] = 1, we require Q7[j] = Qs[j] for j € [31]. See proof 6.

Summary of the conditions for step 9:

— Qs[0] = Qq[25 - 23, 17,15,9, 1] = 0
— Q7[0] = Qs[9 - 6] = Qg[28 - 26, 15, 8- 6,0] = 1
— Q731 1] = @s[31, 1]

Step 10:

We have Qg = 4231 - 223 _ 217 4 215 (g = 4231 4+ 26 4+ 20 and Q9 = £23' + 2'2, and we want to
obtain fio = 231 + 26,

Obtaining the Correct Q1¢:

- Qo[12] =0

The Constant Bits of Q1q:
Qio[j] = 0,7 € [30- 13, 11 - (]

— To obtain fig
— To obtain fig

[1] = 0, we require Q19[j] = 1 for j € [26, 17, 15]. See proof 20.
[j
To obtain fio[j
/
b

]
] = 0, we require Qqp[j] = 1 for j € [25 - 23, 16]. See proof 18.
] = 41, we require Q1g[j] = 1 for j € [9]. See proof 23.

] = -1, we require Q10[j] = 1 for j € [8 - 6]. See proof 25.

]

]

]

To obtain fig

— To obtain fig 0, we require Q19[j] = 0 for j € [1]. See proof 22.
To obtain f1p[j] = 0, we require Q1p[j] = 0 for j € [0]. See proof 24.
To obtain fi1[j] = 0, no conditions are required for Q10[30 - 27, 22 - 18, 14, 13, 11, 10, 5 - 2].

The Non-Constant Bits of Q1¢:
Quolj] = +1, 5 € [12]
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— To obtain fio[j] = 0, we require Qs[j] = Qo[j] for j € [12]. See proof 12.
Q10lj] = £1, 5 € [31]
— To obtain fip[j] = 1, we require Qs[j] = Qolj] for j € [31]. See proof 6.

Summary of the conditions for step 10:

— Q0[12,1,0] =0
— Q10[26 - 23,17-15,9-6] = 1
— Qs[31, 12] = Qo[31, 12]

Step 11:

We have Qg = +£231 4+ 26 + 20 Q9 = £23! + 22 and Q:; = +23!, and we want to obtain fi; =
+231,

Obtaining the Correct (Q11: No conditions required

The Constant Bits of Q11:
Qulj] =0, €[30-0]

— To obtain fi1[j] = 0, we require Q11[j] = 0 for j € [12]. See proof 22.

— To obtain f11[j] = 0, we require Q11[j] = 1 for j € [9, 1]. See proof 18.

— To obtain f11[j] = 0, we require Q11[j] = 1 for j € [8 - 6, 0]. See proof 20.
]

To obtain f1;

j] = 0, no conditions are required for Q1130 - 13, 11, 10, 5 - 2].

The Non-Constant Bits of Q11:
Qulj] = £1,; € [31]

— To obtain fi1[j] = 1, we require Qo[j] = Q10[j] for j € [31]. See proof 6.

Summary of the conditions for step 11:

~ Qu12] =0
~ Qu[9-6,1,0 =1
— Qo[31] = Q1o[31]

Step 12:

We have Q19 = £23 + 212, Q11 = £23!, and Q12 = £231 - 213 - 27 and we want to obtain fio = +231 + 217,

Obtaining the Correct Q12:

— Q12[18-13] =0
- ng[lg, 7] - 0

The Constant Bits of Q12:
QlQ[j] = 0)] € [30 - 20a 12 - 8a 6 - 0]

— To obtain fi3[j] = 0, we require Q12[j] = 1 for j € [12]. See proof 18.
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— To obtain fi3[j] = 0, no conditions are required for Q1230 - 20, 11 - 8, 6 - 0].

The Non-Constant Bits of Q1s:
Qu2lj] = +1, 7 € [18 - 13]

— To obtain f12[j] = +1, we require Q19[j] = 0 and Q11[j] = 1 for j € [18]. See proof 14.
— To obtain fi2[j] = -1, we require Q19[j] = 1 and Qq1[j] = 0 for j € [17]. See proof 15.
— To obtain fi2[j] = 0, we require Q10[j] = Q11[j] for j € [16 - 13]. See proof 12.

Qu2[j] =-1,j € 19, 7]
— To obtain fi2[j] = 0, we require Q10[j] = Q11[j] for j € [19, 7]. See proof 13.
Q2] = £1, j € [31]

— To obtain fi2[j] = 1, we require Q10[j] = Q11[j] for j € [31]. See proof 6.

Summary of the conditions for step 12:

— Q10[18] == Q11[17] == Q12[18 - 13] - 0
— Q10[17] = Q11[18] = @12]19, 12, 7] =1
— Q10[31, 19, 16 - 13, 7] = Q11[31, 19, 16 - 13, 7]

Step 13:

We have Qqq = £231, Qo = £23' - 213 _ 27 and Q3 = +23' + 224, and we want to obtain fi3 =
:|:231 _ 213_

Obtaining the Correct (Q13:

— Q13[30] = 0
— Q13[29-24] =0

The Constant Bits of Q13:
Qualj] = 0,7 € [23- (]

— To obtain fi3[j] = -1, we require Q13[j] = 1 for j € [19]. See proof 25.

— To obtain fi3[j] = +1, we require Q13[j] = 1 for j € [18 - 13]. See proof 23.
— To obtain f13[j] = 0, we require Q13[j] = 0 for j € [7]. See proof 24.

— To obtain fi3[j] = 0, no conditions are required for Q13[23 - 20, 12 - 8, 6 - 0].

The Non-Constant Bits of Q13:
Qus[sj] = +1, j € [30]

— To obtain f13[j] = 0, we require Q11[j] = Q12[j] for j € [30]. See proof 12.
Quslj] =-1,j € [29 - 24]

— To obtain fi3[j] = 0, we require Q11[j] = Q12[j] for j € [29 - 24]. See proof 13.
@Qs[j] = £1, j € [31]

— To obtain fi3[j] = 1, we require Q11[j] = Q12[j] for j € [31]. See proof 6.




62

Summary of the conditions for step 13:

- @13[30,7 =0
— (Q13[29-24,19-13] =1
— Q11[31 - 24] = Q12[31 - 24]

Step 14:

We have Q11 = £231 - 213227 Q15 = £231 + 224 and Q13 = £23!, and we want to obtain fi3 = +230 + 218,

Obtaining the Correct Q14: No conditions required

The Constant Bits of Q14:
Q14lj] = 0, j € [30 - (]

— To obtain fi4]
To obtain fi4]
To obtain fi4]
— To obtain fi4]
To obtain fi4]
To obtain fi4]

] = 41, we require Q14[j] = 1 for j € [30]. See proof 23.

] = 0, we require Qq4[j] = 0 for j € [29 - 24]. See proof 24.
] = 0, we require Qq4[j] = 1 for j € [19, 7]. See proof 20.

] = 41, we require Q14[j] = 0 for j € [18]. See proof 19.
]
]

SRS

0, we require Q14[j] = 1 for j € [17 - 13]. See proof 18.
= 0, no conditions are required for Q14[23 - 20, 12 - 8, 6 - 0].

<~

<

The Non-Constant Bits of Q14:
Qualj] = £1, 5 € [31]

— To obtain fi4[j] = 0, we require Q12[j] = Q13[j] for j € [31]. See proof 5.

Summary of the conditions for step 14:

— Q14[30-24,7 =0
— Qua[19-13] =1
= Q12[31] = Q13[31]

Step 15:

We have Q3 = 231 + 224 Q14 = £23, and Q5 = £23! + 2'° 4 23, and we want to obtain f15 = £23! - 225,

Obtaining the Correct Q15:
— @Q15[15,3] =0

The Constant Bits of Q15:
Q5[] =0,7 €[30-16, 14 - 4,2 - 0

— To obtain fi5[j] = 0, we require Q15[j] = 1 for j € [30]. See proof 18.
— To obtain f15[j] = 0, we require Q15[j] = 1 for j € [29 - 26, 24]. See proof 20.
— To obtain fi5[j] = -1, we require Q15[j] = 0 for j € [25]. See proof 21.
— To obtain fi5[j] = 0, no conditions are required for Q15[23 - 16, 14 - 4, 2 - 0].

The Non-Constant Bits of Q15:
Qis[j] = +1, 5 € [15, 3]
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— To obtain fi5[j] = 0, we require Q13[j] = Q14[j] for j € [15, 3]. See proof 12.
Q15[_ﬂ =41,7 € [31}
— To obtain fi5[j] = 1, we require Q13[j] = Q14[j] for j € [31]. See proof 6.

Summary of the conditions for step 15:

- Q15[25, 15, 3] - 0
— Q15[30-26,24] =1
— (1331, 15, 3] = Q14[31, 15, 3]

Round 2: f; = G(X, Y, Z)
Step 16:

We have Qy = +231, Q5 = £231 + 215 + 23 and Q16 = £2°' - 229, and we want to obtain fi; =
+231,

Obtaining the Correct Q1¢:
— Quel29] = 1

The Constant Bits of ()14:
Q14]j] = 0, 5 € [30 - 0]

— To obtain fig[j] = 0, we require Q14[j] = 0 for j € [29]. See proof 39.
— To obtain fig[j] = 0, we require Q14[j] = 1 for j € [15, 3]. See proof 41.
— To obtain fi6[j] = 0, we need no requirements for Q14[30, 28 - 16, 14 - 4, 2 - 0].

The Non-Constant Bits of Q14:
Qualj] = £1, 5 € [31]

— To obtain fig[j] = 1, we require Q15[j] = Qi6[j] for j € [31]. See proof 38.

Summary of the conditions for step 16:

— Q14]29] =0

= Qufl15,3] =1

= Q15[31] = Q15[31]
Step 17:

We have Q5 = £23! + 215 4+ 23 Qg = £23! - 229 and Q7 = 23!, and we want to obtain fi; =
+231,

Obtaining the Correct (Q17: No conditions required

The Constant Bits of Q15:
Qlf)[j] = Oa] € [30 - 167 14 - 4a 2- O]
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— To obtain fi7[j] = 0, we require Q15[j] = 1 for j € [29]. See proof 40.
— To obtain fi7[j] = 0, we need no requirements for 15[30, 28 - 16, 14 - 4, 2 - 0].

The Non-Constant Bits of Q15:
Qis[j] = +1, 5 € [3]

— To obtain fi7[j] = 0, we require Q1¢6[j] = Q17[j] for j € [15, 3]. See proof 43.
Qus[j] = £1, 5 € [31]
— To obtain fi7[j] = 1, we require Q16[j] = Q17[j] for j € [31]. See proof 38.

Summary of the conditions for step 17:

- Q15[29] =1
— Q16[31, 15, 3] = Q17[31, 15, 3]

Step 18:

We have Q6 = £23! - 229, Q17 = +23!, and Q15 = £23!, and we want to obtain fig = 23!,

Obtaining the Correct (Q15: No conditions required

The Constant Bits of Q1¢:
Q16]7] = 0, 5 € [30, 28 - 0]

— To obtain fi3[j] = 0, we need no requirements for Q14[30, 28 - 0].

The Non-Constant Bits of Q1¢:
Quely] =-1,7 € [29]

— To obtain fig[j] = 0, we require Q17[j] = Q1s[j] for j € [15]. See proof 42.
Quelj] = £1, j € [31]

— To obtain fig[j] = 1, we require Q17[j] = Q1s[j] for j € [31]. See proof 38.

Summary of the conditions for step 18:
— Q17[31, 29] = Q15]31, 29]
Step 19:

We have Q7 = £23, Q15 = +231, and Q19 = +23! + 27, and we want to obtain fig = +23!.

Obtaining the Correct Q19:
— Qo[l7] =0

The Constant Bits of Q17:
Qi7[j] =0, j € [30 - O]

— To obtain fi9[j] = 0, we require Q17[j] = 0 for j € [17]. See proof 44.




— To obtain fi9[j] = 0, we need no requirements for Q17[30 - 18, 16 - 0].

The Non-Constant Bits of Q7:
Qu7lj] = £1,j € [31]

— To obtain fi9[j] = 1, we require Q15[j] = Q19[j] for j € [31]. See proof 38.

Summary of the conditions for step 19:

— Q1717 = Q1o[17] =0
— Qis[31] = Q19[31]

Step 20:

We have Q15 = £231, Q19 = £231 + 217, and Qo9 = £23', and we want to obtain fpo = 231

Obtaining the Correct (Q29: No conditions required

The Constant Bits of Q15:
Qis[j] =0, j € [30 - O]

— To obtain fag[j] = 0, we require Q15[j] = 1 for j € [17]. See proof 41.
— To obtain fa[j] = 0, we need no requirements for Q15[30 - 18, 16 - 0].

The Non-Constant Bits of Q1s:
Quslj] = £1, 5 € [31]

— To obtain fa[j] = 1, we require Q19[j] = Q2lj] for j € [31]. See proof 38.

Summary of the conditions for step 20:

- Qs[l7] =1
— Q19[31] = Q20[31]
Step 21:

We have Q9 = £231 + 217, Qg0 = £23!, and Q21 = £23', and we want to obtain fp; = 231

Obtaining the Correct (J21: No conditions required

The Constant Bits of Q19:
Qiolj] =0, j € [30 - 18, 16 - 0]

— To obtain fa1[j] = 0, we need no requirements for Q19[30 - 18, 16 - 0].

The Non-Constant Bits of Q19:
Qiolj] = +1, 5 € [17]

— To obtain f2;1[j] = 0, we require Q20[j] = Q21[j] for j € [17]. See proof 43.

Quolj] = 1, j € [31]
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— To obtain fo1[j] = 1, we require Q20[j] = Q21]j] for j € [31]. See proof 38.
Summary of the conditions for step 21:

— Q20[31, 17] = Q21(31, 17]
Step 22:

We have Qg9 = £231, Q21 = £231, and Qg2 = 23!, and we want to obtain foy = £23!.

Obtaining the Correct (Q22: No conditions required

The Constant Bits of Q2q:
Q20[j] = 0, j € [30 - (]

— To obtain fas[j] = 0, we need no requirements for Q20[30 - 0].

The Non-Constant Bits of Qs0:
Qa[j] = £1, 5 € [31]

— To obtain fas[j] = 1, we require Q21[j] = Q22[j] for j € [31]. See proof 38.

Summary of the conditions for step 22:
— Q21[31] = Q22[31]
Step 23:

We have Qa1 = £231, Q2o = £23!, and Qg3 = 0, and we want to obtain fa3 = 0.

Obtaining the Correct (Q23: No conditions required

The Constant Bits of (o1:
Q21[7] =0, 5 € [30 - 0]

— To obtain fa3[j] = 0, we need no requirements for Q21[30 - 0].

The Non-Constant Bits of Qa1:
Qa1[j] = £1, 5 € [31]

— To obtain fa3[j] = 0, we require Q23[j] = 0 for j € [31]. See proof 45.

Summary of the conditions for step 23:
— Q23[31] =0
Step 24:

We have Qa5 = 23!, Q23 = 0, and Qo4 = 0, and we want to obtain fo, = £231.

Obtaining the Correct (Q24: No conditions required

The Constant Bits of (o5:
Q22[7] = 0, 7 € [30 - 0]
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— To obtain fa4[j] = 0, we need no requirements for Q22[30 - 0].

The Non-Constant Bits of Qa2
Qaoj] = £1, j € [31]

— To obtain foyu[j] = 1, we require Q24[j] = 1 for j € [31]. See proof 46.

Summary of the conditions for step 24:
— Q4[31] =0
Steps 25 to 31:

We have Q;_2 = 0, Q;—1 = 0, and Q; = 0, so we will obtain f; = 0. There are no conditions for these
steps.

Round 3: f; = H(X, Y, Z)

In round 3, the only differences in the @; occur in the most significant bit. The sign of the most signif-
icant bit is important only when it is rotated to some other bit position. However, during round 3, the
differences in the most significant bits are always cancelled out by differences in the most significant bit in ei-
ther f;, Qi—_3, or W;. Therefore, in round 3, the sign on the difference the most significant bit does not matter.

Steps 32 to 34:

We have Q;—2 = 0, Q;—1 = 0, and Q; = 0, so we will obtain f; = 0. There are no conditions for these
steps.

Step 35:

We have Q33 = 0, Q34 = 0, and Q35 = £23', so we will obtain f35 = £23!. See proof 47.

Step 36:

We have Q34 = 0, Q35 = £231, and Q36 = +231, so we will obtain fs5 = 0. See proof 48.

Steps 37 to 47:

We have Q;_, = +23!, Q,_1 = £23!, and Q; = £23!, so we will obtain f; = £23!. See proof 49.

Round 4: f; = I(X, Y, Z)

The values of Q46 and Q47 each have two possibilities, (AQ4s, AQ47) = (-1, +1). Thus, there are four

combinations of (AQ46,AQ47). In [7], (AQu4s,AQ47) = (-1, +1) were chosen as the initial values for the
fourth round of the first iteration. Thus, we must impose two conditions:

— AQus =-1= Qu =1
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— AQur =+1=Qur =0

Steps 48 to 49:

We have AQ;_ o = £231, AQ;_; = +23! and AQ; = £23!, and we want to obtain Af, = £23!. Thus,
we require that AQ¢_o = AQy = Qi—2 = Q4. See proof 50.

Step 50:

We have AQus = 23!, AQq = £23!, and AQs9 = £23!, and we want to obtain Afsy = 0. Thus, we
require that AQus = -AQ50 = Qus = Qs0. See proof 51.

Steps 51 to 59:

We have AQ;_o = £23', AQ,_; = +23! and AQ; = £23!, and we want to obtain Af, = £23!. Thus,
we require that AQ¢_o = AQy = Qi—2 = Q. See proof 50.

Step 60:

We have AQss = 23!, AQs9 = £231, and AQgy = £23!, and we want to obtain Afgy = 0. Thus, we
require that AQss =-AQgp = Q58 = Qgo- See proof 51.

Step 61:

We have AQs9 = £231, AQgo = £23!, and AQs; = £23!, and we want to obtain Afg = 423!, Thus,
we require that AQs9 = AQgs1 = @59 = Qg1 See proof 50.

Step 62:

Obtaining the Correct AQgo:
— Qe2[25] =1

We have AQgp = 23!, AQg1 = 23!, and AQgo = 23! - 225, and we want to obtain Afgs = 23!, Thus, we
must impose two conditions. First, to obtain Afgs = £1, we require that AQgy = AQg2 = Qso = Qg2- See
proof 50. Second, to obtain fg2[25] = 0, we require that Qg[25] = 0. See proof 54.

Step 63:
Obtaining the Correct AQgs:
— Qe3[25] =1

We have AQg1 = 23!, AQg2 = 23! - 225, and Qg3 = 23! - 22°, and we want to obtain fgz = 23!. Thus,
we must impose two conditions. First, to obtain fg3[31] = %1, we require that Qg1 = Q3 = Q¢1 = Qg3. See
proof 50. Second, to obtain fg3[25] = 0, we require that Qg1[25] = 1. See proof 55.
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7.3 Complexity of the Attack

Tables 3, 4, 5, and 6 on the following four pages summarize the conditions for the propagation of the
differences through the f; functions for the first and second blocks. A random message will satisfy all of
the conditions for the first block with probability 27277 since the values of A, B, H, I, and J are arbitrary.
Similarly, a random message will satisfy all of the conditions for the second block with probability 27319
since the values of A, C, I, and J are arbitrary. These probabilities preclude a second pre-image attack. The
vast majority of the conditions, however, occur during the first 16 steps of each block. Only 39 in each block
do not.

Suppose we define an “fi-good” message as a message which satisfies all of the conditions for the first
round. With single-message modification, we can find “f;-good” messages with probability 273° for each
block. For our collision differential to hold, our message must be both “T;-good” and *“f;-good.” We found
in section 6 that the probability of obtaining a “T}-good” message was 2~24 for each block. Therefore, the
probability of finding a message which is both “T}-good” and “f;-good” for each block is:

2—39 % 2—2.4 ~ 2—41

This means that the complexity of the attack for each block is 24'. Thus, the complexity of the overall
attack is:

241 4 241 — 242.

8 Proofs

We use the following notation for each proof:
“£ = AX = £1,1e, X' - X = +1

“P = AX = 41, 0e, X' - X = +1

“ = AX =-1,ie, X' - X =-1

“0 = AX =0,ie, X' =X

For the title of each proof, we use the shorthand format (z y z w) where
zyzw=>AQ =1, AQi—1 =y, AQy_2 = z, and Af; = w.

For example,

+ 0+ + = AQ: = +1, AQ¢—1 = 0, AQt—2 = +1, and Af; = +1.

8.1 Proofs for Round 1
For round 1, note that f; = F(X, Y, Z) = (X A Y)V (=X A Z).

1: 2000

We are given: (AQ¢, AQi—1, AQi—2) = (£1, 0, 0), ie., Q) - Q¢ = £1, Q}_1 = Q¢—1, and Q}_5 = Q¢_o.
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t Conditions on Q;
Case One Eq | Def None
2 N vvvOvvvvvvvOvvvvO. ..... 13v| 3 16
4 | C.oo.... [0 Joiaink Relaieieioiole 1°°""0...... 13| 5 11
5 | Cvvv1ivOv0100000000000000001vvivl | 8v 24
6 |B~""071°0111111110111100010""0"1 | &8~ 24
7 | A0000011111111101111100000100000 32
8 | 000000011..100010.0v010101000000 | 1v 28 3
9 | E1111011...100000.1"..1100111101 | 1~ 25 6
10 | AL...... 0..111111101...001....00 17 15
11 | AO....vv....000...00...011....10 | 2v 15 15
12 | AO....”"....10000001...10....... 2° 12 18
13| A1....01....1111111....00...1... 14 18
14 | A.0...00....1011111....11...1... 14 18
15 |H.1...01........ 1....... ..., 0... 6 26
Eq | Def | Combined
Subtotal 0 < ¢t < 15: Case One 24 | 219 243
Case Two Eq | Def None
5 2 N vvvOvvvvvvvOvvvvO0. .. ... 13v| 3 16
4 [0....... [0 Jokaiak Ralaiaialoiole 1°°""0...... 137 | 5 11
5 | 0...0v0Ov0100000000000000001vvivl | 5v 24 3
6 |....17170111111110111100010°"°0"1 | 5~ 23 4
7 11...1011111111101111100000100000 29 2
8 [ 0...00011..100010.0v010101000000 | 1v 25 6
9 |E...1011...100000.1"..1100111101 | 1~ 22 9
10 | AL...... 0..111111101...001....00 17 15
11 | AO....vv....000...00...011....10 | 2v 15 15
12 | AO....”"....10000001...10....... 2° 12 18
13| A1....01....1111111....00...1... 14 18
14 | A.0...00....1011111....11...1... 14 18
15| H.1...01........ 1o, 0... 6 26
Eq | Def | Combined
Subtotal 0 < ¢ < 15: Case Two 21 | 209 230

Table 3. Conditions for on @, 15 < ¢t < 32 in the first block. There are two variables with two possibilities each:
A € {0,1}, B € {0,1}, with C = A® B, E = A. The column headed by “Eq” contains the number of equality
relationships of the form Q:[j] = Q¢—1[j]. The column headed by “Def” contains the number of definitions of the
form Q:[j] = 0 or Q:[j] = 1. The column headed by “None” contains the number of bits with no conditions.
When computing subtotals, the column headed by “Comb.” contains the combination of equality relationships and
definitions.



t Conditions on @ Eq | Def None
14 A.0...00....1011111....11...1...
15 H.1...01........ 1. ..., 0
16 Hoil............. Ve v 2v 2 28
17 |Hove.ooooooo... 0.7 i - 1v,2=| 2 27
18 5 1o 1~ 2 29
19 Ho.....o.o..o.. [ I 2 30
20 H.o.oooo o o, Voo ettt e e 1v 1 30
21 H.o............ L 1~ 1 30
22 He oo 1 31
23 L 1 31
24 P 1 31
24D | e e 32
46 L e e 1 31
47 PP 1 31
48 e e e e 1 31
49 P 1 31
50 Ko e e 1 31
51 T e 1 31
52 Ko e 1 31
53 PP 1 31
54 K e 1 31
55 P 1 31
56 K e 1 31
57 T e 1 31
58 Koo e 1 31
59 PP 1 31
60 I..... [P 2 30
61 J.. ... L e 2 30
62 I..... Ot e e e 2 30
63 J..... [P 2 30
Eq | Def | Combined
Sub-total: 16 < ¢ < 31 4 13 17
Sub-total: 32 <t <47 - 2 2
Sub-total: 48 <t < 63 - 20 20
| | SubTotal: 16 <t < 63 (This Table) | 4 [ 35 |
Sub-total: —2 <t < 15: Case One 24 219 243
Sub-total: —2 <t < 15: Case Two 21 209 230
Total: —2 <t < 63: Case One 28 254 282
Total: —2 <t < 63: Case Two 25 | 244 269
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Table 4. Conditions for on @, 15 < ¢t < 32 in the first block. There are three new variables with two possibilities

each: H € {0,1}, I € {0,1}, and J € {0,1}, with K = I. The column headed by “Eq” contains the number of
equality relationships of the form Q:[j] = Q¢-1[j]. The column headed by “Def” contains the number of definitions

of the form @Q.[j] = 0 or Q[j] = 1. The column headed by “None” contains the number of bits with no conditions. In
the last few rows, the column headed by “Comb.” contains the combination of equality relationships and definitions.
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t Conditions on Q: Eq | Def None
2 AL Ottt 2 30
SLJA 0L 3 29
O [A....00. ..., V..o, 1v 3 28
1 | Bvvv010...1vvvvv...v0...v1"..... 10v,1~ | 7 14
2 |B~""110...07"°"°"" ...71...710vv00. | 2v,10" | 10 10
3 | BO11111...011111...01vv1011""11v | 3v,2" 21 6
4 | B011101...000100...007700001000" 3 23 6
5 | A100101...101111...0111001010000 26 6
6 | A..0010v1.10..101..0110001010110 1v 24 7
7 |B..1011°1.00..011..1111000....v1 | 1v,1° 19 11
8 | B..001000.11..101..v..1111....70 | 1lv,1" 17 13
9 | B..111000..... 010..7..0111....01 1° 16 15
10 [B....1111...v0111100..1111....00 1v 18 13
11 | Bvvvvvvv....~1011100..1111....11 | 7v,1" | 14 10
12 | B~"""""" ....10000001....1....... 7 10 15
13 | A0111111. ... 1111111, .. 0...1... 17 15
14 | A1000000....1011111..... 1...1... 17 15
15 | C1111101........ O ivvvinn 0... 10 22
Eq | Def | Combined
Sub-total: —2 <t <15 27 257

Table 5. Conditions on VQ:, —2 < ¢t < 15, of the second block to get the correct propagation of differences through
f+. The attacker can allow A € {0,1}, C € {0,1} with B = A. The column headed by “Eq” contains the number
of relationships of the form Q:[j] = Q¢—1[j]- The column headed by “Def” contains the number of definitions of the
form Q¢[j] = 0 or Q+[j] = 1. The column headed by “None” contains the number of bits with no conditions. In the
last row, the column headed by “Comb.” contains the combination of equality relationships and definitions. Note the

conditions on Q_2,Q_1, Qo apply to the intermediate hash value THV®,




73

t Conditions on @ Eq | Def None
14 A1000000....1011111..... 1...1...
15 C1111101........ Ot 0...
16 C.l..ooiiie. Ve V... 2v 2 28
17 |Covevniin 0. i T 271v | 2 27
18 C.m i 1o 1~ 2 29
19 Covvviiinnn [ 2 30
20 [ Ve et e e 1v 1 30
21 Covviiiiinn L 1~ 1 30
22 Gt 1 31
23 O 1 31
24 L e e 1 31
25-31 | o e 32
32-45 | o 32
46 L e 1 31
47 T 1 31
48 T e e 1 31
49 T 1 31
50 K 1 31
51 T 1 31
52 K 1 31
53 T 1 31
B4 | K 1 31
55 T 1 31
56 Ko 1 31
57 T 1 31
58 K 1 31
59 T e 1 31
60 I..... [ 2 30
61 J.o.... 1o e 2 30
62 I..... 1 2 30
63 J..... L e 2 30
Eq | Def | Combined
Sub-total: 16 < ¢ < 31 4 | 13
Sub-total: 32 <t <47 - 2
Sub-total: 48 <t < 63 - 20

| | SubTotal: 16 <t < 63 (This Table) | 4 [ 35 | |
| | Sub-total: =2 <t <15 (Table 5) | 27 [ 257 | |
| [ Total: —2 < ¢ <63 [ 31 [202] 323 ]

Table 6. Conditions on VQ:, 16 < t < 63, of the second block to get the correct propagation of differences through
ft. There are two new variables with two possibilities each: I € {0,1}, and J € {0,1}, with K = I. The column
headed by “Eq” contains the number of equality relationships of the form Q:[j] = Q¢—1[j]. The column headed by
“Def” contains the number of definitions of the form Q¢[j] = 0 or Q¢[j] = 1. The column headed by “None” contains
the number of bits with no conditions. In the last few rows, the column headed by “Comb.” contains the combination
of equality relationships and definitions.
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We want Af; =0, i.e., f{ = fi.

fi = FlQ}, Qi_1, Qi_»] ft = FlQ¢, Qi—1, Qs—2]
fi=1QL N Qi_1) vV (2Q; AN Qi) fi =[(Q: A Qi—1) V (=Q¢ N Qt—2)]

To ensure f; = %1, we require that Q; = Q; = Qi—1 ® Q¢—2. Now, Q} - Q; = -1, +1, Qi—1 = Q;—1 = (0,
1), and Q}_5 - Qt—2 = -1, +1. We consider four possibilities. First, we have Q:—1 = 0 and Q;—2 = 0, so Q;
= 1. Thisgivesus Q: =1, Q; =0, Q1—1 = Q}_; =0, Qt—2 = 0, and Q},_, = 1. Thus,

=@ AQI) V(AR o)l fi=[(QA Q1) V (-Qr A Qu2)]
:[(0/\0) (1A D) fi =10 A0)V(0A0)
= [ 1] fr=1[0Vv0]

ft = fi=0.

Second, when @; =0, Q¢ =1, Qj_; = Q-1 = Q-2 = Q;_, = 1, then

=@ A Qioy) V (2R A Q)] fi = [(Qr A Qia1) V (2@ A Qr—2)]
:[( A) V(1 AT)] fi=[AA1)V(0ATL)]
= [ 1] fe=1[1Vv0]

ft = ft = 1.

Third, when Q} =1, Q; =0, Q}_; = Qi—1 = Qi—2 = Q}_5 = 0, then

fi =@ N Qi) V (@ A Qi_o)l fi = [(Qe A Q1) V (—Q¢ A Qi—2)]
fi [(LA0) V(0 0)] f=[(0A0) (1 A0)]
fi=[0Vv0 fr = [ 0]

fi=o. fi =

Fourth, when Q} =1, Q; =0, Q;_; = Qt—1 = Qt—2 = Q;_, = 1, then

=[(QiNQi_y) V (mQ} AN QL) fi =[(Qr AN Qi—1) V (mQt A Qi—2)]
:[(1/\1)\/ 0 A1) fi=[0A1)V(1AI1)]
fi=livo f=[0Vv1]

ft = fi =1

Condition(s) required for this proof: Q;_1 = Q;_2
2:+4+00

We are given: (AQy, AQi—1, AQi—2) = (£1, £1, 0), ie., Q) - Qr = £1, Q}_; - Qs—1 = *1, and Q}_,
= Qt—o. We want Af; =0, ie, f/ = fi.

ft/ = F[an Qi—u Qg—z] ft = F[Qu Qi-1, Qt—2]
fi = Qi N Q1) vV (2Q; AN Qio)] fr =[(Qr AN Q1) V (mQ¢ AN Qr—2)]
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To ensure f; = 0, we require that Q; = Q1—1 ® Q—2. Now, @} - Q¢ =-1, +1, Q}_1 - Q¢+—1 = -1, +1, and
Q}_o = Qi—2 = (0, 1). We consider four possibilities. First, we have Q;—1 = 0 and Q;_> = 0, so Q; = 1.
This givesus Q: =1, Q; =0, Q;—1 =0, Q;_; = 1, and Q;—2 = Q};_, = 0. Thus,

fe =@ N Qi) V (mQp A Qy_o)] fi = [(Qe A Qi1) V (=@ A Qr—2)]
fe=100A1) Vv (1AO0)] fe =11 A0)V(0A0)
:])Zt:[O\/] ?z[ovo]

Second, we have @Q;—1 =0 and Q;—2 =1,s0 Q; = 0. Thisgivesus Q; =0, Q} =1, Q:—1 =0, Q},_; =1,
and Qt—2 = Q;_5 = 1. Thus,

=[(@AQI) V(- AR o)l fi=[(QA Q1) V (-Qr A Qi2)]
=[(1A1) (O A 1) fr=10A0) V(1AL
= [1 0] fe=10Vv1]

ft = ft =1.

Third, we have Q;—1 = 1 and Q;—2 = 0,50 Q; = 0. This givesus Q; =0, Q; =1, Q;—1 =1, Q;_; =0,
and Q¢—2 = Q;_5 = 0. Thus,

Ji=1QL N Q1) V (2Q; AN Qi) fi =[(Q AN Qi—1) V (=Q¢ N Qi—2)]
ft (L A0) Vv (0AO0)] fe=10A1) VvV (1A0)]

7 =00 J=0v

fi=0. fi =

Fourth, we have Q:—1 = 1 and Q¢—2 = 1,80 Q; = 1. Thisgivesus @Q; =1, Q}; =0, Q:—1 =1, Q}_; =0,
and Q¢—o = Q}_, = 1. Thus,

fi=UQ N Qur) vV (2@ AN Q)] fi = [(Qr A Qia) V (2Qs A Qr2)]
fi =10 A0) vV (LAT) fe=11 A1)V (AL
fi=10v1] fr=1Vv0]

ft/ =1 fi =1

Condition(s) required for this proof: Q; = Q¢ = Qr—1 ® Q¢—o.
3:0£++

We are given: (AQy, AQi—1, AQi—2) = (0, £1, £1), ie., Q) = Q, Q)1 - Qr—1 = £1, and Q}_5 - Q12 =
+1.
We want: Afy = £1, ie.,f] - fr = £1

ft/ = F[an Qi—u Qg—z] fi = F[Qu Qi-1, Qt—2]
fi = QN Qi_1) vV (2Q; AN Qio)] fr =[(Qr AN Q1) V (mQ¢ AN Qr—2)]
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To ensure f; = £1, no requirements are necessary. Now, @} = Qt, and Q}_; - Q:—1 = -1, +1, and AQ}_,
- Qi—2 = -1, +1. We consider eight possibilities. First, when Q;, = Q; =0, Q;_; =0, Q;—1 = 1, AQ},_, =
0, and Q¢_o = 1, then

fi=1(QL AN Qi) V (mQp AN Qo) fi = [(Qe A Qi—1) V (=Qr A Qr—2)]
ft:{(O/\?) (1 A0)] ;Z{(O/\D (1 A1)
fi=0. fi ; 1.

Second, when Q; = Q: =0,Q}_1 =0, Q-1 =1, AQ;_5 = 1, and Q;_2 = 0, then

=@ AQ) V(- AQio)l fi=[(QA Q1) V (-Qr A Qu2)]
{(0 A ?) (1 A1) {(0 A ]1) (1 A0)]
ft =1 ft =

Third, when Q) = Q¢ =0, Q;_; =1, Q;—1 = 0, AQ;_, = 0, and Q;_2 = 1, then

fi =@ N Qi) V (=@ A Qi_o)l fi = [(Qe A Q1) V (—Q¢ A Qr—2)]
ft':[(O/\l) (L A0)] fe=10A0)V(1A1)]
=100 F v

fi =0. Ji =1

Fourth, when Q} = Q; =0, Q;_; =1, Q;—1 = 0, AQ;,_5, = 1, and Q;_5 = 0, then

= (@ AQ_1) vV (-Q AR o)l fi=[(QA Q1) V (-Qr A Qu2)]
=[O0 V(@A) [(0 A0) V(1 AO0)

i =[0Vv1] [ 0]

fi=1 ft =

Fifth, when Q}, = Q; =1, Q,_; =0, Q;—1 = 1, AQ}_, = 0, and Q;_» = 1, then

H=1@Q ANQi1) V (2@ N Qi—o)] fi = [(

fL (A A0) V(0 A0)] = [ AT)V(0AT)]
fi=10Vv0 ft—[l\/O]

fi=0. fe =

¢t AN Qi—1) V (—Q¢ N Qr—2)]

SiXtha when QQ = Qt = ]-a Q:‘/—l = Oa Qt—l = ]-a AQ%—Q = 17 and Qt—2 = 07 then

Ji=1Qi N Qi 1) V(2Qp A Qio)] fi = [(Qr A Qi1) V (2Qs A Qi2)]
I A0) V(0AT)] = (1A V(0A0)
fi=10v0 =[1vo0

t
fi =0. Je =1

Seventh, when Q; = Q; =1, Q;,_; =1, Q-1 =0, AQ}_, = 0, and Q;_2 = 1, then
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= QLNANQi_1) V (2Q AN Q)] [i =1(Q: AN Qi—1) V (mQ: N Qi—2)]
{=[1A1)V(0ADO0)] fi=11A0)V(0A1)]
¢ =[1Vv0 fe=1[0V0]

Eighth, when Q;, = Q: =1, Q;_; =1, Q:—1 =0, AQ;_, = 1, and Q;_» = 0, then

=[(QANQi_1) V (mQL A Qi) fi = [(Qe A Qi—1) V (mQ¢ N Qr—2)]
:[(1/\1) (0 A1) fi =11 A0)V(0AO0)]
= [1 0] fe=1[0V0]

ft = ft =0.

Condition(s) required for this proof: none

4: 0+ £

We are given: (AQy, AQi—1, AQi—2) = (£1, 0, £1), ie., Q- Qr = £1, Q1 = Qi—1, and Q}_5 - Q12 =
+1.
We want: Afy = +1, ie., f/ - fr =

ft/ - F[an Q;—l? Q;—ﬂ ft = F[Qu Qi—1, Qt—z]
fi = QN Q1) vV (2Q; A Qio)] fr = [(Qr AN Q1) V (mQ¢ AN Qr—2)]

To ensure f; = %1, we require that Q; = Q; = Qi—1 ® Q¢—2. Now, Q} - Q; = -1, +1, Qi—1 = Q;—1 = (0,
1), and Q}_5 - Qr—2 = -1, +1. We consider four possibilities. First, we have Q¢—1 = 0 and Q;—2 = 0, so Q;
= 1. This gives us Qt = 1, Q,=0,Qi-1=Q,_1 =0,Qt—2 =0, and Q,_, = 1. Thus,

fi=1Qr AN Q1) V (2Q; A Qis)l fi = [(Qr A Q1) V (mQs A Qi—2)]

ft =[0A0)V (1AL fi =11 A0)V(0AO0)]
:[0\/] fe=1[0V0]

ft = ft =0.

Second, we have @Q;—1 = 0 and Q;_2 = 1,50 Q; = 0. Thisgives us Q; =0, Q}, =1, Q;_1 = Q}_, = 1,
Qi—2 = 0, and Q;_; = 1. Thus,

fi=1Q1 A Q1) V (2Q AQis)] fe=1[(Qe A Q1) V (Q1 A Qi—2)]
fi=11 A1) v (A1) fr=10A1) V(1 A0)

fi= [1 0] fr= [ Vv 0]

ft = Jt =

Third, we have Q:—1 = 1 and Q;—2 = 0, so @Q; = 0. This givesus Q; =0, Q} =1, Q:+—1 = Q}_; = 0,
Qi—2 =1, and Q;_, = 0. Thus,
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fi=1QLNQi_1) V (2Q; AN Qi) fi =[(Q A Qi—1) V (2Q¢ N Qt—2)]
fi [(LA0)V(0AD0)] fe =[(0A0)V (1LAT1)]

fi =10V fe=1[0V1]

ft/ =0. fi =1

Fourth, we have Q;—1 = 1 and Q;—2 = 1,80 Q; = 1. This gives us Q; = 1, Q}, =0, Q:—1 = Q}_; = 1,
Qi—2 =1, and Q;_, = 0. Thus,

= QAN Q1) vV (2Q A Qio)l fi = [(Qe A Qi—1) V (mQ¢ N Qi—2)]
:=[0A1)V(1AO0)] fi=[1 A1)V (0AT1)

fi =10V fe=[1V(]

ft - 0 ft == ].

Condition(s) required for this proof: Q; = Qr = Q1—1 D Q¢—o
5: £+ +0

We are given: (AQ:, AQi—1, AQi—2) = (%1, £1, £1), ie., Q} - Qr = 1, Q}_1 - Q:—1 = £1, and Q}_, -
Q2 = £1.
We want Aft = O, i.e., ft/ = ft~

ft/ - F[an Qé—u Qg—z] fi = F[Qn Qi-1, Qt—z]
fi =@ N Q1) vV (2Q; A Qio)] fir =[(Qe AN Q1) V (mQ¢ AN Qr—2)]

To ensure f; = 0, we require that Q;—1 = Qt—2. This gives us Qt—1 = Q:+—2 = (0, 1). We also have Q; =
(0, 1). We consider four possibilities. First, when Q; =0, @, =1, Q:+—1 =0, Q;_; =1, Q:—2 = 1, and Q}_,
= 0, then

fi=1Q: ANQi_1) V (0Q; AN Qi_s)] fi = E t A Q1) V (2Q¢ N Qi—2)]

[
fi=101 A1)V (0A0)] fe=10A0)V(1A1)]
fe=[1Vv0 fe=10v1]

Second, when @Q; =0, Q;, =1,Q:—1 =1,Q;,_; =0, Q:—2 =0, and Q,_, = 1, then

(Qr A Qi—1) V (Q¢ N Qi—2)]
[(0 A1)V (1A0)]

0]

[( ¢ A Qt 1) (_‘QQ A Q%—z)}

=[1A0)V (0AT)

[ 0] =[0v
ft = ft =0.

Third, when Q; =1, Q; =0,Q;-1 =0,Q}_, =1, Qs> =1, and Q,_, = 0, then

<

[(Qt AN Qe—1) V (mQ: N Qi—2)]
[(1AO0)V(0AT)]
ovo

[(QF A Q1) V (2@ N Qf_5)]
[(0 A1)V (1A0)]

0]

Lo+

-+

o~
|

e
|| 1

0V
0.

g
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Fourth, when Q; =0, Q; =1, Q;—1 =0, Q;_; =1, Qt—2 = 1, and Q}_, = 0, then

fi=1Q N Qi) V (=@ A Qo) fi = [(Qe A Q1) V (—Q¢ A Qi—2)]
fi =11 A1)V (0ADO)] fe=10A0)V (1A1)]

ft'=[1 0] fe =10V 1]

fi = fi =1

Condition(s) required for this proof: Q¢—1 = Q;—2
6: ++ + £

We are given: (AQ:, AQi—1, AQi—2) = (£1, £1, £1), e, Q} - Q: = £1, Q}_1 - Q:—1 = £1, and Q}_, -
Q2 = £1.
We want: Af, = £1, ie., f{ - fi = £1

ft/ = F[an Qi—u Qg—z] fi = F[Qu Qi—1, Qt—2]
fi = QAN Q1) vV (2Q; A Qio)] fr =[(Qr AN Q1) V (mQr AN Qr—2)]

To ensure f; = 0, we require that Q;—1 = Q—2. This gives us Q;—1 = Q1—2 = (0, 1). We also have Q; =
(0, 1). We consider four possibilities. First, when Q; =0, Q; =1, Q-1 =0, Q;_; =1, Qs—2 =0, and Q}_,
=1, then

=@ A QL) V(2@ AR fi =[(Qr A Qi) V (2Q: A Qr2)]
=[A A1)V (0AT) Je=10A0)V (1 A0)]
[1 v 0] fe=1[0Vv0]

ft - ft =0.

Second, when @; =0, Q, =1,Q;—1=1,Q,_; =0, Q;—2 =1, and Q,_, = 0, then

fi =1(Q1 AN Q1) V (mQ; A Q5] (Qt N Qe—1) V (Q¢ N Qr—2)]

fr=1
fi [ A0) Vv (0AO0)] fe=10A1) V(1AL
fi=1[0v0] fr=10v1]
fi =0. fo=1.

Third, when Q: =1, Q; =0,Q:—1 =0,Q}_1 =1, Q:+—2 =0, and Q;_, = 1, then

= (Qr ANQi_1) vV (2@ A Q)] fi =[(Qe AN Qi1) V (—Q¢ A Qr—2)]
t =[0A) V(1AL fi =11 A0)V(0AO0)]

i =1[0Vv1] fe=1[0V0]

=1 ft =0.

Fourth, when Q; =0, Q; =1, Q;—1 =0, Q;_; =1, Qt—2 = 0, and Q}_, = 1, then
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= QAN Q1) vV (2Q A Qio)l fi = [(Qe A Qi—1) V (mQr A Qi—2)]
{=[1A1)V(0A1)] fi=10A0)V (1AD0)]
¢ =1V fe=1[0V]

Condition(s) required for this proof: Q¢—1 = Q—2
T+ 4+ o+

We are given: (AQ:, AQi—1, AQi—2) = (+1, +1, +1), ie, @}, = Q1 = Qi =1 and Q; = Q11 =
Qi—2 = 0.
We want: Af; = +1, ie., f{ =1 amd f; = 0.

fi = FlQy, Qi_1, Q1] fi = FlQ¢, Qi—1, Q2]
ft =[(Q AN Q1) V (Q1 AN Q)] fi = [(Qu A Que1) V (=Qu A Qr—2)]
=[(1A1)V(0A1)] fi=10A0)V(1AO0)]
:[1\/0] fi=1[0Vv0]
ft = Jt =

Condition(s) required for this proof: none
8-+ + +
We are given: (AQy, AQi—1, AQi—2) = (-1, +1, +1), le., @ = Q1 = Q;_5 = 1 and Q} = Q11 =

Qi—2 = 0.
We want: Afy = +1, ie., f{ =1 amd f; = 0.

f{ = F[Q;h ngh Q272] fe = F[Qt’ Qi-1, Qt*Q]

fi = Q1 AN Qi_y) V (=@ A Q_5)] ft =[(Q¢ N Qi—1) V (2Q¢ N Qt—2)]
fi =[(0A) V(1AL =[1A0)V(0A0)
f=lovi :[Ovm

fi = f =

Condition(s) required for this proof: none
9:+-+4+0

We are given: (AQta AQt—h AQt—Q) = (+17 -1, +1)7 Le, Q:& = Qt—l = Q{th =1 and Qt = Qf‘,fl =
Qi s = 0.

VVte \szant Afy =0, ie., fl = fi

[Qgh Q%—h Q272]

(@ A Q1) V (2@ A Qp)]
[(1A0)V (0A1)

0V 0]

<

[Qt> Qt 1 Qt 2]
[(Qt AN Qe—1) V (mQ: N Qi—2)]
(O A 1)V (1A0)
ovo

R N

-+

e ey
|| 1 ||

o~
| ||

0.

g
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Condition(s) required for this proof: none
10:--+0

We are given: (AQ:, AQi—1, AQi—2) = (-1, -1, +1), ie,, Qt = Q1—1 = Q5 = 1 and Q; = Q}_, =
Qi—2 = 0. We want Afy =0, i.e., f{ = f;

f{ = F[Q;h nglv Q272] f [Qt7 Qt 1 Qt 2]

fi = QAN Qi) V (2@ A Qi_s)] fi = [( t A Qi—1) V (=Qr A Qi—2)]
fi =[0A0)V(1A1)] fe=11 A1)V (0A0)]
=101 fi= LVl

fl=1. fe =

Condition(s) required for this proof for this proof: none
11: + +-0
We are given: (AQ;, AQi—1, AQi—2) = (+1, +1, -1), ie,, @ = Q;_ 1 = Q2 = 1l and Q; = Q41 =

Q2 =0.
We want Af; =0, ie., f{ = fi

ft/ = F[Q;7 Q2717Q;72] f = F[Qt’ Qt L Qt 2]
F=1QAQ )V (@ AQ)] fi=[(QA Q1) V (~Qi A Qio)]
fi =10 A1)V (0AO) f=[(0A0) (1 A1)
fi=M1Vv0 fi :[ 1]

fl=1. fe =

Condition(s) required for this proof: none
12: +000

We are given: (AQy, AQi—1, AQi—2) = (+1, 0, 0), ie,, @, =1, Q: = 0, Q}_; = Q¢—1, and Q,_, =
Qi—2.
We want Af; =0, i.e., f{ = fi.

fi = FlQ}, Qi_1, Q1_s)] Jit = FlQ¢, Qi—1, Q2]
fi=1Qr AN Q1) V (2Q; A Qi_s)l fi = [(Qr A Qi—1) V (mQs A Qi—2)]
fi=101AQ_1) VvV (0AQ)) St =[0ANQi—1) V (1 A Qi—2)]

To ensure f; = 0, we require that Q¢—1 = Q;—2. From this, we have Q;_; = Q-1 = Q¢+—2 = Q}_o = (0,
1). When Q;_; = Q;—1 = Qi—2 = Q;_5 = 0, then

Ji=10AQ 1)V (0AQ; )]

Ji [ A0) Vv (0A0) ft
fi=10v0 fi
ft/ =0. ft

[(0AQt—1) V (1 A Qi—2)]
[(0 A0)V (1 AD0)]

[0V 0]
0.
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When Q) _; = Qi—1 = Qit—2 = Q}_, = 1, then

fi=10ANQ_1)VOANQLL)] fi=[0AQ:i1)V (1AQi2)]
fe =11 A1)V (0AT1)] fi :[(0/\1) (1 A1)

fi = [1 0] fo = [ 1]

ft = ft =

Condition(s) required for this proof: Q;_; = Q¢—2
13:-000

We are given: (AQt7 AQtfh AQt72) = ('15 07 O>7 i'e'7 Q:ﬁ = 07 Qt = 17 Qéfl = Qtfla and Q{th = Qt72'
We want Af; =0, e, f{ = fi.

fi = FlQt, @1, Qo] fi = FlQ¢, Qi—1, Q2]
fi = QAN Q1) vV (2Q; A Qio)l fi = [(Qr A Qi—1) V (mQ¢ N Qi—2)]
fi=10AQi_1) VvV (1AQ)) Je =11 AQi—1) V (0 A Qi—2)]

To ensure f; = 0, we require that Q¢_1 = Q;_2. From this, we have Q,_; = Q-1 = Q¢—2 = Q}_o = (0,
1). When Q;_; = Qi—1 = Qi—2 = Q¢—2 = 0, then

fi=10ANQ_1) VI AQL)] fi=[1ANQ+1)V (0AQ:2)]
ft:[(O/\O) (1 AO0)] fi =11 A0)V(0AO)]

fi = [ 0] fe=10Vv0]

ft = ft =0.

When Q;_; = Q1—1 = Qt—2 = Q,_, = 1, then

Ji=10AQi_1)VAANQL )] fi=[1AQ-1)V (0AQi2)]
Jfi=10A) v (1AL fr=11 A1)V (0AT)]
ft=[0V1] fe=[1v0]

ft = ft =L

Condition(s) required for this proof: Q;_; = Q2
14: +00 +

We are given: (AQ:, AQi—1, AQi—2) = (+1, 0, 0), ie,, @, =1, Q: = 0, Q}_; = Q¢—1, and Q}_, =
Qi—2.
We want: Afy = +1, ie., f{ =1 amd f; = 0.

fi = FlQ}, @11, Q1_»)] Ji = FlQ, Qi—1, Qi—2]
fi =1(QL AN Qi) V (mQp AN Qi o)l fi = [(Qe A Qi—1) V (=Q1 A Q2]
fi=1AAQ_1) vV (0A Q) St =[0AQi—1) V (1 AN Qi_2)]
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To ensure f; = +1, we require that Q;—1 = 1 and Q;—2 = 0. From this, we have Q;_; = @Q;—1 = 1 and
Qi—2 = Q}_5 = 0. Thus,

=[N Q1) V(0N Qts)]
=[1A1)V(0A0)
=[1v0

(0N Q1) V (1A Q2]
[(0 A1)V (1AD0)]

[ 0]

ey

ft =L
Condition(s) required for this proof: Q;—1 =1 and Q;—2 =0
15: +00 -

We are given: (AQt7 AQt—la AQt—Q) = (+17 07 0)7 i'e'7 Q; = 17 Qt = Oa Q;—l = Qt—17 and Q;-Z =
Qt72'
We want: Afy =-1,ie., f/ =0and f; = 1.

ft/ - F[an Q;—h Qg—z] ft = F[Qn Qi—1, Qt—z]
fi = QN Q1) vV (2Q; AN Qio)] fr = [(Qr A Q1) V (mQ¢ A Qr—2)]
fi=10AQ11) V(0N Q] )] fir=10A Q1) vV (1 A Q—2)]

To ensure f; = -1, we require that Q;—1 = 0 and Q;—2 = 1. From this, we have Q;_; = Q:—1 = 0 and
Qi_o = Qi—2 = 1. Thus,

[(OA Q1) V (LA Qi—2)]
[(0 AO)V (LA L)

[ 1]

=[(1AQL1) V(0AQL )
=[(1A0)V(0ATD)

0]

e

=0V

ft = 0.

Condition(s) required for this proof: Q;—1 = 0 and Q;—2 =1
16:-00 +

We are given: (AQt7 AQt—lv AQt—Q) = (_15 07 0)7 i'e'a Qy/f = 07 Qt = la Qy/f—l = Qt—la a‘nd Q{‘,—Q = Qt—Q-
We want: Afy = +1, i.e., f{ =1 amd f; = 0.

fi = FlQt, Qi_1, Qi_1] ft = FlQ¢, Qi—1, Q¢—2]
fi=1Q N Q1) V (2Q; AN Qi) fi =[(Q A Qi—1) V (=Q¢ N Qt—2)]
fi=10AQ;_1) V(1 AQ_) Je=11AQi—1) V(0 A Qi—2)]

To ensure f; = +1, we require that Q;—1 = 0 and Q;—2 = 1. From this, we have Q;_; = @Q;—1 = 0 and
Qi—2 = Q}_5 = 1. Thus,

=[(0ANQ 1) VI AQLL)] fi=[AAQ-1)V (0AQ:-2)
[(OAO) (L A1) Je=1[AA0) VvV (0AT)
[ 1] fr =10V 0]

e

ft = Ji
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Condition(s) required for this proof: Q;—1 = 0 and Q;—o =1
17:-00 -

We are giVer (AQt7 AQt—lv AQt—Q) = (_15 07 0)7 i'e'a Qy/f = 07 Qt = la Qé—l = Qt—la and Q{‘,—Q = Qt—Q-
We want: Afy = -1, ie., f{ =0and f; = 1.

ft/ = F[an Q;—h Qé—ﬂ fi = F[Qt, Qi—1, Qt—z]
fi = QAN Q1) vV (2Q; AN Qio)] fir = [(Qr AN Q1) V (mQr A Qr—2)]
fi=10AQ_1) vV (1AQ,) fr=10AQi—1) V (0A Qi2)]

To ensure f; = -1, we require that Q;—1 = 1 and Q;—o = 0. From this, we have Q;_; = Q:—1 = 1 and
Q}_5 = Qt—2 = 0. Thus,

=[0NQi_1) V(I AQLL)] fi=[1AQ:i—1)V (0AQt_2)]
[(0 A1)V (1A0)] fe=11A1)V(0AO0)]
[ 0] fe=[1V0]

Condition(s) required for this proof: Q;—1 = 1 and Q:—2 =0
18: 0040

We are given: (AQ:, AQi—1, AQi—2) = (0, 0, +1), ie., Q) = Q¢, Qi1 = Qi—1, Q}_5 = 1, and Q;_2
=0.
We want Af; =0, i.e., f{ = fi.

fi = FlQ}, @11, Q1] Ji = FlQt, Qi—1, Qi—2]
fi=1Q N Q1) V (2Qy AN Qi) fi = [(Q A Qi—1) V (=Q¢ N Qi—2)]
fi =@ A Qi_y) vV (=Q; A 1)] fe=1(Qt A Qe—1) V (=Q¢ A 0)]

To ensure f; = 0, we require that @; = 1. From this, we have Q}, = Q; = 1. Now, Q}_; = @Q;—1 = (0, 1).
When Q}_; = Q;—1 = 0, then

=[(Q: N Q1) V (mQy AD] fi = [(Qe A Qu—1) V (=Q¢ A 0)]
=[1A0)V(0ATD) fi=11A0)v(0A0)]
[ v 0] fe=1[0Vv0]
ft - ft =0.
When Q;_; = Q;—1 = 1, then
F=1QANQ1)V (=@, AD] fi = [(Q A Q1) V (=Qr A 0)]
f=1A1) v (A1) fr=11 A1)V (0AO0)
ft:[l 0] fi=[1V0]
ft = ft =1
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Condition(s) required for this proof: Q; = 1
19: 00 + +

We are given: (AQta AQt—lv AQt—Q) = (Oa Oa +1)7 i'e'7 Q; = Qt7 Q{‘,—l = Qt—17 Q:&-2 = la a’nd Qt—Q
=0.
We want: Af; = 41, ie., f{ =1 amd f; = 0.

fi = FlQ), @11, Q1_s)] Ji = FlQt, Qi—1, Qi—2]
fi=1Q N Q1) V (mQ AN Qi) fi =[(Qt A Qi—1) V (=Q¢ N Qi—2)]
fi =@ A Qi_y) vV (=Q; A 1)] fe=1Q: AN Qi—1) V (=Q¢ A 0)]

To ensure f; = +1, we require that @Q; = 0. From this, we have @} = Q¢ = 0. Now, Q}_; = Q:—1 = (0,
1). When Q;_; = Q¢—1 = 0, then

=[(Qy N Q1) vV (=Q; AND)] fi = [(Q: A Qi—1) V (=Q¢ A 0)]
[(OAO) (1 A1) fe=100A0)V (1 AO0)]
= [0V 1] fe=10Vv0]
ft =L ft = 0.
When Q;_; = @Q:—1 = 1, then
= @QNANQ_1)V (=Qy A fi =[(Qt A Qi—1) V (=Q: A 0)]
¢ =[(0A) V(1AL fe=10A1) V(1 AO0)]
i =[0V1] fr=[1Vv0]
ft/ =L ft =0.

Condition(s) required for this proof: @Q; = 0
20:00-0

We are given: (AQt7 AQtfh AQt72) = (Oa 07 '1)7 i'e'a Q;& = Qt 3 ngl = Qtfh Q;‘/72 = 07 and Qt72 =
1.
We want Af; =0, i.e., f{ = fi.

fi = FlQt, Qi_1, Qi_1] ft = FlQ¢, Qi—1, Q¢—2]
fi=1QNQi_1) vV (2Q; AN Qi) fi =[(Q A Qi—1) V (=Q¢ N Qt—2)]
fi =1(Qr AN Qi_q) vV (=Q; A 0)] fo =1(Qi AN Qi1) V (mQ¢ A 1))

To ensure f; = 0, we require that Q; = 1. From this, we have @}, = @Q; = 1. Now, Q}_; = Q:—1 = (0, 1).
When Q;_; = Q:;—1 = 0, then

¢ A Qi—1) V (—Q A 1)]

fi =@ A Qi—1) V (=Q; A 0)] [(
[(1A0)V(0A D)
0

fL (LA 0) V(0 A0)]
fi=10v0]
fi=0.

S
(R
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When Q;_; = Q:—1 = 1, then

= @QNANQ_1) VvV (2Qy ANO)] fi =[(Qe A Qi—1) V (=Q¢ A 1)]
i =[(1A1)V(0AO0)] fe=11A1)V(O0AL)]
t/:[]- 0] fe=11Vv0]

fi = fr=1.

Condition(s) required for this proof: Q; = 1
21: 00- -

We are given: (AQtv AQt—h AQt—?) = (O, Oa '1)a i'e'a Q; = Qta Q;‘/fl = Qt—la Q;‘/72 = 07 and Qt—2 =
1.
We want: Af; =-1,ie., ff =0and f; = 1.

fi = FlQt, Qi_1, Qi_1] Ji = FlQ, Qi—1, Qi—2]
fi=1QLNQi_1) vV (2Q; AN Qi) fi =[(Q A Qi—1) V (=Q¢ N Qt—2)]
fi =(Qr AN Qi_q) vV (=Q; A 0)] fo =1(Qi N Qi1) V (=Q¢ A 1))

To ensure f; = 0, we require that Q; = 0. From this, we have Q, = Q; = 0. Now, Q}_; = Q;—1 = (0, 1).
When Q;_; = Q:;—1 = 0, then

t = (@A Q1) vV (2Q A fir=[(Qr A Qia) V (2Q: A )]
{Z[(O/\O) (1 A0)] f=[(0A0) (1A D)
:=[0V0] f=[

fi =0. fe=1

When Q;_; = Q¢—1 = 1, then

{2 QLA QL) Y (5@ A O] fi= (@0 A Qu1) V (-Qu A 1)
{Z[(O/\l) (1 A0)] fi=10AT) V(1AL
(=0vo =V

Condition(s) required for this proof: Q; = 0
22:0400

We are given: (AQt7 AQt—h AQt—Q) = (07 +17 0)7 i'e'7 Q; = Qt Q:ﬁ—l = 13 Qt—l = Oa and Q;—Q = Qt—?a'
We want Af; =0, i.e., f[ = fi.

fi = FlQ), @11, Q1_»)] Ji = FlQt, Qi—1, Qi—2]
fi=1Q AN Qi) V (mQp A Qi o)l fi = [(Qe A Qi—1) V (=Q1 A Q—2)]
fi=1Q, A1)V (=Q; A Q1_5)] fi =@, N0) vV (Q) A Qi—2)]
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To ensure f; = 0, we require that Q; = 0. From this, we have Q, = Q; = 0. Now, Q}_5 = Q;—2 = (0, 1).
When Q}_5 = Q;—2 = 0, then

fi=l@ A1)V (_‘Qt AQio)l fi =[(QiA0)V (QFAQi2)]
fi=10A1) Vv (1 A0 fr =100 A0) V(1 AO)
ft:[o\/o] fe=1[0Vv0]

ft = ft =0.

When Q;_5 = Q;—2 = 1, then

F=1Q A1)V (=@ A Qo) fi=1Q A0V (Q) A Qr2)]
=107 V(@ AL) fr =10 A0) V(1 AT)
ft:[\/] fi=1[0V1]

ft = ft = 1.

Condition(s) required for this proof: Q; = 0
23: 040+

We are giVGHi (AQt7 AQt—la AQt—Q) = (07 +17 O)’ i'e'a Qg = Qt7 Q£_1 = 13 Qt—l = 07 and Q;—2 =
Qt72'
We want: Afy = +1, ie., f{ =1 amd f; = 0.

fi = FlQt, Qi_1, Qi_1] Ji = FlQ, Qi—1, Qi—2]
Ji=1Q N Q1) V (mQF AN QL _5)] fi = [(Qr A Qi—1) V (mQ¢ A Qi—2)]
fi=1Q: A1)V (=Q; AN Q)] fe=1(Q: NO) V (=Q¢ N Qi—2)]

To ensure f; = +1, we require that @; = 1 From this, we have @} = @Q; = 1. Thus,

fe =1QL N1V (=Q) AN Qi_s)] fi =[(Qt AO)V (=Qr A Qr—2)]
fi=11A0)V(0A Q) fe=101NA0)V (0A Q-2)]
;t:[lv] ;:[0\/0]

Condition(s) required for this proof: Q; = 1
24:0-00

We are given: (AQt7 AQtfh AQt72) = (07 '17 0)7 i'e'7 Q% = Qt7 Q2,1 = 07 Qtfl = 17 and Q£72 = Qt72u~
We want Af; =0, i.e., f{ = fi.

fi = FlQ), @11, Q1_»)] Ji = FlQ¢, Qi—1, Qi—2]
fi =1Q AN Qi) V (=Qp A Qi o) fi = [(Qe A Qi—1) V (=Q1 A Qr—2)]
fi =@, A 0) VvV (=Q; A Q1_5)] fr =[(Qe A1)V (=Qr A Qi—2)]
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To ensure f; = 0, we require that Q¢ = 0. From this, we have Q} =

When Q}_5 = Q;—2 = 0, then

Ji=UQiAN0) vV (=Q; A Q)] fi =[(Qe A1)V (mQ¢ A Qi—2)]
= (02 0Y (0] fi =10 A1)V (1A0)]
:[OV] fe=1[0Vv0]

ft = fit = 0.

When Q;_5 = Q:—2 = 1, then
=[(Qi A 0) V (=Q; N Q1)) =[( A1)V (2Q N Qi—2)]
[(OAO)V(l 1)] =[(0A1) V(1AL
=[0Vv1] [ 1]

ft =1L ft =

Condition(s) required for this proof: @Q; = 0

25:0-0 -

Qt = O I\IOW7 Q;_Q = Qt_g = (0, 1)

We are given: (AQt7 AQt—l7 AQt—?) = (O, -1, O>7 Le, Q:ﬁ = Qta Q;‘/fl =0, Qt—l =1, and Q{th = Qt—Q'

We want: Afy = -1, ie., f{ =0and f; = 1.

i =FlQ}, Qi_y, Q5] ft = FlQq, Qi—1, Q¢—

F=1@QNQI1)V (~Qp AQi )] fir = [(Qr N Q1) V

2]

(—Q: N Qi—2)]

fi=1Qy N 0)V (=@t N Q)] fr=1Qe A1)V (-Q1 A Qu2)]

To ensure f; = -1, we require that Q; = 1. From this, we have Q)

= (@t A0) V (=Q; A Qt_»)]
= [T A0)V(0AQ; )

(

(11) (0Qr-2)]
=[0 V0] 1
ft—O

v 0]

e e
([ |
T

Condition(s) required for this proof: Q; = 1
26:-+00
We are given: (AQ:, AQi—1, AQi—2) = (-1, +1, 0), i.e., Q;

Qi—2.
We want Af; =0, i.e., f{ = f.

fi = FlQt, Qi_1, Qi_1] ft = FlQq, Qi—1, Q¢—

Qi A1)V (=Q¢ A Qi—2)]

:Qéq =1 QQ

2]

fi=1QLNQi_1) vV (2Q; AN Qi) fi =[(Q A Qi—1) V (=Q¢ N Qt—2)]
fi=10A1) VvV (LAQL,)] fe=11A0)V(0AQ:i2)

= @; = 1. Thus,

= Qtfl = 07 and Q{‘,72 =

To ensure f; = 0, we require that Q;—2 = 0 From this, we have Q}_, = Q;—2 = 0. Thus,
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t=[0A1) V(AR fi=[1A0)V(0AQi2)]
¢ =[0A1)V(1AO) fe=1[(1A0)V(0AO0)]

1 =[0V0] fe =10V 0]

f/:()o ft:0-

Condition(s) required for this proof: Q;—2 =0
27:+0+0
We are given: (AQ¢, AQi—1, AQi—2) = (+1, 0, +1), ie., Q) = Q1_5 = 1, Q; = Q1—2 = 0, and Q}_,

= Q1.
We want Af; =0, i.e., f[ = fi.

fi = FlQi, @1, Q1] Jie = FlQ¢, Qi—1, Q2]

fi=1Qr N Qi) vV (mQ) A Qi_)] fr =[(Qe N Q1) V (mQ¢ A Qt—2)]
fi=10AQ_1) VvV (0A1)] Jt =[(0AQi—1) V (1 AD)]

To ensure f; = 0, we require that @Q;—; = 0. From this, we have Q}_; = Q;—1 = 0. Thus,

=[AAQi1) V(0T
=[(1A0)V(0AT1)

0]

[(0A Q1) V (1 A0)]
[(0 A0)V (1A 0)]

[ 0]

s e e
|| 11

f _[o
Condition(s) required for this proof: Q;—1 =0

28: +0 + +

We are given: (AQ:, AQi—1, AQi—2) = (+1, 0, +1), ie., Q) = Q5 =1, Q; = Qi—2 = 0, and Q;}_,

= Q1.
We want: Afy = +1, ie., f{ =1 amd f; = 0.

fi = FlQ}, @11, Q1] fie = FlQ¢, Qi—1, Q2]

fi = QAN Q1) vV (2Q; A Qio)] fr =[(Qr AN Q1) V (mQ¢ A Qr—2)]
fi=11AQ1) VvV (0AT) fr =[(0A Q1) vV (1 A 0)]

To ensure f; = +1, we requlre that Q¢—1 = 1. From this, we have Q}_; = Q¢—1 = 1. Thus,
fi=1AANQ_ ) VOAD] fi=[0AQi1)V (1A0)]

fi =11 A1) V(A1) *[( 1) v (1A0)]

fi=[vo) - oo

fi=1 ft =

Condition(s) required for this proof: Q¢—1 =1

20:-04+0
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We are given: (AQ:, AQi—1, AQi—2) = (-1, 0, +1), ie., Q) = Q12 =0, @t = Q_5 = 1, and Q,_; =
Q1.
We want Af; =0, i.e., f[ = fi.

ft/ - F[an Q;—l? Qg—z] ft = F[Qu Qi—1, Qt—2]
fi = QN Q1) vV (2Q; AN Qio)] fr = [(Qr AN Q1) V (mQ¢ A Qt—2)]
fi=10AQ;1) V(1AL Je=11AQe-1) vV (0A0)]

To ensure f; = 0, we require that Q;—; = 1. From this, we have Q}_; = Q;—1 = 1. Thus,

fi=10AQ )V AAD] fr=[1AQr1)V(0A0)
fi=10nN) v (@A) fe=11 A1)V (0A0)
fi=10v1] fe=1Vv0]

ft: . ft:]-

Condition(s) required for this proof: Q;—; =1
30: +0-0
We are given: (AQy, AQi—1, AQi—2) = (+1, 0, -1), le., Q) = Qt—2 =1, Qt = Q;_5 = 0, and Q}_; =

Q1.
We want Af; =0, e, f[ = fi.

fi = FlQt, Q_1, Qi o] fit = FlQ¢, Qi—1, Q¢—2]
fi = QAN Q1) vV (2Q; A Qis)l fi = [(Qr A Qi—1) V (mQ¢ A Qi—2)]
fe =10 AQ_y) vV (0A0)] fe=[0AQi—1) V (1L A1)]

To ensure f; = 0, we require that @Q;_; = 1. From this, we have Q}_; = Q;—1 = 1. Thus,

=[AAQ_)VOAO] fi=[0AQ1)V (LAL)]
:[(Ml) (O A0)] fe=10A1) V(1 A1)]
= [1 0] fe=1[0v1]

ft = ft =1

Condition(s) required for this proof: Q¢—1 =1
31:-0-0

We are given: (AQt7 AQt—17 AQt—Q) = (—17 0, —1)7 i.e.’ Qt = Qt—? = 1, Q; = Q;_2 = O7 and Q;—l =
Qt—l-
We want Af; =0, i.e., f[ = fi.

fi = FlQ}, @11, Q1_»)] Ji = FlQ¢, Qi—1, Q2]
fi=1Q AN Qi) V (mQp AN Qi o)l fi = [(Qe A Qi-1) V (=Q1 A Q—2)]
fi=100AQi_1) vV (1 AO)] fe=[1AQi—1) VvV (0A1)]



To ensure f; = 0, we require that Q;—; = 0. From this, we have Q}_; = Q;—1 = 0. Thus,

=[(0A Q1) VvV (1LAO)

[(0 A0)V

= [0 VO]
ft—0

(1 A0)]

e

Condition(s) required for this proof: Q;—1 =0

32: 0 + -+

We are given: (AQy, AQi—1, AQ:—2) = (0, +1, -1), i.e., Q) =

We want: Af; = 41, ie., f{ =1 amd f; = 0.

f=FlQy, Q-

1 Q;—2] ft = F[Qt7 Qt—17 Qt—Q]

Ji=1Q N Q1) V (mQy AN Qo) fi =[(Qe AN Qi—1) V (mQ¢ N Qi—2)]

f=1@Q: A1)

To ensure f; = +1, we require that Q; = 1 From this, we have Q} =

ft/:[(Qt/\]-)
fi=1aA1) v
fi=1V(]
fi=1

V (=Q4 A 0)] fe =[(Qe N0) V (=Q: A 1)]

(=Qi ANO)] fi =1(Q: NO) V (mQ¢ A 1)]
(0 A 0)] fe =11 A0)V(0AT1)]
fir =10V 0
ft =0.

Condition(s) required for this proof: Q; = 1

33:0 4 - -

We are given: (AQy, AQi—1, AQi—2) = (0, +1,-1), i.e., Q) =

We want: Afy =-1,ie., f/ =0and f; = 1.

fi=FlQ;, Qi

1> Q2—2] ft = F[Qt7 Qt—17 Qt—Q]

Q¢ = 1. Thus,

fi=1Qr N Q1) vV (2Q; A Qio)] fi = [(Qr A Q1) V (mQ¢ A Qr—2)]

f=1Q: A1)

To ensure f; =

f= 1@ A1)V
f=l0AD)v
H=10v0
fi=o.

Vv (=@t A 0)] fr =1Qe A0) vV (=Qr A T)]

+1, we requlre that Q; = 0 From this, we have Q) =

QLA O)] fi=[QA0)V (ﬁQt/\l)]
(1 A0)] fi=10A0)V (1A1)]
fi =1[0V1]
ft—l

Condition(s) required for this proof: Q; = 0

34: 0 - - -

Qt = 0. Thus
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Qiu, Qi1 =Qr2=1,and Qi_1 = Q;_, = 0.

Qt7 Qé—l = Qt—Q = 17 and Qt—l = Q:&—Q =0.



92

We are given: (AQta AQy—1, AQt—Q) = (07 -1, -1)a ie., Qi = Qy, Q;—l = Qi_z =0, and Qi1 = Q2
=1.
We want: Afy =-1,ie., f{ =0and f; = 1.

fi = FlQ}, Qi_1, Qi_o] fi = FlQ, Qi—1, Qi—2]

fi =@ NQi_1) vV (mQL A Qi_o)l fi = [(Qe A Q1) V (mQ¢ A Qi—2)]

Ji=1Qi A 0) vV (=Q; A 0)] fr=1(Qe A1)V (=Q¢ A 1)]

To ensure f; = -1, no requirements are necessary. ¢; = (0, 1). From this, we have Q; = Q; = (0, 1).

When Q) = Q¢ = 0, then

H=1@QtA0)V (=Q; AO) fe=[(Qi A1)V (=Q: A 1)]
Ji=10A0) Vv (1A0) fe=10A1) Vv (1 AT)]
fi=10v0] fi =10V 1]

When Q) = Q¢ = 1, then

H=1@Qt A0V (=Q; AO)] fe=[(Qe A1)V (=Q: A1)]
F (1A 0) v (0 A 0)] fo=[1A1) V(0 A1)
fi=10v0] fr =1V

fi =0. fi=1

Condition(s) required for this proof: none
35:++4+00

We are given: (AQ:, AQi—1, AQi—2) = (+1, +1, 0), ie., Q} = Q;_; =1, @ = Q:+—1 = 0, and Q}_,
= Qt72-
We want Af; =0, i.e., f[ = f:

ft/ - F[Qéa Qi—p Q2—2] fi = F[Qt, Qi-1, Qt—Q]
fi =@ AN Q1) vV (2Q; AN Qio)] fi =[(Qr A Q1) V (mQ¢ A Qt—2)]
fi=11 A1)V (0AQ_,) fe=10A0)V (1A Q-2)]

To ensure f; = 0, we require that Q;_o = 1. From this, we have Q}_, = Q;_2 = 1. Thus,

fi=10AD)VOANQ )] fi=[0A0)V(1AQ2)
f=1AA1) V(0 AT fr=10A0) V(1AL
fi=01v0 fe=10V1]

fi=1 fi=1

Condition(s) required for this proof: Q¢—o =1
36: +-0-

We are given: (AQ¢, AQi—1, AQi—2) = (+1, -1, 0), ie., Q) = Qi1 =1, Q¢ = Q;_, = 0, and Q}_, =
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Qi—2.

We want: Afy =-1,ie., f/ =0and f; = 1.
ft/ = F[Q;v 2—1, Qé—z] ft = F[Qt, Qi—1, Qt72]
fi=1@Q ANQi_y) V (mQL AN Qi) fi = [(Qe N Qi—1) V (mQr A Qi—2)]
f=11nA0) v (0AQ;,) fi=[0A1) V(1A Q2)]

To ensure f; = -1, we require that Q;_o = 1. From this, we have Q;_2 = Q}_o = 1. Thus,

Je=[AA0)V(OAQ )] fr=[0A1)V(LAQ2)
f=[AA0)vOADL  fi=[0A1) V(DAL
fe=10Vv0] fe=1[0Vv1]

fi =0. fi=1

Condition(s) required for this proof: Q;—o =1
37:0- + +

We are given: (AQ¢, AQi—1, AQu—2) = (0, -1, +1),ie., Q; =Qt, Q;_; = Q12 =0,and Q1 = Q}_, = 1.
We want: Afy = +1, i.e., f{ =1 amd f; = 0.

fi = FlQy, Q_1, Q1] Ji = FlQt, Qi—1, Qi—2]
fi=1Q N Q1) V (mQ AN Qi) fi =[(Q A Qi—1) V (=Q¢ N Qi—2)]
fi =@, N 0) V (=Q; A 1)] fr =[(Qe A1) V (=Q¢ A 0)]

To ensure f; = +1, we require that Q; = 0. From this, we have Q} = Q; = 0. Thus,

=@ A0)V (=@ A D] fi = [(Q A1)V (=@ A O)]
fi =10 A0)V(LATL) fi=10A1) Vv (1A0)]
fi=10v1] fi=10Vv0]

Condition(s) required for this proof: Q; = 0

8.2 Proofs for Round 2
For round 2, note that f; = G(X, Y, Z) = (Z AX)V (-Z AN Y).
38+ + 4+ £

We are given: (AQ:, AQi—1, AQi—2) = (1, 1, 1), ie, @} - Qr = £1, Q}_1 - Q-1 = %1, and Q}_, -
Q2 = £1.
We want: Afy = £1, ie.,f, - fr = £1.

ft/ = G[an ert—h Q;—Q] fi = G[Qt, Qi-1, Qt—z]
fi = Q12 AN QY V (mQi_o N Qi_1)] [t = [(Qe—2 N Q) V (7Qt—2 N Qr—1)]
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1).

To ensure f; = 1, we require that Q; = Q;—1. From this, we have Q; = Q;—1 = (0, 1) and Q;—o = (0,
Thus, we consider four possibilities. First, we consider when Q; = Q;—1 =0, Q, = Q}_; =1, Q1_2 =0,

and Q;_o = 1. Thus,

39: -

fi = Q12 AN QY V (mQi_o N Q1) fr = [(Qe—2 N Q) V (7Qt—2 N Qt—1)]
cfi =11 A1)V (0ATD)] fr=100A0) VvV (1AO0)]

fi =01V fe=10V0]

fi=1 fi = 0.

Second, we consider when Q: = Q;—1 =0, Q} = Q;_; =1, Qt—2 = 1, and Q}_, = 0. Thus,

fi =(Qi—a AN QY V (Qi_a N Q1) fir = [(Qt—2 N Q) V (7Qt—2 N Qt—1)]
s fi=10A) V(1AL fi =11 A0)V(0AO0)]
fi=1[0Vv1] fe =10V

Third, we consider when Q; = Q;—1 =1, Q; = Q,_; =0, Q;—2 = 0, and Q;_, = 1. Thus,

fi =R o NQYV (2Q, o N Q1) fi = [(Qi—2 AN Q) V (mQi—2 N Q¢—1)]
s fi=11A0) V(1AL fe=[1 A0V (1AT1)]

fe =10V fe=1[0V1]

fi=0. Je=1

Fourth, we consider when Q; = Q:—1 =1, Q; = Q}_1 =0, Q:—2 = 1, and Q;_5 = 0. Thus,

fi =(Qi—a AN Q) V (Qi_o AN Qi_1)] fr = [(Qr—2 N Q) V (7Qt—2 N Qt—1)]
i =10A0) Vv (1A0) fe=[A1A1)V(0A1)

fi=10v0 fi=1[1VvO0]

ft/ = 0. fi =L

Condition(s) required for this proof: Q; = Q¢—1

000

We are given: (AQt7 AQtfh AQt72) = ('15 07 O>7 i'e'7 Q:ﬁ = 07 Qt = 17 Qéfl = Qtfla and Q{‘,72 = Qt72'
We want Aft = O, i.e., ft/ = ft~

fi = GlQy, Qi_1, Qf_»)] fr = GlQ¢, Qi—1, Qi—2]
fi =(Qi—a AN QY V (Qi_a A Qi_1)] fr = [(Qr—2 N Q) V (7Qt—2 N Q1)
fi=1Qi a2 N0V (Q; o ANQ} )] fr = [(Qi2 A1)V (mQt—2 N Qi—1)]

To ensure f; = 0, we require that Q;_» = 0. From this, we have Q}_, = Q;—2 = 0. Now, Q,_; = Q;_1

= (0, 1). When Q}_; = Q;—1 = 0, then
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=[(Qt_2 NO)V (@2 N Qi_1)] fr =[(Qi—2 A1) V (mQi—2 N Qt-1)]
=[(0A0)V(1A0) fe=10A1)V (1 AO0)]
=[0 V0] fe =10V 0]
ft = 0. ft = 0.
When Q}_; = Q;—1 = 1, then
fi = Q12 ANO)V (mQi o AN Q1) [i =[(Qi2 A1)V (mQi—2 A Qt—1)]
fi =10A0)V (LAL)] fe=10nA1) V(1AL
fi=10Vv1] fe =10V 1]
fi =1 fi=1.

Condition(s) required for this proof: Q;—s = 0
40:0-00

We are given: (AQ:, AQi—1, AQi—2) = (0, -1, 0), ie., Q}, = Qt , Q}_1 =0, Q;—1 = 1, and Q}_, =
Qi—2.
We want Af; =0, i.e., f{ = fi.

ft/ = G[an Qf:—u Q;—Q] fi = G[Qt, Qi-1, Qt—z]
fi=(Qi_a AN QY V Qo A Qi_1)] fr = [(Qi—2 N Q) V (7Qt—2 N Qt—1)]
fi = (Qi—2 AN Qp) V (=Q;_5 A 0)] ft = [(Qi—2 A Q1) V (—Qi—2 A 1)]

To ensure f; = 0, we require that Q;—» = 1. From this, we have Q}_, = Q;—2 = 1. Now, Q; = Q; = (0,
1). When @; = Q¢ = 0, then

fi = (Qi—2 N @y ) V (2Qi_5 NO)] fr = [(Qi—2 N Qy) V (mQi—2 A 1)]
fi [(LA0) vV (0A0)] fe=1[1A0)V(0A1)]
fi =[0Vv0 fe=1[0Vv0]
fi =0. fi = 0.
When @} = Q¢ = 1, then
=[(Qi2 N QY V (2Qi_2 NO)] fr = [(Qi—2 A Q) V (=Qr—2 A 1)]
=[(L A1)V (0A0)] fe=[1A1)V(0AT1)]
=[1Vv0 fe=1[1Vv0
ft =1 Ji=1

Condition(s) required for this proof: Q;_o =1
41: 04+ 00

We are given: (AQ:, AQi—1, AQi—2) = (0, +1, 0), ie, Q; = Qt , Qi1 =1, Q;—1 = 0, and Q;_, =
Qi—2.
We want Af; =0, i.e., f{ = fi.
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fi = GlQ, Qi_1, Q1_5] fr = GlQ, Qi—1, Qi—2]
fi=[Qia ANQY) YV (2Qi o NQ1_1)] fi =[(Qi—2 A Q) V (mQi—2 A Qi-1)]
fi = [(Qi_a AN QL) V (mQ}_5 A 1)] fi = [(Qi—2 AN Q¢) V (—Qi—2 A 0)]

To ensure f; = 0, we require that Q;—2 = 1. From this, we have Q}_, = Q:—2 = 1. Now, Q; = Q: = (0,
1) When Qt = Qt = O7 then

fi=Qia NQY V (Qi_2 AD)] fi = [(Qe—2 A Q1) V (Qi—2 A 0)]
= A0 v (0 7= (UA0) V(0 A 0)
ft=[0 0] fe=1[0V0]
ft - ft =0.
When Q) = Q: = 1, then

=[(Qi2 N QY V (2Qia AND)] fr = [(Qi—2 A Q) V (=Qr—2 A 0)]
ft:[<1/\1) (0 A1) fe=1[1A1)V(0AO0)]
fi=[1Vv0 fe=1[1V0]
ff =1 ft = 1.

Condition(s) required for this proof: Q;_o = 1
42:00-0
We are given: (AQt7 AQtfh AQt72) = (07 Oa '1)a i'e'7 Qj/t = Qt7 Qéfl = Qtfh and Q;72 = Oa Qt72 -

1.
We want Aft = O, i.e., ft/ = ft~

fi = GlQ4, Qi_y, Q5] fi = GlQs, Qi—1, Qi3]
fr =(Qi_a N QY V (=Qi_5 A Q1) [fr = [(Qi—2 A Q1) V (mQt—2 N Q1]
fi=10AQ) VvV (1 AQ_4) fe=11AQ:)V (0N Q1)

To ensure f; = 0, we require that Q; = @Q:—1. From this, we have Q} = Q: = Q:—1 = Q;_; = (0, 1).
When Q; = Q; = Qi—1 = Q;_; = 0, then

=[0AQ)VIAAQ_)] fi=101 AQt) (0N Qi-1)]
=[(0A0)V (1LA0) Jfi=10A0) Vv (0A0)]
[VO] fr=1[0Vv0

ft— ft =0.

When Q; = Q¢ = Q11 = Q;_; = 1, then

f=10AQ)VAANQ_)] fi=[1AQ)V(0AQi1)]
fi=10n) v (I AT) fe=11 A1) V(AT
fi=10Vv1] fr=01Vv0]
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Condition(s) required for this proof: Q; = Q—1
43: 00+ 0

We are given: (AQta AQt—la AQt—Q) = (07 07 +1)a i'e'a Qé = Qt 5 Q:&-l = Qt—l: and QQ—Q = 17 Qt—Q
=0.
We want Af; =0, i.e., f[ = fi.

fi = GlQi, Qi_y, Q5] fr = GlQs, Qi—1, Qi3]
fi=1Qia ANQY) YV (2Qi_a N Qi) fi =[(Qi2 AN Q) V (mQi—2 A Qi-1)]
fi=10AQ) V(0 Q)] fe=[0AQ:) VvV (1A Q1)

To ensure f; = 0, we require that Q; = Q;_1. From this, we have Q} = Q; = Q;—1 = Q;_; = (0, 1).
When Q) = Q; = Qi—1 = Q,_; = 0, then

f=11nrQ) Vv (0AQ; )]
S A0) v (0A0)]
fi=10Vv0

fi=0.

T

When Q) = Q; = Qi—1 = Q;_; = 1, then

t=AANQ)VOANQ;_ )] fi=[0AQ:)V (IAQt1)]
t=[1A1) V(AT fi=10A1) V(1AL

i =[1Vvo0 fi=1[0V1]

ft/: ftzl'

Condition(s) required for this proof: Q; = Q¢—1
44: 4000

We are given: (AQ:, AQi—1, AQi—2) = (+1, 0, 0), ie,, @, =1, Q: = 0, Q}_; = Q¢—1, and Q}_, =
Qi—2.
We want Af; =0, i.e., fl = fi.

fi = GlQ, Qi_1, Q1_5] fr = GlQ¢, Qi—1, Qi—2]
fi=1Qia ANQY) YV (2Qi o N Q1)) fi =[(Qi—2 A Q) V (mQi—2 A Qi—1)]
fi=1Qia A1)V (2Q; o NQi_1)]  fr =[(Qi—2 AN 0)V (2Q¢—2 A Qt—1)]

To ensure f; = 0, we require that Q;—o = 0. From this, we have Q}_5 = Q:—2 = 0. Now, Q}_; = Q1
= (0, 1). When Q}_; = Q¢—1 = 0, then

=[(Q o A1)V (2Qi_ o N QL) fi =[(Qi—2 ANO) V (mQt—2 N Q¢—1)]
Z[(O/\l) (1 A0)] fe =[(0A0)V (1AO)]
=10V fe=1[0V(]

ft =0. ft =0.
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When Q;_; = Q:—1 = 1, then

Qi o N1)V (2Q} o ANQi_1)] fr = [(Qi—2 NO) V (mQi—2 N Q¢—1)]

fi=1
:[(0 A V(AT fe=10A0) Vv (1AL
ftzl' ftzl

Condition(s) required for this proof: Q;—2 = 0
45:0 £ £ 0

We are given: (AQ¢, AQt—1, AQ:—2) = (0, £1, £1),ie, Q} =Qt , Q_; - Q:—1 = £1,and Q}_, - Q1—2 =
+1.
We want Af; = 0, i.e., f/ = fi.

fi = GlQ, Qi_1, Q5] fr = GlQ, Qi—1, Qi—2]
fi=[Qia ANQY) YV (2Qi_a N Q1) fi =[(Qi—2 N Q) V (mQi—2 A Q¢-1)]

To ensure f; = 0, we require that @Q; = 0. From this, we have Q}, = Q; = 0. From step 22, we showed

Q21 = Q22, 50 we know Q;—1 = Q2.
Thus, we consider two possibilities. First, we consider when Q;—1 = Q:—2 = 0 and Q}_; = Q}_5 = 1. Thus,

=[(Qi2 N QY V (mQi_2 AN Q1) fr = [(Qe—2 N Qt) V (7Qt—2 N Qt—1)]
=[(1/\0)V(0A1)] fe=10A0)V(1AO0)]
= [O 0] fe=10Vv0]

ft ft = 0.

Second, we consider when Q;—1 = Q;—2 = 1 and Q}_; = Q}_5 = 0. Thus,

=[(Qi2a N QY V (FQi2 AN Q1) fi = [(Qr—2 A Q1) V (=Qi—2 N Qy—1)]
2[(0/\0) (1 AO0)] fe=11A0)V(0A1)]
= [ 0] fe=10vVv0]

ft - ft = 0.

Condition(s) required for this proof: Q; = 0
46: 00 £ £+

We are given: (AQh AQy—1, AQt—Q) = (0, 0, :I:l), ie., QQ = Qt, Q2_1 = @¢—1, and Qi_z - Q2 =
+1.
We want: Afy = £1, ie.,f] - fi = +1

ft/ = G[an ert—h Q;—Q] fi = G[Qt, Qi-1, Qt—z]
fi = Q12 AN QY V (mQi_o N Qi_1)] fr = [(Qe—2 N Q) V (7Qt—2 N Qr—1)]
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To ensure f; = 1, we require that @; = 1. From this, we have )} = Q; = 1. From step 23, we showed
Q23 = 0, so we know Q;_1 = 0. Thus, we consider two possibilities. First, we consider when Q;_o = 0 and
Q,_5 = 1. Thus,

Ji=[Qia NQY) YV (2Qi_o N Q1) fi = [(Qi—2 A Q) V (7Qi—2 A Q¢—1)]
fi=[1 A1)V (0AO0)] fe=[0A1)V (1LAO)

fi =01V fe=10V0

ft = 1 ft = 0

Second, we consider when Q:—2 = 1 and Q}_5 = 0. Thus,

t = [(Qia NQY)V (2Qt o AQLy)] i =[(Qr2 A Q1) V (2Qi2 A Qi1)]
(=[0A1)V(1LAO) ft:[(l/\l) (0 A 0)]

(=1[0Vvo] =[1 V0]

1 =0. ft =1

Condition(s) required for this proof: Q; =1

8.3 Proofs for Round 3
For round 3, note that fy = H(X, YV, Z) =X ® Y & Z
47: £ 00 £+

We are given: (AQ¢, AQi—1, AQi—2) = (£1, 0, 0), ie., Q) - Qr = £1, Q}_1 = Q¢—1, and Q}_5 = Q¢_o.
We want: Afy = £1, ie.,f] - fr = +1

fi = H[Qp, Qi_q, Qo] fr = H[Qr, Qi—1, Qi—2]
[i=Qt Qi1 © Qo) fi=0Q:® (Qi1 @ Qi2)
fi=Qt®(Qi1 © Qo) fi=0Q:®(Qi—1® Qi—2)
fi=Q; Jt = Q4

Since Q} - Q¢+ = £1, we have f/ - f; = £1, as desired.
Condition(s) required for this proof: none

48: =+ 00

We are given: (AQy, AQi—1, AQi—2) = (£1, £1, 0), ie., Q) - Q¢ = £1, Q}_; - Qr—1 = *1, and Q}_,
= Qt72-
We want: Afy = £1, ie.,f] - fr = +1

fi = H[Qi, Qi_1, Qi_s]  fi = H[Q¢, Qi—1, Qi—2]
i=@QDQ_) DRy fi=(Q:®Qi1)® Qi
fi=(Qr® Q1) ©Qio fi=(Qr® Q1) D Qi
fi = Qi Jt = Q2
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Since Q}_5 = Qt—2, we have f; = f;, as desired.

Condition(s) required for this proof: none
49: + + + +

We are given: (AQy, AQi—1, AQi—2) = (%1, £1, £1), ie., Q} - Q¢ = £1, Q}_; - Q-1 = £1, and Q}_, -
Qo = +1.
VVte \szant: Afy = £1,1e,f] - fr = £1

ft/ = H[Qéa Q;—l» QQ—Q] ft = H[Qta Qi—1, Qt72]

[i=(Qr® Q1) ©Q, o fi=(Qr®Qi1) D Qi

=@ DQ_1) DRy fi=(Q:®Qi1)® Qo

fi=Qio fr = Q2

Since Q}_5 - Qit—2 = 1, we have f] - f; = 1, as desired.

Condition(s) required for this proof: none

8.4 Proofs for Round 4

For round 4, note that f; = I(X, Y, Z) =Y & (X V Z).
50: £ £ £ £

We are given: (AQ¢, AQ¢—1, AQt—2) = (£1, £1, £1),ie., Q1 - Qr = £1, Q;_; - Q¢—1 = £1, and Q}_, -
Qi—2 = £1.
We want: Afy = £1, ie.,f] - fr = £1.

fi = 1[Q4, Qi_1, Qi_o] fr = I[Q¢, Qi—1, Qt—2]
Ji=Qi1 @ (QrV Qi 5) fi=Qi1®(QrV Qi 2)

To ensure f; = 1, we require that Q; = Q¢_o.
From this, we have Q; = Q;_2 = -1, +1 and Q¢_1 = -1, +1. Thus, we consider four possibilities. First, we
consider when Q; = Q;—2 =-1 and Q;—1 =-1. Thisgivesus Q; = Q12 =1,Q} = Q}_5 =0, Q:—1 =1, and
Q}_; = 0. Thus,

fi=Qi1 ©(QyV ~Qt_5) fi=Qi1 @ (QrV Qi 2)

fi=0@ (V1) fi=1@®(1VvO0)
fi=0@1 fi=1®1

Second, we consider when Q; = Q¢ 2 =-1and Q;—1 = +1. Thisgives us Q; = Q; 2 =1, Q} = Q;_, =
0, Qi—1 =0, and Q}_; = 1. Thus,



101

Ji=Qi 1 @ (QrV Qi 5) [i=Qi1®(QV Qi)

fi=1eov) fi=0® (1v0)
r=1a1 fi=0a1

Third, we consider when Q; = Q;—2 = +1 and Q;—1 = -1. This gives us Q; = Q1—2 =0, Q; = Q}_, =
1, Qi—1 =1, and Q},_; = 0. Thus,

Ji=Qi 1 @ (QrV -Q;5) fi = Qi—1 ® (Qr V ~Q¢_2)

fi=0@ (1VvO0) fi=1® (V1)
fi=0&1 fi=1®1
t/:1~ ft =0.

Fourth, we consider when Q; = Q;—2 = +1 and Q;—1 = +1. This gives us Q¢ = Q;—2 = 0, Q, = Q}_,
=1,Qi1 =1,and Q;_; = 0. Thus,

fi=Qi1 ®(QyV ~Q4_) ft = Qi1 @ (Qr V ~Qt—2)

fi=1@® (Vo) fi=0® (0V1)
fi=1®1 fi=0a1
. =0. fi=1.

Condition(s) required for this proof: Q¢ = Qi—2 ==} Q; = Q¢—2
51: £+ +£0

We are given: (AQ:, AQi—1, AQt—2) = (%1, £1, £1), e, Qr - Q¢ = 1, Q}_1 - Q:—1 = £1, and Q}_, -
Q2 = £1.
We want Afy; =0, e, fl = fi.

ft/ = I[Qév é—p QQ—Q] ft = I[Qta Qi—1, Qtﬂ]
fi=Qi 1 ©(QyV ~Qt_5) fi=Qi1 @ (QrV ~Qi2)

To ensure f; = 1, we require that Q; = - Q;_o.
From this, we have Q; = - Q;_2 = -1, +1 and Q;_1 = -1, +1. Thus, we consider four possibilities. First, we
consider when Q; = -1, Q;—2 = +1, and @Q;—1 = -1. This gives us Q; = 1, Q:—2 =0, Q}, = 0, Q}_5 = 1,
Qi—1 = 1, and Q}_; = 0. Thus,

fi=Qi1 ®(QyV ~Qi_) fi = Qi1 @ (Qr V ~Qt—2)

fi=0@ (0VO0) fi=1@®(1Vv1
fi=0®0 i=1a1
t/:()' ft:()-

Second, we consider when Q; = -1, Q;_2 = +1, and Q;_; = +1. This gives us Q; = 1, Q;_2 = 0, Q} =
0,Q, =1 Qi1 =0, and Q;_; = 1. Thus,
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Ji=Qi 1 @ (QrV Qi 5) [i=Qi1®(QV Qi)

fl=1®(0V0) fe=0@ (1V1)
=130 fi=0a1
fi=1 Je=1

Third, we consider when Q; = +1, Q;_» = -1, and Q;_; = -1. This gives us Q; = 0, Q;_» = 1, Q} = 1,
Q;_5=0,Qi—1 =1, and Q;_; = 0. Thus,

ft: =Qi_1 ©(QyV Qi) fi=Qi1®(QrV ~Qi2)

/=0® (V1) fi=1@(0V0)
ft’:0€91 fi=180
ftlzl- ft=1-

Fourth, we consider when Q; = +1, Q;—2 = -1, and Q;—; = +1. This givesus Q: =0, Q:—2 = 1, Q} =
1,Q,_5=0,Q;—1 =1,and Q;_; = 0. Thus,

fti =Qi_ 10 (QrV Qi) [i=Qi1®(QrV ~Qi_2)

13 (1V1) fi=0@ (0V0)
fi=1@1 fi=0d0
fi=0. fe =0.

Condition(s) required for this proof: Q; = - Qi—2 ==} Q1 = Q1—2
52: 4000
We are given: (AQt7 AQt—la AQt—Q) = (+17 07 0)7 i'e'7 Q:ﬁ = 17 Qt = Oa Q:ﬁ-l = Qt—la and Q;—Q =

Qt—2.
We want Af; =0, i.e., f{ = fi.

ft/ = I[leta Q;—la Qg—z] fi = ][Qt’ Qi—1, Qt—z]
fi=Qi 1 ©(QyV Qi y) fi=0Qi1®(QrV Qi 2)
i=Q 10 (1V-Q,) fi=Qi1®(0V Qi2)

To ensure f; = 0, we require that Q:—3 = 0. From this, we have Q}_, = Q¢—2 = 0. Now, Q;_; = Q:_1
= (0, 1). When @}_; = Q¢—1 = 0, then

= Qi @0V -Qs) fi= Qi1 ©(0V Qra)

i=0& (1Vv1) fi=0@ (0V1)
fi=0a&1 fi=0ad1
;=L fi=1

When Q;_; = Q:—1 = 1, then
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Ji=Qi 1 ® 1V Qi ,) fi=0Qi1®(0V Qi)

fi=1l@®(1Vv1) fi=1a® (0Vv1)
=11 fi=1la1

Condition(s) required for this proof: Q;—s = 0
93: ++00

We are given: (AQ:, AQi—1, AQi—2) = (+1, +1, 0), ie, Q) = Qi1 =1, @ = Q:+—1 = 0, and Q}_,
= Qi—2.
We want Af; =0, i.e., fl = fi.

fi = 1[Q4, Qi_1, Qi o] fr = I[Q¢, Qi—1, Qr—2]
Ji=Qi1 @ (QrV -Q; 5) fi=Qi1®(QrV Qs 2)
i =10 (1V-Q; ) fi=0® (0V -Qi—2)

To ensure f; = 0, we require that Q;—_o = 1. From this, we have Q}_5 = Q;—2 = 1. Thus,

fi=1® 1V -Q;_,) fi=0® 0V -Qi—2)
fi=1® (1Vvo0) fi=0& (0VO0)
fl=1@1 fi=0®0

¢ =0 fe=0.

Condition(s) required for this proof: Q¢—o =1
54:-000

We are given: (AQt7 AQt—lv AQt—Q) = (_15 07 0)7 i'e'a Qy/f = 07 Qt = la Qé—l = Qt—la a‘nd Q{‘,—Q = Qt—Q-
We want Af; =0, i.e., fl = fi.

i =1[Q}, Q;_1, Qr_s] fr = I[Q¢, Qi—1, Qr—2]
fi=Qi1 ©(QyV —Qi_2) fi=Qi1® (QrV Qi 2)
i =Qi 1 © 0V Qo) fi=Q 1 (1Qi2)

To ensure f; = 0, we require that Q;—2 = 0. From this, we have Q}_5 = Q:—2 = 0. Now, Q}_; = Q1
= (0, 1). When Q;_; = Q-1 = 0, then

ff; =Qi1 © 0V Qi) fi=Qr1®(1V Qi 2)

=08 (0V1) fi=0& (V1

When Q;_; = Q¢—1 = 1, then
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Ji=Qi 1 @0V Q) fi=0Qi1®(1V-Qi )

fi=1@® (O0Vv1) fi=1l® (V1)
=11 fi=1la1

Condition(s) required for this proof: Q;—2 =0
55:--00

We are given: (AQy, AQi—1, AQi—2) = (-1, -1, 0), ie,, Qr = Qi1 =1, @, = Q;_; = 0, and Q}_, =
Qi—2.
We want Af; =0, i.e., f[ = fi.

ft/ = ][Q; QLD Qéfz] ft = I[Qm Qtfla Qt72]
fi=Qi 1 ©(QyV —Qi_5) fi=0Qi1® (QrV Qi 2)
; =0 (0V -Q;_5) fi=1@® (1V -Q:_2)

t

To ensure f; = 0, we require that Q;—_o = 1. From this, we have Q}_5 = Q;—2 = 1. Thus,

fl=0a (0V-Q,,) fi=1& 1V -Qi2)
fl=0&® (0VO0) fi=1@®(1vVvo0)
fi=0®0 fi=1@1

Condition(s) required for this proof: Q;_o = 1

9 EFErrata

In scrutinizing [3], several errors were found. We have divided the errors into three sections. Trivial errors are
simply misprints and do not affect the attack in any way as a whole. The minor errors are more important,
yet they still do not affect the overall attack. The two significant errors, however, have a considerable effect
on the attack. In correcting the first error, we will show that the complexity of the attack is only about half
of what was stated in [3]. In correcting the second, we will show that Case Two as presented in [3] does not
succeed in fulfilling the conditions required for the collision differential to hold.

9.1 Trivial Errors

Page 4, Description of the f; functions:
FX,Y,Z)=XANY) (-XANZ),0<t<15—>F(X Y Z2)=
GX, Y, Z2)=(ZANX)D(~ZANY),0<t<15->GX, Y, 2)=ZAX)V(~ZANY),0<t<15

Page 7, Condition III:

31 31 31 11
SRy = Z 47 +12 (mod 32) _ Z+2j S OR, = Z 407 +12 (mod 32) _ Z+2j
J=25 j=5 j=25 j=5
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Page 9, Round 8:
Conditions on Tg — Conditions on Ty
5T8 — (+231 _ 224 + 216 + 210 + 28 + 26) + (_2—6) N (STg — (+231 _ 224 + 216 + 210 + 28 + 26) + (_26)

Page 13, Round 18:
6Q1s = +2°1 4+ 2'7 — Q15 = +23!

Page 13, Round 19:
0Q-3 = Qg = +2°1 - 21" — 6Q3 = Q16 = +2°" - 27

Page 14, Round 25:
6Qi—3 = Qo = +2%" — 0Q;_3 = Qo = +2%

Page 16, Round 61:
5Qe2 = 6Qe1 + Re1 = (+231) + (0) = +23! + 225 — Qg2 = Qo1 + Re1 = (+231) + (4+22°) = +231 + 225

Page 18, Round 5:
0 € T5[11 - 18] — 0 € T5[18 - 11]

Page 18, Round 10:
0e T10[14, 12] — 0 € T10[14 - 12]

Page 18, Round 11:
1eT11[22,17) — 1 € T11[22 - 17

Page 30, VQq[31] = £1:
Qs[31] = Q7[31] © Qs[31] — Qo[31] = Q7[31] ® Qs[31]

Page 33, Constant bits of Q11:
For j € [8, 0], V f11[j] = 41, requires Q11[j] = 0 — For j € [8, 0], V f11[j] = -1, requires Q11[j] = 0

Page 34, Non-Constant bits of Q11:
f11%[30] = f11[30], requires Qo*[30] = Q9[30] = Q10[30] — f11x[30] = f11[30], requires Q10*[30] = Q10[30]
= Q9[30]

Page 35, Obtaining the Correct AQy:
Since Q11[7] = 1 and Q11[7] = 0 are already specified — Since Q11[7] = 1 and Q1¢[7] = 0 are already specified

Page 35, Obtaining the Correct f;:
For j € [30 - 20, 11, 10, 9, 6 - 0] — For j € [29 - 20, 11, 10, 9, 6 - 0]

Page 44, Obtaining the Correct f;:
AQ15[j] =0, for j € [30 - 17, 14 - 44, 2, 1, 0] — AQ15[j] =0, for j € [30 - 16, 14 - 4, 2, 1, 0]
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Page 51, Caption for Table 7:
For rounds 16 to 31 of the first block — For rounds 32 to 47 of the first block

Page 51, Round 35:
The attacker has 6Qs2 = 0, Q34 = 0, and 6Q35 = +231 — The attacker has §Q33 = 0, Q34 = 0, and Q35
= 4231

Page 58, Caption for Table 11:
Conditions for on Q¢, 15 < t < 32, in the first block — Conditions on @y, 3 < t < 15, in the first block

Page 59, Caption for Table 12:
Conditions for on @y, 15 < t < 32, in the first block — Conditions on @, 16 < t < 63, in the first block

Page 68, Caption for Table 17:
Add-differences for rounds 16 to 63 of the second block — Add-differences for the second block

9.2 Minor Errors

Page 11, Round 12:

0Typ = -216 4 26 4+ 20 — 6Ty = 4217 4 26 4 20

§ = (210 + 26 4 20) — § = (4217 4 26 + 20)

0Ty = -216+7=23 | 96+T=13 4 90+7=T _, s, — 4olT+7=24 4 96+7=13 | 90+7=7

Page 18, Round 6:
1 € T5[13 - 10] = Probability: (1 -27%) — 1 € T5[13 - 10] = Probability: (1 - 27%)

Page 18, Round 9:
0 € Ty[19 - 2] = Probability: (1 -2718) — 0 € Ty[19 - 0] = Probability: (1 - 2729)

Page 18, Round 12:

§ = (-216 4+ 26 4+ 20y — § = (217 4+ 26 4 20)

0 € 6T12[24 - 16] = Probability: (1 - 279) — 0 € §T12[24 - 17] = Probability: (1 - 27%)
0 € §T12[15 - 6] = Probability: (1 - 2710) — 0 € §712[16 - 6] = Probability: (1 - 2711)
0 € 0T12[5 - 2] = Probability: (1 - 27%) — 0 € §T12[5 - 0] = Probability: (1 - 27°)

Page 30, Summary of the Requirements resulting from this round:
Qs[7, 1] = Q9[26, 19 - 15) = 0 — Qg[7, 1] = Q9[26,19 - 15,7,6,1] =0

Page 53, Round 48:
Obtaining Afys = 0, requires VQ4s[31] = VQ45[31] — Obtaining Afsy = 0, requires VQ45[31] = VQu6[31]

Page 54, Round 49:
Obtaining Afy9 = 0, requires VQ49[31] = VQ49[31] — Obtaining Afs9 = 0, requires VQu9[31] = VQ47[31]

Page 54, Round 50:
Obtaining Afs0 = 0, requires VQs0[31] = -VQ@Q50[31] — Obtaining Afsg = 0, requires VQ50[31] = -VQ45[31]
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Page 54, Rounds 51 to 59:
Obtaining f; = 0, requires Q;[31] = Q¢[31] — Obtaining f; = 0, requires Q;[31] = VQ:_2[31]

Page 55, Round 60:
Obtaining Afgo = 0, requires VQgo[31] = -VQe0[31] — Obtaining Afgo = 0, requires VQgo[31] = -VQ55[31]

Page 55, Round 61:
Obtaining Afg; = 0, requires VQ1[31] = VQ¢1[31] — Obtaining Afs = 0, requires VQg1[31] = VQ59[31]

Page 56, Round 62:
Obtaining Afgy = 0, requires VQg2[31] = VQe2[31] — Obtaining Afge = 0, requires VQg2[31] = VQe0[31]

Page 56, Round 63:
Obtaining Afgs = 0, requires VQg3[31] = VQg3[31] — Obtaining Afgs = 0, requires VQg3[31] = VQe1[31]

Page 60, Second block:
For a given choice of the values A, B, H, I, J — For a given choice of the values A, C, I, J

For a random message, the probability is 273'® — For a random message, the probability is 27319

Page 68, Step 4:
Aft — +230 + 226 _ 218 _ 23 + 21 — Aft — +230 + 226 _ 218 + 23 _ 21

Page 68, Step 6:
Aft:'231'221'210+23_>Aft:+231'221'210+23

Page 69, Step 5:
VQr =21 +2° 420 420 - vQ, = 2% + 29 25 4 20 4+ 20

9.3 Significant Errors

Significant Error #1. In the table which presents a summary of the probabilities that the T3 would hold
in each step, Hawkes, Paddon, and Rose state that T; would hold with probability 27! in step 16 since they
believed that bit 24 of Tig must be 0. However, the true probability is (1 - 273) because only one of bits
24, 25, or 26 must be 0 since the left shift for step 16 is 5, not 7. Therefore, the probability that all of the
T; would hold after using single-message modification for each block is 272 rather than 2732, Since the
probability that all bits will propagate through the f; functions in the desired manner for each block is 2739,
the probability that the collision differential will hold for each block is

2—2.4 % 2—39 — 2—41
rather than
2—3.2 % 2—39 — 2—42

as stated in [3]. Thus, the complexity of the attack on both blocks is



108
241 + 241 — 242

rather than
242 + 242 — 243

as stated in [3].

Significant Error #2: On page 24 in [3], Hawkes, Paddon, and Rose claim that the add-difference (-
227) in Q7 does not need to propagate to bit 31, as required in [7]. Rather, they claim that no propagation
is necessary and that the propagation only results in a large number of additional conditions which are not
needed for the attack to succeed. Thus, Hawkes, Paddon, and Rose consider two cases. Case One presents
the propagation as illustrated in [7] while Case Two requires no propagation for the add-difference (-227).
We will prove that Case Two does not succeed in meeting the necessary conditions for collision differential
to hold, and therefore, as shown in sectiontrefsec:conditions, Case One is the only viable option. We will do
this by examining bit 31 in steps 7, 8, and 9.

According to Case Two, since no propagation is necessary for the add-difference (-227) in Q7, AQ7[31]
= 0. From steps 5 and 6, we have AQ5[31] = 0 and AQg[31] = +1
For the collision differential to hold, it is necessary that Af7[31] = 0. We will now show that @7[31] = 0 is
required for Af7[31] = 0:

We are given: (AQ'Yv AQ67 AQE)) = (07 +1, 0)7 Le., Q/7 = Qr, Q% - Qe = £1, and Q{B = Qs.
We want: Afz =0, i.e., fr = fr.

fé = F[Q/77 Ql67 Q/5] f7 = F[Q'ﬁ Q67 QS]
fr=1Q7 A Q) V (=Q7 AQ5)] fr=1[(Q7 A Qs) V (—Q7 N Q5)]

To ensure Af; = 0, we require that Q7 = 0. From this, we have Q, = Q7 = 0. Now, Qf = Q5 = (0, 1).
Also, we have Qf - Q¢ = -1, +1. We consider four possibilities. First, when Qf = 0, Q¢ = 1, and Qf = Q5
= 0, then

Jr=1Q7 AN Q) V (-Q7 A Q5)] fr=[(Q7 A Qs) V (=Q7 A Qs5)]
fr=10A0) Vv (1 A0) fr=10A1)V(1LAO0)
fr=10v0] fr=10Vv0

5 =0. f==0.

Second, when Qg = 0, Qs = 1, and Qf = Q5 = 1, then

fr=1Q7 NQg) vV (=Q7 AN Q5)] fr=1[(Q7 A Qs) V (—Q7 A Qs)]
fr=10A0) Vv (1A1)] fr=10A1)v (1A 1)]
=0y oAl

fr=1 fr=1

Third, when Qf = 1, Qs = 0, and Qf = Q5 = 0, then

fr=1Q7 N Qg) vV (Q7 N Q5)] = [(Q7 A Q¢) V (=Q7 A Q5)]
fr=10A1) Vv (1A0)] [(0 A0) V(1 A0)]
fr=1[0Vv0] =[0 V0]

fi=0. f7 = 0.
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Fourth, when Q = 1, Q¢ = 0, and Qf = @5 = 1, then

fr=1Q7 AN Qg) Vv (=Q7 A Q5)] fr=1[(Q7 A Q) V (=Q7 A Qs5)]
fr=10A1) Vv (1A1)] f7=[(0/\0) (1 A1)
7=[0V1] = [0V 1]

fr=1 f7 =1L

Condition(s) required for this proof: Q7 =0
Next, according Case Two, AQg[31] = 0. From steps 6 and 7, we have AQg[31] = £1 and AQ7[31] = 0. For
the collision differential to hold, it is necessary that Afg[31] = +1.
We will now show that Qg[31] = 0 is required for Afg[31] = +1:

We are given: (AQs, AQ7, AQg) = (0, 0, £1), ie., QF = Qs, Q4 = Q7, and Qf - Qs = *1.
We want: Afg = +1, ie., f§- fs = *1

fs = FlQs, Q7, Qg fs = FlQs, Q7, Q¢
fi=1Qs A Q7) vV (mQs A Q)] fs = [(Qs A Q7) V (=Qs A Q)]

To ensure Afg = +1, we require that Qs = 0. From this, we have Qf = Qg = 0. Now, since AQ7 =0
and Q7 = 0, Q% = Q7 = 0. Also, we have Qf - Qs = -1, +1. We consider two possibilities. First, when Qj
=0, and Q¢ = 1, then

fe=1Qs N Q7) vV (=Qs AN Qg)] fs =1[(@s A Q7) V (—=Qs A Q)]
fs=10A0) Vv (1A0)] fs=[0A0)V (A1)
jjs:([)o\/o] f8=[ 1]

Second, when Qi = 1, and Qg = 0, then

fi=1(Qs A Q7) vV (=Qy A Q)] fs = [(Qs A Q7) V (=Qs A Q)]
fs=[(0A0) (L A1) fs =[(0A0) Vv (1A0)]

fs = [ 1] s = [ Vv 0]

f8 8 —

Condition(s) required for this proof: Qs = 0

Then, according Case Two, no conditions are required for Afy[31] = +1.
This is because Q~[31] = 1 and Qs[31] = 0 implies that Afy[31] = £1.
This statement is true, as shown below:

We are given: (AQg, AQs, AQ7) = (%1, 0, 0), i.e., Qf - Qo = £1, Q5 = Qs, and QF = Q7.
We want: Afy = +1, ie, ff -fo = +1

fo = FlQy, Qg, Q7] fo = F[Qq, Qs, Q7]
fo=1(Qy NQg) vV (=Qy A Q7)] fo=[(Qo A Qg) V (=Qy N Q7)]
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To ensure Afg = %1, no requirements are necessary. Now, since AQ7 = 0and Q7 =1, Q7 = Q7 = 1,

and since AQg = 0 and Qs = 0, Q5 =
1, then

Qs = 0. We consider two possibilities. First, when Q§ = 0 and Qg =

fo=1Qy A Qg) vV (=Qy A Q7)] fo = [(Qo A Qs) V (=Q9 A Q7]
fo=10nA0) VvV (1AT)] 9o =[1A0)V(0AT)]

fo= [0 1] o= [ V0]

fo= fo=

Second, when @y = 1 and Q9 = 0, then

fo = [(Q¢ 9 ANQg)V (=Qy A Q7)) fo=[(Qo A Qs)V (=Qy A Q7)]
fo=1[1A0)V(0AL)] fo=1[00A0) Vv (1A1)]
fo=1[0v0] fo=1[0Vv1]

f9 =0. fo =1

Condition(s) required for this proof: none

But there is a problem. In step 7, we proved that Q7[31] = 0, but now according Case Two, Q7[31] =

This is impossible. In fact, we will show that if Q7[31] = 0, we cannot have A fy[31]

We are given: (AQg, AQs, AQ7) =
We want: Afy = 1, ie,ff -fo = +1

fo = FlQy, Q, Q7]
fo=1(Qs A Q5) Vv

fo =
(—Qo A Q7)]

= +1:
(:tlv Oa 0)7 i'e'7 Qé - Q9 = :t]-v Q/S = Q87 and Q/'? = Q7'
F[QQ& Q87 Q7]
fo=1(Qo A Qs) V (=Qo N Q)]

To calculate Afy , no requirements are necessary. Now, since AQ7 = 0 and Q7 = 0, Q% = Q7 = 0, and

since AQs = 0 and Qs = 0, Q5 = Qs
then

fo=1(Qy N Qg) V (=Q A Q7)] fo = [(Qo
fo = [(0 A0) V(1 A0)] fo =101
fo=10Vv0] fo = [1
fo=0. 0=

Second, when Q4 = 1 and Qg = 0, then

fo = 1(Qx 9 A Qg) vV
fo=[AA0)V

fo = [1 Vv 0]

fo =

(=Qy A Q7)]
(0 A 0)]

[(Qo
[(

;“@@@
H

For both possibilities, Afg = 0, not Afg =

= 0. We consider two possibilities. First, when Q4 = 0 and Qg = 1,

A Qg)V (=Qg A Qr)]
0]) (0 A 0)]

A Qg) V (mQg N Q7)]
O]) (1 A0)]

+1, which was desired. Thus, using the values of Q7[31] and

Qs[31] calculated in steps 7 and 8, we cannot obtain the desired value of Afy[31], and we cannot meet all
of the necessary conditions for collision differential to hold. If we had chosen Case One and propagated the
add-difference (-227) in Q7 to bit 31, as required in [7], we would have obtained the appropriate condition for
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Q7[31], and therefore we would have been able to obtain the desired value for Afg[31]. As we have illustrated
in section 7, Case One clearly succeeds in meeting every condition required for the collision differential to
hold.

10 Conclusion

This paper has presented a new approach to the recent successful differential attack by Wang et al. on the
MD5 Message Digest Algorithm. It has built on the work of Hawkes, Paddon, and Rose by adding proofs,
examples, illustrations, and corrections to make the attack on MD5 more accessible to the mathematically
literate reader.

This paper has made seven original contributions. First, it has compared the unorthodox description
of MD5 by Hawkes, Paddon, and Rose to the original description by Ron Rivest. Second, it has supplied
examples for conditions that they present for the T;. Third, it has expanded on the description of the first
block of the differential by explaining the conditions on the T; in each step. Fourth, it has presented an
original step by step analysis of the description of the second block based only on the table that Hawkes,
Paddon, and Rose provide. Fifth, it has supplied original proofs of their assertions regarding the conditions
for the propagation of the differences through the f; functions for the first block. Sixth, it has provided both
assertions and proofs for the conditions for the propagation of the differences through the f; functions for
the second block. Finally, it has corrected two significant errors in the work of Hawkes, Paddon, and Rose,
demonstrating that the complexity of the attack was only about half as great as they believed and that their
Case Two did not succeed in fulfilling the conditions required for the collision differential to hold.
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