Overlap-free Karatsuba-Ofman Polynomial

Multiplication Algorithms

Haining Fan, Jiaguang Sun, Ming Gu and Kwok-Yan Lam

Published on: IET Information security, vol. 4, no. 1, pp. 8-14, 2010.

I am sorry that | have made the following mistake:

The first subquadratic integer multiplication algorithmsaiavented by A.A. Karatsuba himself,

not Karatsuba and Ofman. [1]

Abstract

We describe how a simple way to split input operands allowsfdst VLSI implementations of
subquadrati@Z F'(2)[z] Karatsuba-Ofman multipliers. The theoretical XOR gateagalf the resulting
multipliers is reduced significantly. For example, it is wedd by about 33% and 25% far= 2 and
n = 3' (t > 1), respectively. To the best of our knowledge, this paramieter never been improved

since the original Karatsuba-Ofman algorithm was first usedesignGF'(2") multipliers in 1990.

Index Terms
Karatsuba algorithm, Karatsuba-Ofman algorithm, polyr@multiplication, subquadratic space
complexity multiplier, finite fields, Galois fields.
. INTRODUCTION
Published in 1962 [2], Karatsuba-Ofman’s algorithm (KOAgsathe first integer multiplication

method that broke the quadratic complexity barrier in posél number systems. Due to its

Haining Fan, Jiaguang Sun, Ming Gu, Kwok-Yan Lam are with $lthool of Software, Tsinghua University, Beijing, China.

E-mails: {fhn, sunjg, guming, lamky@tsinghua.edu.cn

simplicity, its polynomial version is widely adopted to dgs VLSI parallel multipliers in
GF(2")-based cryptosystems [13]-[34].

Two parameters are often used to measure the performancé éf(2") parallel multiplier,
namely, the space and time complexities. The space conlexepresented in terms of the total
number of 2-input XOR and AND gates used. The corresponding tomplexity is given in
terms of the maximum delay faced by a signal due to these XQ@QRAND gates. SymbolsT,”
and “T'x” are often used to represent the delays of one 2-input AN gatl one 2-input XOR
gate, respectively. The existing bit parali@F’'(2") multipliers may be simply classified into the
following three categories according to the asymptoticcepeomplexity of the multiplication
algorithm: quadratic, subquadratic and hybrid multigieA number of quadratic multipliers
have been proposed in the literature in which differentdespresentations @ F'(2") elements
are used, e.g., polynomial, shifted polynomial, normahldweakly dual, and triangular bases.
Their time complexities are lower than those of subquacinatiltipliers. The main advantage
of subquadratic multipliers is that their low asymptoti@ase complexities make it possible to
implement VLSI multipliers for large values of. But when the size of operands is small, e.g.,
32-bit, the space complexity may not remain as the critigetdr considered by a cryptographic
processor designer. Instead, the computational speednescthe key factor. Based on this
consideration, the hybrid approach is often used to degigctipal multipliers [6] [18] [21] [23]
[32]. These multipliers first perform a few KOA iterationsremuce the whole space complexities,
and then a quadratic multiplication algorithm on small inpperands to achieve relatively high
speed performance. By selecting different stop conditilemsthe KOA iterations, the hybrid
approach can provide a trade-off between the time and spaoelexities. For the purpose of
comparison, reference [21] implemented four paralldl(2233) multipliers on Xilinx FPGAs,
namely classical, hybrid Karatsuba, Massey-Omura, an@Skio¢, and analyzed their time and
space complexities in detail. It was shown that for polyradrbiases representation the hybrid

Karatsuba is the best choice, while for normal bases therS(m@ An improved structure of

the hybrid Karatsuba multiplier of [21] was presented latef32], where different possibilities
of implementing Karatsuba multipliers were also studied.

Some other related work on KOA multipliers include the faling. In [15], the exact space
and time complexities of KOA multipliers were derived. A gealization of the KOA was
proposed in [22], and the other generalization, i.e., thedgfiad short convolution algorithm,
was presented in [25]. In reference [26], a non-redundari K@iltiplier was proposed. Its space
complexity is lower than that of the original KOA multiplidReferences [27] and [28] presented
some improved-term @ < ¢t < 19) GF(2)[z] Karatsuba-like formulae. These formulae may be
mixed with the 2-term and 3-term formulae within recursiemstructions, leading to low space
complexity subquadrati& F'(2)[x] multipliers. FPGA and ASIC KOA implementations can be
found in, for example, [19], [21], [29], [31], [32] and [34The interested readers are referred
to [34] for a more detailed comparison of some hardware dssig

In the work, we will propose a new algorithm for fast hardwamgplementations of the
polynomial KOA. The proposed algorithm uses a simple andigittforward method to split
input operands [3] [4]. The theoretical XOR gate delay of pheposed subquadratic Karatsuba-
OfmanG F'(2)[x] multiplier is reduced significantly. For example, it is redd by about 33% and
25% forn = 2" andn = 3" (¢t > 1), respectively. To the best of our knowledge, this parameter
has never been improved since the original KOA was first usetesignG £'(2") multipliers in

1990 [13].

A. The original KOA inGF'(2)|x]

Let A = 3" a;a’ and B = 31") bz’ be two GF(2)[z] elements. To explain the general
idea of KOA easily, we will assume that= 2m = 2' (¢ > 1) in the following.
First, the previous KOA implementations split polynomidlsand B into the “most significant

half” and the “least significant half” as follows:

m—1

n—1 m—1
A= E a;xt =x™ g i + g a;x' =x"Ag + Ap,
i=0 =0

=0

n—1 m—1 m—1
B=> ba'=2"Y bpya' + Yy bia' =a2"By + By,
=0 =0 =0

where Ay = -7 apiat, Ap = S0 aat, By and By, are defined similarly.

Then the productd B is computed recursively using
AB = AHBHCL’zm + {[(AH + AL)(BH + BL)] — [AHBH + ALBL]}SL’m + A; By (1)

We note that =" is the same as “+” inGF'(2), and a 2-input XOR gate can be used to realize
a “—” or “+” operation. For VLSI implementations of (1), the exgssions in the two square
brackets are calculated concurrently, and one XOR gatey,diete, 17y, is required. Then the
“—" operation is performed at a cost ©f'x. Therefore, two XOR gate delayg’y are required

to compute the expression in the curly bracket besides ttgedgdays to compute the three partial
productsAy By, ApBr and (Ay + Ap)(By + By). Finally, the three polynomiald ; By z®™,
(Agp+AL)(Bu+Br)—AyByg— A Br|a™ and A By, in (1) are XORed by adding coefficients
of common exponents of together. The VLSI module used to perform this XOR operatson
called the overlap module [32]. In order to explain overlapsommon exponents aof clearly,

we present the following table, which shows ranges’sfexponents in these three polynomials.

TABLE |

RANGES OFz’S EXPONENTS IN THE THREE POLYNOMIALS OK1)

‘4m—2‘ ‘2m‘ ‘2m—2‘ ‘o‘

+1T'x : overlaps : overlaps

Y p—]

From the table, it is clear that overlaps occur only wher 4 (or m > 2), and there is no
overlap whem = 2 (or m = 1).
Because of these overlaps, one XOR gate delay is requirdteinovterlap module to compute

the summation of the three polynomials; By x*™, [(Ag+ Ar)(By+ Br) — Ag By — AL Br]z™

and A; By in (1). Therefore, a total of 3 XOR gate delays, i}, are required in (1) besides
the cost of the recursive computation of the three partiatipcts.

In order to compute the exact complexities of the above pipatynomial KOA, we introduce
some symbols from [7]. Le§ andD stand for “Space” and “Delay”, respectively. We u$&(n)
andS®(n) to denote the numbers of multiplication (AND) and additiX®R) operationsP®(n)
and D?(n) the gate delays introduced by multiplication and additiperations, respectively.

Our earlier discussion shows that the XOR gate dé&ayn) = D%(n/2)+ 3. It is easy to see
that 27’y is required to compute the product of two polynomials of éegt, i.e.,.D%(2) = 2.
Thus, we have established the recurrence relation of the ¥&®R delay. Similarly, we may
obtain the recurrence relations 8% (n), S¥(n) andD®(n). These recurrence relations describe

the time and space complexities of the original KOA [32].
S®(2) =3, D?(2) =1,
§%(n) = 35%(n/2); D®(n) = D%(n/2);

5°(2) g] DP@=2
S§%(n) = 38%(n/2) + 4n — 4, D%(n) =D%(n/2) + 3.
After solving the above recurrence relations using the tdarderived in [7], we obtain the

following complexity results for the binary polynomial KOA5], [32].

;

S® (n) nlog2
S%(n) = 6n'°e23 — 8n + 2,
2)
D®(n) =1,
| D9(n) = 3logyn — 1.

B. Motivation

Besides KOA, a Toeplitz matrix-vector product approach waesented recently to construct
subquadratioG F'(2") multipliers [7]. It takes advantage of the shifted polynambasis [8]
and applies the coordinate transformation technique ofaf#] [10]. Both the space and time

complexities of the resulting multiplier are better thangé of the best KOA-based subquadratic

multipliers. For example, witm = 2! (t > 1), the space complexity is about 8% better, while
the time complexity is about 33% better, respectively.

Since these Toeplitz matrix-vector product formulae areioled by transposing [5, Th. 6, p.
17] corresponding polynomial KOA-like formulae, the folllmg question arises naturally: is it
possible to reduce the time or space complexity of the KOgelddesubquadratiG' F'(2)[z] VLSI
multiplier further? In the next section, we will answer tlygestion positively, namely, we will
improve the theoretical XOR gate delay of the KOA-based sabeaticG F'(2)[z] multiplier.
The improved KOA algorithm can be used to design multipliersoth ring G F'(2)[x] and finite
field GF(2"), while the Toeplitz matrix-vector product method cannouled directly to design

GF(2)[x] multipliers.

Il. NEw METHOD FORFAST IMPLEMENTATIONS OF GF'(2)[z] KOAS

We first introduce the splitting method in [3] and [4]. Inddeaf splitting input operands into
the “most significant half” and the “least significant halffie method split operands according

to the parity ofz’s exponent. That is to say, we may rewriteand B as follows

n—1 m—1 m—1 m—1 m—1

; 2 241 2 2

A= 0w = ayr® +) aga®™ =) agr® + 1Y aniaa”,
=0 =0 1=0 i=0 i=0

B = nz_l bixt = mz_l by mz_l boj 2Tt = mz_l b2t 4 xmz_l =
i=0 i=0 i=0 i—=0 i—0
Now lety = 22, A.(y) = 37 an’, Ao(y) = 320" asiry’, and B.(y) and B,(y) are
defined similarly. Operands! and B can be rewritten asA = A.(y) + zA,(y) and B =
B.(y)+ xB,(y). SinceA.(y), A.(y), B.(y) and B,(y) are polynomials irny of degree less than

m, multiplication operations among them may also be comptgedrsively. Therefore, we have

the following KOA-like formula

AB = (Ac(y)+ zA0(y))(Be(y) + 2B,(y))
= {A(y)Be(y) + 2*As(y) Bo(y)} + 2{ Ac(y) Bo(y) + Ao(y) Be(y))}
= {[Ac(y)Be(y) + yAs(y) Bo(y)]} +

o{[(Ac(y) + Ao(y))(Be(y) + Bo(y))] — [Ac(y) Be(y) + Ao(y) Bo(y)]}- 3)

Clearly, formula (3) also includes three partial produéisr VLSI implementations of (3),
multiplying a polynomial byz or y = z? is equivalent to shifting its coefficients left, and no
gate is required. It is easy to see that the expansiofify)B.(y) + yA.(y)B,(y)} in (3)
contains only terms with even exponentszofincey = 2%, and the expansion of{[(A.(y) +
Ao(1)(Be(y) + Bo(y))] + [Ae(y) Be(y) + Ao (y) Bo(y)] } contains only terms with odd exponents
of x. Thus, no overlap exists when computing their summatiod, ram gate is required either.
Moreover, the expressions in the three square bracketsecaorbputed concurrently, and these
addition operations require one XOR gate deldy. Since the “” operation also needs!y,
we know that computingd B via (3) needsnly a total of27yx besides the cost of the recursive
computation of the three partial products. Compared tad3fhe gate delays required in formula
(1), one XOR gate delay7’y is saved for each recursive iteration. Consequently, thewng

recurrence relations, which describe the algorithm corifps, can be established.
S®(2) =3, D?(2) =1,
§%(n) = 35%(n/2); D%(n) = D%(n/2);

S§9(2) =4, and ®(2) = 2,
S§%(n) = 38%(n/2) + 4n — 4, D%(n) =D%(n/2) + 2.

Their solutions are as follows:

S®(n) = nlos?,
S%(n) = 6nloe2® — 8n + 2,
D®(n) =1,

D%(n) = 2logyn

\

Compared to the complexities of the origiaF' (2)[z] KOA listed in (2), the proposed method
reduces the XOR gate deld)®(n) from (3log,n — 1) to 2log, n, or by about 33% fon = 2¢
(> 1).

Similar to generalizations of the original KOA, which is alsalled 2-way split, we may
derive some KOA-like formulae fof-way splits (> 2). As an example, we now present the
GF(2)[z] KOA formula for n = 3k = 3" (¢ > 1). It is based on the following 6-multiplication
formula [5, p. 35].

(ag2® 4+ arz + ag)(byx® + by + by)

= agbo + [(ao + a1)(bo + b1) + agbo + a1bi]x +
[(ao + a2)(bo + b2) + aghy + asby + arby]x* +
(@1 + a2)(by + by) + a1by + asbs)® 4 agbya.

Let y = 2® and splitA as follows

n—1 k—1 k—1 k—1
A = Z a;x' = Z as; x> + x Z a3,~+1x3i + 22 Z a3i+2x3i
i=0 i=0 i=0 i=0

= Ao(y) + 241 (y) + 2° As(y),

where Ay (y) = Y17 asiy’s A1(y) = 3070 asicy’ and Ay(y) = Y07 asiay’.
Then we have

AB = {A¢By+y[(A1 + A2)(B1 + By) + A1 By + A By} +

[L’{(AQ + Al)(B() + Bl) + A()B() + AlBl + yAQBQ} +

*{(Ao + As)(Bo + By) + AgBy + A1 By + A3 B},

where {y)”s in expressions4;(y) and B;(y) are omitted.

There are four partial products in the first curly bracketd @imey are polynomials iy of
degree2k — 2, 2k — 1, 2k — 1 and 2k — 1, respectively. Since the constant terms of the last
three partial products are zeroes, we know that computiegettpression in the first curly
bracket requirek + (2k — 2) + (2k — 1) + (2k — 1) = 8k — 4 XOR gates. Similarly, it is
easy to see that the total number of the XOR gates requireldeitast two curly brackets are
2k + (2k —2) + (2k — 1) + (2k — 1) = 8k — 4 and 2k + 3(2k — 1) = 8k — 3, respectively.
But the summatiom, B, + A; By, which appears in the last two curly brackets, can be reused.
Therefore,2k — 1 XOR gates can be saved, and the total number of the XOR gajased in
the above formula i$8k — 4) + (8k — 4) + (8k — 3) — (2k — 1) = 22k — 10 besides the cost of
the recursive computation of the six partial products. Base the above discussion, we obtain
the following recurrence relations that describe the cexipes of this formula. Their solutions

will be presented in Table Il in the next subsection.

S%(3) = 6, D2(3) = 1,

§%(n) = 65%(n/3); D(n) = D%(n/3);
S%(3) = 12, g DPBI=3

S§%(n) = 68%(n/3) + 2n — 10; D®(n) = D%(n/3) + 3.

A. Comparisons

Table Il compares asymptotic complexities of the proposethéilae with the previous KOA
and Toeplitz matrix-vector product (TMVP) formulae ovee tjround field= F'(2), where##AND
and#XOR denote the total numbers of AND and XOR gates, respdygtiVlee size of operands
is assumed to be = 2! or 3! (t > 1). These comparisons are made from a theoretical viewpoint.
For practical designs of VLSI multipliers, it is a better a@®to merge the proposed method

into the hybrid approach discussed in the introductionisect

10

As shown in the table, the proposed method and the previous K&ve the same space
complexities, but the XOR gate delay of the proposed methddesforms the previous KOA
whent > 1. We list complexities of the TMVP in the table because bothAK&hd TMVP can
be used to desigyF'(2") subquadratic parallel multipliers, which is an importapplcation
field of these two algorithms. But we must emphasize thatethe® algorithms arelistinct,
and each of them have their own application fields [6]. Tale@®'(2") subquadratic parallel
multiplier as an example. Since there is no known value fifr which an irreducible polynomial
of weightw < 6 does not exist [11], we need only to select either an irrddadrinomial or an
irreducible pentanomial of degreeto generate>F'(2"). In order to adopt the TMVP approach
in the design stage, the coordinate transformation tecienmust be used to obtain the desired
Toeplitz matrix [7]. The corresponding transformation neas for irreducible trinomials and a
special type of irreducible pentanomigféu) = v + v +uf + vt +1 (1 <k <n—1)
have been derived when tl@F'(2") elements are represented in the shifted polynomial basis
[7]. But no explicit transformation matrices are currendlyailable for other bases, e.g., the
polynomial basis. On the other hand, the KOA-bag&l(2™) subquadratic parallel multiplier
consists of two steps: (1) the KOA multiplication, and (2) adulo reduction operation using
an irreducible polynomial. The second step, which depemdthe form of the field generating
irreducible polynomials, has been studied by many authidierefore, a hardware engineer can
use these theoretical results directly to designdn(2™) subquadratic parallel multiplier. The

interested reader is referred to a recent survey paper {t2hore details.

B. An Example
We now present an example to compare the proposed methodhgitbriginal KOA.
Let A = agz® + asx® +ayx +ag = Agz® + Ap and B = byz® + by + bz + by = Bya? + By,

where Ay = asx + ag, A, = a1x + ag, By = bsx + by and By, = byx + by are polynomials of

11

TABLE Il

COMPARISONS OF ASYMPTOTIC COMPLEXITIES

n Algorithm #AND #XOR Gate delay
KOA [15] [33] | n'°82? | 6n'°823 — 8n + 2 (3logon — 1)Tx +Ta

2" | Proposed nlos23 | 6nlos23 _8n 42 (2logy n)Tx + Ta
TMVP [7] nlo823 | 5501823 _6n 4 0.5 | (2logyn)Tx + Ta

KOA [15] [33] | n'o#3® | L8plo8s6 — 22p 42 | (4loggn — 1)Tx + Ta

3" | Proposed nlogs 6 1—36711°g3 6 _ %n +2 (3logzn)Tx +Ta

TMVP [7] nlogs 6 2—54nlog3 6 _5n 4+ 1 (3logzn)Tx +Ta

degree 1 inx. Then the original KOA computes the produ¢B using
AB = AHBHCL’4 + {[(AH + AL)(BH -+ BL)] + [AHBH -+ ALBL]}CL‘z + ALBL. (4)

There are three products of polynomials of degree 1 in (44 #rey can be computed
recursively using the KOA at a cost &fTy. For example, A, B, = (a1z + ag)(byx + by)

can be computed using
(alx + ao)(bll' -+ bo) = a1b1x2 -+ {[(Cll -+ ao)(bl + bo)] + [Cllbl + Clobo]}ﬂf + aobo. (5)

To show the role of the overlap in (4), let group the three potsl in (4) and write them as

polynomials of degree 2 i as follows:

]{?21'2 + ki +ky = AHBH;
dox® +dyx +dy = [(Axg+ AL)(By + Br)] + [AuBy + ApBy);
e +ex+ey = ALBL.

Then we have
AB = (k’g[lj’Q -+ k‘ll' +]{50)1'4 + (dQIIZ'Q -+ dll' + do)l’z + (62[12'2 +e1x + 60)

=]{?21'6 -+ k‘ll'5 + (k’o -+ dg)l’4 + dlflfg + (do -+ 62)[23’2 +e1x + ep. (6)

12

Clearly, one XOR gate delayT’x is required to compute the overlap summatidhs+ d») and
(do + e2). Since we nee@T'y to perform the XOR operations in the curly bracket of (4), we
know that the total number of XOR gate delays of the origin@Ais 2+1+2=5.

Let y = 2. The proposed method split4 and B as A = axz® + ag + z(azz® + a;) =
Ac(y) + 2Ao(y) and B = Bc(y) + xB,(y), where A.(y) = axy + ao, Ao(y) = asy + as,
Be(y) = by + by and B,(y) = bsy + b, are polynomials of degree 1 in

From (3), the proposed method comput&B using

AB = (Ac(y)+ 2A.(y))(Be(y) + 2Bo(y))
= {Acy)Be(y) + yA.(y)Bo(y) } +
2{[(Ac(y) + Ao(y))(Be(y) + Bo(y))] + [Ac(y) Be(y) + Ao(y) Bo(y)]}-

Now define four polynomials of degree 2 inas follows:

Py +py+po = Ay)Be(y);

By +ay+a = A(y)Bo(y);

ray’ + iy +ro = [(Ae(y) + Ao(y))(Be(y) + Bol(y))];
oy’ + 51y +s0 = [Ac(y)Be(y) + Ao(y) Bo(y))-

We needl Ty to perform “+” operations in the last two equations. Since the proposetiode
is identical to the original KOA when the two input polynonsiare of degree 1, i.e., formula
(5), we nee®Ty to compute the three products of polynomials of degree 4 im the above

four equations. Thus, we need a total3dfy to obtain allGF(2) elementsp;, ¢;, r; ands; in

13

the above four equations, wheie- 0, 1 and2. Now, the productd B can be computed using

6 3 3
AB = Zcz-xi = (Z aixi> <Z bixi>
i=0 1=0

=0
= {(p2® + 1y +p0) +y(@y* + qy +q)} +

w{(roy? + riy +10) + (52y* + 519 + 50) }
= ¢z’ + [pa + @]z’ + [p1 + qo)a” + po +
[ro + so]z® + [r1 + s1]2® + [ro + so)z. (7)

Clearly, one XOR gate delayl'x is required to obtain the summations in the five square btacke
Therefore, the total number of XOR gate delays required topde AB is 3+1=4, andl T is
saved compared to the original KOA.

The following arithmetic circuit illustrates the two-ldveecursion formula (7). The circuits
in the three rectangular dotted boxes are the same, and édbbno implements the original
KOA formula (5), which computes the product of two input pudynials of degree 1. Due to the
parallelism, the six XOR operationst” in the six doted circles contribute no gate delay to the
total XOR gate delays of formula (7). The interested readay mwompare this circuit diagram

to Figure 8.1 of [6, p. 222] which illustrates the original KG@wo-level recursion formula (6).

[1I. CONCLUSIONS

We have proposed a new method to implement the polynomial K@A/LSI multipliers.
It eliminates overlaps in the previous designs. The XOR gatay of the proposed:F'(2)[x]
KOA is significantly better than that of the previous KOA. Bk the theoretical significance,
the proposed method is also suitable for practical VLSI igpfibns, e.g., designs of hybrid

GF(2") multipliers.

ACKNOWLEDGMENT

The authors thank Dr. P. Zimmermann for pointing the splittmethod of [4] out to us after we posted a

preliminary version of this paper on the website “http:fiepiacr.org” on October 7, 2007.

Fig.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

14

Co

1. An arithmetic circuit illustrating formula (7).

REFERENCES

Karatsuba, A. : “The complexity of computations,” Pr@&teklov Inst. Math. vol. 211, pp.169-183, 1995.

Karatsuba, A., and Ofman Y. : “Multiplication of Multidit Numbers on Automata,Soviet Physics-Doklady (English
translation) vol. 7, no. 7, pp. 595-596, 1963.

Moenck, R. T. : “Practical fast polynomial multiplicati,” Proc. 1976 ACM. Symposium on Symbolic and Algebraic
Computation pp.136-148, 1976

Hanrot, G., and Zimmermann, P. : “A Long Note on Mulder$ids Product,”Journal of Symbolic Computatiovl.37 ,
pp.391-401, 2004

Winograd, S. : “Arithmetic Complexity of ComputationsSIAM, 1980.

Gathen, J. V. Z., and Gerhard, J. : “Modern Computer AtgébCambridge Univ. Press, First ed., 1999, Second ed3.200
Fan, H., and Hasan, M. A. : “A New Approach to Subquadr&mace Complexity Parallel Multipliers for Extended Binary
Fields,” IEEE Transactions on Computergol. 56, no. 2, pp. 224-233, Feb. 2007.

Fan, H., and Dai, Y. : “Fast bit parallelF'(2"™) Multiplier for All Trinomials,” IEEE Transactions on Computergol.
54, no. 4, pp. 485-490, Apr. 2005.

Hasan, M. A., and Bhargava, V. K. : “Division and Bit-s&rMultiplication overGF'(¢™),” IEE Proceedings-Evol. 139,
no. 3, pp. 230-236, May 1992.

15

[10] Hasan, M. A. , and Bhargava, V. K. : “Architecture for LaBomplexity Rate-Adaptive Reed-Solomon Encod&EEE
Transactions on Computersol. 44, no. 7, pp. 938-942, July 1995.

[11] Seroussi, G. : “Table of Low-Weight Binary IrreducibRolynomials,” Technical Report HP198-135, Hewlett-Packard
Laboratories Palo Alto, Calif., Aug. 1998 [Online]. Available: httpaivw.hpl.hp.com/techreports/98/HPL-98-135.html

[12] Erdem, S. S. , Yanik, T. , and Kog, C. K. : “Polynomial 8& Multiplication over GF'(2™),” Acta Applicandae
Mathematicae: An International Survey Journal on ApplyMgthematics and Mathematical Applicationsl. 93, no.
1-3, pp. 33-55, 2006.

[13] Afanasyev, V.B.: “Complexity of VLSI Implementatiorf &inite Field Arithmetic,”Proc. Il. Intern. Workshop on Algebraic
and Combinatorial Coding TheoryUSSR, pp.6-7, 1990

[14] Paar, C. : “Efficient VLSI Architectures for Bit-Parall Computation in Galois Fields,” PhD thesis, UniversityEssen,
Germany, 1994

[15] Paar, C. : “A New Architecture for a Parallel Finite FdeMultiplier with Low Complexity Based on Composite Fields,
IEEE Transactions on Computergol. 45, no. 7, pp. 856-861, July 1996.

[16] Paar, C., Cleischmann, V.B., and Roelse, P. : “EfficMuttiplier Schemes for Galois Fields F(2*™), ” IEEE Transactions
on Computersvol. 47, no. 2, pp. 162-170, Feb. 1998.

[17] Elia, M., Leone, M., and Visentin, C. : “Low ComplexityiBparallel Multipliers for GF'(2™) with Generator Polynomial
2™ + z* + 1,” IEE Electronics Lettersvol. 35, no.7, pp.551-552, 1999.

[18] Leone, M. : “A New Low Complexity Parallel Multiplier foa Class of Finite FieldsProc. Cryptographic Hardware and
Embedded Systems (CHES 20QI)NCS 2162, pp. 160-170, 2001.

[19] Jung, M., Madlener, F., Ernst,M., and Huss, S. : “A Rdigurable Coprocessor for Finite Field Multiplication @F'(2™),”
Proc. IEEE Workshop Heterogeneous reconfigurable SystenGhip, 2002.

[20] Ernst, M., Jung,M., Madlener,F., Huss, S., and BlurRel; “A Reconfigurable System on Chip Implementation for &l
Curve Cryptography oveZF'(2™),” Proc. Cryptographic Hardware and Embedded Systems (CHER)20ONCS 2523,
pp. 381-399, 2003.

[21] Grabbe, C., Bednara, M., Shokrollahi, J., Teich, Jd &athen, J. V. Z. : “FPGA Designs of Parallel High Perfornenc
GF(2%3) Multipliers,” Proc. Int'l Symposium on Circuits and Systems (ISCAS 20@8) II, pp. 268-271, 2003.

[22] Weimerskirch, A., and Paar, C. : “Generalizations o tharatsuba Algorithm for Efficient Implementations,” 2003
hitp : / Jwww.crypto.ruhr — uni — bochum.de/imperia/md/content /texte /kaweb.pdf.

[23] Rodriguez-Henriquez, F., and Kog, C. K. : “On FuRarallel Karatsuba Multipliers foGGF'(2™),” Proc. Int'l Conf.
Computer Science and Technology (CST 200B) 405-410, 2003.

[24] Erdem, S. S., and Kog, C. K. : “A Less Recursive Variahtkaratsuba-Ofman Algorithm for Multiplying Operands of
Size a Power of Two,Proc. 16th IEEE Symposium on Computer Arithmetic (Arith2063) pp. 28-35, 2003.

[25] Sunar, B. : “A Generalized Method for Constructing Suadratic ComplexityG' F'(2¥) Multipliers,” IEEE Transactions
on Computersvol. 53, no. 9, pp. 1097-1105, Sept. 2004.

[26] Chang,N. S., Kim, C. H., Park, Y. H. , and Lim, J. : “A NoreBundant and Efficient Architecture for Karatsuba-Ofman
Algorithm,” Proc. 8th International Conf. on Information Security (I005) LNCS 3650, pp. 288-299, 2005.

[27] Montgomery, P. L. : “Five, Six, and Seven-Term Karawstike Formulae,” IEEE Transactions on Computersol. 54,
no. 3, pp. 362-369, Mar. 2005.

[28] Fan H., and Hasan, M. A. : “Comments on “Five, Six, and é&eVerm Karatsuba-Like FormulaelEEE Transactions
on Computersvol. 56, no. 5, pp. 716-717, May 2007.

16

[29] Dyka. Z., and Langendoerfer, P. : “Area Efficient Hardevdmplementation of Elliptic Curve Cryptography by Itevaty
Applying Karatsuba’s Method,Proc. Conf. on Design, Automation and Test in Europe 2@@b6 70-75, 2005.

[30] Chang, K. Y., Hong, D., and Cho, H. S. : “Low ComplexitytBtarallel Multiplier for GF'(2™) Defined by All-One
Polynomials Using Redundant RepresentatitBEE Transactions on Computersol. 54, no. 12, pp. 1628-1630, Dec.
2005.

[31] Cheng, L. S. , Miri, A., and Yeap, T. H. : “Improved FPGA jhementations of Parallel Karatsuba Multiplication over
GF(2™),” Proc. 23rd Biennial Symposium on Communicatjo2306.

[32] Gathen, J. V. Z., and Shokrollahi, J. : “ Efficient FPGAsed Karatsuba Multipliers for Polynomials ovér,” Proc. 12th
Workshop on Selected Areas in Cryptography (SAC 200STS 3897 pp.359-369, 2006.

[33] Gathen, J. V. Z., and Shokrollahi, J. : “Fast arithmdtc polynomials overF, in hardware,”"Proc. IEEE Workshop on
Information Theory pp.107-111, 2006.

[34] Peter, P., and Langendorfer, P. : “An Efficient Polynahultiplier in GF(2™) and its Application to ECC Designs,”
Proc. Conf. on Design, Automation and Test in Europe 2@®/ 1253-1258, 2007.

