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Abstract. We propose a novel security notion for public-key encryption
schemes – ciphertext undetectability. Informally, an encryption scheme
has the property of ciphertext undetectability, if the attacker is unable
to distinguish between valid and invalid ciphertexts. We compare this
notion with the established ones, such as indistinguishability of cipher-
texts and plaintext awareness. We analyze the possibilities of construct-
ing schemes with the property of ciphertext undetectability. Moreover,
we prove that the Damg̊ard ElGamal, the Cramer-Shoup scheme and its
lite variant achieve ciphertext undetectability under standard assump-
tions.
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1 Introduction

In the framework of provable security, there are various established security no-
tions for public-key encryption schemes. The security notions evolved, from sim-
ple one-wayness into plaintext awareness, to reflect gradually increasing require-
ments we impose on encryption schemes. Usually, a security notion is obtained by
combining an adversarial goal, such as indistinguishability or non-malleability,
and an attack model, such as chosen plaintext attack or (adaptive) chosen ci-
phertext attack. Another approach is to require that the attacker is unable to
produce a valid ciphertext without the knowledge of the corresponding plaintext
(leading to various forms of plaintext awareness). For relations among standard
security notions, see [3].

We propose a novel adversarial goal – ciphertext undetectability. Informally,
an encryption scheme has the property of ciphertext undetectability, if the poly-
nomial time probabilistic attacker is unable to distinguish between valid and
invalid ciphertexts. The motivation behind this security notion is three-fold:

– In contrast to plaintext awareness, distinguishing valid ciphertexts might be,
for the attacker, easier than actually producing them.
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– Similar concepts were already studied and proved to be useful. Hall, Gold-
berg, and Schneier [9] used an oracle for distinguishing valid ciphertexts
(validity checking oracle) in the attack model (reaction attack). Dent [8] de-
fined a much stronger notion of encryption simulatability in order to prove
the plaintext awareness of the Cramer-Shoup system.

– Ciphertext undetectability can be an interesting property per-se. Besides
purely theoretical view, it can be viewed as a “steganographic” property of
an encryption scheme – inability to distinguish actual ciphertexts from some
random elements.

Since ciphertext undetectability (CUD for short) describes an adversarial
goal, we can pair it with the well-known attack models, namely chosen plaintext
attack (CPA), (non-adaptive) chosen ciphertext attack (CCA1), and adaptive
chosen ciphertext attack (CCA2).

Contribution. We give a formal definition of CUD, and analyze the properties
of the resulting security notions. Namely:

– We prove a separation of CUD-CPA/CCA1/CCA2 classes. More impor-
tantly, we show that CUD is an independent security notion for public-key
encryption schemes by proving separation of CUD-atk and security notions
IND-CPA/CCA1/CCA2 and PA. Since CUD-atk does not imply even IND-
CPA, see Theorem 4, it can hardly provide any form of secrecy alone. How-
ever, CUD can be viewed as an additional, non-trivial property for public-key
encryption schemes. Since PA does not imply CUD-CPA, see Theorem 5, the
CUD property is not guaranteed even for PA secure schemes.

– We prove a separation of CUD-atk and usual public-key steganographic se-
curity notion of ciphertext pseudorandomness.

– We discuss and analyze various approaches to construct schemes with the
CUD property, namely doubling technique, and padding. These techniques
allow to turn ElGamal, Goldwasser-Micali, or other IND-CPA secure schemes
into CUD-CPA secure variants.

– We prove the CUD-CPA security of Cramer-Shoup lite scheme, and DEG
(Damg̊ard ElGamal) scheme under the DDH assumption. In addition, we
prove CUD-CPA security of Cramer-Shoup scheme under the DDH assump-
tion, and CUD-CCA1 security of Cramer-Shoup lite scheme and DEG scheme
under the DDH and DHK1 assumptions.

Related work. Plaintext awareness (PA, see [3]) is the strongest security no-
tion for public-key encryption schemes. Informally, any attacker in the PA se-
cure scheme is unable to produce a valid ciphertext without the knowledge of
the corresponding plaintext. The attacker’s task can be easier when his goal is
not to produce a valid ciphertext, but recognize valid ciphertexts. The idea of
distinguishing valid and invalid ciphertext was used in the reaction attacks [9]
or validity-checking attacks [11], where the attacker can use this ability (mod-
eled as an oracle) to attack the scheme. On the contrary, our approach treats



the validity-checking as a goal of the attacker. We can look at the attacker as a
“censor”, who knows your public key and tries to block all your ciphertexts (but
not the invalid ciphertexts).

Steganographic properties of public-key encryption schemes were studied in
[1, 2, 10]. The idea of ciphertext pseudorandomness (or “real-or-ideal” property)
is that the attacker chooses a message and then is unable to distinguish some
encryption of this message from a random string of the same length. This notion
differs from our notion of CUD. In fact, they are incomparable, as we will prove
later.

Dent defined similar, but much stronger notion of simulatable encryption [8],
in order to prove the plaintext awareness of the Cramer-Shoup scheme in the
standard model. Dent proved that each simulatable encryption scheme is IND-
CCA2 secure. CUD can be viewed as a simpler and weaker version of simulatable
encryption.

The paper is structured as follows. Section 2 contains notions and defini-
tions used in the paper. In addition, we define the security notion of ciphertext
undetectability. In Section 3 we prove the separation of the CUD-atk classes.
The relations of CUD-atk to established security notions of IND-atk, PA and
ciphertext pseudorandomness are analyzed in Section 4. We discuss the con-
structions of CUD-atk secure schemes and CUD-properties of DEG scheme and
Cramer-Shoup schemes in Section 5.

2 Preliminaries

Throughout the paper, we use the well-known notions, typical for the provable
security framework. We call a function f : N → R negligible, if for every con-
stant c ≥ 0 there exists an integer kc such that f(k) ≤ k−c for all k ≥ kc. By a

shorthand x
R
←M we denote assigning to x a random value from the set M . We

call two families of sets {Xk}k∈N and {Yk}k∈N computationally indistinguishable
and denote this by a shorthand {Xk}k∈N ≈c {Yk}k∈N (or X ≈c Y if the param-
eter k is obvious) if, for any probabilistic polynomial algorithm A, there exists
a negligible function ε such that, for any k:

Pr[x
R
← Xk; b← A(x) : b = 1]− Pr[y

R
← Yk; b← A(y) : b = 1] ≤ ε(k).

We denote an asymmetric encryption scheme by the usual triple S = (G, E, D),
where G is the randomized key generation algorithm, E is the randomized en-
cryption algorithm and D is the deterministic decryption algorithm. The set
of all plaintexts is denoted by P , so P = Dom(E). The symbol C denotes the
set Dom(D) while it is required to hold E(P) ⊆ C and ∀p ∈ P ; D(E(p)) = p
for all random coins of E. We denote by Cv the set of all valid ciphertexts, i.e.
Cv = {c ∈ C | D(c) 6= ⊥}.

We define ciphertext undetectability using an experiment. Let A be a prob-
abilistic polynomial adversary A running in two phases: ask and guess. In the
ask phase, A can do precomputations, possibly with an access to the decryption



oracle (depending on the attack model atk). As a result, it outputs some state
information s for its second phase. Then a fair coin is tossed and depending on
the result, either a valid or invalid ciphertext from the superset C of Cv is chosen
as a challenge. This challenge is presented to the adversary and its task is to
guess the result of the coin toss. The experiment is formalized as follows:

Experiment Exptcud−atk−b

S,C,A
(k)

(pk, sk)← G(1k);
s← AD1(.)(ask,pk);

if b = 1 then y
R
← Cv

else y
R
← C \ Cv;

b′ ← AD2(.)(guess,y,s);
return b′;

attack model D1(.) D2(.)
CPA ⊥ ⊥
CCA1 D(.) ⊥
CCA2 D(.) D(.)

where b ∈ {0, 1}, atk ∈ {CPA, CCA1, CCA2} and the oracles D1 and D2 are
instantiated – reflecting the attack model – according to the table. As usually,
if atk = CCA2 we do not allow A to try to decrypt the challenge y. We define
the advantage of an adversary to be

Advcud−atk

S,C,A
(k) = Pr[Exptcud−atk−1

S,C,A
(k) = 1]− Pr[Exptcud−atk−0

S,C,A
(k) = 1]

and the insecurity of the scheme (relative to a given set C) to be

InSeccud−atk

S,C
(k) = max

A
Advcud−atk

S,C,A
(k)

where A ranges through all polynomial time probabilistic adversaries. These
notions are defined to correspond with analogous notions defined for indistin-
guishability in [3]. We also refer to [3] for the definition of indistinguishability
and plaintext awareness in the random oracle model.

Definition 1. An asymmetric encryption scheme S is CUD-atk secure (atk ∈
{CPA, CCA1, CCA2}) if there exists a set C such that:

1. Cv ( C
2. there exists a deterministic polynomial algorithm, which accepts exactly the

set C
3. the function InSec

cud−atk

S,C
(.) is negligible.

Intuitively, an encryption scheme is CUD secure, if its valid ciphertexts can-
not be distinguished from other members of some larger set, possibly even with
a (limited) access to the decryption oracle. In the specific case of CUD-CPA,
this corresponds to the well-known notion of computational indistinguishability
of sets Cv and C \ Cv with respect to the security parameter of the scheme.

For most of the real encryption schemes, there exists an implicitly given set
C satisfying the properties 1 and 2. Obviously, if Cv can be easily recognized,
there exists no set C with the required properties, therefore the scheme is not
CUD-atk secure for any attack scenario atk.



Example 1. The set Cv is easily recognizable for textbook versions of RSA, El-
Gamal, or Goldwasser-Micali scheme, hence none of these schemes if CUD-atk
secure.

3 Separation of the CUD-atk Classes

It trivially holds CUD-CCA2 ⇒ CUD-CCA1 ⇒ CUD-CPA. In this section, we
shall prove the separations for the other direction.

Theorem 1 (CUD-CPA 6⇒ CUD-CCA1). If there exists a CUD-CPA secure
scheme, then there exists a CUD-CPA secure scheme which is not CUD-CCA1
secure.

Proof. Let S = (G, E, D) be a CUD-CPA secure scheme. Let us consider the
scheme S′ = (G′, E′, D′):

Algorithm G′(1k)

u
R
← {0, 1}k

(pk, sk)← G(1k)
return ((pk, u), sk)

Algorithm E′
pk,u(m)

return 0‖Epk(m)

Algorithm D′
sk(c′)

parse c′ as b‖c
if b = 0 return D(c)

else if c = u return sk
else return ⊥

S′ is obviously not CUD-CCA1 secure. Any adversary who asks the provided
oracle to decrypt the ciphertext 1‖u obtains the private key sk and can decide
validity of arbitrary messages.

However, S′ remains CUD-CPA secure. Let Cv be the set of valid ciphertexts
in S, let C be the corresponding superset according to the definition of CUD-CPA
for S. Then the set of valid ciphertexts in S′ is obviously C′v = 0‖Cv ∪{1‖u}. We

shall show that C
′
= 0‖C ∪ {1‖u} can be used as the required set proving that

S′ is CUD-CPA secure. It is easy to see that C′v and C
′
satisfy properties 1 and

2 of Definition 1. To prove the last property, suppose there exists an adversary
A′ capable of distinguishing valid ciphertexts of S′ from the other members of

C
′
. Then the following adversary A would be capable of doing the same for S

and the set C.

Algorithm A(ask, pk)

u
R
← {0, 1}k

s← A′(ask, (pk, u))
return s

Algorithm A(guess, y, s)
b′ ← A′((guess, 0‖y, s)
return b′

The value u is random and therefore useless without access to the decryption
oracle. A answers correctly whenever A′ does, so their advantage only differs
according to the behavior of A′ on the input 1‖u, but this minor difference is
clearly negligible. ⊓⊔

Theorem 2 (CUD-CCA1 6⇒ CUD-CCA2). If there exists a CUD-CCA1
secure scheme, then there exists a CUD-CCA1 secure scheme which is not CUD-
CCA2 secure.



Proof. Let S = (G, E, D) be a CUD-CCA1 secure scheme. Let us consider S′ =
(G, E′, D′):

Algorithm E′
pk(m)

return 0‖Epk(m)

Algorithm D′
sk(c′)

parse c′ as b‖c
return Dsk(c)

S′ is obviously not CUD-CCA2 secure – an adversary can decide validity of
any challenge 0‖c by querying the decryption oracle for 1‖c.

However, S′ remains CUD-CCA1 secure. Let Cv denote the set of valid cipher-
texts of S and let C be the corresponding superset guaranteed by the CUD-CCA1
definition for S. Then the set of valid ciphertexts of S′ is {0, 1}‖Cv, let us show
that {0, 1}‖C can be used as the corresponding superset. Suppose there exists an
adversary A′ that can distinguish valid ciphertexts of S′ from the other members
of {0, 1}‖C. Then the following adversary A can do the same for S and C.

Algorithm AD(.)(ask, pk)
s← A′D′(.)(ask, pk)
return s

Algorithm A(guess, s, c)

d
R
← {0, 1}

b′ ← A′(guess, s, d‖c)
return b′

Obviously A can use the oracle D(.) to perfectly simulate the oracle D′(.) for
A′ during its first phase. A answers correctly whenever A′ does, therefore the
advantages of both adversaries are the same. ⊓⊔

4 Relations to established notions

In this section, we shall inspect the relationship between ciphertext undetectabil-
ity and some well-known security notions: indistinguishability, various forms of
plaintext awareness and ciphertext pseudornadomness. Obviously, we cannot ex-
pect ciphertext undetectability to imply secrecy. It turns out that neither does
indistinguishability imply CUD. However, the notion of plaintext awareness in
the standard model defined in [4] plays a similar role when combined with CUD,
as it does when combined with indistinguishability.

4.1 CUD and Indistinguishability

Let us first inspect the relationship between ciphertext undetectability and in-
distinguishability.

Theorem 3 (IND-atk 6⇒ CUD-CPA). For any atk ∈ {CPA, CCA1, CCA2},
if there exists an IND-atk secure scheme then there exists an IND-atk secure
scheme which is not CUD-CPA secure.

Proof. Let atk ∈ {CPA,CCA1,CCA2} be an attack model, let S = (G, E, D) be
an IND-atk secure scheme. If S is CUD-CPA secure, let C be the corresponding



superset of Cv. Let us consider a new scheme S′ = (G′, E, D′), where G′ and D′

are modified in the following way

Algorithm G′(1k)
(pk, sk)← G(1k)

p0
R
← P

return ((pk, p0), (sk, p0))

Algorithm D′

(sk,p0)(c
′)

if c′ ∈ C then
if Dsk(c′) = ⊥ then return p0

else return Dsk(c′)
else return ⊥

and the encryption algorithm works as before, using the public key pk. Intu-
itively, D′ returns an arbitrary, valid, publicly known plaintext p0 whenever the
original decryption procedure D would fail on a member of C. This can be done,
since the membership in C can be easily decided. Note that this modification
does not violate the basic condition of correct decryption, posed on all encryp-
tion schemes.

According to our argument following Definition 1, the new scheme S′ is not
CUD-CPA secure, since its set of valid ciphertexts is now C, which is easily
recognizable.

However, S′ remains IND-atk secure. It would be easy to transform any
successful IND-atk attacker on S′ into an IND-atk attacker on S, because the
D′ oracle can be perfectly simulated, having acces to the D oracle. Therefore,
by our assumption on S, S′ is also IND-atk secure. ⊓⊔

Theorem 4 (CUD-atk 6⇒ IND-CPA). For any atk ∈ {CPA, CCA1, CCA2},
if there exists a CUD-atk secure encryption scheme, then there exists a CUD-atk
secure scheme which is not IND-CPA secure.

Proof. Let atk ∈ {CPA,CCA1,CCA2} be an attack model, let S = (G, E, D) be
a CUD-atk secure scheme. Consider a new scheme S′ = (G′, E′, D):

Algorithm G′(1k)
(pk, sk)← G

m+ R
← P

c+ ← Epk(m+)
return ((pk, m+, c+), sk)

Algorithm E′

pk,m+,c+(m)

if m = m+ return c+

else return Epk(m)

The new scheme S′ is not IND-CPA secure, since its behavior on a publicly
known plaintext m+ is deterministic.

However, S′ is CUD-atk secure. To see this, it suffices to observe that both
the sets of valid ciphertexts and the decryption oracles of S and S′ are the same.
Therefore, any successful CUD-atk adversary for S′ would also be a successful
CUD-atk adversary for S. ⊓⊔

4.2 CUD and Plaintext Awareness

Let us examine the relationship of ciphertext undetectability and various forms
of plaintext awareness. First, let us consider the concept of plaintext awareness in



the random oracle model, as defined in [3], which we shall denote PA. Although
PA is a very strong security notion, it does not imply ciphertext undetectability,
as the next theorem shows.

Theorem 5 (PA 6⇒ CUD-CPA). If there exists a PA encryption scheme,
then there exists a PA scheme which is not CUD-CPA secure.

Proof. We can use the same construction as in the proof of Theorem 3. Let
S be a PA encryption scheme, let S′ be the scheme obtained from S by this
construction. As before, S′ is no longer CUD-CPA secure. Since S was IND-
CPA secure (as a part of PA), the proof of Theorem 3 implies that so is also S′.
Moreover, any successful plaintext extractor A for S can be easily transformed
into a plaintext extractor A′ for S′ that works in the same way as A does, but
instead of returning ⊥ on a member of C, it returns p0. Since S is plaintext aware,
A exists, and therefore also A′ can be constructed. This proves the plaintext
awareness of S′. ⊓⊔

Now let us consider the forms of plaintext awareness in the standard model,
defined in [4]. The following theorem shows the intuitive fact that PA1 accom-
panied with CUD-CPA plays the same role as it does for indistinguishability, i.e.
it prevents any adversary from exploiting the pre-challenge queries by making
them useless.

Theorem 6 (CUD-CPA + PA1 ⇒ CUD-CCA1). If S is a PA1 and CUD-
CPA secure encryption scheme, then S is CUD-CCA1 secure.

Proof. The intuitive argument goes as follows: if there exists a successful plain-
text extractor capable of answering the pre-challenge decryption queries without
knowing the private key (based only on the random tape of the adversary), then
this plaintext extractor can be used as a subroutine of the adversary to answer
the queries. Therefore, a successful CUD-CCA1 adversary does not need to use
its pre-challenge decryption oracle and can be used as a CUD-CPA adversary,
with only a negligible difference in its advantage.

The proof is similar to the original proof of the claim IND-CPA + PA1 ⇒
IND-CCA1 in [4] and therefore is omitted. ⊓⊔

4.3 CUD and Ciphertext Pseudorandomness

The notion of ciphertext pseudorandomness is usually discussed in stegano-
graphic public-key encryption schemes [1, 2, 10]. First, let us define the ciphertext
pseudorandomness using the standard game-based approach:



Experiment Exptcpr−atk−b
S,A (k)

(pk, sk)← G(1k);
(m, s)← AD1(.)(ask,pk);

if b = 1 then y
R
← {0, 1}n(k)

else y
R
← E(m);

b′ ← AD2(.)(guess,y,s);
return b′;

where b ∈ {0, 1}, n(k) denotes the length of the ciphertext (it is assumed that
encryption of a plaintext of some length always results in a ciphertext of fixed
length), atk ∈ {CPA, CCA1, CCA2} and the oracles D1 and D2 are instantiated
according to the attack model. As usually, if atk = CCA2 we do not allow A to
try to decrypt the challenge y. We define the advantage of an adversary to be

Advcpr−atk
S,A (k) = Pr[Exptcpr−atk−1

S,A (k) = 1]− Pr[Exptcpr−atk−0
S,A (k) = 1]

and the insecurity of the scheme to be

InSeccpr−atk
S (k) = max

A
Advcpr−atk

S,A (k)

where A ranges through all polynomial time probabilistic adversaries.

We say that S is CPR-atk secure if InSeccpr−atk
S (·) is negligible. Thus, an

attacker is unable to distinguish a ciphertext (corresponding to the chosen plain-
text) from a completely random string of the same length.

Although the notion of ciphertext pseudorandomness (“real-or-ideal”) seems
similar to CUD (“valid-or-invalid”), we show that these notions are incompara-
ble.

Theorem 7 (CUD-atk 6⇒ CPR-CPA). For any atk ∈ {CPA, CCA1, CCA2},
if there exists a CUD-atk secure encryption scheme, then there exists a CUD-atk
secure scheme which is not CPR-CPA secure.

Proof. We use the construction from the proof of Theorem 4. The scheme S′ is
not CPR-CPA secure, since its behavior on a publicly known plaintext m+ is
deterministic. Thus, the attacker can choose m+ as a plaintext and distinguish
its encryption from a random string with overwhelming probability. ⊓⊔

Theorem 8 (CPR-atk 6⇒ CUD-CPA). For any atk ∈ {CPA, CCA1, CCA2},
if there exists an CPR-atk secure scheme then there exists an CPR-atk secure
scheme which is not CUD-CPA secure.

Proof. We use the construction from the proof of Theorem 3. The scheme S′

remains CPR-atk secure (if the original scheme S was CPR-atk secure), since
the decryption oracle D′ can be simulated perfectly, having access to the D
oracle. Hence any successful CPR-atk attacker on S′ can be transformed into a
successful CPR-atk attacker on S. ⊓⊔



5 Constructions and CUD-atk Secure Schemes

5.1 Doubling technique

The doubling technique allows us to turn an IND-CPA secure scheme into an
IND-CPA secure scheme with the CUD-CPA property. The idea of the doubling
technique is to form the ciphertext from two independent encryptions of the
plaintext. In order to preserve the IND-CPA security of the resulting scheme,
we need the property of ciphertext self-reducibility.

Definition 2. An asymmetric encryption scheme S = (G, E, D) has the prop-
erty of ciphertext self-reducibility, if there exists publicly known probabilistic poly-
nomial time algorithm R, such that R(c) returns a uniformly distributed value
from the set {c′ | D(c′) = D(c)}, for any c ∈ Cv.

The property of encryption self-reducibility allows anyone to transform a
ciphertext into another ciphertext encrypting the same plaintext.

Example 2. The following schemes have the property of self-reducibility (some
other schemes, such as Cramer-Shoup lite and other have this property as well):

ElGamal scheme. Let g be a generator of a group G of order q, the private

key is x
R
← Zq, the public key is y = gx. The encryption of m ∈ G is the

pair (u, v) = (gr, yrm), where r
R
← G. The ciphertext is easily self-reducible:

R(u, v) = (u · gl, v · yl), where l
R
← Zq .

Goldwasser-Micali scheme. Let n be a product of two large primes. Let y
be a pseudo-square modulo n, i.e. a quadratic non-residue modulo n with
Jacobi symbol 1. The values n and y form a public key, the secret key is
the factorization of n. The encryption of m ∈ {0, 1} is ymr2 mod n, where

r
R
← Z∗

n. The ciphertext is self-reducible: R(c) = c · l2 mod n, where l
R
← Z∗

n.

The doubling technique transforms a scheme S = (G, E, D) into S′ = (G, E′, D′)
as follows:

Algorithm E′
pk(m)

return Epk(m) ||Epk(m)
Algorithm D′

sk(c1 || c2)
if Dsk(c1) = Dsk(c2) then return Dsk(c1)
return ⊥

In the following theorems, we show that the doubling technique works for
both the ElGamal scheme and the Goldwasser-Micali scheme.

Theorem 9. Let S = (G, E, D) be the ElGamal scheme. Then the scheme S′ =
(G, E′, D′) obtained from S by the doubling technique is both IND-CPA and
CUD-CPA secure under the DDH assumption.



Proof. Let C
′
= G4, where G is the group where the computations are performed.

Then the properties 1 and 2 of Definition 1 are satisfied. Moreover, a quadruple
(u1, v1, u2, v2) is a valid ciphertext in S′, if and only if (g, u1/u2, y, v1/v2) is a
DDH quadruple. Hence, assuming the intractability of the DDH problem, S′ is
CUD-CPA secure.

In order to prove that S′ is IND-CPA secure, suppose there exists a successful
adversary A′ for S′ in the IND-CPA game. Then there exists a successful attacker
A on the IND-CPA security of S. First, A simulates A′ and returns m0, m1

chosen by A′. After receiving the challenge ciphertext c = Epk(mb), A uses
the ciphertext self-reducibility property of ElGamal, and produces the following
challenge for A′: c′ = c ||R(c). The answer of A′ is used as an answer by A.
Clearly, the ciphertext c′ is a valid ciphertext in S′. Thus, the advantage of A is
equal to the advantage of A′. ⊓⊔

Theorem 10. Let S = (G, E, D) be the Goldwasser-Micali scheme. Then the
scheme S′ = (G, E′, D′) obtained from S by the doubling technique is both IND-
CPA and CUD-CPA secure under the QR assumption.

Proof. Let C
′
= (Z∗

n)2. Then the properties 1 and 2 of Definition 1 are obviously
satisfied. Moreover, a pair (c1, c2) is a valid ciphertext in S′, if and only if both c1

and c2 are either squares or pseudo-squares. Hence, assuming the intractability
of distinguishing squares from pseudo-squares, S′ is CUD-CPA secure.

The proof that S′ is IND-CPA secure is analogous to the proof of Theorem
9 (using ciphertext self-reducibility of Goldwasser-Micali scheme). ⊓⊔

Theorems 9 and 10 give a constructive proof that using two independent
encryptions of the plaintext in some IND-CPA secure scheme results in a CUD-
CPA secure scheme. The proofs can be easily generalized for any encryption
scheme that has the ciphertext self-reducibility property, satisfies E(P) = Cv
and this set is easily recognizable.

Doubling technique has mostly theoretical value. For practical purposes, dou-
bling the size of the ciphertext is hardly acceptable.

5.2 Padding

Padding is another technique for producing CUD-secure schemes while preserv-
ing their IND-security. In contrast to the doubling, it is more general and much
more practical. Let S = (G, E, D) be an public-key encryption scheme. Corre-
sponding scheme with a padding, S′ = (G, E′, D′), is defined as follows:

Algorithm E′

pk(m)
return Epk(0 ||m)

Algorithm D′

sk(c)
parse Dsk(c) as b ||m
if b = 0 then return m
return ⊥

Notice that the plaintexts are one bit shorter in the new scheme. In addi-
tion, we shall require that the set of all valid ciphertext Cv in S can be easily
recognized.



Theorem 11. Let S be an IND-atk secure scheme, for atk ∈ {CPA,CCA1,CCA2}.
Let the set of all valid ciphertexts in S, Cv, be easily recognizable in probabilis-
tic polynomial time. Then the scheme S′ obtained from S by using padding is
CUD-atk secure, and IND-atk secure as well.

Proof. Let us start with the security in the CPA model, i.e. atk=CPA. First, let
us assure that S′ is IND-CPA secure. Let A′ be a successful attacker on IND-
CPA in S′. Then we can build an attacker A for S as follows: A simulates A′

in the find phase and transforms the obtained plaintexts m′
0, m

′
1 into his own

plaintexts m0 = 0 ||m′
0, m1 = 0 ||m′

1. After receiving the challenge c = Epk(mb),
A passes c to A′. Whatever A′ outputs, so does A. Since c is a valid ciphertext
of mb in S′, the advantages of A and A′ are equal.

Let us define C
′
= Cv (the properties 1 and 2 of Definition 1 are easily satis-

fied). In order to prove the CUD-CPA security of S′, we show how a successful
attacker A′ on CUD-CPA security of S′ can be turned into a successful attacker
A on IND-CPA security of S. First, A chooses two plaintexts m0 = 0 ||m′

0,
m1 = 1 ||m′

1, where m′
0 and m′

1 are chosen randomly. After receiving the chal-
lenge c = Epk(mb), A passes it to A′ as a challenge in the CUD-CPA game. The
ciphertext c is valid in S′ if and only if c is encryption of m0 in S. Therefore, A
can use the answer of A′ to distinguish encryption of m0 from encryption of m1

with the same advantage as A′ distinguished valid and invalid ciphertexts.
The proof for the CCA1 and CCA2 attack models is similar to the previous

case. This is because the attacker A can simulate the decryption oracle for A′

by using its own decryption oracle D(.) and following the definition of D′(.). In
the CCA2 scenario, the same queries are prohibited in both games, hence the
simulation is perfect. ⊓⊔

5.3 Schemes with the CUD Property

Another modification of the basic ElGamal encryption scheme that achieves
ciphertext undetectability (even CUD-CCA1) is the Damg̊ard ElGamal scheme
[7] known as DEG. The scheme is described in Fig. 1.

Theorem 12. The DEG encryption scheme is CUD-CPA secure under the DDH
assumption.

Proof. We shall prove that the set C = G3 has the required properties. Let
A be a successful CUD-CPA attacker on DEG, we shall use it to construct a
DDH distinguisher A′ with the same advantage. Let (s1, s2, t1, t2) ∈ G4 be the
DDH challenge, i.e. the task of A′ is to determine whether logs1

t1 = logs2
t2. It

picks X1, U
R
← G at random and runs A as a subroutine, supplying it with the

public key pk = (s1, s2, X2) and the challenge c∗ = (t1, t2, U). The distribution
of (s1, s2, t1, t2) and the random choice of the values X1 and U imply that for A
this is a perfect simulation of the CUD experiment. It is easy to see that c∗ is a
valid ciphertext precisely if (s1, s2, t1, t2) is a DDH tuple, hence the advantages
of A and A′ are the same. ⊓⊔



Bellare and Palacio [4] have proved that the DEG scheme also achieves the
PA1 form of plaintext awareness under another assumption posed on the group
G beside the DDH assumption. They formalize this assumption (originally stated
by Damg̊ard in [7]) under the name Diffie-Hellman Knowledge (DHK1) assump-
tion. Details of the formalization can be found in [4]. Their result together with
Theorem 6 imply the following corollary.

Corollary 1. The DEG encryption scheme is CUD-CCA1 secure under the
DDH and DHK1 assumptions.

Let us now consider the CS-lite encryption scheme defined in [6]. This is
a simplification of the original Cramer-Shoup scheme [5] designed to achieve
non-adaptive chosen ciphertext security. The scheme is described in Fig. 2.

Theorem 13. The CS-lite encryption scheme is CUD-CPA secure under the
DDH assumption.

Proof. We shall prove that the set C = G4 has the properties required by Defi-
nition 1. It obviously satisfies properties 1 and 2, it remains to prove the third
property. Let (g1, g2, x1, x2, z) ∈ Z5

q be a random fixed private key. Let us parti-

tion the set C into four subsets as follows:

K = {(R1, R2, E, V ) ∈ G4 | logg1
R1 = logg2

R2 ∧ V = Rx1

1 Rx2

2 }

L = {(R1, R2, E, V ) ∈ G4 | logg1
R1 6= logg2

R2 ∧ V = Rx1

1 Rx2

2 }

M = {(R1, R2, E, V ) ∈ G4 | logg1
R1 = logg2

R2 ∧ V 6= Rx1

1 Rx2

2 }

N = {(R1, R2, E, V ) ∈ G4 | logg1
R1 6= logg2

R2 ∧ V 6= Rx1

1 Rx2

2 }

To finish the proof, we need to show that K ∪ L ≈c M ∪N , assuming DDH.
First, let us prove that K ≈c M under the DDH assumption. Suppose there

exists a probabilistic polynomial algorithm A that distinguishes the sets K and
M with a non-negligible advantage. We shall use A to construct a DDH distin-
guisher A′. Let (s1, s2, t1, t2) be the challenge for A′, i.e. its task is to decide

Algorithm G(1k)
choose

k-bit prime q
group G of order q

g
R
← G

x1, x2
R
← Zq

X1 ← gx1

X2 ← gx2

pk← (g,X1, X2)
sk← (g, x1, x2)
return (pk, sk)

Algorithm Epk(m)

y
R
← Zq

Y ← gy

W ← Xy
1

U ← m ·Xy
2

return (Y, W, U)

Algorithm Dsk(Y, W,U)
if W = Y x1

then return U · Y −x2

else return ⊥

Fig. 1. The DEG encryption scheme.



Algorithm G(1k)
choose

k-bit prime q
group G of order q

g1, g2

R
← G

x1, x2, z
R
← Zq

X ← gx1

1 gx2

2

Z ← gz
1

pk← (g1, g2, X, Z)
sk← (g1, g2, x1, x2, z)
return (pk, sk)

Algorithm Epk(m)

r
R
← Zq

R1 ← gr
1

R2 ← gr
2

E ← m · Zr

V ← Xr

return (R1, R2, E, V )

Algorithm Dsk(R1, R2, E, V )
if V = Rx1

1 Rx2

2

then return E/Rz
1

else return ⊥

Fig. 2. The CS-lite encryption scheme.

whether logs1
t1 = logs2

t2. First, A′ picks at random w
R
← Zq and E, Z

R
← G.

Then it determines the following values:

g1 := s1 R1 := s2 X := t1

g2 := sw
1 R2 := sw

2 V := t2

Finally, A′ runs A as a subroutine with the public key (g1, g2, X, Z) and the
challenge (R1, R2, E, V ) and returns the same answer A does. Since logg1

u1 =
logg2

u2 = logs1
s2 (let us denote this value r), the challenge ciphertext belongs

to K ∪M and for A, this is a perfect simulation of the computational distin-
guishability game. To see that the advantages of A and A′ are the same, note
that (R1, R2, E, V ) ∈ K ⇔ V = Rx1

1 Rx2

2 . Since logg1
u1 = logg2

u2, this is equiv-

alent to V = g
r(x1+wx2

1 . This equation holds if and only if (g1, R1, X, V ) is a
DDH tuple. But this is just a different notation for the tuple (s1, s2, t1, t2).

By a similar argument, it can be proved that K ≈c L and M ≈c N un-
der the DDH assumption. In both cases, any successful distinguisher A can be
transformed into a DDH distinguisher. To decide whether (s1, s2, t1, t2) is a DDH
tuple, it suffices to query A for a ciphertext with R1 := t1 and R2 := t2, provid-
ing a public key where g1 := s1 and g2 := s2. The rest of the public key and the
challenge ciphertext can be easily chosen to provide a perfect simulation for A.

Since K ≈c L, K ≈c M and M ≈c N , the difference in behavior of any
probabilistic polynomial algorithm on these sets must be negligible. Therefore,
it also holds K∪L ≈c M∪N , which proves the CUD-CPA security of the CS-lite
encryption scheme under the DDH assumption. ⊓⊔

Similar to the DEG scheme, CS-lite was also proved to be PA1 under the
DDH and DHK1 assumptions by Bellare and Palacio [4]. Hence we can again
use Theorem 6 to obtain the following corollary.

Corollary 2. The CS-lite encryption scheme is CUD-CCA1 secure under the
DDH and DHK1 assumptions.



Algorithm G(1k)
choose

k-bit prime q
group G of order q
H : G3 → Zq

g1, g2

R
← G

x1, x2, y1, y2, z1, z2

R
← Zq

c← gx1

1 gx2

2

d← gy1

1 gy2

2

h← gz1

1 gz2

2

pk← (g1, g2, c, d, h, H)
sk← (x1, x2, y1, y2, z1, z2)
return (pk, sk)

Algorithm Epk(m)

r
R
← Zq

u1 ← gr
1

u2 ← gr
2

e← m · hr

α← H(u1, u2, e)
v ← vr · drα

return (u1, u2, e, v)

Algorithm Dsk(u1, u2, e, v)
α← H(u1, u2, e)
if v = ux1+y1α

1 ux2+y2α
2

then return e/(uz1

1 uz2

2 )
else return ⊥

Fig. 3. The Cramer-Shoup encryption scheme.

Finally, let us consider the ciphertext undetectability properties of the origi-
nal Cramer-Shoup encryption scheme defined in [5]. Recall the definition of the
original scheme, depicted in Fig. 3.

Theorem 14. The Cramer-Shoup encryption scheme is CUD-CPA secure un-
der the DDH assumption.

Proof. The proof is analogous to the proof of Theorem 13. Again we choose the
set C = G4, pick a random private key (x1, x2, y1, y2, z1, z2) ∈ Z6

q and partition

the set C into four subsets as follows:

K = {(u1, u2, e, v) ∈ G4 | logg1
u1 = logg2

u2 ∧ v = ux1+y1α
1 ux2+y2α

2 }

L = {(u1, u2, e, v) ∈ G4 | logg1
u1 6= logg2

u2 ∧ v = ux1+y1α
1 ux2+y2α

2 }

M = {(u1, u2, e, v) ∈ G4 | logg1
u1 = logg2

u2 ∧ v 6= ux1+y1α
1 ux2+y2α

2 }

N = {(u1, u2, e, v) ∈ G4 | logg1
u1 6= logg2

u2 ∧ v 6= ux1+y1α
1 ux2+y2α

2 }

Here α denotes the value H(u1, u2, e). To finish the proof, we again need to show
that K ∪ L ≈c M ∪N , assuming DDH.

The only part that differs from the proof of Theorem 13 is to show that
K ≈c M under the DDH assumption. Let us consider the same setting as in the
previous proof and show how A′ can use A to help it solve the DDH problem.

First, A′ picks at random w, y1, y2, z1, z2
R
← Zq and e

R
← G. Then it determines

the following values:

g1 := s1 h := gz1

1 gz2

2 v := t2

g2 := sw
1 u1 := s2 α := H(u1, u2, e)

d := gy1

1 gy2

2 u2 := sw
2 c := t1/dα



Finally, A′ runs A as a subroutine with the public key (g1, g2, c, d, h, H) and
the challenge ciphertext (u1, u2, e, v) and returns the same answer A does. Since
logg1

u1 = logg2
u2 = w, the challenge ciphertext belongs to K ∪M and for A,

this is again a perfect simulation of the computational distinguishability game.
The advantages of A and A′ are the same, because (u1, u2, e, v) ∈ K ⇔ v =
ux1+y1α

1 ux2+y2α
2 . Since logg1

u1 = logg2
u2, this is equivalent to v = crdrα, where

r denotes the value logg1
u1. This equation holds if and only if (g1, g

r
1, cd

α, v)
is a DDH tuple, which corresponds to the tuple (s1, s2, t1, t2). The rest of the
argument is analogous to the proof of Theorem 13. ⊓⊔

6 Conclusion and Further Research

In this paper, we have explored the idea of ciphertext undetectability. We have
compared this notion with the indistinguishability of ciphertexts and plaintext
awareness. We have proved that, in general, these notions are unrelated. Since
ciphertext undetectability does not provide secrecy for public-key schemes, it
is important to find constructions that turn IND-atk or PA secure schemes
into schemes having CUD property while preserving their IND-atk or PA se-
curity. The constructions given in Section 5, namely the doubling technique and
padding, can be applied only on schemes satisfying additional properties (e.g.
cipher self-reducibility or easily recognizable set Cv). Definitely, more general
constructions, without additional requirements, are needed.

Other approach to obtain schemes with the CUD property is to prove the
CUD-atk security of some established schemes directly. Although we have proved
the original Cramer-Shoup encryption scheme to be CUD-CPA secure, we con-
jecture it to achieve the CUD-CCA2 degree of security. However, proving this
would require a more sophisticated approach than the approach used in prov-
ing the CUD-CCA1 security of CS-lite. This is mainly because the PA1 form
of plaintext awareness achieved by CS-lite plays a useful role also for ciphertext
undetectability (cf. Theorem 6, but this does not seem to be true for the stronger
PA2 notion. In other words, the implication PA2 + CUD-CPA ⇒ CUD-CCA2
does not seem to hold. This is because the PA2 notion was designed to model
also the possibility of the adversary to get hold of one ciphertext (the challenge)
for which it does not know the corresponding plaintext. However, in the CUD
experiment, it can also receive an invalid “ciphertext”, so some modifications of
the model would be needed.
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