
Fast Point Multiplication on Elliptic Curves of Even
Order ∗

Rongquan Feng, Hongfeng Wu
LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China

fengrq@math.pku.edu.cn, wuhf@math.pku.edu.cn

Abstract

Every elliptic curve of even order over a finite field of characteristic > 3 is
birationally equivalent to a curve in the Jacobi quartic form. In this paper, new
explicit formulae for group operations on a Jacobi quartic curve are presented.
The algorithm for doubling uses only 1M +6S, for the mixed-addition uses only
8M + 2S and the unified addition formula only 9M + 2S to the best case. For
elliptic curve of even order, these algorithm are more efficient than the other
algorithms in the literature.

Keywords: Elliptic curve, Point multiplication, Jacobi quartic, Side-channel anal-

ysis

1 Introduction

The main operation for elliptic curve cryptosystems is the point multiplication: Q =

kP , where the multiplier k is generally a secret (or private) parameter. Efficient elliptic

curve arithmetic is crucial for cryptosystems based on elliptic curves. Such cryptosys-

tems often require computing kP for a given integer k and a curve point P . For exam-

ple, if k is a secret key and P is another user’s public key then kP is a Diffie-Hellman

secret shared between the two users. Many methods to speed up this operation have

been actively studied. See [2] and [6] for more details.

Every elliptic curve of even order over a finite field of characteristic > 3 is bira-

tionally equivalent to a curve in the Jacobi quartic form. Elliptic curve standards

[9] recommend the use of elliptic curves with group order #E = h · q, where q is a

∗Supported by NSF of China (No. 10571005), by 863 Project (No. 2006AA01Z434) and by
NKBPRC(2004CB318000).

1



prime and the cofactor h is ≤ 4. In this paper, we propose a new scalar multiplication

algorithm based on the new Jacobi quartic coordinates. The improved formulae and

algorithms for the basic arithmetic on the elliptic curves, such as point addition, point

doubling and mixed additions are presented. These algorithms are more efficient than

the best known algorithms in these elliptic curves.

This paper is organized as follows. In the next section some essential concepts

to the Jacobi quartic is reviewed. Then, in Section 3, we show the improved point

multiplications on Jacobi quartic curves. In Section 4 the comparison of the new

algorithms with other algorithms in literatures is given. Finally, we conclude in Section

5.

2 Background

In this section, the basic arithmetic of elliptic curves are briefly described. The reader is

referred to [11] for more details. Throughout this paper, we assume that K represents

a field of characteristic > 3.

We start by recalling the explicit group law on elliptic curves. Let E denote an

elliptic curve over K given by the Weierstrass form

E : y2 = x3 + ax + b

and let P1 = (x1, y1) and P2 = (x2, y2) be two points on the curve. The inverse of P1

is −P1 = (x1,−y1). If P1 6= −P2, then the sum P3 = P1 + P2 = (x3, y3) is defined as

x3 = λ2 − x1 − x2, and y3 = λ(x1 − x3)− y1,

where

λ =





y2 − y1

x2 − x1

when x1 6= x2,

3x2
1 + a

2y1

when x1 = x2.

The computational cost (timing) of scalar multiplications on elliptic curve opera-

tions depends on the cost of the arithmetic operations that have to be performed in the

underlying field. In general, among these arithmetics, a field squaring, a field multipli-

cation and a field inversion are more expensive than other field arithmetics, such as a

field addition and a field subtraction. So we only take into account the cost of inversion,

multiplication, and squaring in the field K, which we denote by I, M and S, respec-

tively. The symbol C stands for the cost of multiplication by a constant. The addition

2



of two points in above formula requires 1I + 2M + 1S (doubling need 1I + 2M + 2S).

As inversion in a field of large characteristic is a relatively costly operation, projective

representations of points are preferred. A projective point P = (XP , YP , ZP ) on the

curve satisfies the projective Weierstrass equation

E : Y 2Z = X3 + aXZ2 + bZ3

corresponds to the affine point P = (XP /ZP , YP /ZP ) when ZP 6= 0. The inverse of P

is −P = (XP ,−YP , ZP ).

2.1 Jacobi Models

Remarkably, an elliptic curves with even order can be expressed by the extended Jacobi

form ([1])

J : Y 2 = εX4 − 2δX2Z2 + Z4.

Let (θ, 0) ∈ E(K) be a point of order 2. Then, the above Weierstrass elliptic curve E is

birationnally equivalent to the extended Jacobi quartic curve J with ε = −(3θ2+4a)/16

and δ = 3θ/4, under the transformations




(θ, 0) 7−→ (0,−1, 1),

(x, y) 7−→ (2(x− θ), (2x + θ)(x− θ)2 − y2, y),

O 7−→ (0, 1, 1);

and 



(0, 1, 1) 7−→ O,

(0,−1, 1) 7−→ (θ, 0),

(X,Y, Z) 7−→
(

2
(Y + Z2)

X2
− θ

2
, Z

4(Y + Z2)− 3θX2

X3

)
.

Note that two triplets (X1, Y1, Z1) and (X2, Y2, Z2) represent the same point if and only

if there exists t ∈ K \ {0} such that X1 = tX2, Y1 = t2Y2 and Z1 = tZ2.

Let P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) be two points on the Jacobi curve J .

The sum P3 = P1 + P2 is defined as (X3, Y3, Z3) with

X3 = X1Z1Y2 + X2Z2Y1,

Y3 = [(Z1Z2)
2 + ε(X1X2)

2](Y1Y2 − 2δX1X2Z1Z2) + 2εX1X2Z1Z2(X
2
1Z

2
2 + Z2

1X
2
2 ),

Z3 = (Z1Z2)
2 − ε(X1X2)

2.

The negative of a point (X,Y, Z) on the extended Jacobi quartic is given by (−X,Y, Z).

It is worth noting the same formula applies for adding distinct points or for doubling a

point. The cost of the algorithm in [1] for the unified addition formula is 10M+3S+3C.

3



Finally, when the curve contains a copy of Z/2Z×Z/2Z, the Jacobi curve equation

J can be rescaled, in most cases, to the value ε = 1. In [1], Billet and Joye pointed

out that when constant δ (resp. ε) is small, the cost of a multiplication by δ (resp. ε)

can be neglected. In particular, most elliptic curves over the prime field K = Fq, with

three points of order 2, can be rescaled to the case ε = 1. So we can have the simple

Jacobi form

SJ : Y 2 = X4 − 2ρX2Z2 + Z4.

3 Fast Point Multiplications

3.1 The addition formulae in JQN1

Now we modify the Jacobi quartic coordinates in order to obtain the fastest possible

addition and doubling. We represent the Jacobi quartic coordinates as a quadruple

(X,Y, Z, XZ). We call this the modified Jacobi quartic coordinate, and denote it

by JQN1. The addition formulae in the modified Jacobi quartic coordinates are the

following. Let P = (X1, Y1, Z1, X1Z1), Q = (X2, Y2, Z2, X2Z2) and P + Q = R =

(X3, Y3, Z3, X3Z3). Then we have

• Addition formula in JQN1 (P 6= ±Q)

X3 = U1−U2− V, Y3 = (S2
2 + εS2

1)(U2− 2δV ) + 2εV (H2− 2V ), Z3 = (S2
2 − εS2

1), X3Z3,

where U1 = (X1Z1 + Y1)(X2Z2 + Y2), U2 = Y1Y2, V = X1Z1X2Z2, S1 = X1X2,

S2 = Z1Z2, and H = (X1 + X2)(Z1 + Z2)−X1Z1 −X2Z2.

• Doubling formula in JQN1 (P = Q)

X3 = U1 − U2 − S1, Y3 = (T + εV 2
1 )(U2 − 2δS1) + 4εS2

1 , Z3 = T − εV 2
1 , X3Z3,

where U1 = (X1Z1 +Y1)
2, U2 = Y 2

1 , V1 = X2
1 , S1 = (X1Z1)

2, and T = U2− εV 2
1 +2δS1.

• Mixed-addition formula in JQN1 (P 6= ±Q,Z1 = 1)

X3 = U1−U2− V1, Y3 = (H + εV 2
2 )(U2− 2δV1) + 2εV1(S

2− 2V1), Z3 = H − εV 2
2 , X3Z3,

where U1 = (X1 + Y1)(X2Z2 + Y2), U2 = Y1Y2, V1 = X1X2Z2, V2 = X1X2, S =

X1Z2 + X2, and H = Z2
2 .

The computation costs are t(Addition) = 9M +3S +3C, t(Doubling) = 2M +6S +3C,

and t(Mixed-addition) = 8M + 3S + 3C.

4



3.2 The addition formulae in JQN2

Now we represent the Jacobi quartic coordinates as a quintuple (X,Y, Z, X2, XZ), and

denote it by JQN2. Let P = (X1, Y1, Z1, X
2
1 , X1Z1), Q = (X2, Y2, Z2, X

2
2 , X2Z2) and

P + Q = R = (X3, Y3, Z3, X
2
3 , X3Z3). Then we have

• Addition formula in JQN2 (P 6= ±Q)

X3 = U1 − U2 − V, Y3 = (S2 + εS1)(U2 − 2δV ) + 2εV H, Z3 = (S2 − εS1), X
2
3 , X3Z3,

where U1 = (X1Z1 + Y1)(X2Z2 + Y2), U2 = Y1Y2, V = X1Z1X2Z2, T1 = Z2
1 , T2 = Z2

2 ,

S1 = X2
1X

2
2 , S2 = T1T2, and H = (X2

1 + T1)(X
2
2 + T2)− S1 − S2.

• Doubling formula in JQN2 (P = Q)

X3 = U2 − U2 − S1, Y3 = (T + εV1)(U2 − 2δS1) + 4εS2
1 , Z3 = T − εV1, X

2
3 , X3Z3,

where U1 = (X1Z1+Y1)
2, U1 = Y 2

1 , V1 = (X2
1 )2, S1 = (X1Z1)

2, and T = U2−εV1+2δS1.

If we can take α as a square-root of the corresponding square ε− δ2, then we have

the following algorithm:

X3 = U, Y3 = S1 − αV, Z3 = T2 + 2δT1 − 2εX4
1 , X

2
3 = V, X3Z3,

where T1 = (X1Z1)
2, T2 = Y 2

1 , S1 = (T2 + 2αT1)
2, U = (X1Z1 + Y1)

2 − T1 − T2, and

V = U2.

Noting that
y3 = (X4

1 + Z4
1)(Y 2

1 − 2δX2
1Z

2
1) + 4X4

1Z
4
1

= (X4
1 + Z4

1)(Y 2
1 + Y 2

1 −X4
1 − Z4

1) + 4X4
1Z

4
1

= 2Y 2
1 (X4

1 + Z4
1)− (X4

1 + Z4
1)2 + 4X4

1Z
4
1

= 2Y 2
1 (X2

1 + Z2
1)2 − 4X2

1Y
2
1 Z2

1 − (Z4
1 −X4

1 )2

When the cost of multiplication by a constant δ is equal to M(assume ε = 1), we use

the following algorithm:

X3 = Y1A−D,Z3 = B(A−X2
1 ), Y3 = 2D2 − E − Z2

3 , X
2
3 = E, X3Z3

where A = X2
1 + Z2

1 + 2X1Z1, B = X2
1 + Z2

1 , D = Y1B, E = X2
3 ;

• Mixed-addition formula in JQN2 (P 6= ±Q,Z1 = 1)

X3 = U1−U2−V1, Y3 = (H +εV2)(U2−2δV1)+2εV1(S2 +X2
2 ), Z3 = H−εV2, X

2
3 , X3Z3,

5



where U1 = (X1 + Y1)(X2Z2 + Y2), U2 = Y1Y2, V1 = X1X2Z2, V2 = X2
1X

2
2 , S1 = Z2

2 ,

and S2 = X2
1S1.

The computation costs are t(Addition) = 9M +3S +3C, t(Doubling) = 2M +6S +3C,

1M + 6S + 4C or 4M + 4S, and t(Mixed-addition) = 8M + 2S + 3C. Noting that, for

the sake of saving memory we don’t need to store X in the intermediate stage of the

computing. That is we can use substitution of the quadruple (Y, Z, X2, XZ) for the

quintuple (X,Y, Z,X2, XZ).

3.3 The addition formulae in JQN3

Now we represent the Jacobi quartic coordinates as a sextuplet (X,Y, Z, X2, Z2, XZ),

and denote it by JQN3. Let P = (X1, Y1, Z1, X
2
1 , Z

2
1 , X1Z1), Q = (X2, Y2, Z2, X

2
2 , Z

2
2 , X2Z2)

and P + Q = R = (X3, Y3, Z3, X
2
3 , Z

2
3 , X3Z3). Then we have:

• Addition formula in JQN3 (P 6= ±Q)

X3 = U1 − U2 − V, Y3 = (S2 + εS1)(U2 − 2δV ) + 2εV H, Z3 = (S2 − εS1), X
2
3 , Z

2
3 , X3Z3,

where U1 = (X1Z1 + Y1)(X2Z2 + Y2), U2 = Y1Y2, V = X1Z1X2Z2, S1 = X2
1X

2
2 ,

S2 = Z2
1Z

2
2 , and H = (X2

1 + Z2
1)(X2

2 + Z2
2)− S1 − S2.

• Doubling formula in JQN3 (P = Q)

X3 = Y1A−D,Z3 = B(Z2
1 −X2

1 ), Y3 = 2D2 − U − V, X2
3 = U,Z2

3 = V, X3Z3

where A = X2
1 + Z2

1 + 2X1Z1, B = X2
1 + Z2

1 , D = Y1B, U = X2
3 , V = Z2

3 ;

• Mixed-addition formula in JQN3 (P 6= ±Q,Z1 = 1)

X3 = U1−U2−V, Y3 = (Z2
2+εS1)(U2−2δV )+2εV (S2+X2

2 ), Z3 = Z2
2−εS1, X

2
3 , Z

2
3 , X3Z3,

where U1 = (X1 + Y1)(X2Z2 + Y2), U2 = Y1Y2, V = X1X2Z2, S1 = X2
1X

2
2 , and

S2 = X2
1Z

2
2 .

The computation costs are t(Addition) = 9M + 2S + 3C, t(Doubling) = 3S + 4M and

t(Mixed-addition) = 8M+2S+3C. Noting that, for the sake of saving memory we don’t

need to store X and Z in the intermediate stage of the computing. That is we can use

substitution of the quadruple (Y, X2, Z2, XZ) for the sextuplet (X,Y, Z, X2, Z2, XZ).

The costs of all these algorithms in this section are listed in Table 1.

6



Table 1: Costs of Algorithm

Coordinates JQN1 JQN2 JQN3

Addition 9M + 3S + 3C 9M + 3S + 3C 9M + 2S + 3C
ε = 1 9M + 3S + C 9M + 3S + C 9M + 2S + C

1C = 0.5M 9.5M + 3S 9.5M + 3S 9.5M + 2SM
Neglect C 9M + 3S 9M + 3S 9M + 2S

Doubling 2M + 6S + 3C 2M + 6S + 3C or 4M + 4S 4M + 3S
ε = 1 2M + 6S + C 4M + 4S 4M + 3S

1C = 0.5M 2.5M + 6S 4M + 4S 4M + 3S
Neglect C 2M + 6S 2M + 6S or 1M + 6S 4M + 3S

Mixed-addition 8M + 3S + 3C 8M + 2S + 3C 8M + 2S + 3C
ε = 1 8M + 3S + C 8M + 2S + C 8M + 2S + C

1C = 0.5M 8.5M + 3S 8.5M + 2S 8.5M + 2S
Neglect C 8M + 3S 8M + 2S 8M + 2S

4 Comparison

The reader is referred to [6] for a survey of the algorithms for scalar multiplications. We

can make the standard assumption that the input point P has Z = 1, and all additions

of P can thus be computed as mixed additions. A scalar multiplication kP consists

of a sequence of doubling and additions, where the doubling and mixed-addition are

the main operations. For example, for an average t-bit scalar multiplication kP , the

NAF algorithm uses approximately t doubling and approximately t
3

mixed-additions.

The signed width-4 sliding windows algorithm involves, on average, approximately t

doublings, 17t
100

directly 2T + P additions, and 3t
100

mixed additions. Thus, for these

algorithms of scalar multiplications, we use the JQN2 coordinates.

4.1 Comparison with other algorithms

In this subsection we compare the costs of the algorithms in Section 3 to the costs of

previous algorithms for elliptic-curve doubling, elliptic-curve mixed-addition and uni-

fied addition. In general, no special value for the parameters of the curve is considered

when this has a limited impact anyway on the complexity of the operations. In this

work, some savings can be made if ε = 1 or the parameters ε, δ is specially chosen

such that we can neglect of multiplying by these parameters, like a small ε, δ or more

generally ε, δ with low Hamming weight expansion. The different costs for doubling

7



Table 2: Comparison with other algorithms

System This work [8] [7]
Equation Y 2 = εX4 − 2δX2Z2 + Z4 y2 = x3 + 3u(x + 1)2 y2 = x3 + ax + b

Coordinates JQN2 or JQN3 Jacobian Jn Jacobian J

Doubling 2M + 6S + 3C or 2M + 7S + 3C 4M + 4S + 2C 4M + 5S + 1C
special ε = 1 2M + 6S + 1C or 4M + 3S – –
1C = 0.5M 2.5M + 6S or 4M + 3S 8.2M 8.5M
neglect C 1M + 6S or 4M + 3S 4M + 5S 4M + 4S

Mixed Addition 8M + 2S + 3C 8M + 3S + 1C 8M + 3S
special ε = 1 8M + 3S + 1C – –
1C = 0.5M 8.5M + 2S 8.5M + 3S 8M + 3S
Neglect C 8M + 2S 8M + 3S 8M + 3S

Table 3: Comparison for 256-bit scalar multiplication algorithms

System NAF Algorithm(C = M) C = 0.5M Neglect C
[7] 3200M 3063.5M 2944M
[8] 3584M 3029.3M 2935.5M

This work 2611M 2611M 2304M

and mixed-addition formula are summarized in Table 2.

Now we have a very efficient doubling and mixed-addition algorithms. It is more

efficient to be applied in the NAF scalar multiplication, JSF (joint sparse form) algo-

rithm and the other windows algorithms.

4.2 Side-channel attacks

In traditional cryptographic model, the security of the system relies solely on the

secrecy of the key and the mathematical properties of the cryptographic algorithm

used. Side-channel analysis (SCA) or information leakage analysis (ILA), refers to a

new and emerging type of cryptanalysis that uses leaked side-channel information from

a cryptographic device to determine the secret key. In general scalar multiplications

of elliptic curves, many secret bits of the integers ki are leaked, through the pattern of

doubling and mixed addition and non-mixed addition, to side-channel attacks such as

simple power analysis. For example, from the distinction between the two operations,

8



Table 4: Unified addition comparison

System Costs Cofactor
Weierstrass form[3] 17M + 1C (general case) –
with unified formula 16M + 1C(a4 = −1) –

Hessian form 12M h ∝ 3
Extended Jacobi form 13M + 3C (general case) h ∝ 2

In [1] 13M + 1C (ε = 1) h ∝ 4
∩ of 2 quadrics [?] 16M + 1C h ∝ 4

Extended Jacobi form 11M + 2C (general case) h ∝ 2
This work JQN3 11M + 1C (ε = 1) h ∝ 4

doubling or for adding two, a simple power analysis might produce different power

traces, revealing the value of k in the point multiplication algorithm. Using the unified

addition formula is one of the basically approaches to circumvent the leakage. Note

that the addition algorithm in Section 3 is the unified addition formula for adding or

doubling points. The different costs for unified addition formula are summarized in

Table 4. The unified algorithm in atomic blocks prevent SCA is given in Table 5 on

the JQN2 coordinates system and is given in Table 6 on the JQN3 coordinates system.

5 Conclusions

Every elliptic curve of even order over a finite field of characteristic > 3 is birationally

equivalent to a curve in the Jacobi quartic form. In this paper new formulae for group

operations on a Jacobi quartic curve in three new coordinates system are described.

The algorithm for doubling uses only 1M+6S, for the mixed-addition uses only 8M+2S

and the unified addition formula only 9M + 2S to the best case. These formulae will

allow more efficient point multiplications on elliptic curves whose order is even. For

these curves, the proposed algorithms are more efficient than the other algorithms in

the literature.

References

[1] Olivier Billet and Marc Joye, The Jacobi Model of an Elliptic Curve and Side-

Channel Analysis, AAECC 2003, LNCS 2643, 34C42, Spriger-Verlag, 2003.

9



Table 5: Unified algorithm in atomic blocks JQN2

Input:P = (Y1, Z1, X
2
1 , X1Z1), Q = (Y2, Z2, X

2
2 , X2Z2)

Output: P + Q = (X3, Y3, Z3, X
2
3 , X3Z3)

Init: R1 = Y1, R2 = Z1, R3 = X2
1 , R4 = X1Z1, R5 = Y2, R6 = Z2, R7 = X2

2 , R8 = X2Z2

R9 = R4R8 (= X1Z1X2Z2)
R4 = R1 + R4 (= X1Z1 + Y1)
R8 = R5 + R8 (= X2Z2 + Y2)
R1 = R1R5 (= Y1Y2)
R5 = R4R8 (= (X1Z1 + Y1)(X2Z2 + Y2))

R5 = R5 −R1 (= (X1Z1 + Y1)(X2Z2 + Y2)− Y1Y2)
R5 = R5 −R9 (= X3)

R4 = 2δR9 (= 2δX1Z1X2Z2)
R1 = R1 −R4 (= Y1Y2 − 2δX1Z1X2Z2)

R2 = R2
2 (= Z2

1)
R6 = R2

6 (= Z2
2)

R4 = R3R7 (= X2
1X

2
2 )

R8 = R2R6 (= Z2
1Z

2
2)

R3 = R2 + R3 (= X2
1 + Z2

1)
R7 = R6 + R7 (= X2

2 + Z2
2)

R3 = R3R7 (= (X2
1 + Z2

1)(X2
2 + Z2

2))
R6 = R4 + R8 (= X2

1X
2
2 + Z2

1Z
2
2)

R3 = R3 −R6 (= X2
1Z

2
2 + X2

2Z
2
1)

R1 = R1R6 (= (Y1Y2 − 2δX1Z1X2Z2)(X
2
1X

2
2 + Z2

1Z
2
2))

R6 = 2R3R9 (= 2X1X2Z1Z2(X
2
1Z

2
2 + X2

2Z
2
1))

R1 = R1 + R6 (= Y3)
R6 = R8 −R4 (= Z3)

R7 = R2
5 (= X2

3 )
R8 = R5R6 (= X3Z3)

10



Table 6: Unified algorithm in atomic blocks JQN3

Input:P = (Y1, X
2
1 , Z

2
1 , X1Z1), Q = (Y2, X

2
2 , Z

2
2 , X2Z2)

Output: P + Q = (X3, Y3, Z3, X
2
3 , X3Z3)

Init: R1 = Y1, R2 = X2
1 , R3 = Z2

1 , R4 = X1Z1, R5 = Y2, R6 = X2
2 , R7 = Z2

2 , R8 = X2Z2

R9 = R4R8 (= X1Z1X2Z2)
R4 = R1 + R4 (= X1Z1 + Y1)
R8 = R5 + R8 (= X2Z2 + Y2)
R1 = R1R5 (= Y1Y2)
R5 = R4R8 (= (X1Z1 + Y1)(X2Z2 + Y2))

R5 = R5 −R1 (= (X1Z1 + Y1)(X2Z2 + Y2)− Y1Y2)
R5 = R5 −R9 (= X3)

R4 = 2δR9 (= 2δX1Z1X2Z2)
R1 = R1 −R4 (= Y1Y2 − 2δX1Z1X2Z2)
R4 = R2R6 (= X2

1X
2
2 )

R8 = R3R7 (= Z2
1Z

2
2)

R2 = R2 + R3 (= X2
1 + Z2

1)
R6 = R6 + R7 (= X2

2 + Z2
2)

R2 = R2R6 (= (X2
1 + Z2

1)(X2
2 + Z2

2))
R6 = R4 + R8 (= X2

1X
2
2 + Z2

1Z
2
2)

R2 = R2 −R6 (= X2
1Z

2
2 + X2

2Z
2
1)

R1 = R1R6 (= (Y1Y2 − 2δX1Z1X2Z2)(X
2
1X

2
2 + Z2

1Z
2
2))

R6 = 2R2R9 (= 2X1X2Z1Z2(X
2
1Z

2
2 + X2

2Z
2
1))

R1 = R1 + R6 (= Y3)
R6 = R8 −R4 (= Z3)

R2 = R2
6 (= Z2

3)
R7 = R2

5 (= X2
3 )

R8 = R5R6 (= X3Z3)

11



[2] I.F. Blake, G. Seroussi and N.P. Smart, Advances in Elliptic Curve Cryptography.

London Math. Soc. Lecture Note Ser. 317, Cambridge Univ. Press, 2005.

[3] É. Brier and M. Joye. Weierstrass elliptic curves and side-channel attacks, PKC

2002, LNCS 2274, 335-345, Springer-Verlag, 2002.

[4] M. Ciet, M. Joye, K. Lauter, and P.L. Montgomery, Trading inversions for multi-

plications in elliptic curve cryptography, Design, Codes and Cryptography 39(2),

189-206, 2006.

[5] H. Cohen, Atsuko Miyaji, Takatoshi Ono, Efficient elliptic curve exponentiation

using mixed coordinates, ASIACRYPT’98, LNCS 1514, 51C65, Spriger-Verlag,

1998.

[6] H. Cohen, Gerhard Frey (editors), Handbook of elliptic and hyperelliptic curve

cryptography, CRC Press, 2006.

[7] V.S. Dimitrov, L. Imbert, and P.K. Mishra, Efficient and secure elliptic curve point

multiplication using double-base chains. ASIACRYPT 2005, LNCS 3788, 59C78,

Springer-Verlag, 2005.

[8] C. Doche,T. Icart and D.R. Kohel, Efficient Scalar Miltiplication by Isogeny De-

compositions, PKC 2006, LNCS 3958, 191-206, Spriger-Verlag, 2006.

[9] IEEE 1363. Standard Specifications for Public Key Cryptography. IEEE, 2000.

[10] M. Joye and J. Quisquater, Hessian Elliptic Curves and Side-Channel Attacks,

CHES 2001, Springer-Verlag, LNCS 2162, 402C410, 2001.

[11] J.H. Silverman, The Arithmetic of Elliptic Curves, GTM 106, Springer-Verlag,

Berlin, 1986.

12


