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Abstract. Checking whether a committed integer lies in a specific interval has many
cryptographic applications. In Eurocrypt’98, Chan et al. proposed an instantiation
(CFT for short). Based on CFT, Boudot presented an efficient range-bounded com-
mitment scheme in Eurocrypt’2000. Both CFT proof and Boudot proof are based
on the encryption E(x, r) = gxhr mod n, where n is an RSA modulus whose factor-
ization is unknown by the prover. They did not use a single base as usual. Thus an
increase in cost occurs. In this paper we show that it suffices to adopt a single base.
The cost of the improved Boudot proof is about half of that of the original scheme.
Moreover, the key restriction in the original scheme, i.e., both the discrete logarithm
of g in base h and the discrete logarithm of h in base g are unknown by the prover,
which is a potential menace to the Boudot proof, is definitely removed.
Keywords. range-bounded commitment, knowledge of a discrete logarithm, zero-
knowledge proof.

1 Introduction

Checking whether a committed integer lies in a specific interval was first developed by Brickell,
et al. [2] in Crypto’87. Such kind of proofs have many applications: electronic cash systems
[6], group signatures [8], publicly verifiable secret sharing schemes [16, 14, 4], and other zero-
knowledge protocols [9]. Informally, a range-bounded commitment is a protocol between a
prover, Alice, and a verifier, Bob, with which Alice commits to a string, x, and proves to Bob
that x is within a predetermined range, H, with accuracy δ.

In the past decade, there are a few schemes investigating range-bounded commitments. Mao
[16] proposed a scheme for proof of bit-length based on DLP (discrete logarithm problem) in
PKC’98. In Eurocrypt’98, Chan et al. [6] presented an instantiation (CFT proof for short).
It’s corrected soon [7] because the authors did not notice that Alice can cheat Bob if the order
of the cryptographic group is known by her. Based on CFT proof, Boudot [3] constructed a
popular range-bounded commitment scheme in Eurocrypt’2000 (Boudot proof for short). The
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basic idea of the scheme is to decompose a committed number x as x = x2
1 + x2. It then uses

Fujisaki-Okamoto commitment scheme [13] to show that the committed number x2
1 is a square.

By CFT proof, it proves the committed number x2 in a proper range.

Both CFT proof and Boudot proof are based on the encryption

E(x, r) = gxhr mod n

where x is the committed number, r is a random number selected by Alice, n is an RSA modulus
whose factorization is unknown to Alice, g is an element of large order in Zn and h is an element
of the group generated by g such that both the discrete logarithm of g in base h and the discrete
logarithm of h in base g are unknown by Alice. We notice that they do not use a single base as
usual. Thus an increase in cost occurs.

Why not use a single base instead two bases? The reason, we think, is that they directly
followed the structures of Fujisaki-Okamoto commitment [13]. In 2002, the authors [11] explained
that a commitment with a single base to s of form c = gs mod n does not satisfy the standard
hiding property for commitments. For instance, if a prover commits twice to the same value, this
is immediately visible. But we notice that they did not consider to permit Alice to update the
single base g. Actually, if Alice commits twice to the same value, she can pick a random number
θ and update the base g with ĝ = gθ mod n. Note that g is still permitted to be a system-wide
parameter since Alice can update it by herself. But in Fujisaki-Okamoto commitment scheme
(with two bases), Alice is not permitted to update the bases. Otherwise, the discrete logarithm
of ĝ in base ĥ or the discrete logarithm of ĥ in base ĝ will be known to Alice.

In this paper, we show that it suffices to adopt a single base, i.e., E(x) = gx mod n. The
common encryption sufficiently guarantees the security of the modified Boudot commitment
scheme. Thus the cost of the modified Boudot proof is about half of that of the original scheme.
Its security is immediately reduced to RSA [18] and a variant of Schnorr signature [19] in RSA
setting with hidden order. Moreover, the key restriction in the original scheme, both the discrete
logarithm of g in base h and the discrete logarithm of h in base g are unknown by the prover,
which is a potential menace to the Boudot proof, is definitely removed.

2 Related work

2.1 CFT proof

The following description of CFT proof is due to [3].

Let t, l and s be three security parameters. This protocol (due to Chan, Frankel and Tsiounis
[6], and corrected in [7], and also due to [14] in another form) proves that a committed number
x ∈ I belongs to J , where the expansion rate #J/#I is equal to 2t+l+1. Let n be a large
composite number whose factorization is unknown by Alice and Bob, g be an element of large
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order in Z∗n and h be an element of the group generated by g such that both the discrete logarithm
of g in base h and the discrete logarithm of h in base g are unknown by Alice. Let H be a hash
function which outputs 2t-bit strings. We denote by E = E(x, r) = gxhr mod n a commitment
to x ∈ [0, b], where r is randomly selected over [−2sn+1, 2sn−1]. This commitment statistically
reveals no information about x to Bob.

Protocol PK[CFT ](x, r : E = E(x, r) ∧ x ∈ [−2t+lb, 2t+lb])

1. Alice picks random ω ∈R [0, 2t+lb−1] and ηR[−2t+l+sn+1, 2t+l+sn−1], and then computes
W = gωhη mod n.

2. Then, she computes C = H(W ) and c = C mod 2t.

3. Finally, she computes D1 = ω + xc and D2 = η + rc (in Z). If D1 ∈ [cb, 2t+lb − 1], she
sends (C,D1, D2) to Bob, otherwise she starts again the protocol.

4. Bob checks that D1 ∈ [cb, 2t+lb − 1] and that C = H(gD1hD2E−c). This convinces Bob
that x ∈ [−2t+lb, 2t+lb].

2.2 Proof that two commitments hide the same secret

Alice secretly holds x ∈ [0, b]. Let E = E1(x, r1) and F = E2(x, r2) be two commitments to x.
She wants to prove to Bob that she knows x, r1, r2 such that E = E1(x, r1) and F = E2(x, r2),
i.e. that E and F hide the same secret x. This protocol is derived from proofs of equality of two
discrete logarithms from [10, 5, 1], combined with a proof of knowledge of a discrete logarithm
modulo n [15].

Protocol PK(x, r1, r2 : E = E1(x, r1) ∧ F = E2(x, r2))

1. Alice picks random ω ∈ [1, 2l+tb − 1], η1 ∈ [1, 2l+t+s1n − 1], η2 ∈ [1, 2l+t+s2n − 1]. Then,
she computes W1 = gω

1 hη1
1 mod n and W2 = gω

2 hη2
2 mod n.

2. Alice computes c = H(W1||W2).

3. She computes D = ω + cx,D1 = η1 + cr1, D2 = η2 + cr2 (in Z) and sends (c,D, D1, D2) to
Bob.

4. Bob checks whether c = H(gD
1 hD1

1 E−c mod n||gD
2 hD2

2 F−c mod n).

2.3 Proof that a committed number is a square

Alice secretly holds x ∈ [0, b]. Let E = E(x2, r1) be a commitment to the square of x (in Z).
She wants to prove to Bob that she knows x and r1 such that E = E(x2, r1), i.e. that E hides
the square x2. The first proof that a committed number is a square has appeared in [13].

Protocol PK(x, r1 : E = E(x2, r1))
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1. Alice picks random r2 ∈ [−2sn + 1, 2sn− 1] and computes F = E(x, r2).

2. Then, Alice computes r3 = r1 − r2x (in Z). Note that r3 ∈ [−2sbn + 1, 2sbn − 1]. Then,
E = F xhr3 mod n.

3. As E is a commitment to x in base (F, h) and F is a commitment to x in base (g, h), Alice
can run PK(x, r2, r3 : F = gxhr2 mod n ∧ E = F xhr3 mod n). By the proof that two
commitments hide the same secret described above, she gets (c,D, D1, D2).

4. She sends (F, c, D, D1, D2) to Bob.

5. Bob checks that PK(x, r2, r3 : F = gxhr2 mod n ∧ E = F xhr3 mod n) is valid.

2.4 Boudot proof

Let t, l and s be three security parameters. Let n be a large composite number whose factor-
ization is unknown by Alice and Bob, g be an element of large order in Z∗n and h be an element
of the group generated by g such that both the discrete logarithm of g in base h and the dis-
crete logarithm of h in base g are unknown by Alice. We denote by E(x, r) = gxhr mod n a
commitment to x in base (g, h) where r is randomly selected over [−2sn + 1, 2sn− 1].

Protocol: PK[WithTol](x, r : E = E(x, r) ∧ x ∈ [a− θ, b + θ])

1. [Knowledge of x] Alice executes with Bob: PK(x, r : E = E(x, r))

2. [Setting] Both Alice and Bob compute Ẽ = E/ga mod n and Ē = gb/E mod n. Alice sets
x̃ = x− a and x̄ = b− x. Now, Alice must prove to Bob that both Ẽ and Ē hide secrets
which are greater than −θ.

3. [Decomposition of x̃ and x̄] Alice computes:

x̃1 = b√x− ac, x̃2 = x̃− x̃2
1,

x̄1 = b
√

b− xc, x̄2 = x̄− x̄2
1

Then, x̃ = x̃2
1 + x̃2and x̄ = x̄2

1 + x̄2, where 0 ≤ x̃2 ≤ 2
√

b− a and 0 ≤ x̄2 ≤ 2
√

b− a.

4. [Choice of random values for new commitments] Alice randomly selects r̃1 and r̃2 in [−2sn+
1, · · · , 2sn− 1] such that r̃1 + r̃2 = r, and r̄1 and r̄2 such that r̄1 + r̄2 = −r.

5. [Computation of new commitments] Alice computes:

Ẽ1 = E(x̃2
1, r̃1), Ẽ2 = E(x̃2, r̃2)

Ē1 = E(x̄2
1, r̄1), Ē2 = E(x̄2, r̄2)
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6. [Sending of the new commitments] Alice sends Ẽ1 and Ē1 to Bob. Bob computes Ẽ2 =
Ẽ/Ẽ1 and Ē2 = Ē/Ē1

7. [Validity of the commitments to a square] Alice executes with Bob

PK(x̃2
1, r̃1 : Ẽ1 = E(x̃2

1, r̃1))

PK(x̄2
1, r̄1 : Ē1 = E(x̄2

1, r̄1))

which prove that both Ẽ1 and Ē1 hide a square.

8. [Validity of the commitments to a small value] Let θ = 2t+l+1
√

b− a. Alice executes with
Bob the two following CFT proofs:

PK[CFT ](x̃2, r̃2 : Ẽ2 = E(x̃2, r̃2) ∧ x̃2 ∈ [−θ, θ])

PK[CFT ](x̄2, r̄2 : Ē2 = E(x̄2, r̄2) ∧ x̄2 ∈ [−θ, θ])

which prove that both Ẽ2 and Ē2 hide numbers which belong to [−θ, θ], where θ =
2t+l+1

√
b− a, instead of proving that they belong to [0, 2

√
b− a].

3 It suffices to adopt a single base

We remark that all above commitment schemes are based on the encryption

E(x, r) = gxhr mod n

where x is the committed number, r is a random number selected by Alice, n is an RSA modulus
whose factorization is unknown by Alice, g is an element of large order in Zn and h is an element
of the group generated by g such that both the discrete logarithm of g in base h and the discrete
logarithm of h in base g are unknown by Alice.

We notice that they do not use a single base as usual. Thus an increase in cost occurs. In
the next section, we show that it suffices to adopt a single base, i.e.,

E(x) = gx mod n

The common encryption sufficiently guarantees the securities of those commitment schemes.
Thus the cost of the modified Boudot proof is about half of that of the original scheme. Besides,
its security is immediately reduced to RSA [18] and a variant of Schnorr signature [19] in RSA
setting with hidden order.
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4 Modified CFT proof and its security

4.1 Description

Let t, l and s be three security parameters, n be an RSA modulus whose factorization is unknown
by Alice, g be an element of large order in Z∗n. Let H be a hash function which outputs 2t-bit
strings. We denote by E = E(x) = gx mod n a commitment to x ∈ [0, b].

Protocol PK(x : E = E(x) ∧ x ∈ [−2t+lb, 2t+lb])

1. Alice picks ω ∈R [0, 2t+lb− 1], and computes W = gω mod n.

2. Compute C = H(W ) and c = C mod 2t.

3. Compute D = ω + xc (in Z). If D ∈ [cb, 2t+lb − 1], Alice sends (C, D) to Bob, otherwise
she starts again the protocol.

4. Bob checks that D ∈ [cb, 2t+lb− 1] and C = H(gDE−c mod n). This convinces Bob that
x ∈ [−2t+lb, 2t+lb].

4.2 Security

It’s no difficult to find that the modified scheme is almost as secure as the original scheme.
Informally, the security of the modified scheme is just based on the following facts:

(F1) By the security of RSA [18], the single base encryption E = E(x) = gx mod n effectively
prevents Bob from getting x.

(F2) Alice knows the discrete logarithm of E in base g modulo n. Otherwise, she cannot produce
a proper pair (C, D) such that C = H(gDE−c mod n), where c = C mod 2t, t is a public
security parameter. Note that the above challenge is just the variant of Schnorr signature
[19] in RSA setting. Under the circumstances, Alice cannot cheat Bob even she knows the
order of g. We refer to [17].

(F3) D must be of the form α + xc, where x is the just discrete logarithm of E in base g,
α is selected by Alice before the challenge value C (≡ c mod 2t) is generated. This is
immediately derived from the fact (F2).

(F4) The factorization of the modulus n is unknown by Alice, which implies that α + xc is just
an integer (not a residue class). By checking D ∈ [cb, 2t+lb − 1], it ensures that Bob can
be convinced that x ∈ [−2t+lb, 2t+lb].

Remark 1 The authors [6] gave the original presentation of CFT proof in ElGamal setting
[12]. It’s corrected soon [7] because Alice can cheat Bob if the order of the cryptographic group
is known by her.
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5 Same-secret proof with single base

Let n be an RSA modulus whose factorization is unknown by Alice, g1 and g2 be two element of
large order in Z∗n. Let H be a hash function which outputs 2t-bit strings. Alice secretly holds x.
Let E = E1(x) = gx

1 mod n and F = E2(x) = gx
2 mod n be two commitments to x. She wants

to prove to Bob that she knows x such that E = E1(x) and F = E2(x), i.e. that E and F hide
the same secret x.

Protocol PK(x : E = E1(x) ∧ F = E2(x))

1. Alice picks ωR ∈ Z and computes W1 = gω
1 mod n and W2 = gω

2 mod n.

2. She computes C = H(W1||W2).

3. She computes D = ω + cx (in Z) and sends (C, D) to Bob.

4. Bob checks whether C = H(gD
1 E−C mod n||gD

2 F−C mod n).

Remark 2 One might argue a proof that two commitments hide the same secret in ElGamal
setting. Precisely, it only shows that two commitments hide the same secret residue class
(modulo the order of the cryptographic group) instead of the same secret integer.

6 Square-proof with single base

Let n be an RSA modulus whose factorization is unknown by Alice, g be an element of large
order in Z∗n. Let H be a hash function which outputs 2t-bit strings. Alice secretly holds x. Let
E = E(x2) = gx2

be a commitment to the square of x (in Z). She wants to prove to Bob that
she knows x such that E = E(x2), i.e. that E hides the square x2.

Protocol PK(x : E = E(x2))

1. Alice computes F = E(x), E = F x mod n.

2. As E is a commitment to x in base F and F is a commitment to x in base g, Alice can
run PK(x : F = gx mod n ∧ E = F x mod n). By the proof that two commitments hide
the same secret described above, she gets (C, D).

3. She sends (F, C, D) to Bob.

4. Bob checks that PK(x : F = gx mod n ∧ E = F x mod n) is valid.
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7 Boudot’s proof revisited

7.1 Description

Let t, l and s be three security parameters. Let n be an RSA modulus whose factorization is
unknown by Alice and Bob, g be an element of large order in Z∗n. We denote by E(x) = gx mod n

a commitment to x in base g.

Protocol: PK[WithTol](x : E = E(x) ∧ x ∈ [a− θ, b + θ])

1. [Knowledge of x] Alice executes with Bob: PK(x : E = E(x))

2. [Setting] Both Alice and Bob compute Ẽ = E/ga mod n and Ē = gb/E mod n. Alice sets
x̃ = x− a and x̄ = b− x.

3. [Decomposition of x̃ and x̄] Alice computes:

x̃1 = b√x− ac, x̃2 = x̃− x̃2
1,

x̄1 = b
√

b− xc, x̄2 = x̄− x̄2
1

Then, x̃ = x̃2
1 + x̃2 and x̄ = x̄2

1 + x̄2, where 0 ≤ x̃2 ≤ 2
√

b− a and 0 ≤ x̄2 ≤ 2
√

b− a.

4. [Computation of new commitments] Alice computes:

Ẽ1 = E(x̃2
1), Ẽ2 = E(x̃2)

Ē1 = E(x̄2
1), Ē2 = E(x̄2)

5. [Sending of the new commitments] Alice sends Ẽ1 and Ē1 to Bob. Bob computes Ẽ2 =
Ẽ/Ẽ1 and Ē2 = Ē/Ē1

6. [Validity of the commitments to a square] Alice executes with Bob

PK(x̃2
1 : Ẽ1 = E(x̃2

1))

PK(x̄2
1 : Ē1 = E(x̄2

1))

which prove that both Ẽ1 and Ē1 hide a square. (Note that the protocols PK(x : E =
E1(x) ∧ F = E2(x)) and PK(x : E = E(x2)) are called in the step.)

7. [Validity of the commitments to a small value] Let θ = 2t+l+1
√

b− a. Alice executes with
Bob the two following CFT proofs:

PK[CFT ](x̃2 : Ẽ2 = E(x̃2) ∧ x̃2 ∈ [−θ, θ])

PK[CFT ](x̄2 : Ē2 = E(x̄2) ∧ x̄2 ∈ [−θ, θ])

which prove that both Ẽ2 and Ē2 hide numbers which belong to [−θ, θ], where θ =
2t+l+1

√
b− a.
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The correctness arguments for the modified Boudot proof are the same as that of the original
scheme. We refer to [3]. But its security is immediately reduced to RSA and a variant of Schnorr
signature in RSA setting with hidden order. We refer to §4.2. We remark that the reason of
adopting two bases instead of a single base in Boudot proof is that the protocol directly follows
the structures of [13].

7.2 Further discussion

1. Why not use a single base instead two bases. In 2002, the authors [11] explained that:

A commitment with a single base to s of form c = gs mod n does not satisfy the
standard hiding property for commitments. For instance, if a prover commits twice
to the same value, this is immediately visible.

Obviously, they did not consider to permit the prover to update the single base.

Now we suggest a solution to this problem. If Alice commits twice to the same value, she
can pick a random θ and update the base g with ĝ = gθ mod n. Note that g is still permitted
to be a system-wide parameter since Alice can update it by herself. But in Fujisaki-Okamoto
commitment scheme (with two bases), Alice is not permitted to update the bases. Otherwise,
the discrete logarithm of ĝ in base ĥ or the discrete logarithm of ĥ in base ĝ will be known to
Alice.

2. Efficiency. Roughly speaking, the cost of a commitment with a single base (excluding the
cost of updating the base) is about half of that of Damg̊ard-Fujisaki commitment [11]. But the
key restriction, both the discrete logarithm of g in base h and the discrete logarithm of h in
base g are unknown by Alice, which is a potential menace to Damg̊ard-Fujisaki commitment, is
definitely removed. We remark that the updating of g can be completed in the pre-computation.

8 Conclusion

In this paper, we investigate the two range-bounded commitment schemes, i.e., CFT proof and
Boudot proof. Based on the latter, we present an efficient range-bounded commitment. The
cost of the modified scheme is about half of that of the original scheme because we adopt a
single base instead of two bases. Moreover, its security is immediately reduced to RSA and a
variant of Schnorr signature in RSA setting with hidden order.
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