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Abstract. Feedback with Carry Shift Registers (FCSRs) are a promis-
ing alternative to LFSRs in the design of stream cipher. The previous
constructions based on FCSRs were dedicated to hardware applications
[3]. In this paper, we will describe X-FCSR a family of software oriented
stream cipher using FCSRs. The core of the system is composed of two
256-bits FCSRs. We propose two versions: X-FCSR-128 and X-FCSR-
256 which output respectively 128 and 256 bits at each iteration. We
study the resistance of our design against several cryptanalyses. In this
way, we achieve a high throughput and secure stream ciphers suitable
for software applications (6.3 cycles/byte).
Keywords: stream cipher, FCSRs, software design, cryptanalysis.

Introduction

Following the recent development of algebraic attacks [6, 12, 13], it seems
difficult to design good stream ciphers using combined or filtered LFSRs.
A FCSR is similar to LFSRs, but it performs operations with carries,
and so its transition function is not linear. Such an automaton computes
the 2-adic expansion of some 2-adic rational number p/q. This can be
used to prove several interesting properties of FCSRs: proved period,
non-degenerated states, good statistical properties [23, 24, 17]. The high
non-linearity of FCSR feedback function provides an intrinsic resistance
to algebraic attacks, and seems also to prevent correlation attacks. There
exists a hardware efficient family of stream ciphers based on FCSRs: the
filtered FCSR or F-FCSR [1, 4, 2, 3]. In these propositions, the internal
state of the FCSR is filtered by a linear function to provide from 1 to
16 output bits at each iteration. At the present moment, the F-FCSR-H
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and F-FCSR-16 are selected for the third and last phase of the European
Project eSTREAM for the Profile 2 (i.e. hardware profile) [28].

While F-FCSR stream ciphers have good performances in hardware,
they are extremely slow in software since they requires many bit manipu-
lation instructions to output only a few bits. In this paper, we propose an
efficient way to design a fast stream cipher by generating many keystream
bits from the same internal state. Our design is based on two 256-bit FC-
SRs and on a mechanism of extraction with a 16 × 256 bits or 16 × 128
bits memory. The input of the extraction function is the bitwise Xor of
the full contents of the two FCSRs main registers. This function and the
IV setup use some classical and well-known techniques of block cipher
design such as the “ShiftRows” and the “MixColumns” operations of the
AES [14, 16].

In this paper, we present two versions of our stream cipher. The first
one X-FCSR-256 outputs 256 bits at each iteration. This version is proba-
bly riskier but is the most efficient (6.5 cycles/byte). It can be considered
as a challenge for cryptanalysts. The second one X-FCSR-128 outputs
128 bits at each iteration. It seems more robust, and have also good per-
formances (8.2 cycles/byte).

Section 1 presents the background on FCSRs and their most useful
properties for cryptographic use. The stream ciphers X-FCSR-256 and X-
FCSR-128 are described in Section 2. We present an analysis of security
in Section 3. We give in conclusion detailed results on the performance of
our designs.

1 Background on FCSRs and 2-adic sequences

1.1 The FCSR automaton

The Feedback with Carry Shift Registers (FCSRs) were first introduced
by A. Klapper and M. Goresky in [23] (see also [24, 17, 1, 4]). In this
section, we only recall the main results needed to understand the principle
of a FCSR automaton.

Let p and q, q odd be two integers. The 2-adic rational number p/q
is the formal power series

∑∞
i=0 ai2

i such that p = q ×
∑∞

i=0 ai2
i. This

series can be computed by performing the division of p by q following the
increasing powers of 2.

In the sequel, we suppose that q is a negative prime and p satisfies
0 ≤ p < |q|. In that situation the sequence S = (ai)i∈N is periodic with
period T where T is the order of 2 modulo q. This period is maximal if
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T = |q| − 1. In that case the sequence S is called a ℓ-sequence. We define
an optimal FCSR as an FCSR generating ℓ-sequences.

We suppose that the size of q is n + 1, i.e. 2n < −q < 2n+1. Let
d = (1 − q)/2 and d =

∑n−1
i=0 di2

i, di ∈ {0, 1}, dn−1 = 1. For a fixed q
(the so-called connection integer of the automaton), the 2-adic rational
number p/q can be computed by a FCSR for any p, 0 ≤ p < |q|. This
automaton is composed of two registers (sets of cells): a main register M
and a carry register C.

The main register M contains n binary cells where each bit is denoted
by mi(t) (0 ≤ i ≤ n − 1). We call the integer m(t) =

∑n−1
i=0 mi(t)2

i the
content of M .

The carry register contains ℓ cells where ℓ+1 is the number of nonzero
di digits, i.e. the Hamming weight of d. More precisely, the carry register
contains one cell for each nonzero di with 0 ≤ i ≤ n − 2. We denote ci(t)
the binary digit contained in this cell. We put ci(t) = 0 when di = 0 or
when i = n− 1. We call the integer c(t) =

∑n−2
i=0 ci(t)2

i the content of C.
The Hamming weight of the binary expansion of c(t) is at most ℓ. Note
that, if di = 0, then ci(t) = 0 for all t. At cell level, the transition function
of an FCSR is given by:

mi(t + 1) = mi+1(t) ⊕ dici(t) ⊕ dim0(t)

ci(t + 1) = di (mi+1(t)ci(t) ⊕ ci(t)m0(t) ⊕ m0(t)mi+1(t))

where ⊕ denotes bitwise Xor.
Note that m0(t) is the least significant bit of m(t) and represents the

feedback bit. The integers m(t), c(t) and d are integers of bit-size n (or
less).

If at time t = t0 the automaton is in the state (m, c), i.e. m = m(t0)
and c = c(t0), then the observed sequence in the cell (m0(t0 + i))i∈N

is
the 2-adic expansion of p/q, with p = m + 2c.

Moreover, for every cell of the main register, there exists an integer p(j)

such that the observed sequence (mj(t0 + i))
i∈N

is the 2-adic expansion of

p(j)/q. This number p(j) can be explicitly computed from the knowledge
of m and c. The reader can refer to [4, 5] for more details.

1.2 Loss of entropy and TMD attacks against FCSR

The knowledge of entropy evolution when applying the transition function
of a stream cipher is very important as a loss of entropy could be seen as
a potential weakness: such a loss allows to improve time/memory/data
attacks [11, 19].
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Usually, except in some particular cases such as LFSRs of length n
(where the entropy is maximal and is equal to log(2n − 1)), the entropy
is not always known and computable. In the FCSR case, we have the
following property [3]:

Proposition 1. If the order of 2 mod q is T = |q| − 1, the size of the
final cycle of a component of the transition function graph is exactly T
(except for two degenerated cases: m + 2c = 0 or m + 2c = −q).

Moreover, as soon as two initial states (m, c) and (m′, c′) verify m +
2c = m′ + 2c′, the automaton converges in less than n + 4 iterations to
the same state of the final cycle. To avoid any problems and prevent any
loss of entropy, a good method of initialization is to put c = 0 and take a
random m from the set [1, · · · , 2n − 1].

Using this procedure, two distinct initializations cannot converge to
the same state after a same number of iterations. The entropy of the
FCSR state remains equal to log(2n − 1) after any number of iterations.

1.3 Distinguishing attacks using diffusion of differences

Let us consider two initial states (m, c) and (m′, c′) which differ on only
one bit in the cell number i (of the main register or of the carry register).
Then, after k transitions, there will always a difference at position i − k,
while a difference may subsist at positions i−n+1, i−n+2, i−n+ j for
j small. However, if any feedback bit is affected (i.e. k is larger than i)
then the whole state change but some statistical biases may remain if the
chosen initial values of m and m′ or of c and c′ have a very low Hamming
weight located on few concomitant cells.

If the setup of the initial value (IV) is not carefully designed, this
property can be exploited to mount distinguishing attacks or resynchro-
nization attacks (cf. [21, 22]).

To avoid this problem, we need to design an IV setup which unables
any attacker to master a difference between two internal states by choos-
ing some pairs of IV. Such a procedure can be obtained by essentially two
ways:

– The first one consists in performing more than n + 4 iterations before
to output any value [3]. Unfortunately this solution is slow for software
applications.

– The second solution consists to digest the key and the IV using an
efficient function such as an hash function or a block cipher. In our
design, we have chosen to use an AES-like block cipher: some subkeys
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are derived from the secret master key and the IV is the plaintext of
the block cipher. The encrypted message is then used to initialize the
main registers of the FCSRs.

1.4 Algebraic attacks on FCSR automata

Roughly speaking, an algebraic attack consists in generating and solving a
system of non-linear equations which relates the secret key or the values
of the internal state to known values [12, 13]. In the case of additive
stream ciphers, these known values are the output keystream bits at each
iteration.

Let us consider the example of a filtered LFSR of size n. We denote
by X(t) = (x1(t), . . . , xn(t)) ∈ GF (2)n the value of the internal state of
the LFSR automaton at time t. Let L be the transition function from
GF (2)n into itself. Since the automaton is an LFSR the function L is
linear. By definition, we have X(t + 1) = L(X(t)). Suppose that at each
iteration, we extract k bits by a function f from GF (2)n into GF (2)k.
The known output at time t is then S(t) = f(X(t)) ∈ GF (2)k. Set X =
(x1, . . . , xn) = X(t0). For any r iterations, the unknowns xi are solutions
of the system of k × r equations f(Lj(X)) = S(t0 + j) for 0 ≤ j < r.
The degree and the difficulty to solve such a system depends only on the
function f .

For a filtered FCSR, the transition function Q is no more linear but
quadratic. The system becomes f(Qj(X)) = S(t0 + j) for 0 ≤ j < r.
In this case, the complexity of the problem depends essentially on the
function Qj and the function f could be linear as done in the F-FCSR
stream ciphers.

In [9], the authors studied this problem for the F-FCSRs. In partic-
ular, they gave some experimental values for the degree of the equations
for a register of length 128 bits. After 7 initial iterations, the observed
degree of the equation is d = 10 and the number of monomials is 7148.
Moreover, in the same article, the authors precise that they are unable to
compute algebraic equations beyond this bound due to the large degree
of such equations implying a huge number of monomials. Clearly, as soon
as r is sufficiently large, the degree of the equations grows up to n and
the number of monomials grows exponentially. The difficulty is then to
compute the corresponding system. The limit seems close to 10 iterations,
even for FCSRs of small sizes (typically 64 or 128).
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1.5 More properties of xored 2-adic sequences

In [17], M. Goresky and A. Klapper studied the general behavior of a

sequence of the form: s = p
q
⊕ p′

q′
. They gave some results concerning the

properties of the bitwise or of two maximum period FCSR sequences. We
apply those results for the integers qa and qb chosen here and given in
Appendix A. If we define s = pa

qa
⊕ pb

qb
, 0 < pa < |qa| and 0 < pb < |qb| and

S = (si) with s =
∑∞

i=0 si2
i, then we have the following properties:

– the period of S is T = (|qa| − 1)(|qb| − 1)/2.

– Fix k ≥ 0. Let Q = |qa|−1 mod 2k and R = |qb|−1 mod 2k. Define w =
(min(Q, R) − max(0, Q + R − 2k)) /2. The number of occurrences of
a block e = (e0, e1, · · · , ek−1) of size k in the sequence S varies at
most by w as the block e varies over all 2k possibilities.

– As a corollary, the sequence S is balanced and the distribution of
consecutive pairs in S is uniform.

Until now, there is no known method more efficient than the exhaus-
tive search to recover p/q and p′/q′ from the knowledge of s.

2 Design of X-FCSR-128 and X-FCSR-256

In this section, we propose two new stream ciphers inspired by the con-
struction of the summation generator proposed in [31] and in [25] on the
2-adic numbers. Our proposal is dedicated to the 2-adic case and is a
tweaked modified version of this generator to improve the general secu-
rity of the scheme. So, X-FCSR is a new binary additive synchronous
stream cipher design: the keystream Z is added bitwise to the plaintext
P to produce the ciphertext C.

The two proposals, X-FCSR-128 and X-FCSR-256, differ on the ex-
traction function. For X-FCSR-128, 128 bits of keystream are generated
at each iteration, while the extraction of X-FCSR-256 produces 256 bits
of keystream. Clearly, the later version is riskier since it outputs 256 bits
- the size of one FCSR main register - and can be viewed as a challenge
for cryptanalysts.

Both stream ciphers admit a secret key K of 128-bit length and a pub-
lic initialization vector IV of bitlength ranging from 64 to 128 as input.
These parameters conform to the requirements given in the eSTREAM
initial call for Stream ciphers for software applications [28].
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2.1 General overview and parameters of the FCSR automata

The core of the design is constituted of two optimal 256 bit FCSRs: The
first one with the connection integer qa is right-clocked whereas the second
one is left-clocked with connection integer qb. qa and qb, given in Appendix
A, are primes and produces ℓ-sequences, i.e. the corresponding FCSRs are
optimal.

At time t, we denote by Ma(t) and Mb(t) the contents of the two
main registers. At each iteration, the value X(t) = Ma(t) ⊕ Mb(t) feeds
an extraction function with memory which computes the output from the
current value and from the value obtained at time t − 16. As noticed in
Appendix A, the connection integers have been chosen such that, if we
denote X(t) by (x0(t), . . . , x255(t)) at bit level, then at least one of the two
FCSRs has a carry bit between xi(t) and xi+1(t) for each i, 0 ≤ i < 255.

2.2 Extraction function of X-FCSR-128

The extraction function is constituted of a function Round128 working
on 128-bit input/output words, and a memory of 16 128-bit words which
stores the output of Round128 that will be used 16 iterations later. More
formally, the full extraction function holds as follows:

– compute the 128-bit word Y (t) = X(0)(t) ⊕ X(1)(t),
with X(t) =

(

X(0)(t)||X(1)(t)
)

, where || denotes the concatenation.
– Compute Z(t) = Round128(Y (t)).
– Store Z(t) in memory (keep it during 16 iterations).
– Output the 128-bit word Output128(t) = Y (t) ⊕ Z(t − 16).

Round128 is a one-round function from {0, 1}128 into itself that could
be written as Round128(a) = Mix128(SR128(SL128(a))). If the 128-bit
word a is represented at byte level by a 4 × 4 matrix M where each
byte is represented by the word ai,j with 0 ≤ i, j ≤ 3, then the function
Round128 could be described as follows:

– the first transformation SL128() consists in a S-box layer applied at
byte level that transform each byte ai,j into an other byte bi,j such as
bi,j = S(ai,j) where S is the S-box given in Appendix B chosen for its
good properties (the differential and linear probabilities are low, the
algebraic degree is equal to 7, the nonlinear order is equal to 6, the
I/O-degree is equal to three).

– The SR128() operation corresponds with the ShiftRows() operation
of the AES described in [16] and consists in Shifting each row of the
current matrix on the left at byte level: by 0 for the first row, by one
for the second, by two for the third and by three for the fourth one.
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– the Mix128() operation is the one used in [18] computed using the op-
erations over GF (2). More precisely for each column of a, we compute
∀j, 0 ≤ j ≤ 3:

Mix128









a0,j

a1,j

a2,j

a3,j









=









a3,j ⊕ a0,j ⊕ a1,j

a0,j ⊕ a1,j ⊕ a2,j

a1,j ⊕ a2,j ⊕ a3,j

a2,j ⊕ a3,j ⊕ a0,j









.

Even if this function is not fully optimal for a diffusion purpose, its
branch number is however equal to 4 and its computation is signifi-
cantly faster than the MixColumns of the AES: Mix128 can be com-
puted with only 6 32-bit bitwise Xors.

2.3 Extraction function of X-FCSR-256

For X-FCSR-256, the extraction function works directly on the 256-bit
word X(t) with the function Round256 from {0, 1}256 into itself, and a
memory of 16 256-bit words which stores the output of Round256 that
will be used 16 iterations later. More formally, the full extraction function
holds as follows:

– Compute the 256-bit word W (t) = Round256(X(t)).

– Store W (t) in memory (keep it during 16 iterations).

– Output the 256-bit word Output256(t) = X(t) ⊕ W (t − 16).

Round256 is the same round function than the previous one but from
{0, 1}256 into itself that could be written as
Round256(a) = Mix256(SR256(SL256(a))). If the 256-bit word a is repre-
sented at byte level by a 4×8 matrix M where each byte could be written
ai,j with 0 ≤ i ≤ 3 and 0 ≤ j ≤ 7, then the function Round256 could be
described as follow:

– the first transformation SL256() consists in the same S-box layer ap-
plied at byte level that transforms each byte ai,j into an other byte
bi,j such as bi,j = S(ai,j) using always the S-box S.

– The SR256() operation corresponds with the ShiftRows() operation
of Rijndael described in [14] and consists in Shifting each row of the
current matrix on the left at byte level: by 0 for the first row, by one
for the second, by three for the third and by four for the fourth one.

– the Mix256() operation is similar to Mix128() but there are here 8
columns to consider.
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2.4 Key and IV injection

As done in [7], we have split the initialization process into two steps to
speed up the IV injection:

– The key schedule, which processes the secret key but does not depend
on the IV .

– The IV injection, which uses the output of the key schedule and the
IV .

This initializes the stream cipher internal state. Then, the IV setup
for a fixed key is less expensive than a complete key setup, improving the
common design since changing the IV is more frequent than changing the
secret key.

Key schedule The key setup process used here corresponds to a classical
key schedule of a block cipher and is inspired by the one of the DES [27]
due to its good resistance against related key attacks [10] and against
related key rectangle attacks [20]. The key expansion produces 25 128-bit
subkeys denoted K0, · · · , K24. It works as follow:

– the subkey K0 is deduced from the master key: K0 = (Round128(K))<<<23

where <<<j denotes a 128-bit left rotation of j positions.
– then Ki is deduced from Ki−1: Ki = Round128((Ki−1)<<<j) where

j = 23 if i ≡ 3 mod 4 and j = 11 otherwise.

IV injection If necessary the IV is extended to a 128-bit word by adding
leading zeros. Then, this value is considered as a plaintext that is enci-
phered first 12 times using the Round128 function followed by an X-or at
byte level with the subkey of the round Kj . More precisely, the process
is the following if we denote by Vi the ciphertext after the round i:

– V0 = IV ⊕ K0

– for i from 1 to 24 do Vi = Round128(Vi−1) ⊕ Ki

Then, the values V12, V16 V20 and V24 are used to initialize the main
registers as follows: Ma(0) = (V12||V20) and Mb(0) = (V16||V24) whereas
the carry registers Ca and Cb are initialized to zero. The two FCSRs are
then clocked 16 times to fill the sixteen memory registers of the extraction
function. Note that for X-FCSR-256, the registers are directly filled with
the 256-bit value W (t0) = Round256(Ma(t0) ⊕ Mb(t0)) whereas for X-
FCSR-128 this value is folded at 128-bit level using the 128-bit word
Y (t0).
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3 Design rationale and security analysis

Objectives of key and IV injection In [8], the authors demonstrate
that to be secure the key and IV setup (parametrized by the key K) of
an IV -dependent stream cipher must be a pseudo-random function. We
have tried to achieve this goal designing our key and IV setup as a block
cipher using the round function Round128. It is also important to note
that, under those conditions, the secret key of the cipher cannot be easily
recovered from the initial state of the generator. Once the initial state is
recovered, the attacker is only able to generate the output sequence for a
particular key and a given IV.

This particular mechanism already used in [7] also prevents our stream
cipher from the distinguishing differential attacks described in Section 1.3:
the values of the two main registers are key dependent and, for a given
secret key, no difference could be mastered with a sufficient probability
between two distinct IV values and the contents of the main registers.
Moreover, and as explained in Section 1.2, the two carry registers are
initialized to 0 to avoid any loss of entropy and prevent TMD attacks.

Role of the core FCSR automata As noticed in [8], to be secure
the keystream generation of an IV -dependent stream cipher must rely on
a pseudo-random number generator. Following this requirement and the
results of Section 1.5, we have based our stream cipher on the Xor of two
independent 2-adic sequences that provides performing pseudo-random
sequences. As explained in [4], any cell of the main register of a FCSR
automaton provides a 2-adic sequence. Except if there is no feedback bits
between two cells, the theoretical dependencies between these sequences
cannot be exploited easily. The main idea of X-FCSR is to directly Xor
the contents of two distinct FCSRs of size 256 to provide in parallel 256
xored 2-adic sequences, denoted at time t by X(t) = (x0(t), . . . , x255(t))
in § 2.1.

However, the content of X(t) cannot be directly outputted because in
this case we obtain a system of 256 equations with 512 variables at time
t that could be easily solved: the condition “qa and qb have been chosen
such that there is always at least a feedback bit between two consecutive
xored cells xi and xi+1 (as explained in Appendix A)” is necessary but
not sufficient.

Moreover, we could also build a guess and determine attack using the
knowledge of X(t): first choose an indice i such that there is no carry
between ma i and ma i+1, and between ma i+1 and ma i+2. So there are
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carries between mb i+1 and mb i and between mb i+2 and mb i+1. Then,
guess the contents of the 9 cells ma i, ma i+1, ma i+2, mb i, mb i+1, mb i+2,
cb i+1, cb i+2 and mb 255 at time t. Using the transition formula, derive the
corresponding values at time t + 1 from the known outputs xi(t), xi+1(t)
and xi+2(t). Repeating this process, we then obtain the consecutive values
of the feedback bit mb 255 to deduce the content of the first register and
we then could guess the cell values of the second register. In the case
of X-FCSR-128 (cf. § 2.2), the 128-bit output Y (t) computed from X(t)
with the formula yi(t) = xi(t)⊕xi+128(t) prevents this attack from holding
even if the information provided by Y (t) seem to be too strong to directly
output this value.

An other constraint must be respected: the two registers must be
clocked in opposite way because if the two automata are both right-
clocked (for example), the values xi(t) and xi+1(t + 1) are correlated
according the values of the two feedback bits.

Role of the extraction function The two round functions Round128

and Round256 have been chosen for their good diffusion and non-linear
properties: they ensure a good resistance against the residual correlations
present between the bits of the two main registers of the FCSR automata.
Their use also prevent attacks that is derived from the ones previously
described.

The use of 16 memory registers is a good compromise between a better
security and a limited performance cost. First, it increases the number
of unknown variables depending on the cells of the main register from
2 × 256 to 16 × 256 for X-FCSR-256 (or to 16 × 128 for X-FCSR-128):
solving such a system becomes more expensive than the exhaustive key
search. This memory could also be seen as four FCSR automata, since at
each operation, the output depends on X(t) and X(t− 16). Even if there
exists dependencies between X(t) and X(t − 16), it is computationally
infeasible to determine the values of the main registers at time t+16 from
the values at time t using the transition functions as noticed in Section
1.4.

Resistance against known attacks The good statistical properties
(period, balanced sequences and so on) of our constructions are provided
by the xored 2-adic properties. We experimentally verified some of them
by applying the NIST statistical test suite [29] with success to our two
constructions.
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As previously mentioned, differential distinguishing attacks, algebraic
attacks, Time/Memory/Data trade off attacks and guess and determine
attacks are discarded due to the properties described in Section 1 and
due to the previous remarks.

Then, we focus on correlation and fast correlation attacks. In those
attacks, the cryptanalyst tries to exploit an existing correlation between
some internal bits of the automaton and some output bits using in general
linear relations [32, 26]. Since the FCSR description has appeared in [4]
two years ago, no correlation attack have been exhibited against this new
construction. This is essentially due to the non-linearity induced by the
carries propagation. Even if there exists some 2-adic correlations in a
FCSR, those non-linear relations are destroyed by the action of the xor.
Specifically, in the case of X-FCSR, the residual correlations between the
neighbor cells of the main registers are stopped by the use of the Round
functions.

To sum up all the previous analyses, we think that traditional attacks
against stream cipher that exploit linear relations built upon the transi-
tion function are not realistic in our case. Thus, wanting to cryptanalyse
FCSRs leads to create new attacks exploiting other sorts of relations.

4 Conclusion

We have integrated the X-FCSR-128 and X-FCSR-256 stream ciphers
to the eSTREAM benchmarking suite [15]. We run the benchmark on
an Opteron 250 (1.4Ghz) with GCC 4.1.1 (-O3-funroll-all-loops -fomit-
frame-pointer) and gather the results in Table 1.

cycles/byte cycles/key cycles/IV

Algorithm Keystream speed 40 bytes 576 bytes 1500 bytes Key setup IV setup

X-FCSR-256 6.5 50 9.5 7.6 1093 1636

X-FCSR-128 8.21 51 11 9.3 1096 1651

AES-CTR 18.23 22.98 18.3 18.3 172.23 11.74

Table 1. X-FCSR performance on an Opteron with the eSTREAM benchmark suite.

Our new design X-FCSR-128 and X-FCSR-256 are significantly faster
than the AES-CTR except for small plaintexts. The performance of the
two proposed stream ciphers are promising. We hope that we have shown
how to use FCSRs for software applications. FCSRs have many other ad-
vantages such as a simple software implementation or proved properties.
In such a design, two important parameters have to be considered: the
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size of the FCSR automaton, and the size of the output of the extrac-
tion function. They have opposite impacts on the throughput and on the
security, thus a compromise has to be found. The two stream ciphers pre-
sented here correspond to some choice for these parameters. However, the
problem of the optimal choice for them remains open.
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A The connection integers

The X-FCSR primitives are composed of two FCSRs of bitlength 256 with
the following connection integers:

1. The value of qa is

−231583736761916429980870326666224608672078432415725276914781707903145369917947

2. The value of qb is

−171877005186002814581455393667408237212045583156346323656490004737372232601307

3. The corresponding value of da is (in hexadecimal notation):

ffffdfff fb7d9f7f dfefd8ef dfbef7fe 6bfebf9f fffeeffd fecb9def ed3dedfe

4. The corresponding value of db is (in hexadecimal notation):

bdff77ff fcffbdf7 efdfdfaf ff53d9ff fdfebbfc faffffdf 47d6d7ff 7fbfe76e

5. The binary Hamming weight of da and db is 210.
6. The first FCSR is right-clocked whereas the second one is left-clocked.
7. More precisely, the first one is updated with an Hamming weight

equal to 210 using the notations of Section 1 and of Section 2.1 by the
formulas written at registers level:

Ma(t + 1) = (Ma(t))<<1 ⊕ Ca(t) ⊕ ma 0(t)da

Ca(t + 1) = (Ma(t))<<1 ⊗ Ca(t) ⊕ Ca(t) ⊗ ma 0(t)da

⊕ma 0(t)da ⊗ (Ma(t))<<1

where ⊕ denotes the bitwise Xor, ⊗ denotes bitwise AND, and << 1 is
a simple shift to the left. Note also that ma 0(t) is the least significant
bit of Ma(t) and represents the feedback bit.

8. The second FCSR is updated on the right using the formulas:

Mb(t + 1) = (Mb(t))>>1 ⊕ Cb(t) ⊕ mb 255(t)d
′
b

Cb(t + 1) = (Mb(t))>>1 ⊗ Cb(t) ⊕ Cb(t) ⊗ mb 255(t)d
′
b

⊕mb 255(t)d
′
b ⊗ (Mb(t))>>1

where d′b is the reverse of db in binary expansion: d′b =
∑255

i=0 db 255−i2
i

and where mb 255(t) is the most significant bit of Mb(t) and represents
the feedback bit.

9. The numbers qa and qb have been chosen in such a way that da i and
db 255−i are not simultaneously equal to 0.
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B The S-box S

We have designed our S-box using the requirements and the method de-
fined in [18] except that all the steps are performed here on GF (2)8 into
itself. The S-box is given in tab. 2 in hexadecimal notation. It has been
chosen to have a good resistance against differential and linear cryptan-
alyzes, an high algebraic degree, an high nonlinear order and a degree
between inputs and outputs equal to three. The S-box was generated us-
ing the key schedule algorithm KSA of RC4 ([30]) algorithm initialized
with a key of 26 bytes length equal to the string “To design our steam
cipher”. Then after 48574 iterations of this algorithm, we obtain the fol-
lowing S-box:

52 c3 45 ce 9 cf a8 f8 fd ab b8 6d 95 2 31 8

56 f4 cb 40 61 7 12 39 62 bb ef 5d 3a a9 fb 2c

78 ad 75 77 10 ca 55 66 9e 65 7b 9b 13 76 c7 1c

71 d 18 3f 50 6c 28 64 a3 b7 d0 be e6 9c b9 94

fc bc a1 cd 3b 48 4c 99 cc 3e 79 24 f2 c1 da d8

de f e8 67 2e 16 53 c4 9d 57 c0 4f f0 d6 4e 81

69 8a ae f9 8b ee 43 3d e4 23 97 68 b 32 e1 b2

ec e9 59 1 c2 34 b5 1f 2a 29 d7 d5 b0 96 11 c6

7d 91 2d 72 8f 87 1d e7 ba 19 25 15 5e d9 98 70

4a ed 51 a6 88 86 58 c5 5f eb 49 0 ff 1b 2f 6a

82 1a af 9f 8c 6b a2 f1 e 5 7f 73 92 3c f5 d2

54 14 ac 83 20 90 c9 22 fa 74 d3 27 37 38 a5 33

85 6 4 b3 e2 5b e3 47 1e 8d 4b b1 36 46 bd 35

dc 6e d1 7c a7 41 c 42 a0 aa 26 5a 4d e5 5c 80

21 3 f3 63 ea 44 dd 89 8e 7e b4 30 a a4 60 f6

bf fe e0 f7 c8 d4 9a db 84 7a 6f 2b b6 17 93 df

Table 2. the chosen S-box

The chosen S-box has the following properties:

– The best differential trail is DP (S) = Maxa,b∈(GF (2)8)2\{0,0}#{x|S(x⊕
a) ⊕ S(x) = b} = 10.

– The best linear trail is LP (S) = Maxa,b∈(GF (2)8)2\{0,0}|#{x|a ·S(x) =
b · x} − 128| = 32.

– The algebraic degree is equal to 7.
– The non-linear order is equal to 6.
– The degree between inputs and outputs is equal to three. There is no

equation of degree two.


