
Cryptanalysis of Two New Instances of TTM
Cryptosystem

Xuyun Nie1,2, Xin Jiang2, Lei Hu2, and Jintai Ding3

1 School of Computer Science and Engineering,
University of Electronic Science and Technology of China,

Chengdu 610054, China
2 State Key Laboratory of Information Security
Graduate School of Chinese Academy of Sciences

Beijing 100049, China
3 Department of Mathematical Sciences,

University of Cincinnati,
Cincinnati, OH, 45220, USA

nxy7509@sohu.com, { xjiang, hu}@is.ac.cn, ding@math.uc.edu

Abstract. In 2006, Nie et al proposed an attack to break an instance of
TTM cryptosystems. However, the inventor of TTM disputed this attack
and he proposed two new instances of TTM to support his viewpoint. At
this time, he did not give the detail of key construction — the construc-
tion of the lock polynomials in these instances which would be used in
decryption. The two instances are claimed to achieve a security of 2109

against Nie et al attack. In this paper, we show that these instances are
both still insecure, and in fact, they do not achieve a better design in
the sense that we can find a ciphertext-only attack utilizing the First
Order Linearization Equations while for the previous version of TTM,
only Second Order Linearization Equations can be used in the beginning
stage of the previous attack. Different from previous attacks, we use an
iterated linearization method to break these two instances. For any given
valid ciphertext, we can find its corresponding plaintext within 231 F28 -
computations after performing once for any public key a computation of
complexity less than 244. Our experiment result shows we have unlocked
the lock polynomials after several iterations, though we do not know the
detailed construction of lock polynomials.

Keyword: multivariate public key cryptosystem, TTM, algebraic at-
tack, linearization equation, triangular cryptosystem.

1 Introduction

TTM (Tame Transformation Method) is a type of triangular multivariate pub-
lic key cryptosystems, proposed by T. T. Moh originally in 1999 [Moh99]. Its
design idea comes from algebraic geometry, and its central map is the so-called
tame transformation which is a core concept in algebraic geometry and is closely
related to the famous Jacobian conjecture. TTM is practically very fast for its
encryption and decryption operations.



TTM has gone through several cycles of attack and defense. In 2000, Goubin
and Courtois claimed that they completely defeated all possible instances (at
that time) of TTM schemes using the Minrank method and they demonstrated
it by defeating one of the challenges set by the inventors of TTM [GC00]. How-
ever, the inventors of TTM refuted the claim and they designed another instance
to defense their construction [CM01]. But this new instance has also a defect
common among all the existing TTM schemes at that time. Ding and Schmidt
pointed out that there exist linearization equations satisfied by the cipher, and
they extended the linearization equation attack method to attack this new ver-
sion [DS03]. In order to resist these attacks, the inventors of TTM proposed a
further instance in 2004 [MCY04], and they claimed the security is 2148 against
the Goubin-Courtois attack. To resist the Ding-Schmidt attack, they incorpo-
rated so-called lock polynomials which can not be trivialized by Ding-Schmidt
attack. However, this instance of TTM is still broken by the authors of the paper
[NHL06]. They pointed out that for this instance in [MCY04] there exist second
order linearization equations (SOLEs) satisfied by the cipher, and utilizing this
defect, they found a method to ”unlock” the lock polynomials, and they then
proposed a ciphertext-only attack on the instance, i.e., they can recover the
corresponding plaintext for any given ciphertext. They also implemented their
attack on a Pentium IV 2.4Ghz PC, and their experiment recovered a plaintext
in less than 2 minutes, after a precomputation of less than 95 minutes which is
done once for any public key. Similar methods are developed by these authors to
further break the other two triangular multivariate public key cryptosystems—
-MFE [DHN07] and TRMC-4 [NHD07].

The inventor of TTM disputed the attack in [NHL06] and he think Nie et al
attack utilized the construction of private key φ3. And he claimed in his paper
[Moh06] that the attack is faulty and to challenge the attackers he then proposed
two new instances of TTM [Moh07]. In this paper, the author of TTM did not
give the detail of decryption process. This means we do not know how the lock
polynomials were designed.

However, through theoretical analysis on the central maps of the two in-
stances, we find both two ciphers satisfy first order linearization equations (FOLES)
of form

n−1∑

i=0

aix̄i +
n−1∑

i=0

m−1∑

j=0

bij x̄iFj +
m−1∑

j=0

cjFj + d = 0,

while for the previous version of TTM, only second order linearization equa-
tions can be used in the beginning stage of the attack. This means these two
instances do not achieve a better design than the previous version. First or-
der linearization equation attack method can be traced back to Patarin in 1995
who defeated the original Matsemoto-Imai scheme [Pat95]. Our computer ex-
periments find that there exist many first order linearization equations satisfied
by these two instances and we can find all linearizations equations in 244 F28-
computations which is precomputation for any given public key. Then for any
given valid ciphertext, we can derive a set of linear expressions between the

2



plaintext variables. Using these expressions, we can do an elimination on the
public key. And then, we can use an iterated linearization method to find
the corresponding plaintext. Our experiments confirmed this point. This means
we have unlocked the lock polynomials after several iterations, though we did not
know the construction of lock polynomials. And we can not decided in which it-
eration we unlocked lock polynomials because we did not know the construction
of lock polynomials. Note that our attack is a ciphertext-only attack.

The paper is organized as follows. In Section 2 we introduce the basic idea
and the two new instances of TTM schemes. Then we first overview our attack
on TTM in Section 3, and then give the details of our attack on the new instances
in Section 4 and Section 5. Finally in Section 6, we conclude the paper.

2 TTM Cryptosystems

2.1 Basic Idea of TTM Cryptosystems

Let K be a small finite field. In TTM, it is usually assumed to be the field of 28

elements. Generally, TTM systems are constructed by four maps φ1, φ2, φ3, and
φ4, where φ1 and φ4 are invertible affine linear maps, φ2 is a tame quadratic
transformation, and φ3 is a high degree map using lock polynomials. Their com-
position F = φ4 ◦ φ3 ◦ φ2 ◦ φ1 : Kn → Km is designed to be a set of quadratic
polynomials, which is taken as the public key in a TTM system, and the linear
maps φ1 and φ4 are taken as the corresponding secret key.

The inventor who is an expert in algebraic geometry uses the concept of
tame transformation in algebraic geometry in the design of TTM. The inverting
process of a tame transformation is very simple and is also a tame transformation.
Tame transformations are maps of the form

(y0, · · · , ym−1)
= J(x0, · · · , xn−1)
= (x0, x1 + q1(x0), · · · , xn−1 + qn−1(x0, · · · , xn−2),

qn(x0, · · · , xn−1), · · · , qm−1(x0, · · · , xn−1)).

A key idea of TTM design is the so-called lock polynomials. Similarly as in
the previous version of TTM [MCY04], the inventor of TTM constructed a set of
new lock polynomials Gj(x0, · · · , xn−1) (j = 0, · · · , 4) in the two new instances
of TTM [Moh07]. Then the central maps of the two instances, which are the
composition φ3 ◦ φ2, become

J̃(x0, · · · , xn−1)
= (x0 + G0, x1 + q1(x0) + G1, · · · , x4 + q4(x0, · · · , x4) + G4,

x5 + q5(x0, · · · , x4), · · · , xn−1 + qn−1(x0, · · · , xn−2),
qn(x0, · · · , xn−1), · · · , qm−1(x0, · · · , xn−1)).

The inventor of TTM ingeniously designed lock polynomials Gi so that they are
quadratic polynomials in the xi, but they are also high degree (> 2) polynomials
in the intermediate components, these components are high degree polynomials
in the xi and they are used in the decryption process.

3



2.2 Two Instances of TTM

Here the encryption map F : Kn → Km is a composition of the four maps,
namely F = φ4 ◦ φ3 ◦ φ2 ◦ φ1:

F : Kn φ1−→ Kn φ2−→ Km φ3−→ Km φ4−→ Km.

φ1 and φ4 are invertible affine linear maps, φ2 is a tame quadratic transformation,
and φ3 is a high degree map using lock polynomials.

We use x̄0, · · · , x̄n−1 and ȳ0, · · · , ȳm−1 to denote plaintext and ciphertext
components, respectively. The input and output components of the central map
are denoted by x0, · · · , xn−1 and y0, · · · , ym−1. That is,

(x0, · · · , xn−1) = φ1(x̄0, · · · , x̄n−1),
(y0, · · · , ym−1) = φ3 ◦ φ2(x0, · · · , xn−1),
(ȳ0, · · · , ȳm−1) = φ4(y0, · · · , ym−1).

As usual in many multivariate systems, φ1 and φ4 are taken as the private key,
while the polynomial expression of the map (ȳ0, · · · , ȳm−1) = F (x̄0, ..., x̄n−1) is
the public key. To encrypt a plaintext (x̄0, ..., x̄n−1) is to evaluate F at it.

The paper [Moh07] did not provide the detail of the decryption process and
the construction of lock polynomials. Only the expressions of the composed map
φ3 ◦φ2 are given, please see [Moh07] or Appendix A and B in the present paper.

For the first one of the two new instances of TTM, n = 103 and m = 210;
while for the second, n = 112 and m = 215 [Moh07].

3 Overview of Our Attack

Our attack is a ciphertext-only attack, that means for any valid ciphertext,
we will find its corresponding plaintext, namely, given a valid ciphertext ȳ =
(ȳ′1, . . . , ȳ

′
m), we can solve the following system:





F0(x̄0, · · · , x̄n−1) = ȳ′0;
· · ·

Fm−1(x̄0, · · · , x̄n−1) = ȳ′m−1.
(1)

It is very hard to directly solve this system. The method we solve it is to use
linearization equations. The following are the main phases of our attack.

– Find all high order linearization equations (HOLEs) satisfied by the sys-
tem. Here a high order linearization equation is illustrated by the following
example:

n−1∑

i=0

aixi +
∑

0≤j≤k≤m−1

bjkFjFk +
m−1∑

j=0

cjFj + d = 0. (2)

This equation is a second order linearization equation (SOLE), since
it is linear in plaintext components xi and is quadratic in ciphertext compo-
nents Fj . Many SOLEs exist for the previous instance of TTM, and this re-
sults in a starting point for attacking that instance of TTM system [NHL06].

4



Generally, SOLEs may be of the following complete form:

∑

i

xi


∑

j≤k

aijkFjFk +
∑

j

bijFj + ci


 +

∑

j≤k

djkFjFk +
∑

j

ejFj + f = 0, (3)

where the coefficients aijk, bij , ci, djk, ej , f ∈ K. This complete type of SOLE is
used in the analysis of the MFE cryptosystem [DHN07].

Finding a HOLE means finding its all coefficients. Clearly, all HOLEs form
a linear space, finding all HOLEs is to say finding a basis of the space. To this
end, we can randomly evaluate a tuple of plaintext components and plug it into
the HOLE to get a linear equation on coefficients of a HOLE, since the HOLE is
satisfied by all plaintexts. We evaluate sufficiently many tuples to get a system of
linear equations on coefficients of HOLEs, and then solve the system by Gaussian
elimination to get a basis of the space of solutions. This give a linear independent
basis of all HOLEs. Obviously, if we let N be the number of unknown coefficients
and r be the dimension of the space of HOLEs, we shall evaluate at least N − r
tuples of plaintext components. Generally, to get the desired equation system
that contains only correct HOLEs, it is sufficient to randomly evaluate N tuples.

Usually, N is very large (for example, N = 92659 for MFE [DHN07] and
N = 6271 for the previous TTM [NHL06]), the Gaussian elimination for this
equation system will be the most time-consuming phase of the attack.

Some earlier cryptosystems even satisfy first order linearization equations
(FOLEs), which are of the form:

n−1∑

i=0

aix̄i +
n−1∑

i=0

m−1∑

j=0

bij x̄iFj +
m−1∑

j=0

cjFj + d = 0.

These equations are also called the Patarin relations, which are used by Patarin
to break the Matsumoto-Imai cryptosystem [Pat95], and are used as a start-
ing point to break the TRMC-4 system [NHD07]. Obviously, it is easier to find
FOLEs than SOLEs since there are much fewer unknown coefficients to deter-
mine.

This phase can be precomputation, since it is dependent on only public key
polynomials and is independent of any valid ciphertext that will be deciphered.
It can be done once for any given public key.

– For any given valid ciphertext, substitute its ciphertext component values
into all HOLEs (precisely, a basis of HOLEs) which are found in the previous
phase. This results in an equation system linear on the corresponding plain-
text components, since each HOLE is linear in plaintext components. Solve
the system to find linear relations between plaintext components. In other
words, some plaintext components can be written as linear expressions in
the remaining components. In terminology of cryptanalysis, we have limited
the desired plaintext from the whole plaintext space to a subspace.

5



Substitute the linear expressions of plaintext components into the public key
polynomials to get a ”reduced” public key expression (it is in fewer unknown
plaintext components).

– Further check whether high or first order linearization equations satisfied by
the reduced public key exist or not. This is done in a similar way as in the
first phase, that is, we select sufficient plaintext/cophertext pairs to plug
into the HOLE or FOLE to get a linear system on coefficients of HOLE
or FOLE, and then solve it. If nonzero solutions are found, then HOLEs
or FOLEs exist, otherwise no HOLE or FOLE exists. In the former case, a
further phase as the second phase is continued, and the phases 1 and 2 are
repeated till there exists no HOLE or FOLE.

– From the last reduced public key polynomials and the given ciphertext value,
if there are some plaintext components are not eliminated, then determine
them by some direct methods like Gröbner basis and XL algorithms.

Direct solving requires that the number of the plaintext components left is
small. We also note that in this ciphertext-only attack, the second phase and its
sequent phases are dependent on the value of the deciphered ciphertext.

For these two new instances of TTM, we find that there are many FOLEs
exist in them through theoretical analysis. After performing phases 1 and 2, we
can get a ”reduced” public key. And then through experiments, we found many
FOLEs of form

n−1∑

i=0

aix̄i +
m−1∑

j=0

bjFj + c = 0 (4)

satisfied by the ”reduced” public key and we can do iterations for finding FOLEs
of form (4) and reducing public key to derive more and more linear expressions
of plaintext components. At last iteration, we can get values of one or more
remained plaintext variables. Then we substituted these values iterated to the
expressions derived previously to get the corresponding plaintext. Through fur-
ther analysis, we found that if the lock polynomials were unlocked i.e. if we have
found an affine subspace W in the plaintext space such that all lock polynomials
become constants on W , the iterated linearization method would work. This
means our attack actually have unlocked polynomials in a certain iteration, but
we can not decide in which iteration the lock polynomials were unlocked because
we did not know the detailed design of lock polynomials.

4 Cryptanalysis of New Instance I of TTM

In this section we show how to use the method in the previous section to break
the new instance I of TTM and present experimental data.

6



4.1 First Order Linearization Equations

Unfortunately, this instance satisfies first order linearization equations.
By the central map of instance I, we have





y92 = x80x86 + x82x84 + x92;
y93 = x81x86 + x82x85 + x93;
y94 = x83x85 + x81x87 + x94;
y95 = x83x84 + x80x87 + x95.

(5)

From them we can derive:




x87y92 = x80x86x87 + x82x84x87 + x92x87;
x83y93 = x81x86x83 + x82x85x83 + x93x83;
x82y94 = x83x85x82 + x81x87x82 + x94x82;
x86y95 = x83x84x86 + x80x87x86 + x95x86.

(6)

Adding the four equations above, we get

x87x92 + x83x93 + x82x94 + x86x95

= x87y92 + x83y93 + x82y94 + x86y95 + (x81 + x84)(x83x86 + x82x87).
(7)

Since
y3 + x3 = x87x92 + x83x93 + x82x94 + x86x95,

and
y208 = x83x86 + x82x87,

the equation (7) can be changed into

y3 + x3 = x87y92 + x83y93 + x82y94 + x86y95 + (x81 + x84)y208. (8)

This equation (8) is a first order linearization equation. Similarly,
we can derive other linearization equations.

Since F is derived from the central map by composing from the inner and
outer sides by invertible affine linear maps φ1 and φ4, i.e., xi = φ1,i(x̄0, · · · , x̄102)
and yj = φ−1

4,j(F0, · · · , F209), each of the FOLEs on xi and yi can be changed
into an identical equation of the form:

102∑

i=0

aix̄i +
102∑

i=0

209∑

j=0

bijxiFj +
209∑

j=0

cjFj + d = 0, (9)

which is satisfied by any (x̄0, · · · , x̄102) ∈ K103.
The number of unknown coefficients ai, bij , cj , and d in equation (9) is equal

to
103 + 103× 210 + 210 + 1 = 21944.

To find all FOLEs, we randomly select slightly more than 21944, say 22000, plain-
texts (x0, · · · , x102) and substitute them in (9) to get a system of 22000 linear

7



equations in 21944 unknowns, and then solve it. Its computational complexity
(by a native Gaussian elimination) is less than 244.

We performed our experiment on a DELL PowerEdge 7250, a minicomputer
with 4 Itanium2 CPU and 32GB ECC fully buffered DIMM memory. The op-
erating system we used was 64-bit Windows Server2003. We programmed the
attack using VC++. Multiple threads can improve the efficiency of programs on
a computer with multiple CPU. In our experiment, we used four threads to deal
with Gaussian elimination.

In this instance of TTM, some undetermined quadratic polynomials fi can
be randomly chosen to get different central maps (see Appendix A). In our
experiments, we randomly select different φ1, φ4, and fi to derive 10 different
public keys. Our experiments for 10 different public keys show that about 36
hours (36 hours and 15 minutes for one of 10 public keys) were required for this
phase, which is done once for a given public key. The experiment finds 50 linear
independent FOLEs, namely, the dimension of the K-linear space of all FOLEs
of the form (9) is D = 50.

Let {(a(ρ)
i , b

(ρ)
ij , c

(ρ)
j ,d(ρ)), 1 ≤ ρ ≤ D} be the D coefficient vectors, and the D

linearly independent FOLEs are




102∑
i=0

a
(ρ)
i x̄i +

102∑
i=0

209∑
j=0

b
(ρ)
ij x̄iFj +

209∑
j=0

c
(ρ)
j Fj + d(ρ) = 0

(1 ≤ ρ ≤ D)
(10)

4.2 First Elimination

Now assume we have a valid ciphertext ȳ′ = (ȳ′0, · · · , ȳ′209). Our goal is to find
its corresponding plaintext x̄′ = (x̄′0, · · · , x̄′102).

Substituting (F1, · · · , F209) = (ȳ′0, · · · , ȳ′209) into equation (10), we derive a
system of D linear equations in xi. Solve it by Gaussian elimination. Let l be
the dimension of the space of its solutions. Our experiment finds l = 40. That
is, we can eliminate 40 plaintext components. Let x̄u′j be the eliminated com-
ponents, {u′1, · · · , u′l} ⊂ {0, 1, · · · , 102}, and x̄ui

be the remaining components,
{u1, · · · , u103−l} = {0, 1, · · · , 102} \ {u′1, · · · , u′l}, we find linear expressions

x̄u′j = hj(x̄u1 , · · · , x̄u103−l
), 1 ≤ j ≤ l. (11)

Now substitute (11) into Fj(x̄0, · · · , x̄102) and derive 210 new quadratic
quadratic polynomials F̂j(x̄u1 , · · · , x̄u103−l

) (0 ≤ j ≤ 209).

4.3 Iterations

Our computer experiments find, for these new quadratic polynomials F̂j(x̄u1 , · · · ,
x̄u103−l

) (0 ≤ j ≤ 209), there still exist identical equations of the form

103−l∑

i=0

âix̄ui +
210∑

j=0

b̂jF̂j + d̂ = 0, (12)

8



which are satisfied by all (x̄u1 , · · · , x̄u103−l
) ∈ K103−l and the coefficients (b̂0, · · · ,

b̂210) 6= (0, · · · , 0).
We use the same method (that derives equations (10)) as in the first phase,

we derived all equations of form (12). They are FOLEs in 103 − l plaintext
components. Then we eliminate several plaintext components. Our experiment
showed that the number of eliminated components in this phase relies on the
randomly chosen quadratic polynomials fi.

We further repeat the similar phases of finding FOLEs, eliminating compo-
nents, and substituting and deriving reduced quadratic polynomials with fewer
variables. At last, we derived the plaintext corresponding to the given cipher-
text. The computational complexity of all these iterations including the first
elimination is less than 231. Executing these steps is very fast and is less than
two minutes.

For any given valid ciphertext, our experiments successfully find the corre-
sponding plaintext.

From experiments, we know that the attack actually unlocked the lock poly-
nomials after several iterations. We also found that if the variables contained in
fi were x0, x1, . . . , xj , j < i, then we can eliminate the xi in some t-th (t ≤ j)
iteration. This is the reason why the number of eliminated components in this
phase relies on the randomly chosen quadratic polynomials fi.

5 Cryptanalysis of Instance II

We used the same method to break the instance II. First, we show algebraically
why this instance satisfies first order linearization equations.

By the central map of instance II, we have




y100 = x95x89 + x91x93 + x100;
y102 = x90x95 + x91x94 + x102;
y103 = x92x94 + x90x96 + x103;
y104 = x92x93 + x89x96 + x104.

(13)

From them we can derive




x96y100 = x96x95x89 + x96x91x93 + x96x100;
x92y102 = x92x90x95 + x92x91x94 + x92x102;
x91y103 = x91x92x94 + x91x90x96 + x91x103;
x95y104 = x95x92x93 + x95x89x96 + x95x104.

(14)

Adding the four above equations, we get

x96x100 + x92x102 + x91x103 + x95x104

= x96y100 + x92y102 + x91y103 + x95x104 + (x90 + x93)(x91x96 + x92x95).
(15)

Since
y1 + x1 = x96x100 + x92x102 + x91x103 + x95x104,

9



and
y213 = x91x96 + x92x95,

equation (15) can be changed into

y1 + x1 = x96y100 + x92y102 + x91y103 + x95x104 + (x90 + x93)y213. (16)

This equation is a first order linearization equation. We use the same
method as instance I to derive the basis of the space of all FOLEs. In this case,
the number of unknown coefficients is equal to

112 + 112× 215 + 215 + 1 = 24408.

The computational complexity of finding all FOLEs is less than 244. We per-
formed our experiment for 10 different public keys on the same DELL PowerEdge
7250 and used the same programming technique.

Our experiments showed that about 53 hours (2 days and 5 hours) were
required for this Gaussian elimination phase (concretely, 53 hours and 7 min-
utes for one of 10 public keys). Our experiments show that D = 242 and after
we substituted the given ciphertext, l = 86, so we can eliminate 86 plaintext
components and only 112− 86 = 26 plaintext components are left.

In the sequent iterations, we only need two iterations. In the first iteration,
we eliminated 22 plaintext components and we left 4 components to the second
iteration to get their values. The computational complexity of these iterations
is less then 226, in our experiment, it is less than one minute.

For any given valid ciphertext, our experiments successfully find the corre-
sponding plaintext.

6 Conclusion

Using first order linearization equations, we broke the two instances of TTM
public key cryptosystem recently proposed by Prof. T. T. Moh in the paper
[Moh07]. We have done experiments to confirm our attack of finding the corre-
sponding plaintext for any given valid ciphertext. Our experiments showed the
second of the two instances are easier to break than the first. These two new
instances do not achieve better design than the previous instance of TTM in
2004.

References

[CM01] J.Chen and T.Moh. On the Goubin-Courtois attack on TTM. Cryptology
ePrint Archive, 72, 2001. http://eprint.iacr.org/2001/072.

[DS03] J.Ding and D.Schmidt. The new TTM implementation is not secure. In
H.Niederreiter K.Q.Feng and C.P. Xing, editors, Proceedings of International
Workshop on Coding, Cryptography and Combinatorics (CCC 2003), pages 106–
121, 2003.

10



[GC00] L.Goubin and N.Courtois. Cryptanalysis of the TTM cryptosystem. LNCS,
Springer Verlag, 1976:44–57, 2000.

[Moh99] T.Moh. A fast public key system with signature and master key func-
tions. Lecture Notes at EE department of Stanford University., May 1999.
http://www.usdsi.com/ttm.html.

[Moh06] T.Moh. The Recent Attack of Nie et al On TTM is Faulty.
http://eprint.iacr.org/2006/417.

[Moh07] T.Moh. Two New Examples of TTM. http://eprint.iacr.org/2007/144.
[MCY04] T.Moh and J.Chen and B.Yang. Building Instances of TTM Immune to the

Goubin-Courtois Attack andthe Ding-Schmidt Attack. IACR eprint 2004/168,
http://eprint.iacr.org.

[NHL06] X.Nie, L.Hu, J.Li, C.Updegrove and J.Ding. Breaking A New Instance of
TTM Cryptosystem. Advances in ACNS2006, LNCS, volume 3989, Springer,
2006.

[Pat95] J.Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme of
Eurocrypt’88. In D.Coppersmith, editor, Advances in Cryptology – Crypto’95,
LNCS, volume 963, pages 248–261, 1995.

[DHN07] Jintai Ding, Lei Hu, Xuyun Nie, Jianyu Li and John Wagner. High Order Lin-
earization Equation(HOLE) Attack on Multivariate Public Key Cryptosystems.
The International Workshop on Practice and Theory in Public Key Cryptography
(PKC’07), LNCS, volume 4450, pages 233–248, 2007.

[NHD07] Xuyun Nie, Lei Hu, Jintai Ding, Jianyu Li, and John Wagner. Cryptanalysis
of TRMC-4 Public Key Cryptosystem. The International Workshop on Applied
Cryptography and Network Security (ACNS’2007), LNCS, volume 4521, pages
104–115, 2007.

Appendix A: Expression of the Central Map of Instance I

The expressions of (y0, · · · , y209) = φ3 ◦ φ2(x0, · · · , x102) are listed as follows,
where fi(x0, · · · , xi−1) (1 ≤ i ≤ 102) are randomly chosen quadratic polynomi-
als. In our experiment, we found some mistakes exist in these expressions in the
original paper [Moh07]. We think the expressions y16 = f16 +x5, y17 = f17 +x6,
and y18 = f18+x7 should be y16 = f16+x16, y17 = f17+x17, and y18 = f18+x18,
respectively.

y0 = x4x3 + x1x2 + x0; y1 = x55x60 + x51x61 + x50x62 + x54x63 + x1;
y2 = x71x76 + x67x77 + x66x78 + x70x79 + x2; y3 = x87x92 + x83x93 + x82x94 + x86x95 + x3;
y4 = x39x44 + x35x45 + x34x46 + x38x47 + x4; y5 = f5 + x5;
y6 = f6 + x6; y7 = f7 + x7;
y8 = f8 + x8; y9 = f9 + x9;
y10 = f10 + x10; y11 = x4x5 + x1x0 + x8 + x11;
y12 = f12 + x12; y13 = f13 + x13;
y14 = f14 + x14; y15 = f15 + x15;
y16 = f16 + x5; y17 = f17 + x6;
y18 = f18 + x7; y19 = x4x17 + x2x15 + x19;
y20 = x1x17 + x2x16 + x20; y21 = x14x5 + x13x7 + x21;
y22 = x14x0 + x12x7 + x22; y23 = f23 + x23;
y24 = x12x5 + x13x0 + x24 + x11; y25 = f25 + x25;
y26 = f26 + x26; y27 = x12x16 + x13x15 + x24 + x27;

11



y28 = x12x17 + x18x15 + x28; y29 = x13x17 + x18x16 + x29;
y30 = x14x16 + x13x23 + x30; y31 = x14x15 + x12x23 + x31;
y32 = f32 + x32; y33 = f33 + x33;
y34 = f34 + x34; y35 = f35 + x35;
y36 = f36 + x36; y37 = f37 + x37;
y38 = f38 + x38; y39 = f39 + x39;
y40 = f40 + x40; y41 = f41 + x41;
y42 = f42 + x42; y43 = x32x37 + x33x36 + x40 + x43;
y44 = x32x38 + x34x36 + x44; y45 = x33x38 + x34x37 + x45;
y46 = x35x37 + x33x39 + x46; y47 = x35x36 + x32x39 + x47;
y48 = f48 + x48; y49 = f49 + x49;
y50 = f50 + x50; y51 = f51 + x51;
y52 = f52 + x52; y53 = f53 + x53;
y54 = f54 + x54; y55 = f55 + x55;
y56 = f56 + x56; y57 = f57 + x57;
y58 = f58 + x58; y59 = x48x53 + x49x52 + x56 + x59;
y60 = x48x54 + x50x52 + x60; y61 = x49x54 + x50x53 + x61;
y62 = x51x53 + x49x55 + x62; y63 = x51x52 + x48x55 + x63;
y64 = f64 + x64; y65 = f65 + x65;
y66 = f66 + x66; y67 = f67 + x67;
y68 = f68 + x68; y69 = f69 + x69;
y70 = f70 + x70; y71 = f71 + x71;
y72 = f72 + x72; y73 = f73 + x73;
y74 = f74 + x74; y75 = x64x69 + x65x68 + x72 + x75;
y76 = x64x70 + x66x68 + x76; y77 = x65x70 + x66x69 + x77;
y78 = x67x69 + x65x71 + x78; y79 = x67x68 + x64x71 + x79;
y80 = f80 + x80; y81 = f81 + x81;
y82 = f82 + x82; y83 = f83 + x83;
y84 = f84 + x84; y85 = f85 + x85;
y86 = f86 + x86; y87 = f87 + x87;
y88 = f88 + x88; y89 = f89 + x89;
y90 = f90 + x90; y91 = x80x85 + x81x84 + x88 + x91;
y92 = x80x86 + x82x84 + x92; y93 = x81x86 + x82x85 + x93;
y94 = x83x85 + x81x87 + x94; y95 = x83x84 + x80x87 + x95;
y96 = f96 + x96; y97 = f97 + x97;
y98 = f98 + x98; y99 = f99 + x99;
y100 = f100 + x100; y101 = f101 + x101;
y102 = f102 + x102; y103 = x4x6 + x0x30 + x14;
y104 = x1x6 + x30x5 + x10; y105 = x23x5 + x1x7 + x21;
y106 = x0x23 + x4x7 + x22; y107 = x4x16 + x1x15 + x8 + x27;
y108 = x3x16 + x1x23 + x30; y109 = x3x15 + x23x4 + x31;
y110 = x12x6 + x18x0 + x28; y111 = x13x6 + x18x5 + x29;
y112 = x20x17 + x19x18 + x2 + x29; y113 = x20x23 + x8x18 + x1;
y114 = x19x23 + x8x17 + x4; y115 = x10x17 + x19x14 + x30;
y116 = x10x18 + x20x14 + x31; y117 = x4x20 + x1x19 + x2x8 + x3x10;
y118 = x0x21 + x5x22 + x6x9 + x7x11; y119 = x10x0 + x14x5 + x6x8 + x7x31;
y120 = x4x21 + x1x22 + x30x9 + x23x11; y121 = x10x22 + x14x21;
y122 = x10x9 + x8x21 + x7; y123 = x14x9 + x8x22 + x23;
y124 = x31x22 + x14x11 + x30; y125 = x31x9 + x8x11 + x1 + x0;
y126 = x23x6 + x30x7; y127 = x31x21 + x10x11 + x6;

12



y128 = x15x29 + x16x28 + x17x24 + x23x26; y129 = x12x30 + x13x31 + x18x25 + x14x27;
y130 = x29x31 + x28x30; y131 = x29x25 + x24x30 + x23;
y132 = x28x25 + x24x31 + x14; y133 = x26x31 + x28x27 + x18;
y134 = x26x25 + x24x27 + x13 + x15; y135 = x14x17 + x18x23;
y136 = x26x30 + x29x27 + x17; y137 = x15x20 + x16x19 + x8x17 + x23x10;
y138 = x30x4 + x1x31 + x2x25 + x3x27; y139 = x20x31 + x19x30;
y140 = x20x25 + x8x30 + x23; y141 = x19x25 + x8x31 + x3;
y142 = x10x31 + x19x27 + x2; y143 = x10x25 + x8x27 + x1 + x15;
y144 = x3x17 + x2x23; y145 = x10x30 + x20x27 + x17;
y146 = x19x23 + x3x20 + x2x30 + x17x31; y147 = x28x7 + x14x29 + x18x21 + x6x22;
y148 = x0x29 + x5x28 + x6x24 + x7x26; y149 = x12x21 + x13x22 + x18x9 + x14x11;
y150 = x29x22 + x28x21; y151 = x29x9 + x24x21 + x7;
y152 = x28x9 + x24x22 + x14; y153 = x26x22 + x28x11 + x18;
y154 = x26x9 + x24x11 + x13 + x0; y155 = x14x6 + x18x7;
y156 = x26x21 + x29x11 + x6; y157 = x18x4 + x1x17 + x2x23 + x14x3;
y158 = x20x30 + x19x31 + x8x28 + x10x29; y159 = x4x31 + x1x30;
y160 = x4x28 + x2x30 + x14; y161 = x1x28 + x2x31 + x10;
y162 = x3x31 + x1x29 + x8; y163 = x3x28 + x2x29 + x19 + x18;
y164 = x23x10 + x8x14; y165 = x3x30 + x4x29 + x23;
y166 = x14x7 + x23x10 + x30x21 + x6x22 y167 = x14x7 + x23x10 + x30x21 + x6x22

+x32x45 + x33x44 + x34x40 + x35x42; +x36x46 + x37x47 + x38x41 + x39x43;
y168 = x36x45 + x37x44 + x38x40 + x39x42; y169 = x32x46 + x33x47 + x34x41 + x35x43;
y170 = x45x47 + x44x46; y171 = x45x41 + x40x46 + x39;
y172 = x44x41 + x40x47 + x35; y173 = x42x47 + x44x43 + x34;
y174 = x42x41 + x40x43 + x33 + x36; y175 = x35x38 + x34x39;
y176 = x42x46 + x45x43 + x38; y177 = x14x7 + x23x10 + x30x21 + x6x22

y178 = x14x7 + x23x10 + x30x21 + x6x22 +x48x61 + x49x60 + x50x56 + x51x58;
+x52x62 + x53x63 + x54x57 + x55x59; y179 = x52x61 + x53x60 + x54x56 + x55x58;
y180 = x48x62 + x49x63 + x50x57 + x51x59; y181 = x61x63 + x60x62;
y182 = x61x57 + x56x62 + x55; y183 = x60x57 + x56x63 + x51;
y184 = x58x63 + x60x59 + x50; y185 = x58x57 + x56x59 + x49 + x52;
y186 = x51x54 + x50x55; y187 = x58x62 + x61x59 + x54;
y188 = x14x7 + x23x10 + x30x21 + x6x22 y189 = x14x7 + x23x10 + x30x21 + x6x22

+x64x77 + x65x76 + x66x72 + x67x74; +x68x78 + x69x79 + x70x73 + x71x75;
y190 = x68x77 + x69x76 + x70x72 + x71x74; y191 = x64x78 + x65x79 + x66x73 + x67x75;
y192 = x77x79 + x76x78; y193 = x77x73 + x72x78 + x71;
y194 = x76x73 + x72x79 + x67; y195 = x74x79 + x76x75 + x66;
y196 = x74x73 + x72x75 + x65 + x68; y197 = x67x70 + x66x71;
y198 = x74x78 + x77x75 + x70; y199 = x14x7 + x23x10 + x30x21 + x6x22

y200 = x14x7 + x23x10 + x30x21 + x6x22 +x80x93 + x81x92 + x82x88 + x83x90;
+x84x94 + x85x95 + x86x89 + x87x91; y201 = x84x93 + x85x92 + x86x88 + x87x90;
y202 = x80x94 + x81x95 + x82x89 + x83x91; y203 = x93x95 + x92x94;
y204 = x93x89 + x88x94 + x87; y205 = x92x89 + x88x95 + x83;
y206 = x90x95 + x92x91 + x82; y207 = x90x89 + x88x91 + x81 + x84;
y208 = x83x86 + x82x87; y209 = x90x94 + x93x91 + x86;

13



Appendix B: Expression of the Central Map of Instance II

The expressions of (y0, · · · , y214) = φ3 ◦ φ2(x0, · · · , x111) are listed as follows.
In these expressions in the original paper [Moh07], the expression on y108 is
missed. So, in our experiments, we set y108 = f(x0, · · · , x107) + x108, where f is
a randomly chosen quadratic polynomial.

y0 = x1x4 + x2x3 + x0;
y1 = x96x100 + x92x102 + x91x103 + x95x104 + x1;
y2 = x80x85 + x76x86 + x75x87 + x79x88 + x2;
y3 = x64x69 + x60x70 + x59x71 + x63x72 + x1x2 + x3;
y4 = x48x53 + x44x54 + x43x55 + x47x56 + x1x3 + x2x3 + x4;
y5 = x0x4 + x1x2 + x3x4 + x2x4 + x2x3 + x1x3 + x5;
y6 = x5x0 + x1x4 + x2x3 + x5x1 + x2x4 + x6;
y7 = x6x0 + x5x1 + x3x4 + x2x6 + x5x4 + x7;
y8 = x7x1 + x2x6 + x5x3 + x4x7 + x3x6 + x8;
y9 = x8x0 + x7x2 + x6x4 + x5x1 + x4x7 + x9;
y10 = x9x0 + x8x1 + x7x2 + x3x6 + x5x4 + x10;
y11 = x6x10 + x7x9 + x6 + x9 + x10 + x11;
y12 = x5x10 + x7x8 + x5 + x8 + x10 + x12;
y13 = x5x9 + x8x6 + x8 + x9 + x13;
y14 = x13x8 + x12x9 + x11x10 + x13x11 + x12x7 + x14;
y15 = x14x4 + x13x5 + x12x6 + x11x7 + x10x8 + x15;
y16 = x15x14 + x13x12 + x11x10 + x9x8 + x7x6 + x16;
y17 = x16x15 + x14x5 + x13x6 + x12x7 + x11x8 + x17;
y18 = x17x5 + x16x10 + x15x11 + x14x12 + x13x6 + x18;
y19 = x18x4 + x17x6 + x16x8 + x15x10 + x14x12 + x19;
y20 = x19x7 + x18x9 + x17x11 + x16x13 + x15x8 + x20;
y21 = x20x16 + x19x14 + x18x12 + x17x10 + x16x8 + x21;
y22 = x21x8 + x20x9 + x19x10 + x18x11 + x17x12 + x22;
y23 = x18x22 + x19x21 + x18 + x21 + x22 + x23;
y24 = x17x22 + x19x20 + x17 + x20 + x22 + x24;
y25 = x17x21 + x20x18 + x20 + x21 + x25;
y26 = x25x11 + x24x12 + x23x13 + x22x14 + x26;
y27 = x26x5 + x25x7 + x24x9 + x23x11 + x22x13 + x27;
y28 = x27x6 + x26x8 + x25x10 + x24x12 + x23x14 + x28 + x27 + x26;
y29 = x28x5 + x27x7 + x26x9 + x25x11 + x24x13 + x29 + x21 + x22;
y30 = x29x15 + x28x16 + x27x17 + x26x18 + x25x19 + x24x18 + x30;
y31 = x30x17 + x28x18 + x26x19 + x24x20 + x22x21 + x23x6 + x31 + x30 + x29;
y32 = x31x7 + x30x8 + x29x9 + x28x10 + x27x11 + x26x12 + x25x13 + x32 + x27 + x23;
y33 = x32x5 + x31x6 + x30x7 + x29x14 + x28x15 + x27x16 + x26x17 + x33 + x5 + x6;
y34 = x33x20 + x32x19 + x31x18 + x30x17 + x29x16 + x28x15 + x34 + x4 + x10 + x11;
y35 = x30x22 + x31x21 + x30 + x21 + x22 + x35;
y36 = x29x22 + x31x20 + x29 + x20 + x22 + x36;
y37 = x29x21 + x20x30 + x20 + x21 + x37;
y38 = x33x7 + x34x6 + x6 + x33 + x34 + x38;
y39 = x32x7 + x34x5 + x5 + x32 + x34 + x39;
y40 = x32x6 + x5x33 + x32 + x33 + x40;
y41 = x40x1 + x39x3 + x38x5 + x37x7 + x36x9 + x35x11 + x41 + x40 + x39;
y42 = x41x2 + x40x4 + x39x6 + x38x8 + x37x10 + x36x12 + x42 + x38 + x37;

14



y43 = x42x13 + x41x15 + x40x17 + x39x19 + x38x21 + x37x23 + x43;
y44 = x43x14 + x42x26 + x41x18 + x40x20 + x39x22 + x38x24 + x44 + x43 + x3;
y45 = x44x25 + x43x27 + x42x29 + x41x31 + x40x33 + x39x35 + x45 + x8 + x6;
y46 = x45x26 + x44x28 + x43x30 + x42x32 + x41x34 + x40x36 + x46 + x40 + x39;
y47 = x46x1 + x45x4 + x44x7 + x43x10 + x42x13 + x41x16 + x40x19 + x47 + x3 + x7;
y48 = x47x2 + x46x5 + x45x8 + x44x11 + x43x14 + x42x17 + x41x20 + x48 + x47 + x38;
y49 = x48x3 + x47x6 + x46x9 + x45x12 + x44x15 + x43x18 + x42x21 + x49;
y50 = x49x22 + x48x25 + x47x28 + x46x31 + x45x34 + x44x37 + x43x40 + x50 + x10 + x17;
y51 = x50x23 + x49x26 + x48x29 + x47x32 + x46x35 + x45x38 + x44x41 + x51 + x8 + x22;
y52 = x41x46 + x42x45 + x49 + x52;
y53 = x41x47 + x43x45 + x53;
y54 = x42x47 + x43x46 + x54;
y55 = x44x46 + x42x48 + x55;
y56 = x44x45 + x41x48 + x56;
y57 = x56x0 + x55x5 + x54x10 + x53x15 + x52x20 + x51x25 + x50x30 + x57 + x56;
y58 = x57x1 + x56x6 + x55x11 + x54x16 + x53x21 + x52x26 + x51x31 + x58 + x52 + x47;
y59 = x55x2 + x54x7 + x53x12 + x52x17 + x51x22 + x50x27 + x49x32 + x59 + x20 + x15;
y60 = x59x3 + x58x8 + x57x13 + x56x18 + x55x23 + x54x28 + x53x13 + x60 + x2 + x8;
y61 = x56x7 + x44x8 + x33x17 + x35x20 + x40x22 + x48x25 + x23x24 + x60 + x7 + x15;
y62 = x61x20 + x37x38 + x44x34 + x57x9 + x59x15 + x40x39 + x60x2 + x62 + x9 + x35;
y63 = x62x15 + x58x7 + x37x13 + x48x16 + x36x38 + x27x44 + x55x3 + x63 + x44;
y64 = x61x19 + x60x9 + x54x17 + x41x52 + x56x28 + x3x6 + x16x8 + x64 + x23 + x17;
y65 = x64x63 + x34x56 + x29x41 + x31x61 + x55x37 + x59x62 + x1x56 + x65 + x6;
y66 = x65x64 + x1x27 + x47x59 + x38x39 + x48x50 + x27x62 + x36x57 + x66 + x56 + x46;
y67 = x65x63 + x38x58 + x27x39 + x37x59 + x40x65 + x4x34 + x15x46 + x67 + x4 + x16;
y68 = x57x62 + x58x61 + x65 + x68;
y69 = x57x63 + x59x61 + x69;
y70 = x58x63 + x59x62 + x70;
y71 = x60x62 + x58x64 + x71;
y72 = x60x61 + x57x64 + x72;
y73 = x72x71 + x70x69 + x68x67 + x1x19 + x25x70 + x36x68 + x57x66 + x73 + x72 + x9;
y74 = x73x5 + x72x9 + x71x15 + x68x3 + x69x27 + x38x49 + x40x70 + x74 + x11 + x21;
y75 = x74x4 + x72x67 + x36x68 + x49x51 + x27x67 + x39x44 + x48x66 + x75 + x12 + x22;
y76 = x74x75 + x49x27 + x36x1 + x46x65 + x70x6 + x71x18 + x72x7 + x76 + x13 + x34;
y77 = x76x0 + x75x16 + x68x24 + x74x69 + x73x57 + x70x27 + x69x17 + x77 + x18 + x29;
y78 = x77x9 + x76x30 + x75x73 + x74x41 + x73x45 + x68x53 + x69x62 + x78 + x12 + x37;
y79 = x78x41 + x77x31 + x76x7 + x67x75 + x39x51 + x45x63 + x29x28 + x79 + x0 + x27 + x49;
y80 = x79x71 + x74x75 + x76x77 + x38x47 + x45x62 + x37x71 + x25x53 + x80 + x71 + x47;
y81 = x80x72 + x79x78 + x48x64 + x78x5 + x77x9 + x71x36 + x68x59 + x81 + x80 + x35;
y82 = x81x49 + x79x26 + x77x10 + x75x47 + x73x64 + x71x70 + x79x3 + x82 + x56 + x49;
y83 = x82x8 + x73x74 + x81x69 + x79x78 + x35x61 + x74x75 + x80x72 + x83 + x1 + x48;
y84 = x73x78 + x74x77 + x81 + x84;
y85 = x73x79 + x75x77 + x85;
y86 = x74x79 + x75x78 + x86;
y87 = x76x78 + x74x80 + x87;
y88 = x76x77 + x73x80 + x88;
y89 = x88x84 + x87x10 + x86x29 + x85x21 + x83x19 + x79x14 + x78x65 + x89 + x84 + x11;
y90 = x89x11 + x35x77 + x83x87 + x84x27 + x85x37 + x86x47 + x88x57 + x90 + x85 + x4;
y91 = x90x6 + x88x15 + x87x23 + x86x35 + x85x84 + x83x17 + x79x34 + x91 + x88 + x43;
y92 = x91x12 + x89x13 + x90x14 + x88x21 + x87x31 + x86x41 + x67x65 + x92 + x87 + x21;

15



y93 = x92x24 + x90x56 + x88x63 + x86x54 + x84x44 + x79x56 + x78x91 + x93 + x89 + x42;
y94 = x93x17 + x86x26 + x92x35 + x91x90 + x89x44 + x88x51 + x87x66 + x94 + x78 + x3 + x17;
y95 = x94x11 + x93x1 + x92x41 + x91x55 + x89x33 + x88x71 + x87x22 + x95 + x1 + x17 + x29;
y96 = x95x4 + x94x17 + x93x29 + x92x77 + x91x76 + x90x53 + x89x65 + x96 + x94 + x19;
y97 = x96x5 + x94x53 + x94x16 + x92x88 + x91x75 + x90x62 + x89x77 + x97 + x7 + x18;
y98 = x97x8 + x96x17 + x95x89 + x92x73 + x81x82 + x90x82 + x89x84 + x98 + x9 + x27;
y99 = x98x7 + x96x97 + x95x23 + x92x71 + x81x90 + x82x89 + x85x86 + x99 + x89 + x12;
y100 = x95x89 + x91x93 + x100;
y101 = x89x94 + x90x93 + x97 + x101;
y102 = x90x95 + x91x94 + x102;
y103 = x92x94 + x90x96 + x103;
y104 = x92x93 + x89x96 + x104;
y105 = x1x34 + x2x33 + x1 + x33 + x34 + x105;
y106 = x0x34 + x2x32 + x0 + x32 + x34 + x106;
y107 = x0x33 + x32x1 + x32 + x33 + x107;
y108 = f(x0, · · · , x107) + x108;
y109 = x4x19 + x108x18 + x4 + x108 + x18 + 1 + x19 + x109;
y110 = x3x19 + x108x17 + x3 + x108 + x17 + 1 + x19 + x110;
y111 = x3x18 + x17x4 + x3 + x4 + x17 + x18 + x111;
y112 = x18x10 + x19x9 + x18 + x9 + x10 + x23;
y113 = x17x10 + x19x8 + x17 + x8 + x10 + x24;
y114 = x17x9 + x8x18 + x8 + x9 + x25;
y115 = x4x31 + x108x30 + x4 + x108 + x30 + 1 + x31 + x109;
y116 = x3x31 + x108x29 + x3 + x108 + x29 + 1 + x31 + x110;
y117 = x3x30 + x29x4 + x3 + x4 + x29 + x30 + x111;
y118 = x1x22 + x2x21 + x1 + x21 + x22 + x105;
y119 = x0x22 + x2x20 + x0 + x20 + x22 + x106;
y120 = x0x21 + x20x1 + x20 + x21 + x107;
y121 = x5x11 + x12x6 + x7x13 + x11 + x12 + x13 + x0x105 + x1x106 + x2x107 + x105 + x106 + x107;
y122 = x3x109 + x4x110 + x108x111 + x109 + x110 + x111 + x0x105 + x1x106 + x2x107 + x105 + x106 + x107;
y123 = x29x35 + x30x36 + x31x37 + x35 + x36 + x37;
y124 = x32x38 + x33x39 + x34x40 + x40;
y125 = x0x38 + x1x39 + x2x40 + x38 + x39 + x40;
y126 = x32x105 + x33x106 + x34x107 + x107;
y127 = x105x39 + x38x106 + x2 + x34;
y128 = x105x40 + x107x38 + x1 + x33;
y129 = x106x40 + x107x39 + x0 + x32;
y130 = x17x23 + x24x18 + x25x19 + x23 + x24 + x25;
y131 = x26x17 + x18x27 + x19x28 + x26 + x27 + x28;
y132 = x20x23 + x21x24 + x22x25 + x25;
y133 = x23x27 + x26x24 + x19 + x22;
y134 = x23x28 + x25x26 + x18 + x21;
y135 = x24x28 + x25x27 + x17 + x20;
y136 = x14x5 + x6x15 + x7x16 + x14 + x15 + x16;
y137 = x11x8 + x12x9 + x10x13 + x13;
y138 = x15x11 + x14x12 + x7 + x10;
y139 = x11x16 + x13x14 + x6 + x9;
y140 = x12x16 + x13x15 + x5 + x8;
y141 = x0x26 + x1x27 + x2x28 + x26 + x27 + x28;
y142 = x20x105 + x21x106 + x22x107 + x107;

16



y143 = x105x27 + x26x106 + x2 + x22;
y144 = x105x28 + x107x26 + x1 + x21;
y145 = x106x28 + x107x27 + x0 + x20;
y146 = x3x23 + x4x24 + x108x25 + x23 + x24 + x25;
y147 = x17x109 + x18x110 + x19x111 + x109 + x110 + x111;
y148 = x109x24 + x23x110 + x108 + x19;
y149 = x109x25 + x111x23 + x4 + x18 + 1;
y150 = x110x25 + x111x24 + x3 + x17 + 1;
y151 = x3x35 + x4x36 + x108x37 + x35 + x36 + x37;
y152 = x29x109 + x30x110 + x31x111 + x109 + x110 + x111;
y153 = x109x36 + x35x110 + x108 + x31;
y154 = x109x37 + x111x35 + x4 + x30 + 1;
y155 = x110x37 + x111x36 + x3 + x29 + 1;
y156 = x29x26 + x30x27 + x31x28 + x26 + x27 + x28;
y157 = x35x20 + x21x36 + x22x37 + x37;
y158 = x35x27 + x26x36 + x31 + x22;
y159 = x35x28 + x37x26 + x30 + x21;
y160 = x36x28 + x37x27 + x29 + x20;
y161 = x32x11 + x33x12 + x34x13 + x13;
y162 = x38x5 + x39x6 + x7x40 + x38 + x39 + x40;
y163 = x38x12 + x11x39 + x34 + x7;
y164 = x38x13 + x40x11 + x33 + x6;
y165 = x39x13 + x40x12 + x32 + x5;
y166 = x17x14 + x18x15 + x19x16 + x14 + x15 + x16;
y167 = x8x23 + x24x9 + x25x10 + x25;
y168 = x23x15 + x14x24 + x19 + x10;
y169 = x23x16 + x25x14 + x18 + x9;
y170 = x24x16 + x25x15 + x17 + x8;
y171 = x41x54 + x42x53 + x43x49 + x44x51 + x111 + x110 + x109 + x4x110 + x108x111 + x3x109;
y172 = x45x55 + x46x56 + x47x50 + x48x52;
y173 = x45x54 + x46x53 + x47x49 + x48x51;
y174 = x41x55 + x42x56 + x43x50 + x44x52;
y175 = x54x56 + x53x55;
y176 = x54x50 + x49x55 + x48;
y177 = x53x50 + x49x56 + x44;
y178 = x51x56 + x53x52 + x43;
y179 = x51x50 + x49x52 + x42 + x45;
y180 = x44x47 + x43x48;
y181 = x51x55 + x54x52 + x47;
y182 = x57x70 + x58x69 + x59x65 + x60x67 + x111 + x110 + x109 + x4x110 + x108x111 + x3x109;
y183 = x61x71 + x62x72 + x63x66 + x64x68;
y184 = x61x70 + x69x62 + x65x63 + x64x67;
y185 = x57x71 + x58x72 + x59x66 + x60x68;
y186 = x70x72 + x69x71;
y187 = x70x66 + x65x71 + x64;
y188 = x69x66 + x65x72 + x60;
y189 = x72x67 + x69x68 + x59;
y190 = x67x66 + x65x68 + x58 + x61;
y191 = x60x63 + x59x64;
y192 = x67x71 + x70x68 + x63;

17



y193 = x73x86 + x74x85 + x75x81 + x76x83 + x111 + x110 + x109 + x4x110 + x108x111 + x3x109;
y194 = x77x87 + x78x88 + x79x82 + x80x84;
y195 = x77x86 + x78x85 + x79x81 + x80x83;
y196 = x73x87 + x74x88 + x75x82 + x76x84;
y197 = x86x88 + x85x87;
y198 = x86x82 + x81x87 + x80;
y199 = x85x82 + x81x88 + x76;
y200 = x83x88 + x85x84 + x75;
y201 = x83x82 + x81x84 + x74 + x77;
y202 = x76x79 + x75x80;
y203 = x83x87 + x86x84 + x79;
y204 = x89x102 + x90x100 + x91x97 + x92x99 + x111 + x110 + x109 + x4x110 + x108x111 + x3x109;
y205 = x93x103 + x94x104 + x95x98 + x96x101;
y206 = x93x102 + x94x100 + x95x97 + x96x99;
y207 = x89x103 + x90x104 + x91x98 + x92x101;
y208 = x102x104 + x100x103;
y209 = x102x98 + x97x103 + x96;
y210 = x100x98 + x97x104 + x92;
y211 = x99x104 + x100x101 + x91;
y212 = x99x98 + x97x101 + x90 + x93;
y213 = x92x95 + x91x96;
y214 = x99x103 + x102x101 + x95;

18


