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Abstract

We show that a problem in AM has a interactive zero-knowledge proof system if and only if it
has a noninteractive zero knowledge proof system in the ‘help model’ of Ben-Or and Gutfreund
(J. Cryptology, 2003). In this model, the shared reference string is generated by a probabilistic
polynomial-time dealer who is given access to the statement to be proven. Our result holds for
both computational zero knowledge and statistical zero knowledge, and does not rely on any
unproven complexity assumptions.

We also show that help does not add power to interactive computational zero-knowledge
proofs, paralleling a result of Ben-Or and Gutfreund for the case of statistical zero knowledge.
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1 Introduction

Zero-knowledge proofs [GMR] are protocols whereby a prover can convince a verifier that some
assertion is true with the property that the verifier learns nothing else from the protocol. This
remarkable property is easily seen to be impossible for the classical notion of a proof system,
where the proof is a single string sent from the prover to the verifier, as the proof itself constitutes
‘knowledge’ that the verifier could not have feasibly generated on its own (assuming NP 6⊆ BPP).
Thus zero-knowledge proofs require some augmentation to the classical model for proof systems.

The original proposal of Goldwasser, Micali, and Rackoff [GMR] augments the classical model
with both randomization and multiple rounds of interaction between the prover and the verifier,
leading to what are called interactive zero-knowledge proofs, or simply zero-knowledge proofs. An
alternative model, proposed by Blum, Feldman, and Micali [BFM, BDMP], augments the classical
model with a set-up in which a trusted dealer who randomly generates a reference string that is
shared between the prover and verifier. After this reference string is generated, the proof is consists
of just a single message from the prover to verifier. Thus, these are referred to noninteractive zero-
knowledge proofs. Since their introduction, there have been many constructions of both interactive
and noninteractive zero-knowledge proofs, and both models have found wide applicability in the
construction of cryptographic protocols.

It is natural to ask what is the relation between these two types of models. That is:

Can every assertion that can be proven with an interactive zero-knowledge proof also
be proven with a noninteractive zero-knowledge proof, and conversely?

Our main result is a positive answer to this question in the ‘help model’ of Ben-Or and Gut-
freund [BG], where the dealer is given access to the statement to be proven when generating the
reference string. We hope that this will provide a step towards answering the above question for
more standard models of noninteractive zero knowledge, such as the common reference string model
and the public parameter model.

1.1 Models of Zero Knowledge

Interactive Zero Knowledge. Recall that an interactive proof system [GMR] for a problem
Π is an interactive protocol between a computationally unbounded prover P and a probabilistic
polynomial-time verifier V that satisfies the following two properties:

• Completeness: if x is a yes instance of Π, then the V will accept with high probability after
interacting with the P on common input x.

• Soundness: if x is a no instance of Π, then for every (even computationally unbounded)
prover strategy P ∗, V will reject with high probability after interacting with P ∗ on common
input x.

Here, we consider problems Π that are not only languages, but also ones that are promise problems,
meaning that some inputs can be neither yes nor no instances, and we require nothing of the
protocol on such instances. (Put differently, we are ‘promised’ that the input x is either a yes or a
no instance.) We write IP for the class of promise problems possessing interactive proof systems.

As is common in complexity-theoretic studies of interactive proofs and zero knowledge, we
allow the honest prover P to be computationally unbounded, and require soundness to hold against
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computationally unbounded provers. However, cryptographic applications of zero-knowledge proofs
typically require an honest prover P that can be implemented in probabilistic polynomial-time given
a witness of membership for x, and it often suffices for soundness to hold only for polynomial-time
prover strategies P ∗ (leading to interactive argument systems [BCC])). It was recently shown how
to extend the complexity-theoretic studies of interactive zero knowledge proofs to both polynomial-
time honest provers [NV], and to argument systems [OV2]; we hope that the same will eventually
happen for noninteractive zero knowledge.

Intuitively, we say that an interactive proof system is zero knowledge if the verifier ‘learns noth-
ing’ nothing from the interaction other than the fact that the assertion being proven is true, even
if the verifier deviates from the specified protocol. Formally, we require that there is an efficient
algorithm, called the simulator, that can simulate the verifier’s view of the interaction given only
the (yes) instance x and no access to the prover P . The most general notion, computational
zero knowledge or just zero knowledge, requires this to hold for all polynomial-time cheating veri-
fier strategies (and the simulation should be computationally indistinguishable from the verifier’s
view). A stronger notion, statistical zero knowledge, requires security against even computationally
unbounded verifier strategies (and the simulation should be statistically indistinguishable from the
verifier’s view). We write ZK (resp., SZK) to denote the class of promise problems possessing
computational (resp., statistical) zero-knowledge proof systems. 1

Noninteractive Zero Knowledge. For noninteractive zero knowledge [BFM, BDMP], we intro-
duce a trusted third party, the dealer, who randomly generates a reference string that is provided
to both the prover and verifier. After that, the prover noninteractively sends a single message
to the verifier, who decides whether to accept or reject. Completeness and soundness are defined
analogously to interactive proofs, except that the probabilities are now also taken over the choice
of the reference string. Computational and statistical zero knowledge are also defined analogously
to the interactive case, except that now the reference string is also considered part of the veri-
fier’s view, and also must be simulated. (In this paper, we consider single-theorem, nonadaptive
zero knowledge, where the zero-knowledge property is guaranteed provided only one statement
is proven, and this statement is independent of the shared reference string. Some cryptographic
applications require many-theorem zero knowledge, where polynomially many statements can be
proven in zero knowledge using the same reference string, and/or adaptive zero knowledge, where
a cheating verifier may choose the statement(s) after seeing the reference string.)

There are a number of variants of the noninteractive model, depending on the form of the trusted
set-up performed by the dealer. In the original, common random string (crs) model proposed by
Blum et al. [BFM, BDMP], the reference string is simply a uniformly random string of polynomial
length. This gives rise to the classes NIZKcrs and NISZKcrs of problems having noninteractive
computational and statistical zero-knowledge proofs in the common random string model. A natural
and widely used generalization is the public parameter model, where the reference string need not
be uniform, but can be generated according to any polynomial-time samplable distribution. That
is, we obtain the reference string by running a probabilistic polynomial-time dealer algorithm D on
input 1n, where n is the length of statements to be proven (or the security parameter). This model
gives rise to the classes NIZKpub and NISZKpub.

1In some papers, such as [OV2, OV1], a prefix of C is used to denote computational zero knowledge and a suffix
of P is used to specify interactive proof systems rather than arguments, so ZK and SZK would be CZKP and SZKP,
respectively. We opt for more streamlined notation here for readability.
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A further generalization is the help model introduced by Ben-Or and Gutfreund [BG]. In this
model, the distribution of the reference string is allowed to depend on the statement x being
proven. That is, the reference string is generated by running a probabilistic polynomial-time dealer
algorithm D on input x. We denote the class of problems having computational (resp. statistical)
zero-knowledge proofs in this model as NIZKh (resp., NISZKh). This model does not seem to
suffice for most cryptographic applications, but its study may serve as a stepping stone to a better
understanding of the more standard models of noninteractive zero knowledge mentioned above.
Indeed, any characterizations of noninteractive zero knowledge in the help model already serve as
upper bounds on the power of noninteractive zero knowledge in the common random string and
public parameter models.

We remark that one can also consider protocols in which we allow both a trusted dealer and
many rounds of interaction. The most general model allows both help and interaction, yielding the
classes ZKh and SZKh, to which we will refer later.

1.2 Previous Work

Recall that we are interested in the relationship between the interactive zero-knowledge classes
ZK and SZK and their various noninteractive counterparts, which we will denote by NIZK and
NISZK when we do not wish to specify the model. That is, for a given model of noninteractive
zero knowledge, we ask: Does ZK = NIZK and does SZK = NISZK?

ZK vs. NIZK. A first obstacle to proving equality of ZK and NIZK is that NIZK is a subset
of AM, the class of problems having constant-round interactive proof systems [BM, GS], whereas
ZK may contain problems outside of AM. So, instead of asking whether ZK = NIZK, we should
instead ask if ZK ∩AM = NIZK.

Indeed, this equality is known to hold under complexity assumptions. If one-way permutations
exist, then it is known that ZK = IP [GMW, IY, BGG+] and NIZKcrs = AM [FLS], and thus
ZK ∩ AM = NIZKcrs = NIZKpub = NIZKh. (In fact, if we replace NIZKcrs with NIZKpub, these
results hold assuming the existence of any one-way function [HILL, Nao, GB, Pas].)

Thus, for computational zero knowledge, the interesting question is whether we can prove that
ZK ∩ AM = NIZK unconditionally, without assuming the existence of one-way functions. To our
knowledge, there have been no previous results along these lines.

SZK vs. NISZK. For relating SZK and NISZK, the class AM no longer is a barrier, because it
is known that SZK ⊆ AM [AH].

The relationship between SZK and NISZK was first addressed in the work of Goldreich et
al. [GSV2]. There it was shown that SZK and NISZKcrs have the ‘same complexity’ in the sense
that SZK = BPP iff NISZKcrs = BPP. Moreover, it was proven that SZK = NISZKcrs iff NISZKcrs

is closed under complement.
In addition to introducing the help model, Ben-Or and Gutfreund [BG] studied the relationship

between NISZKh and SZK. They proved that NISZKh ⊆ SZK (in fact that SZKh = SZK), and
posed as an open question whether SZK ⊆ NISZKh.2

2In fact, their conference paper [GB] claimed to prove that SZK = NISZKh, but this was retracted in the journal
version [BG].
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1.3 Our Results.

We show that interactive zero knowledge does in fact collapse to noninteractive zero knowledge in
the help model, both for the computational case (restricted to AM) and the statistical case:

Theorem 1.1 ZK ∩AM = NIZKh.

Theorem 1.2 SZK = NISZKh.

These results and their proofs yield new characterizations of the classes ZK and SZK. For
example, we obtain a new complete problem for SZK, namely the NISZKh-complete problem given
in [BG]. Similarly, we obtain a new characterization of ZK, which amounts to a computational
analogue of the NISZKh-complete problem. As suggested in [BG], these results can also be viewed
as first steps towards collapsing interactive zero knowledge to noninteractive zero knowledge in the
public parameter or common reference string model. For example, to show SZK = NISZKcrs (the
question posed in [GSV1]), it now suffices to show that NISZKh = NISZKcrs.

As mentioned above, one can consider even more general classes ZKh and SZKh that incorporate
both help and interaction. Ben-Or and Gutfreund [BG] showed that SZKh = SZK. We prove an
analogous result for computational zero knowledge:

Theorem 1.3 ZKh = ZK.

1.4 Techniques

The main tool we use in showing that interactive zero knowledge collapses to noninteractive zero
knowledge in the help model, i.e. ZK ∩ AM ⊆ NIZKh and SZK ⊆ NISZKh, are certain variants
of commitment schemes. Recall that a commitment scheme is a two-stage interactive protocol
between a sender and a receiver. In the commit stage, the sender ‘commits’ to a secret message m.
In the reveal stage, the sender ‘reveals’ m and tries to convince the verifier that it was the message
committed to in the first stage. Commitments should be hiding, meaning that an adversarial
receiver will learn nothing about m in the commit stage, and binding, meaning that after the commit
stage, an adversarial sender should not be able to successfully reveal two different messages (except
with negligible probability). Each of these security properties can be either computational, holding
against polynomial-time adversaries, or statistical, holding even for computationally unbounded
adversaries. Commitments are a basic building block for zero-knowledge protocols, e.g. they are
the main cryptographic primitive used in the constructions of zero-knowledge proofs for all of
NP [GMW] and IP [IY, BGG+].

A relaxed notion is that of instance-dependent commitment schemes [BMO, IOS, MV]. Here
the sender and receiver are given an instance x of some problem Π as auxiliary input. We only
require the scheme to be hiding if x is a yes instance, and only require it to be binding if x is a
no instance. They are a relaxation of standard commitment schemes because we do not require
hiding and binding to hold simultaneously. Still, as observed in [IOS], an instance-dependent
commitment scheme for a problem Π ∈ IP suffices to construct zero-knowledge proofs for Π because
the constructions of [GMW, IY, BGG+] only use the hiding property for zero knowledge (which is
only required on yes instances), and the binding property for soundness (which is only required on
no instances).
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The converse was recently shown by Ong and Vadhan [OV1]. That is, instance-dependent
commitments not only suffice for zero knowledge, but are also necessary. More precisely, SZK
consists exactly of the problems Π having instance-dependent commitments that are statistically
hiding on yes instances and statistically binding on no instances, and ZK consists exactly of the
problems Π ∈ IP having instance-dependent commitments that are computationally hiding on yes
instances and statistically binding on no instances.

Our results are obtained in two steps. First, we observe that the interactive instance-dependent
commitments constructed for ZK and SZK in [OV1] can be made noninteractive, provided we assume
that the sender will not deviate from the protocol in the commit phase. Second, we show that such
noninteractive, honest-sender instance-dependent commitments suffice for a problem Π ∈ AM to
have a NIZKh proof system (or NISZKh proof system, if the commitments are statistically hiding).
Combining these two results with those of [OV1] mentioned above, we deduce that interactive zero
knowledge collapses to noninteractive zero knowledge in the help model.

The reverse inclusion in the case of statistical zero knowledge, namely NISZKh ⊆ SZK, follows
from Ben-Or and Gutfreund [BG], who actually proved the stronger statement that SZKh = SZK.
The case of computational zero knowledge is given by Theorem 1.3. To prove this, we follow the lines
of Ben-Or and Gutfreund’s proof for the statistical case. They showed how to reduce every problem
in SZKh to the intersection of the two known complete problems for SZK [SV, GV], and then used
the fact that SZK is closed under intersection. ZK is not known to have natural complete problems,
but we are able to instead use recent characterizations of ZK that are computational analogues of
the SZK-complete problems [Vad].

2 Definitions and Preliminaries

2.1 Notation

We will first introduce some of the basic notation that we will use.
We use capital letters to denote random variables. The notation x← X means that x is drawn

from the distribution X. We define the support of a random variable X as Supp(X) = {x : Pr[X =
x] > 0}. A boolean circuit C : {0, 1}m → {0, 1}n defines a probability distribution on {0, 1}n
by evaluating C on a uniformly chosen input in {0, 1}m. If a distribution X can be represented
by a circuit which can be described and evaluated in polynomial time, we say X is an efficiently
samplable distribution.

We use the shorthand PPT for probabilistic polynomial time algorithms. For a PPT A, we write
A(x; r) to denote the output of A on input x with randomness r. A nonuniform PPT algorithm is
a pair (A, z), where z is an infinite series of inputs z1, . . . , zn, . . . such that |zn| = poly(n), and A is
a PPT which receives inputs (x, z|x|).

A function ε : N → [0, 1] is called negligible if ε(n) = n−ω(1). We use neg(n) to denote an
arbitrary negligible function, and poly(n) to denote an arbitrary polynomial function.

2.2 Promise Problems

Promise problems are a more general variant of decision problems than languages. A promise
problem Π is a pair of disjoint sets of strings (ΠY ,ΠN ), where ΠY is the set of YES instances
and ΠN is the set of NO instances. The computational problem associated with any promise
problem Π is: given a string that is “promised” to lie in ΠY ∪ ΠN , decide whether it is in ΠY or
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ΠN . Reductions from one promise problem to another are natural extensions of reductions between
languages. Namely, we say Π reduces to Γ if there exists a polynomial time computable function
f such that x ∈ ΠY ⇒ f(x) ∈ ΓY and x ∈ ΠN ⇒ f(x) ∈ ΓN . We can also naturally extend
the definitions of complexity classes by letting the properties of the strings in the languages be
conditions on the YES instances, and properties of strings outside of the language be conditions
on NO instances.

2.3 Instance-Dependent Cryptographic Primitives

Many of the objects that we will be constructing for use in our zero knowledge constructions will
be instance dependent. Hence, we will modify common cryptographic primitives such as one-way
functions by allowing them to be parametrized by some string x, such that the cryptographic
properties will only be guaranteed to hold if x is in some set I.

Definition 2.1 An instance-dependent function ensemble is a collection of functions F = {fx :
{0, 1}p(|x|) → {0, 1}q(|x|}x∈{0,1}∗, where p(·) and q(·) are polynomials. F is polynomial-time com-
putable if there exists a polynomial-time algorithm F such that for all x ∈ {0, 1}∗ and y ∈
{0, 1}p(|x|), F (x, y) = fx(y).

Definition 2.2 An instance-dependent one-way function on I is a polynomial-time instance-dependent
function ensemble F = {fx : {0, 1}p(|x|) → {0, 1}q(|x|}x∈{0,1}∗, such that for every nonuniform PPT
A, there exists a negligible function ε(·) such that for all x ∈ I,

Pr
[
A(x, fx(Up(|x|))) ∈ f−1

x (fx(Up(|x|)))
]
≤ ε(|x|)

Definition 2.3 An instance-dependent probability ensemble on I is a collection of random vari-
ables {Xx}x∈{0,1}∗, where Xx takes values in {0, 1}p(|x|) for some polynomial p. We call such an
ensemble samplable is there exists a probabilistic polynomial-time algorithm M such that for every
input x, M(x) is distributed according to Xx.

Definition 2.4 Two instance-dependent probabilistic ensembles {Xx} and {Yx} are computation-
ally indistinguishable on I ⊂ {0, 1}∗ if for every nonuniform PPT D, there exists a negligible ε(·)
such that for all x ∈ I,

Pr [D(x,Xx) = 1]− Pr [D(x, Yx) = 1] | ≤ ε(|x|)

Similarly, we say {Xx} and {Yx} are statistically indistinguishable on I ⊂ {0, 1}∗ if the above is
required for all functions D. If Xx and Yx are identically distributed for all x ∈ I, we say they are
perfectly indistinguishable .

We will sometimes use the informal notation X
c≡ Y to denote that ensembles X and Y are

computationally indistinguishable.

Definition 2.5 An instance-dependent pseudorandom generator on I is a polynomial-time instance-
dependent function ensemble G = {Gx : {0, 1}p(|x|) → {0, 1}q(|x|} such that q(n) > p(n), and the
probability ensembles {Gx(Up(|x|)}x and {Uq(|x|)}x are computationally indistinguishable on I.
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2.4 Probability distributions

In this section, we will define several tools that are useful for analysing properties of probability
distributions.

Definition 2.6 The statistical difference between two random variables X and Y taking values in
some domain U is defined as:

∆(X, Y ) = max
S⊂U
|Pr [X ∈ S]− Pr [Y ∈ S] | = 1

2

∑
x∈U

|Pr [X = x]− Pr [Y = x] |

Lemma 2.7 For random variables X and Y , if δ = ∆(X, Y ), then for every k ∈ N, we have:

1− 2 exp(−kδ2/2) ≤ ∆(⊗kX,⊗kY ) ≤ kδ,

where ⊗ denotes the direct product, i.e., when k independent copies of a random variable are taken.

Definition 2.8 An ordered pair of distributions (X, Y ) is called α-disjoint if Prx←X [x ∈ Supp(Y )] ≤
1− α . We call (X, Y ) mutually α-disjoint if both (X, Y ) and (Y, X) are α-disjoint.

Note that disjointness is a more stringent measure of the disparity between two distributions
than statistical difference. If two distributions are α-disjoint, then their statistical difference is at
least α. The converse, however, does not hold, since the two distributions could have statistical
difference that is negligibly close to 1, yet have identical supports and thus be mutually 0-disjoint.

Definition 2.9 The entropy of a random variable X is H(X) = Ex←X

[
log 1

Pr[X=x]

]
. The condi-

tional entropy of X given Y is

H(X|Y ) = E
y←Y

[H(X|Y =y)] = E
(x,y)←(X,Y )

[
log

1
Pr [X = x|Y = y]

]
= H(X, Y )−H(Y ).

For entropy, it holds that for every X, Y , H(X ⊗ Y ) = H(X) + H(Y ). More generally, if
⊗k(X, Y ) = ((X1, Y1), . . . , (Xk, Yk)), then H((X1, . . . , Xk)|(Y1, . . . , Yk) = k ·H(X|Y ).

Definition 2.10 The relative entropy (Kullback-Liebler distance) between two distributions X, Y
is

KL(X|Y ) = E
x←X

[
log

Pr [X = x]
Pr [Y = x]

]
We denote by H2(p) the binary entropy function, which is the entropy of a {0, 1}-valued random

variable with expectation p. KL2(p, q) denotes the relative entropy between two {0, 1}-value random
variables with expectations p and q.

7



3 Interactive Zero Knowledge

We consider a generalized version of interactive zero knowledge, introduced by Ben-Or and Gut-
freund [BG], in which the prover and the verifier have access to a help string output by a dealer
algorithm that has access to the statement being proven. We will call this model of interactive
zero knowledge the help model. Interactive zero-knowledge proofs are a special case of interactive
zero-knowledge proofs in the help model.

We denote the three algorithms that make up an interactive zero-knowledge proof in the help
model as D,P and V . All three receive as input x, the statement being proven. The dealer selects
the help string σ ← D(x) and sends it to P and V . P and V carry out an interactive protocol
and, at the end of their interaction, they either output accept or reject. We call the transcript
the sequence of messages which the triple (D,P, V ) computes. (D,P, V )(x) denotes the random
variable of the possible outcomes of the protocol, while 〈D,P, V 〉(x) denotes the verifier’s view of
the transcripts (where the probability space is over the random coins of D,P and V ).

Definition 3.1 [BG] (ZKh, SZKh) A zero-knowledge proof system in the help model for a promise
problem Π is a triple of probabilistic algorithms (D,P, V ) (where D and V are polynomial time
bounded), satisfying the following conditions:

1. Completeness. For all x ∈ ΠY , Pr [(D,P, V )(x) = 1] ≥ 2
3 , where the probability is taken over

the coin tosses of D,P and V .

2. Soundness. For all x ∈ ΠN and every prover strategy P ∗, Pr [(D,P ∗, V ) = 1] ≤ 1
3 , where the

probability is taken over the coin tosses of D,P ∗, V .

3. Zero Knowledge. There exists a PPT S such that the ensembles {〈D,P, V 〉)(x)}x and {S(x)}x
are computationally indistinguishable on ΠY .

If the ensembles are statistically indistinguishable, we call it a statistical zero knowledge proof
system in the help model.ZKh (resp., SZKh) is the class of promise problems possessing zero-
knowledge (resp., statistical zero-knowledge) proof systems in the help model.

If the help string σ is generated according to D(1|x|), we call the proof system an interactive
zero-knowledge proof system in the public parameter model. The corresponding complexity class is
ZKpub (resp., SZKpub). If the help string σ is generated from the uniform distribution on {0, 1}|x|,
we call the proof system an interactive zero-knowledge proof system in the common random string
model. The corresponding complexity class is ZKcrs (resp., SZKcrs).

If we remove the dealer’s help, the resulting proof system is said to be an interactive zero-
knowledge proof system. The corresponding complexity class is ZK (resp., SZK).

It is simple to show that ZK will be contained in IP, the class of promise problems with
interactive proofs:

Lemma 3.2 ZKh ⊆ IP, where IP is the class of problems having interactive proofs.

Proof: We can transform a ZKh proof by just having the verifier simulate the dealer’s help. This
will not preserve zero knowledge in general, since even the honest verifier will learn the dealer’s
secret coin tosses, but it will preserve completeness and soundness.
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3.1 Statistical Zero Knowledge

In this section, we state a few characterizations of statistical zero knowledge which will be related to
the ones we will later obtain for the computational case. We begin by noting that, in the statistical
case, zero knowledge in the help model is equivalent to zero knowledge ([BG]):

Theorem 3.3 [BG] SZKh = SZK.

The theorem above implies that all the characterizations of SZK will also hold for SZKh. In
particular, SZKh will share the two complete problems for SZK that are due to [GV, SV, Vad]:

Theorem 3.4 [SV] The promise problem Statistical Difference, defined as:

SDY = {(X, Y ) : ∆(X, Y ) < 1/3}
SDN = {(X, Y ) : ∆(X, Y ) > 2/3}

is complete for SZK, where X and Y are samplable distributions specified by circuits that sample
from them.

Theorem 3.5 [GV, Vad] The promise problem Conditional Entropy Approximation, de-
fined as:

CEAY = {(X, Y, r) : H(X|Y ) ≥ r}
CEAN = {(X, Y, r) : H(X|Y ) ≤ r − 1}

is complete for SZK, where (X, Y ) is a joint samplable distribution specified by circuits that use the
same coin tosses.

3.2 Computational Zero Knowledge

In the case of ZK, no natural complete problems are known (unless we assume that one-way func-
tions exist, in which case ZK = IP = PSPACE [GMR, IY, BGG+, Sha, LFKN, HILL, Nao]).
However, characterizations that are analogous to the complete problems for SZK do exist in the
form of the Indistinguishability Condition and the Conditional Pseudoentropy Condi-
tion below. These conditions give ‘if and only if’ characterizations of ZK that provide essentially
the same functionality as complete problems.

The first characterization will be a natural extension of SD to ZK:

Definition 3.6 A promise problem Π satisfies the Indistinguishability Condition if there is a
polynomial-time computable function mapping strings x to pairs of samplable distributions (X, Y )
such that:

• If x ∈ ΠY , then X and Y are computationally indistinguishable.

• If x ∈ ΠN , then ∆(X, Y ) ≥ 2/3.

Theorem 3.7 [Vad] Π ∈ ZK if and only if Π ∈ IP and Π satisfies the Indistinguishability
Condition.
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The second characterization is based on the SZK-complete problem CEA:

Definition 3.8 A promise problem Π satisfies the Conditional Pseudoentropy Condition if
there is a polynomial-time computable function mapping strings x to a samplable joint distribution
(X, Y ) such that:

• If x ∈ ΠY , then there exists a (not necessarily samplable) joint distribution (X ′, Y ′) such that
(X ′, Y ′) is computationally indistinguishable from (X, Y ) and H(X ′|Y ′) ≥ r.

• If x ∈ ΠN , then H(X|Y ) ≤ r − 1.

Theorem 3.9 [Vad] Π ∈ ZK if and only if Π ∈ IP and Π satisfies the Conditional Pseudoen-
tropy Condition.

4 Noninteractive Zero Knowledge

4.1 The Help Model

In this section, we define a special version of zero-knowledge proofs in the help model, namely
noninteractive, zero-knowledge proofs.

Definition 4.1 [BG] (NIZKh, NISZKh) A noninteractive zero-knowledge proof system in the help
model for a promise problem Π is an interactive zero-knowledge proof in which there is only one
message π = P (x, σ) from prover to verifier.

If the real transcripts are statistically indistinguishable from simulated ones, we call it a nonin-
teractive statistical zero knowledge proof system. NIZKh (resp., NISZKh) is the class of promise
problems possessing noninteractive zero-knowledge (resp., noninteractive statistical zero-knowledge)
proof systems.

If the help string σ is generated according to D(1|x|), we call the proof system a noninteractive
zero-knowledge proof system in the public parameter model. The corresponding complexity class
is NIZKpub (resp., NISZKpub). If the help string σ is generated from the uniform distribution on
{0, 1}|x|, we call the proof system an noninteractive zero-knowledge proof system in the common
random string model. The corresponding complexity class is NIZKcrs (resp., NISZKcrs).

Note that the class AM (Definition 4.2) proves to be a natural upper bound for NIZKh, since we
can just have the verifier replace the dealer in creating the reference string. Also, another (lower)
bound for NIZKh is NIZKcrs, which is definitionally a more restricted version of the help model.

The main benefit of the public parameter model and the help model over the simpler CRS
model is that they make it easier to construct NIZK proofs from simpler cryptographic primitives
such as one-way functions ([BG, Pas]), or, as we will show in this paper, from a certain kind of
commitment schemes.

4.2 The Hidden Bits Model

In this section, we define the hidden bits model, which is the basis for our commitment-based
construction of NISZKh (resp., NIZKh), and has also proved very useful as a building block for
efficient prover constructions of NIZK, such as NIZK proof systems in the CRS model ([FLS]).
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We begin by defining a natural bound for noninteractive zero-knowledge in the hidden bits
model:

Definition 4.2 (AM) An AM proof system is a pair of probabilistic algorithms (P, V ) where the
prover P (Merlin) is unbounded, whereas the verifier V (Arthur) is PPT. V sends a random string
r

R← {0, 1}poly(|x|), to which P sends a single response m. V decides then accepts or rejects with
no more randomness (i.e. V is a deterministic function of x, r and m). Equivalently, a promise
problem Π ∈ AM if ∃ a polynomial-time algorithm V , and polynomials p(|x|), q(|x|) such that:

1. Completeness. x ∈ ΠY ⇒ Prr∈{0,1}p(|x|) [∃m ∈ {0, 1}q(|x|)s.t. V (x, r, m) = 1] ≥ 2/3.

2. Soundness. x ∈ ΠN ⇒ Prr∈{0,1}p(|x|) [∃m ∈ {0, 1}q(|x|)s.t. V (x, r, m) = 1] ≤ 1/3.

In other words, the class AM captures all promise problems that have 2-round public coin
interactive proof systems. Although AM seems to be a very restrictive class of interactive protocols,
it is in fact known that it contains all problems having interactive proof systems with a constant
number of rounds, not just 2-round public coin proof systems [BM, GS].

The Hidden Bits Model. The hidden bits model is a fictituous model due to Feige, Lapidot
and Shamir [FLS], that allows for an unconditional construction of NIZK. It assumes that both the
prover P and the verifier V share a common reference string σ, which we will call the hidden random
string (HRS). However, only the prover can see the HRS. We can imagine that the individual bits of
σ are locked in boxes, and only the prover has the keys to unlock them. The prover can selectively
unlock boxes and reveal bits of the hidden random string. However, without the prover’s help, the
verifier has no information about any of the bits in the HRS.

Definition 4.3 [FLS] (NIZK in the Hidden Bits Model) A noninteractive zero knowledge
proof system in the hidden-bits model for a promise problem Π is a pair of probabilistic algorithms
(P, V ) (where P and V polynomial-time bounded) and a polynomial l(|x|) = |σ|, satisfying the
following conditions:

1. Completeness. For all x ∈ ΠY , Pr [∃(I, π)s.t. V (x, σI , I, π) = 1] ≥ 2
3 , where (I, π) = P (x, σ),

I is a set of indices in {0, . . . , l(k)}, and σI is the sequence of opened bits of σ, (σi : i ∈ I),
and where the probability is taken over σ

R← {0, 1}l(|x|) and the coin tosses of P and V .

2. Soundness. For all x ∈ ΠN and all P ∗, Pr [∃(I, π)s.t. V (x, σI , I, π) = 1] ≤ 1
3 , where (I, π) =

P ∗(x, σ), where the probability is taken over σ
R← {0, 1}l(|x|) and the coin tosses of P ∗ and V .

3. Zero Knowledge. There exists a PPT S such that the ensembles of transcripts {(x, σ, P (x, σ))}x
and {S(x)}x are statistically indistinguishable on ΠY , where σ

R← {0, 1}l(|x|).

Note that we have defined the zero-knowledge condition in this model to be statistical rather
than computational. Indeed, the known construction of hidden bits NIZK proof systems is uncon-
ditional and yields statistically indistinguishable proof systems.

Theorem 4.4 [FLS] Every promise problem Π ∈ NP has a hidden bits zero knowledge proof
system (P, V ).
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As has been observed before (e.g. [Pas]), this construction for NP automatically implies one for
all of AM.

Corollary 4.5 Every promise problem Π ∈ AM has a hidden bits zero knowledge proof system
(P, V ).

Proof: We will show this by transforming an AM proof into a statement that there exists some
message from the prover that the verifier accepts. Since this statement is an NP statement, it can
be proven in the hidden bits NIZK model.

Consider Π with an AM proof system (P ′, V ′). We can assume that (P ′, V ′) have negligible
completeness and soundness errors (this can be achieved by a polynomial number of parallel repe-
titions.) Let p(|x|) be the length of the random challenge that V ′ sends to P ′, q(|x|) be the length
of V ′’s message. Consider the following promise problem Γ, which captures the completeness and
soundness properties of (P ′, V ′):

ΓY = {(x, r) : x ∈ Γ, r ∈ {0, 1}p(|x|),∃ message m such that V ′(x, r, m) = 1}
ΓN = {(x, r) : x ∈ Γ, r ∈ {0, 1}p(|x|), @ message m such that V ′(x, r, m) = 1}

It is clear that Γ is in NP, so there exists a hidden bits zero knowledge proof system (P
′′
, V

′′
)

for it. Suppose the length of the hidden string is l(|x|). Because of the vanishing completeness
and soundness errors of (P ′, V ′), we know that for a random choice of (x, r), with x ∈ ΠY , the
probability (x, r) ∈ ΓY is exponentially close to 1. Similarly, if x ∈ ΠN the probability (x, r) ∈ ΓN

is exponentially close to 1.
We can build a hidden bits zero knowledge proof system (P, V ) for Π in the following way. We

let P and V share a hidden string σ of length p(|x|) + l(|x|). P sets r to the first p(|x|) bits of σ,
and reveals them to V . Then, P uses the l(|x|) remaining unrevealed hidden bits of σ to simulate
P

′′
’s hidden bits proof that (x, r) ∈ ΓY , and sends this simulated proof to V . V then simulates V

′′

and accepts if and only if V
′′

accepts.
Completeness and soundness follow from the completeness and soundness of (P ′, V ′) (as cap-

tured by Γ) and of (P ′′, V ′′). Finally, the zero knowledge of (P, V ) is given by the zero knowledge
of (P

′′
, V

′′
), and the fact that, for x ∈ ΠY , (x, r) ∈ ΓY with high probability ((P ′, V ′) has neg-

ligible completeness error). In particular, one can construct a simulator S for the proof system
(P, V ) by randomly selecting an r, and then using the simulator for (P ′′, V ′′) to produce proofs
that (x, r) ∈ ΓY .

Hence, there exists an unconditional construction of NIZK for all problems in AM. However,
this construction holds only in the impractical hidden bits model. In proving our results, we will
show how to implement this construction in the help model by exploiting a novel connection to
commitment schemes.

5 From ZK to NIZKh

The main result of this section will be that instance-dependent commitment schemes suffice to
construct NISZKh/NIZKh proof systems. First, we will show how to transform interactive commit-
ment schemes into noninteractive ones that can use in a NISZKh/NIZKh compiler. Then, we will
exhibit a construction of such a commitment-based compiler for noninteractive zero knowledge in
the help model.
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5.1 From ZK to Instance-Dependent Commitments

In this section, we exploit the new results of Ong and Vadhan [OV1], who characterize interactive
zero knowledge in terms of a certain kind of commitment scheme. Namely, we will prove that the
instance-dependent commitments which characterize SZK/ZK imply the noninteractive, honest-
sender, instance-dependent commitment schemes we can use to build NISZKh/NIZKh proofs.

We begin by defining the commitment schemes that we will be using:

Definition 5.1 An instance-dependent commitment scheme is a family {Comx}x∈{0,1}∗ with the
following properties:

1. The scheme Comx proceeds in the stages: the commit stage and the reveal stage. In both
stages, both the sender and the receiver share as common input the instance x. Hence we
denote the sender and receiver as Sx and, respectively, Rx, and we write Comx = (Sx, Rx).
Each party may maintain private state between the two phases.

2. At the beginning of the commit stage, the sender Sx receives as private input the bit b ∈ {0, 1}
to commit to. At the end of the commit stage, both Sx and Rx output a commitmentc.

3. In the reveal stage, Sx sends a pair (b, d), where d is the decommitmentstring for bit b.
Receiver Rx either accepts or rejects based on inputs x, b, d and c.

4. The sender Sx and receiver Rx algorithms are computable in time poly(|x|), given the instance
x.

5. For every x ∈ {0, 1}∗, Rx will always accept (with probability 1) if both Sx and Rx follow their
prescribed strategy.

An instance-dependent commitment scheme Comx is public coin if for every x ∈ {0, 1}∗, all of
the messages sent by Rx in the commit stage are independent random coins, and the receiver
maintains no state after the commit stage other than the commitment c.

We note that, in the definition above, the commit stage may be interactive, requiring the sender
and the receiver to exchange messages. The reveal stage, however, is noninteractive, as the receiver
only needs the sender’s decommitment message to perform its verification.

Security Properties. We now define the security properties of instance-dependent commitment
schemes. These properties will be natural extensions of the hiding and binding requirements of
standard commitments:

Definition 5.2 An instance-dependent commitment scheme Comx = (Sx, Rx) is statistically (resp.,
computationally) hiding on I ⊆ {0, 1}∗ if for every (resp., nonuniform PPT) R∗, the ensembles
{viewR∗(Sx(0), R∗)}x∈I and {viewR∗(Sx(1), R∗)}x∈I are statistically (resp., computationally) in-
distinguishable, where the random variable {viewR∗(Sx(b), R∗)}x∈I denotes the view of R∗ in the
commit stage interacting with Sx(b).

For a promise problem Π = (ΠY ,ΠN ), an instance-dependent commitment scheme Comx is
statistically (resp., computationally) hiding on the YES instances if Comx is statistically (resp.,
computationally) hiding on ΠY .
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Definition 5.3 An instance-dependent commitment scheme Comx = (Sx, Rx) is statistically (resp.,
computationally) binding on I ⊆ {0, 1}∗ if for every computationally unbounded (resp., nonuniform
PPT) S∗, there exists a negligible function ε such that for all x ∈ I, the malicious sender S∗ succeeds
in the following game with probability at most ε(|x|):

S∗ interacts with Rx in the commit stage obtaining a commitment c. Then S∗ outputs
pairs (0, d0) and (1, d1) and succeeds if in the reveal stage, Rx(0, d0, c) = Rx(1, d1, c) =
accept.

For a promise problem Π = (ΠY ,ΠN ), an instance-dependent commitment scheme Comx is
statistically (resp., computationally) binding on the NO instances if Comx is statistically (resp.,
computationally) binding on ΠY .

Ong and Vadhan [OV1] show that the instance-dependent commitment schemes presented above
are equivalent to zero knowledge proofs. For the statistical case, [OV1] show that SZK is equivalent
to instance-dependent commitments that are statistically hiding on YES instances and binding on
NO instances. As expected, the equivalence for ZK is obtained by relaxing the hiding property on
YES instances to be computational rather than statistical.

Theorem 5.4 [OV1] For every promise problem Π, Π ∈ SZK if and only if Π has an instance-
dependent commitment scheme that is statistically hiding on the YES instances and statistically
binding on the NO instances. Moreover, every Π ∈ SZK has an instance-dependent commitment
scheme that is public coin and is constant round.

Theorem 5.5 [OV1] For every promise problem Π, Π ∈ ZK if and only if Π has an instance-
dependent commitment scheme that is computationally hiding on the YES instances and statisti-
cally binding on the NO instances. Moreover, every Π ∈ ZK has an instance-dependent commitment
scheme that is public coin and is constant round.

5.2 Removing Interaction from Instance-Dependent Commitments

Naturally, we cannot directly use the interactive commitments above in the construction of non-
interactive zero-knowledge proof systems. However, in this section we observe that, it is easy to
eliminate the interaction between the sender and receiver if we assume that the sender will be
honest during the commit stage.

Definition 5.6 An noninteractive instance-dependent commitment scheme is an instance-dependent
commitment scheme in which the commit stage consists of a single message c = S(x, b) from the
sender to the receiver.

We also redefine the binding property in the context of honest senders:

Definition 5.7 An instance-dependent commitment scheme Comx = (Sx, Rx) is statistically (resp.,
computationally) binding for honest senders on I ⊆ {0, 1}∗ if there exists a negligible function ε such
that for all x ∈ I, a computationally unbounded (resp., nonuniform PPT) algorithm S∗ succeeds in
the following game with probability at most ε(|x|):
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S interacts with Rx in the commit stage obtaining a commitment c. Then, given the
coin tosses of S and the transcript of the commit phase, S∗ outputs pairs (0, d0) and
(1, d1) and succeeds if in the reveal stage, Rx(0, d0, c) = Rx(1, d1, c) = accept.

For a promise problem Π = (ΠY ,ΠN ), an instance-dependent commitment scheme Comx is
statistically (resp., computationally) binding for honest sender of the YES instance if Comx is
statistically (resp., computationally) binding on ΠY .

Having defined our noninteractive commitment schemes, we present a transformation from
interactive, instance-dependent commitments to noninteractive, instance-dependent commitments
for honest senders.

Lemma 5.8 If a promise problem Π has a public-coin, instance-dependent commitment scheme
that is statistically (resp., computationally) hiding on YES instances and statistically (resp., compu-
tationally) binding for honest senders on NO instances, then Π also has a noninteractive instance-
dependent commitment scheme that is statistically (resp., computationally) hiding on YES in-
stances and statistically (resp., computationally) binding for honest senders on NO instances.

Proof: We can obtain a noninteractive, honest-sender, instance-dependent commitment scheme
by observing that, if we assume the sender is honest, we can eliminate the interaction between
sender and receiver during the commit stage.

If a promise problem Π has an instance-dependent commitment scheme Comx = (Sx, Rx), we
can modify Comx to yield a noninteractive, honest-sender, instance-dependent commitment scheme
Com′x = (S′x, R′x) by having the sender carry out the commit phase on its own. Namely, in the
commit stage, S′x(b) will run (Sx(b), Rx) to obtain a commitment c. S′x will send the commitment
c to the receiver. In the reveal stage, Sx simply sends the decommitment d produced by Sx, and
R′x runs Rx (using its commit stage coins r) to verify the decommitment.

The view of R′x when receiving a commitment c from S′x(b) is identical to the view of Rx when
interacting with Sx(b), so the hiding property of Comx is maintained. Additionally, since the
commitment c output by S′x is produced by running Comx, which is statistically (resp., computa-
tionally) binding for honest senders on NO instances, and S′x simply runs (Sx, Rx), it follows that
any S∗ that succeeds in breaking the binding property of Definition 5.7 for Com′x will also succeed
for Comx with the same probability. Therefore, Com′x is also statistically (resp., computationally)
binding for honest senders on NO instances.

5.3 From Instance-Dependent Commitments to NIZKh

Theorem 5.9 If Π ∈ AM and Π has a noninteractive, honest-sender, instance-dependent commit-
ment scheme that is statistically (resp., computationally) hiding on YES instances and statistically
binding for honest senders on NO instances, then Π ∈ NISZKh (resp., Π ∈ NIZKh).

Proof: Throughout the proof, we will assume that we have a computationally hiding commitment
scheme, which we will use to build a NIZKh proof system. The compiler used to build a NISZKh
proof system from statistically hiding commitments is identical. We show that we can use a
noninteractive, honest-sender, instance-dependent commitment scheme to build a NIZKh proof
system which implements the hidden bits construction of [FLS] (Definition 4.3 and Theorem 4.5).
Our general strategy will be to exploit the correspondence between the algorithms in our definition
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of an instance-dependent commitment scheme, and the three algorithms in a NIZKh proof system.
More specifically, we will have the dealer D use the sender algorithm to commit to a hidden bits
string (this is why we can afford to assume the sender is honest). Since the prover P is allowed to
be unbounded, we will use it to exhaustively search for openings to D’s commitments. Finally, the
verifier V will use the receiver algorithm to check P ’s openings.

Let (PHB, V HB) be a hidden bits proof system for Π and let (Sen,Rec) be the noninteractive,
honest-sender bit commitment scheme for Π. We claim that the following proof system (D,P, V )
is NIZKh.

1. D(x, 1k): Select σD R← {0, 1}m, and run Sen(x, σD
i ) to generate a commitment ci, for all i.

Output c = (c1, . . . , cm) as the public help parameter.

2. P (x, c): Exhaustively find a random opening oP
i for each ci (and, implicitly, each σD

i ). If one
commitment ci can be opened as both 0 or 1, P outputs oP

i according to the distribution
O|C=ci , where (O,C) is the output of S on a random bit b. Let σP be the secret string obtained
by P opening D’s help string. P runs PHB(x, σP ) to obtain (I, π). Send (I, σP

I , oP
I , π) to V .

3. V (x, I, oP
I , π): Compute σP

j ,∀j ∈ I. Use Rec to check that the commitments are consistent.

Run V HB(x, I, σP
I , π) and accept if and only if V HB accepts.

The reason our protocol refers to 2 secret strings (σD and σP ) is that our commitments are not
necessarily binding on YES instances. Consequently, P might not be able to uniquely recover the
same secret string σD based on D’s help string consisting of the commitments to σD. That is why
we have P recreate another secret string σP by drawing from the distribution of bits conditioned
on the help string. We note that:

• This only happens for YES instances. For NO instances, P has a negligible chance of being
able to open a σP different from σD. This guarantees that the potential ambiguity of the
help string cannot affect soundness.

• The distributions (σD, c) and (σP , c) are identically distributed (the only difference is the
order in which σ and c are drawn).

We now show the protocol described above satisfies the conditions necessary for it to be a NIZKh

proof system:

1. Completeness. This follows from the completeness of the hidden bits system (PHB, V HB).

2. Soundness. We show that a potentially malicious prover P ∗ can open σD in only one way
with overwhelming probability. Since the commitment scheme is statistically binding on NO
instances, the probability that a commitment ci can be opened as both 0 and 1 will be some
negligible function ε(n), where n = |x|. Hence, the probability that any commitment ci can be
opened in two ways is at most m ·ε(n). Assuming that there existed a cheating P ∗ that could
convince V to accept with probability p, then we can obtain a cheating (P ∗)HB which outputs
accepting proofs with probability at least p − mε(n), by defining (P ∗)HB(x, σ) = P ∗(x, c)
where (c1, . . . , cm) = (Sen(x, σ1), . . . ,Sen(x, σm)). Since (P ∗)HB can produce an accepting
transcript with only negligible probability, P ∗ produces an accepting proof with negligible
probability. Therefore, the soundness of (PHB, V HB) carries over to (D,P, V ).
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3. Zero Knowledge. We construct the following simulator S for the proof system. We let S be a
pair of PPTs (SHB, S′), where SHB is the simulator for the hidden bits NIZK proof system
for Π. SHB takes in as input x ∈ Π, and outputs (σI , I, π). S′ takes in σI as input, randomly
completes σ by selecting the bits not in σI , and generates commitment/opening pairs (ci, oi)
for all bits σi (the pairs are drawn randomly from the possible choices of commitments and
openings).

In order to show that S can truly simulate real transcripts, we first build the following
distributions:

• The distributions of real transcripts, generated by the dealer D and the prover P :
H0 = {c← D(1k), (I, σP , oP , π)← P (x, c) : (c, σP

I , I, oP
I , π)}

• A hybrid for which a modified dealer D′ not only sends c, but also the openings o to the
prover PHB.
H1 = {(σD, c, oD)← D′(1k), (I, π)← PHB(x, σD) : (c, σD

I , I, oD
I , π)}

• A hybrid where σ is generated uniformly and fed to PHB to produce (I, π), as well as
to a modified dealer D

′′
, which on input σ, x produces the pair (c, o) for σ.

H2 = {σ ← {0, 1}m, (I, π)← PHB(x, σ), (c, o)← D
′′
(σ, x) : (c, σI , I, oI , π)}

• The distribution of simulated transcripts:
H3 = {(σI , I, π)← SHB, (σ\σI , c, o)← S′(σI , I) : (c, σI , I, oI , π)}
where by σ\σI we refer to those bits of σ which had not already been selected by the
choice of σI .

We now proceed to prove the indistinguishability relationships between these different hybrids.
By examination, we see that H0, H1 and H2 are identically distributed. By the properties of
hidden bits zero knowledge proof systems, we know that the transcripts produced by PHB,
{σ ← {0, 1}m, (I, π) ← PHB(x, c) : (σI , I, π)} are statistically indistinguishable from those
simulated by SHB, {(σI , I, π)← SHB : (σI , I, π)}, so the σI , I, π fragments of the hybrids H1

and H2 are statistically indistinguishable. In both cases, the commitments cI and openings
oI to the bits in σI are generated using the sender algorithm Sen, so the distributions remain
statistically indistinguishable if we include these. The distributions differ, however, in how
the other commitments c\cI are generated. In H2, these are commitments to bits σ\σI that
are correlated with (σI , I, π). In H3, they are commitments to bits σ\σI that are uniform and
independent of (σI , I, π). But, by the hiding property, commitments to any two sequences
of bits are computationally indistinguishable. Hence H0 and H3, representing the real and,
respectively, the simulated transcripts, are computationally indistinguishable, proving that
the proof system (D,P, V ) is zero knowledge.

If the commitment scheme is statistically rather than computationally hiding on NO in-
stances, then the ensembles above are statistically indistinguishable, and we obtain a NISZKh

proof system.

Remarks. We make the following observations about the protocol in the proof of Theorem 5.9.
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1. If the commitment scheme is not instance-dependent, but rather depends only on the se-
curity parameter (i.e., the length of the input x), then we obtain a proof system in the
public parameter model. Combining this with the construction of commitments from one-
way functions [HILL, Nao], we get another proof of the fact that one-way functions imply
NIZKpub = AM [BG, Pas].

2. The protocol requires a computationally unbounded honest prover, because the prover must
break the commitments. However, the prover can be implemented efficiently in a generaliza-
tion of the help model where the dealer can generate secret information (e.g. the openings
to the commitments) for the prover in addition to the common reference string. Such a
model can be useful for applications of noninteractive zero knowledge where the dealer and
the honest prover are the same party, such as the Bellare–Goldwasser signature scheme [BG].
(This signature scheme also requires that the zero knowledge property holds even when many,
adaptively chosen statements are proven using the same reference string; unfortunately, our
construction does not provide such guarantees.) This model for noninteractive zero knowledge
should be contrasted with one where the verifier receives secret information from the dealer,
which has proven useful in the construction of encryption schemes secure against chosen-
ciphertext attack [CS], and one where both parties receive secret information, as studied in
[CD].

6 From ZKh to ZK

We generalize the results of Ben-Or and Gutfreund [BG] that SZKh = SZK (Theorem 3.3) to show
that adding help to ZK proofs does not confer any additional power:

Theorem 6.1 (Theorem 1.3, restated) ZKh = ZK.

To prove Theorem 3.3, Ben-Or and Gutfreund employ the techniques of [AH, PT, GV], by
considering the output of the simulator S for a zero-knowledge proof for Π as the moves of a virtual
prover and a virtual verifier. The simulated transcripts are compared to the transcripts output by
a cheating strategy for a real prover PS (called the simulation-based prover), which tries to imitate
the behavior of the virtual prover. Intuitively, on YES instances, the output of the simulator
should be statistically close to the output of the simulation-based prover interacting with the real
verifier. On NO instances, however, if we modify the simulator to accept with high probability
(we can easily modify it to do that), the difference between the two transcripts must be significant.
[BG] exploit this to show that any problem in SZKh can be reduced to the intersection of the SZK-
complete problems Statistical Difference([SV]) and Entropy Difference([GV]). Since the
other direction (SZK ⊆ SZKh) follows from the definitions, the conclusion that SZK = SZKh follows
immediately. We will use the same strategy with ZKh, replacing statistical measures of closeness
with computational ones. To do this, we will replace the SZK-complete problems SD and ED the
Indistinguishability Condition and the Conditional Pseudoentropy Condition, which
characterize the class ZK (Theorems 3.7 and 3.9).

We will use the following notation throughout this section: we let (D,P, V ) be a ZK proof
system for promise problem Π, and we let S be the simulator for the honest verifier V . We assume
that the verifier uses a total of r = r(|x|) coins. Including the dealer’s message, we assume that 2l
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messages make up a transcript, where l = l(|x|), and that each message has length r. Additionally,
the last message reveals the verifier’s random coins. We use the notation S(x) to refer to the
simulated transcripts. For a transcript γ, we denote γi the prefix of γ consisting of the first i
messages.

We construct the simulation-based prover in the following manner: for an odd i, given a con-
versation prefix γ ∈ {0, 1}(i−1)r, the next message of PS is:

1. If the probability that S(x) outputs a conversation with prefix γ is 0, then PS sends a dummy
message, say 0r.

2. Otherwise, PS replies with the same conditional probability as the virtual prover, sending β
with probability Pr [S(x)i = γβ|S(x)i−1 = γ].

Note that PS sends the first message instead of the dealer, using the simulator to generate the
help string. Define 〈PS , V 〉(x) to be the distribution of the possible transcripts of conversations
between PS and V .

Lemma 6.2 [AH, PT, GV, BG] For all x, KL(S(x)|〈PS , V 〉(x)) = r−
∑l

i=1[H(S(x)2i)−H(S(x)2i−1)].

Lemma 6.3 [AH, PT, GV, BG] For x ∈ ΠN , let p denote the probability that S(x) outputs an
accepting transcript. Suppose that ∆(D(x), S(x)1) ≤ q1. Denote by q2 = q2(|x|) the soundness of
the protocol. Let q = 2q1 + q2, and suppose that p ≥ q. Then,

KL(S(x)|〈PS , V 〉(x)) ≥ KL2(p, q).

We will use the previous two lemmas to prove the main result of this section:
Proof of Theorem 6.1 Since ZK ⊆ ZKh by definition, we prove ZKh ⊆ ZK. Consider a

problem Π with a ZKh proof system with completeness and soundness errors at most (2lr)−2/2.
We modify the proof system such that 02lr is always an accepting transcript, and such that the
simulator always outputs accepting transcripts (e.g., swap on rejecting transcripts with 02lr). The
new proof system has soundness error at most 2−r + (2lr)−2/2.

Similarly to [BG, GV, Vad], consider the following distributions:

• Xx,1 = (S(x)2, . . . S(x)2l), Y1,x = (S(x)1, . . . S(x)2l−1).

• Xx,2 = D(x), Y2,x = S(x)1.

Claim 6.4 If x ∈ Π, X2,x
c≡ Y2,x and (X1,x, Y1,x)

c≡ (X ′, Y ′), where H(X ′|Y ′) = r.

Proof: When x ∈ ΠY , X2,x
c≡Y2,x and (X1,x, Y1,x)

c≡(X ′, Y ′), where (X ′, Y ′) is the dis-
tribution of real transcripts produced by 〈D,P, V 〉. That is, X ′ = (〈D,P, V 〉(x)2, . . . 〈D,P, V 〉(x)2l)
and Y ′ = (〈D,P, V 〉(x)1, . . . 〈D,P, V 〉(x)2l−1).

The conditional entropy of X ′ given Y ′ will be:

H(X ′|Y ′) =
l∑

i=1

H(〈D,P, V 〉(x)2i|〈D,P, V 〉(x)2i−1) = r

since the sum measures the total entropy contributed by the verifier’s messages.
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Claim 6.5 If x ∈ Π, either ∆(X2,x, Y2,x) ≥ (2lr)−1 or H(X1,x|Y1,x) ≤ r − 1.

Proof: Assume ∆(X2,x, Y2,x) ≤ (2lr)−1. Then, we have:

or, by Lemmas 6.2 and 6.3 and assuming that 2−r + (2lr)−2/2 + (lr)−1 < 1/2, q1 =
(2lr)−1, q2 = 2−l + (2lr)−2/2, and p = 1:

H(X1,x|Y1,x)

=
l∑

i=1

H(S(x)2i|S(x)2i−1)

=
l∑

i=1

H(S(x)2i)−H(S(x)2i−1))

= r −KL(S(x)|〈PS , V 〉(x)) (by Lemma 6.2)
≤ r −KL2(1, 1/2) (by Lemma 6.3, with p = 1, q1 = (2lr)−1, q2 = 2−l + (2lr)−2/2, q = q1 + 2q2 ≤ 1/2)
= r − log 2
= r − 1

Having mapped instances x ∈ Π to (Xx,1, Yx,1) and (Xx,2, Yx,2), consider the promise problems
Γ and Λ defined by ΓY = ΛY = ΠY ,ΓN = {x ∈ ΠN : ∆(Xx,2, Yx,2) ≥ (2lr)−1} and ΛN = {x ∈
ΠN : H(Xx,1, Yx,1) ≤ r − 1}. Then Π = Γ ∩ Λ (i.e., ΠY = ΓY ∩ ΛY and ΠN = ΓN ∪ ΛN ). Since ZK
is closed under intersection (run protocols for Γ and Λ in parallel), it suffices to show that both
Γ ∈ ZK and Λ ∈ ZK. Both Γ and Λ are in IP; this follows because they are restrictions of Π,
which is in ZKh ⊆ IP. Γ satisfies the Indistinguishability Condition (the inverse polynomial
statistical difference can be amplified to 2/3 by taking direct products), so Γ ∈ ZK (by Theorem 3.7),
and Λ satisfies the Conditional Pseudoentropy Condition, so Λ ∈ ZK (by Theorem 3.9).
Consequently Π ∈ ZK ⊆ IP.

7 Putting it all together

Theorem 7.1 (Theorem 1.2, restated) SZKh = SZK = NISZKh.

Proof: Theorem 3.3 implies NISZKh ⊆ SZKh = SZK. To prove SZK ⊆ NISZKh, recall that any
problem in SZK has an instance-dependent commitment scheme that is statistically hiding on YES
instances and statistically binding on NO instances by Theorem 5.4. By Lemma 5.8, the scheme
can be made noninteractive and statistically binding for honest senders. Since SZK ⊆ AM [AH],
the construction of Theorem 5.9 can be applied to yield a NISZKh proof.

Theorem 7.2 (Theorem 1.1, restated) ZKh ∩AM = ZK ∩AM = NISZKh.

Proof: The proof is analogous to the statistical zero knowledge case.
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8 Other characterizations

In this section, we obtain new characterizations of ZK and SZK, by using their relationships with
NIZKh and NISZKh, established in the previous sections. We start by considering a variant of the
NISZKh-complete problem given by Ben-Or and Gutfreund [BG]:

Definition 8.1 Image Intersection Density (IID)

IIDY = {(X, Y ) : ∆(X, Y ) < 1/3}
IIDN = {(X, Y ) : (X, Y ) are mutually 2/3-disjoint}

In [BG], the thresholds of 1/3 and 2/3 are replaced with 1/poly(n) and 1 − 1/poly(n); we
will prove that the above version is NISZKh-complete by using the following strengthening of the
Polarization Lemma given in [BG]:

Lemma 8.2 (Polarization Lemma, based on [BG, SV]) For all constants such that 0 ≤ α <
β ≤ 1, there exists a polynomial-time procedure that takes a pair of distributions (X0, X1) and a
parameter n in unary, and outputs a pair of distributions (Y0, Y1) such that:

1. ∆(X0, X1) < α⇒ ∆(X0, X1) < 2−n.

2. (X0, X1) is mutually β-disjoint ⇒ (Y0, Y1) is mutually (1− 2−n)-disjoint.

The proof of the Polarization Lemma can be found in Appendix A.
Our Polarization Lemma is stronger than the one stated in [BG], which only achieves polariza-

tion from thresholds α = 1/poly(n), β = 1 − 1/poly(n). Using a combination of the tools in [BG]
and [SV], we achieve the constant threshold polarization we present.

This can be compared to the original Polarization Lemma of [SV], which refers to statistical
difference in Item 2 (rather than mutual disjointness), but only achieves polarization from thresholds
such that 0 ≤ α < β2 ≤ 1, and for which there is evidence that the gap between thresholds is
inherent ([HR]).

We also add that, at a factor of 2 in β, we can start with β-disjoint distributions rather than
mutually β-disjoint ones for the polarization to work. The reason is that we can easily transform
a pair (X, Y ) that is 2β-disjoint into a pair (X ′, Y ′) such that ∆(X ′, Y ′) = ∆(X, Y ) and (X ′, Y ′)
is mutually β-disjoint, using Lemma B.1.

We also give a computational analogue of IID:

Definition 8.3 (CIIDC) A promise problem Π satisfies the Computational Image Intersec-
tion Density Condition (CIIDC) if there is a polynomial time mapping from strings x ∈ Π to
two efficiently samplable distributions (X, Y ) and a parameter m = poly(|x|) such that

1. If x ∈ ΠY , then X and Y are computationally indistinguishable.

2. If x ∈ ΠN , then (X, Y ) are mutually 1/3-disjoint.

We observe that IID and CIIDC exactly capture noninteractive, instance-dependent commit-
ments that are statistically binding for an honest sender:
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Lemma 8.4 A promise problem Π has a noninteractive, instance-dependent commitment scheme
that is statistically (resp., computationally) hiding on YES instances and statistically binding for
honest senders on NO instances if and only if Π reduces to IID (resp., if and only if Π satisfies
the CIIDC).

Proof: For the backwards direction, consider a problem Π which reduces to IID (the computa-
tional case will be similar). We construct the following protocol:

Commitment protocol for Π:

1. Preprocessing:

First, reduce x ∈ Π to an instance (X0, X1) of IID. Use the Polarization Lemma on (X0, X1)
to obtain (Y0, Y1) such that, if x ∈ ΠY , ∆(Y0, Y1) ≤ 2−n, and, if x ∈ ΠN , (Y0, Y1) are mutually
(1− 2−n)-disjoint, where n = |x|.

2. Commit Stage:

Sx(x, b): To commit to bit b ∈ {0, 1}, choose d
R← {0, 1}m, where m is the input length of Yb,

set c = Yb(d) and output (c, d).

3. Reveal Stage:

Rx(x, c, b, d): Accept if and only if Yb(d) = c.

On x ∈ ΠY , we know that Y0 and Y1 have negligible statistical difference. Hence, a commitment
to 1 is statistically indistinguishable from a commitment to 0. Hence, the scheme is computationally
hiding on YES instances (actually, the scheme is statistically hiding.)

When x ∈ ΠN , the pair (Y0, Y1) is mutually (1 − 2−n)-disjoint. It directly follows that only a
negligible fraction of commitments can be opened in two ways.

In the case that we are working with a problem which satisfies the CIIDC, we use the same
scheme. However, instead of polarizing, we will simply take direct products to amplify the mutual
disjointness on NO instances while preserving computational indistinguishability on YES instances
(Lemma A.1).

For the forwards direction, let Comx = (Sx, Rx) be a noninteractive, instance-dependent com-
mitment scheme that is statistically hiding on YES instances and statistically binding for honest
senders on NO instances, and consider X = Sx(0) and Y = Sx(1).

• If x ∈ ΠY , we know that ∆(viewR(Sx(0), R), viewR(Sx(1), R)) ≤ ε(|x|), and hence, ∆(Sx(0), Sx(1)) ≤
ε(|x|).

• If x ∈ ΠN , assume that there exists no negligible function µ(|x|) such that (Sx(0), Sx(1))
are mutually (1 − µ(|x|))-disjoint. Hence for all negligible functions µ(|x|) and c ← Sx(b),
Pr

[
c ∈ Sx(b)

]
> µ(|x|). But then, S can always succeed with probability greater than µ(|x|)

at the game described in Definition 5.7. So, for some negligible µ, (Sx(0), Sx(1)) is mutually
(1− µ(|x|))-disjoint, and Π reduces to IID.

The proof for the computational case is analogous.

Theorem 8.5 The following hold:
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1. IID is complete for SZK = SZKh.

2. Π ∈ ZK = ZKh if and only if Π ∈ IP and Π satisfies the CIIDC.

Proof: We prove Item 2: Since a promise problem which satisfies CIIDC also satisfies the
Indistinguishability Condition (this follows from the fact that of two distributions are α-
disjoint, they must have statistical difference at least α), the promise problem must have a ZK
proof system by Theorem 3.7. Conversely, any problem in ZKh = ZK has a instance-dependent
commitment scheme that is computationally hiding on YES instances and statistically binding on
NO instances. By Theorem 5.8, this can be transformed into a noninteractive, instance-dependent
commitment scheme that is computationally hiding on YES instances and statistically binding for
honest senders on NO instances and thus satisfies CIIDC.

The proof of Item 1 is analogous.
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A Proof of the Polarization Lemma (Lemma 8.2)

In order to prove our version of the Polarization Lemma, we give a few helper lemmas.

Lemma A.1 [BG, SV] Given a pair of distributions (X0, X1) with n input gates and a parameter
k, consider the following distributions:

Y0: Choose (r1, . . . , rk)
R← {0, 1}kn, output (X0(r1), . . . , X0(rk)).

Y1: Choose (r1, . . . , rk)
R← {0, 1}kn, output (X1(r1), . . . , X1(rk)).

The following properties hold:
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1. ∆(Y0, Y1) ≤ k ·∆(X0, X1).

2. If the pair (X0, X1) is mutually α-disjoint, then (Y0, Y1) is mutually (1− (1− α)k)-disjoint.

Lemma A.2 [BG, SV] Given two pairs (X0, X1) and (X
′
0, X

′
1), with n and n

′
input gates, re-

spectively, consider the circuits:
Y0: Choose b

R← {0, 1}, r R← {0, 1}n, r
′ R← {0, 1}n

′
, output (Xb(r), X

′
b(r

′
)).

Y1: Choose b
R← {0, 1}, r R← {0, 1}n, r

′ R← {0, 1}n
′
, output (Xb(r), X

′

b
(r

′
)).

The following properties hold:

1. ∆(Y0, Y1) = ∆(X0, X1) ·∆(X
′
0, X

′
1).

2. If (X0, X1) and (X
′
0, X

′
1) are mutually α-disjoint and α

′
respectively, then (Y0, Y1) are mutu-

ally (αα
′
)-disjoint.

Lemma A.3 [BG, SV] Given circuits X0, X1 with n input gates and a parameter k, consider the
following pair:

Y0: Choose (b1, . . . , bk)
R← {(c1, . . . , ck) ∈ {0, 1}k : c1 ⊕ . . . ⊕ ck = 0}, (r1, . . . rk)

R← {0, 1}kn,
output (Xb1(r1), . . . , Xbk

(rk)).

Y1: Choose (b1, . . . , bk)
R← {(c1, . . . , ck) ∈ {0, 1}k : c1 ⊕ . . . ⊕ ck = 1}, (r1, . . . rk)

R← {0, 1}kn,
output (Xb1(r1), . . . , Xbk

(rk)).
The following properties hold:

1. ∆(Y0, Y1) = ∆(X0, X1)k.

2. If the pair (X0, X1) is mutually α-disjoint, then (Y0, Y1) is mutually αk-disjoint.

Using the above lemmas, we are ready to prove our version of the Polarization Lemma:

Lemma A.4 [BG, SV] (Polarization Lemma) There exists a polynomial-time procedure that
takes a pair of distributions (X0, X1) with description length n, and outputs a pair of distributions
(Y0, Y1) such that:

1. ∆(X0, X1) < α⇒ ∆(X0, X1) < 2−n.

2. (X0, X1) is mutually β-disjoint ⇒ (Y0, Y1) is mutually (1− 2−n)-disjoint,

for all constants α and β such that α < β.

Proof: Let λ = min{β/α, 2} > 1.
We first apply Lemma A.3 with k = logλ 2n, obtaining two distributions which are either αk

statistically close, or mutually (β)k-disjoint.
Then, apply Lemma A.1 with m = λk

2βk ≤ 1
2αk . This gives 2 distributions with either:

• Statistical difference at most mαk ≤ 1/2.

• Mutual disjointness of at most 1−(1−βk)m ≥ 1−e−βkm = 1−e
−βk λk

2βk = 1−e−
λk

2 = 1−e−n.

Finally, we again apply Lemma A.3 with parameter n to get either statistical difference at most
2−n, or mutual disjointness at most (1− e−n)n ≥ 1− ne−n ≥ 1− 2−n.
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B From Disjoint to Mutually-Disjoint Distributions

Lemma B.1 [BG, SV] Given a pair of distributions (X0, X1) with n input gates, consider the
following distributions:

Y0: Choose r
R← {0, 1}n, b

R← {0, 1}, output (Xb(r), b).
Y1: Choose r

R← {0, 1}n, b
R← {0, 1}, output (Xb(r), b).

The following properties hold:

1. ∆(Y0, Y1) = ∆(X0, X1)

2. If (X0, X1) is α-disjoint, then (Y0, Y1) is mutually α
2 -disjoint.
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