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1. Introduction 

 
In traditional (certificate based) public key cryptosystems, public keys are usually 

generated at random and secret keys are computed by the users. However, in 1984, Adi 
Shamir [7] introduced the concept of ID-based cryptosystems in which the public key of 
a user is derived from his identity and his private key is generated by a trusted third party 
called Private Key Generator (PKG). Main advantage of an ID-based cryptosystem is that 
it simplifies the key management process, which is a heavy burden in the traditional 
certificate based cryptosystem. The concept of ID-based encryption remained a concept 
till 2001 when Boneh and Franklin [1] proposed the first practical IBE scheme, 
BasicIdent. Using the padding technique of Fujisaki-Okamoto [4] they extended 
BasicIdent to FullIdent scheme, and proved that it is secure against chosen ciphertext 
attacks provided BDHP is hard. In 2003, Galindo [6] pointed out a flaw in the security 
proof of FullIdent [1], and provided another proof for the security of FullIdent without 
changing the scheme or the underlying assumption. In 2007, Wang [8] proposed another 
IBE scheme based on pairing which is more practical in multiple private key generator 
(PKG) environments than the IBE scheme BasicIdent of Boneh and Franklin [1]. In 2007, 
Sunder Lal and Priyam Sharma [10] analyzed the security of the IBE scheme by Wang 
[8] and proved that it relies on the BDHP for its security. In 2007, Wang and Cao [9] (an 
updated version of [8]) used the transformation technique of Fujisaki-Okamoto [5], and 
the transformation from [6], to transform the IBE scheme of [8] into fullM-IBE scheme, 
and proved that it is secure against chosen ciphertext attack. For security, they relied on 
the modified version of Bilinear Diffie-Hellman Problem (mBDHP) (which is weaker 
than BDHP). 

 
In this paper we re-analyze the security of the IBE scheme of Wang and Cao [9]. 

In the security analysis of fullM-IBE Wang and Cao used a public-key encryption 
scheme-BasicPub, obtained from M-IBE (which is the IBE scheme of Wang [8]), but 
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BasicPub is not  the public-key encryption scheme that we get from M-IBE, since the 
public parameters params contains more information that the public parameters  params  
of M-IBE. This does not match with the general philosophy. In this paper, using another 
security proof, which matches with the general philosophy, we show that the scheme 
relies on the BDHP for its security. We also obtain an improved tightness using BIDDHP 
which is stronger than BDHP. 
 
 
2. Preliminaries: 
 
2.1 Identity-Based Encryption (IBE) Scheme: 
 
An identity-Based Encryption Scheme consists of four randomized algorithms: Setup, 
Extract, Encrypt, and Decrypt. 
 
   Setup: It takes a security parameter k and returns system parameters params and 

master-key. The params which is known publically includes the description of 
a finite plaintext space M and the description of a finite ciphertext space C. The 
master-key is known only to the private key generator (PKG). 

   Extract: This algorithm extracts private key from the given public key. It takes as input 
params, the master-key and an identity string ID∈{0, 1}*, and returns key dID. 
String ID is used as public key, and dID as the corresponding private key. 

   Encrypt: Takes as input the params, an identity ID and a plaintext M∈M and returns 
a ciphertext C∈C. 

   Decrypt: Takes as input params, a private key dID, and C∈C. and returns M∈M. 
 
If params is the system parameters produced by the Setup algorithm, IDd is the private 
key, corresponding to ID, which is generated by the algorithm Extract, then 
 

∀M∈M,   Decrypt (params, IDd , Encrypt (params, ID, M)) = M. 
 
2.2 Adaptive Chosen Ciphertext Attack: 
 
Semantic security against adaptive chosen ciphertext attack for an identity-based 
encryption scheme (IND-ID-CCA) is defined through the following game between 
challenger and adversary. 
 
   Setup: The challenger takes a security parameter k and runs the Setup algorithm. She 

then returns public system parameters params to the adversary and keeps the 
master-key to itself. 

 
   Phase1: The adversary issues queries q1, q2, ………., qn which is one of the following: 

 



 3

   -Extraction query <IDj>: The challenger responds by running the algorithm 
extract to generate the private-key dj corresponding to the public-key IDj 
and returns to the adversary. 

 
   -Decryption query <IDj, Cj>: The challenger responds by running the algorithm 

extract to generate the private-key dj corresponding to the public-key IDj, 
uses this private key to decrypt the ciphertext Cj and returns the resulting 
plaintext to the adversary.  

 
   Challenge: The adversary outputs two equal length plaintext M0, M1∈M, with the   

only constrain that ID must not have appeared in any of the extraction query in 
Phase1. The challenger picks a random bit b∈{0, 1} and sends the challenge   
C = Encrypt(params, ID, Mb) to the adversary. 

 
   Phase2: The adversary issues queries qn+1, qn+1, ….., qt which is one of: 
  

   -Extraction query <IDj> where IDj≠ ID: The challenger responds as in  Phase1. 
  

   -Decryption query <IDj, Cj>≠ <ID, C>: The challenger responds as in Phase1. 
 
   Guess: The adversary outputs a guess b’∈{0, 1}. He wins the game if b’ = b. 
 
Such an adversary is called an IND-ID-CCA attacker. The advantage of an IND-ID-CCA 
attacker A against the scheme is defined to be:  
   ( ) [ ]

2
1b'bPrAdv A −==κ   

where the probability is over the random choices made by the challenger and the 
adversary. An identity-based encryption scheme is said to be semantically secure against 
adaptive chosen ciphertext attack (IND-ID-CCA) if no polynomially bounded adversary 
has non-negligible advantage in the game described above. 
 
2.3 Bilinear Pairings: 
 
Let G1 be an additive group of order p, a prime and let P be a generator of G1. Let G2 be a 
multiplicative group of the same order p. A map 211: GGGe →× is said to be a bilinear 
pairing if it satisfies the following properties: 
 
(Bilinearity): For all P, Q ∈  G1 and a, b ∈  Zp

*, abPPebPaPe ),(),( = . 
 
(Non-Degeneracy): For a given R ∈  G1, 1),( =RQe , for all Q ∈  G1 if and only if 0=R , 
where 1 is the identity of G2 and 0 is the identity of G1. 
 
(Computability): For all P, Q∈G1, there is an efficient algorithm to compute ),( QPe  in 
polynomial time. 
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   Following are some of the mathematical problems in G1, G2: 
 
 

 Computational Diffie-Hellman Problem (CDHP): Given P, aP, bP in G1, for 
some (unknown) a, b∈Zp

*, compute abP in G1.  
 

 Bilinear Diffie-Hellman Problem (BDHP): Given P, aP, bP, cP in G1, for some 
(unknown) a, b, c∈Zp

*,compute abcPPe ),( in G2. 
 

 Bilinear Inverse Diffie-Hellman Problem (BIDHP): Given P, aP, bP in G1, for 

some (unknown) a, b∈Zp
*, compute

baPPe
1

),(
−

in G2.  
 

 Bilinear Square Diffie-Hellman Problem (BSDHP): Given P, aP, bP in G1 for 

some (unknown) a, b∈Zp
*, compute baPPe

2

),( in G2. 
 

 Modified Bilinear Diffie-Hellman Problem (mBDHP): Given P, aP, a-1P, bP, 
cP in G1, for some (unknown) a, b∈Zp

*compute abcPPe ),( in G2. 
 

 Bilinear Decision Diffie-Hellman Problem (BDDHP): Given P, aP, bP, cP in G1 
and T ∈G2, for some (unknown) a, b, c∈Zp

*, decide whether T = ( )abcPPe , . 
 

 Modified Bilinear Decision Diffie-Hellman Problem (mBDDHP): Given P, aP, 
a-1P, bP, cP in G1 and T ∈G2, for some (unknown) a, b, c∈Zp

*, decide whether   
T = ( )abcPPe , . 

 
 Bilinear Inverse Decision Diffie-Hellman Problem (BIDDHP): Given P, aP, 

bP, cP in G1 and T∈G2, for some (unknown) a, b, c∈Zp
*, decide whether  

T = ( ) bcaPPe
1

,
−

. 
            It may be noted here that, BIDDHP is termed as Decisional Modified BDHP in         

[3]. 
 
 
It is easy to show that, if we have an algorithm to solve the CDHP in G1 or G2, then using 
this algorithm we can solve BDHP in <G1, G2, e>. In other words, the BDHP in          
<G1, G2, e> is no harder than the CDHP in G1 or G2. But, the problem that, the CDHP 
in G1 or G2 is no harder than the BDHP is still an open problem. Also, it is shown in [7] 
that BDHP, BIDHP, and BSDHP are all polynomial time equivalent. It is easy to see that 
mBDHP is no harder than the BDHP. mBDDHP is no harder than BDDHP. Also, 
mBDDHP is no harder than BIDDHP.  
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3. IBE Scheme by Wang and Cao ( fullM-IBE): 
 
We first describe the IBE scheme fullM-IBE proposed by Wang and Cao [9]. The scheme 
consists of the following four algorithms:  
 
   Setup: The algorithm works as follows: 
          
              1. Runs IG on input k to generate two prime order groups G1 and G2 and a 

bilinear map 211: GGGe →× . Here |G|1=|G2|=p and G1= < P >. 
 
              2. Chooses s∈  Zp

* and computes PPub = s-1P∈ G1. 
  
              3. For a suitable n and k0∈N, chooses the plaintext space M={ } 01,0 kn − , the 

ciphertext space C= G1
*x {0,1}n and three cryptographic hash functions   

 H1:{ } →*1,0 G1, H2:G2 { }n1,0→ and H3:{ } { } →×− 00 1,01,0 kkn Z*
p 

               The params is <G1, G2, e, n, p, P, PPub, H1, H2, H3>, and the master-key is s. 
  
   Extract: For an identity ID∈{0,1}*, PKG computes 

 
1. QID = H1(ID)∈G1 as the public key, and 
 
2. dID = sQID as the corresponding private key.  

 
   Encrypt: To encrypt a plaintext m∈M for user with identity ID the sender 

 
1. picks a random { } 01,0 k∈σ and compute r=H3 ( ) *, pZm ∈σ  
 
2. computes QID = H1(ID) and gID = e (P, QID)∈G2, and 
 
3. sets the ciphertext C=< rPPub, (m σ )⊕H2 (gID

r) >. 

 
   Decrypt: To decrypt a ciphertext C=<U, V>∈C, the receiver using the private key dID, 

and params < G1, G2, e, n, p, P, PPub, QID, H2, H3> 
           

1. computes m’ = V⊕H2(e (U, dID)) = m σ , and 

 
2. parses mσ  and computes ( ) *

3 , pZmHr ∈= σ . Accepts the 

ciphertext iff U = rPPub. 
 
3. Outputs m. 

          
             The correctness follows because r

IDIDID QPesQPrsedUe ),(),(),( 1 == − .    
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4. Security Analysis: 
 
Regarding the security of fullM-IBE, Wang and Cao [9] proved the following: 
 
Theorem: The fullM-IBE scheme is (t, qH, qD, ε )-secure if the mBDHP on (G1,G2, e) is 

( ) ( ) )q/,plogplogOqqq2ct( 2
H

3
HHD1G ε++++   secure. 

 
In the above proof Wang and Cao reduce the fullM-IBE to a scheme called BasicPub 
much the same way as is done in Boneh-Franklin [1] and Galindo [6]. However, contrary 
to the reduced form by Boneh-Franklin and Galindo, the reduced BasicPub of Wang and 
Cao need more public information than is available in the full scheme. Information     
PPub’ = sP∈G1 is not a part of params in fullM-IBE, but it is a part of params in 
BasicPub of Wang and Cao. We feel it is an anomaly in the security proof of fullM-IBE. 
Here we provide a security proof which is free from this anomaly. Moreover, security 
proof is based on BDHP as against mBDHP of Wang and Cao. We prove the following 
theorem: 
 
Theorem1: The fullM-IBE scheme is (t, qH, qD, ε )-secure if the BDHP on (G1,G2, e) is 

( ) ( ) )q/,plogplogOqqq2ct( 2
H

3
HHD1G ε++++   secure. 

 
 
To prove the above theorem we make use of  a public-key encryption scheme called as 
BasicPubHy which is obtained by applying Fujisaki-Okamoto transformation [5] to the 
public-key encryption scheme BasicPub-Wang in [10]. In the next subsection we describe 
the BasicPub-Wang. 
 
4.1  BasicPub-Wang:  
 
The scheme has three algorithms: Keygen, Encrypt, and Decrypt. Algorithms Encrypt 
and Decrypt are same as that of IBE scheme of Wang [8] (which is called M-IBE in [9]). 
The scheme is as follows: 
 
   Keygen: The algorithm works as follows: 
 

       1. As in the Setup algorithm of IBE scheme of Wang (M-IBE), IG generates 
two prime order groups G1, G2 and a bilinear map 211: GGGe →× . Also, 
the PKG computes its public key PPub and secret key s in the same way. 

 
                2. The plaintext space M = {0,1}n, the ciphertext space C = G1

*x {0,1}n and a 
cryptographic hash function H2: G2→{0, 1}n are chosen in the same way. 

 
               3.  The algorithm now picks a random point QID≠ 0 in G1, the group generated 

by P.  
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               4. The public key is <G1, G2, e, n, p, P, PPub, QID, H2>, the private key is 
dID=sQID∈G1. 

  
   Encrypt: To encrypt m∈{0, 1} n, the algorithm chooses random r∈Zp

* and computes 
C=< rPPub, m⊕H2(gID

r) >, where gID = e (P, QID)∈G2. 
 
 
   Decrypt: To decrypt C=<U, V> the algorithm takes the public key < G1, G2, e, n, p, P, 

PPub, QID, H2> and private key dID as input, 
            
         1. computes m = V⊕H2(e (U, dID)), and 
            
         2. returns m.  

 
 
4.2BasicPubHy:  
 
The scheme is obtained by applying the Fujisaki-Okamoto transformation [5] to 
BasicPub-Wang. The scheme has three algorithms: Keygen, Encrypt, and Decrypt. 
Algorithms Encrypt and Decrypt are same as that of fullM-IBE. 
The scheme is as follows: 
 
   Keygen: The algorithm works as follows: 
 
               1. Runs IG on input k to generate two prime order groups G1 and G2 and a 

bilinear map 211: GGGe →× . Here |G|1=|G2|=p and G1= < P >. 
 
               2. Chooses s∈  Zp

* and computes PPub = s-1P∈ G1. 
  
               3. For a suitable n and k0∈N, chooses the plaintext space M={ } 01,0 kn − , the 

ciphertext space C= G1
*x {0,1}n and two cryptographic hash functions   

 H1:G2 { }n1,0→ and H3:{ } { } *00 1,01,0 p
kkn Z→×− . 

               
   4.  The algorithm now picks a random point QID≠ 0 in G1, the group generated 

by P.  
 
   The public key is <G1, G2, e, n, p, P, PPub, QID, H2, H3>, the private key is 

dID=sQID∈G1. 
 
          
   Encrypt: To encrypt m∈{0, 1} n, the algorithm chooses random { } 01,0 k∈σ ,   

computes r = H3(m, σ) and C=< rPPub, (m σ )⊕H2(gID
r) >, where               

gID = e (P, QID)∈G2. 
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    Decrypt: To decrypt C=<U, V> the algorithm takes < G1, G2, e, n, p, P, PPub, QID, H2, 

H3> and private key dID as input, 
            
         1. computes m’ = V⊕H2(e (U, dID)) = m σ , 

            
         2. parses m σ  and computes ( ) *

3 , pZmHr ∈= σ . Checks that U = rPPub. 

If not rejects the ciphertext. 
 
         3. returns m. 

 
To prove Theorem1 we proceed in the following three steps: 

 
 We show that IND-ID-CCA attack on fullM-IBE can be converted into           

IND-CCA attack on BasicPubHy. This will show that private key extraction 
queries do not help the adversary.  

 
     We show that IND-CCA attack on BasicPubHy can be converted into an             

IND-CPA attack on BasicPub-Wang. 
 

     We show that IND-CPA attack on BasicPub-Wang can be converted into an 
algorithm that can solve BIDHP. 

 
Lemma1: Let A be a t time IND-ID-CCA adversary with advantage ε  against the       
fullM-IBE scheme making at most qE private key extraction queries, qD decryption 
queries and q1 hash queries. Then there is an IND-CCA adversary B that has advantage at 
least 

1

1

1

1
qq

q
q E

εε
≈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

 against BasicPubHy. Its running time is     

( )11
' qqqctt EDG +++≤ , where 

1Gc  denotes the time of computing a random 

multiple in G1. 
 
Proof: The proof can be found in [9].                         ♣ 
 
 
Lemma2: Let A be a t time IND-CCA adversary with advantageε  against BasicPubHy 
making at most qD decryption queries and q2 hash queries. Then there is an                 
IND-CPA adversary B that has advantage at least 

( ) ( ) εε ≈−− −− Dqk pq /11)2( 1
2

0  against BasicPub-Wang with the running 
time ( )pTqtt BasicPub log' 2 ++≤  , where TBasicPub is the running time of 
Encrypt algorithm in BasicPub-Wang. 
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Proof: This result is obtained by applying Fujisaki-Okamoto transformation. The proof 
can be found in [5].                 ♣ 
 
Lemma1 and Lemma2 are the same as Lemma 1 and Lemma 2 respectively of [9]. 
 
Lemma3: Let A be a t time IND-CPA adversary with advantage atleast ε  against          
BasicPub-Wang making at most 

2Hq  queries to H2. Then there is an algorithm B that has 
advantage at least 

2

2

Hq
ε in solving the BIDHP. Its running time is t’ = O(t). 

 
Proof: Algorithm B is given an input the BIDH parameters <G1, G2, e > produced by IG 
and a random instance <P, aP, bP> of the BIDHP for these parameters i.e.,  P R∈ G1 where 

a, b R∈ Zp
*.  |G1| = p = |G2|. Let 2

1

),( GPPeD ba ∈=
−

be the solution to this problem. 
Algorithm B finds D by interacting with algorithm A as follows: 
  
   Setup: Algorithm B creates the BasicPub public key KPub = < G1, G2, e, n, P, PPub, QID, 

H2> by setting PPub = aP, QID= bP.  
                   Observe that, the private key associated to KPub is dID = a-1 QID  = a-1bP. 
        
   H2-queries: At any time algorithm A may issue queries to H2. To respond to these 

queries algorithm B maintains a list of pairs called the H2-list. Each entry in the 
list is a pair of the form < Xj, Hj >. Initially the list is empty. 

                  
                     To respond to query Xj algorithm B does the following: 

 
1. If the query Xj already appears on the H2-list, then he responds    
      with H2(Xj) = Hj .      

      
2. Otherwise, algorithm B just picks a random string Hj∈{0, 1}n and    

           adds the tuple <Xj, Hj> to the list. It responds to algorithm A with          
       H2(Xj) = Hj. 

    
Challenge: Algorithm A outputs two equal length plaintext M0, M1 in which it wishes 

to be challenged. Algorithm B then picks a random string R∈{0, 1}n and 
defines C to be the ciphertext, C = <U, V> where U = P and V = R. Algorithm 
B  picks a random bit b∈{0,1}and gives C, encryption of Mb, as the challenge 
to algorithm A. 

    Note that, the decryption of C is  

          V⊕  H2(e (u, dID)) = V⊕H2(e (P, a-1bP))= V⊕  H2(e( ) b1aP,P
−

)= V⊕H2(D). 
                               We set Mb = V⊕H2 (D). 
                   
                  Guess: Algorithm A outputs a guess b’∈{0,1} for b.                
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        It is easy to see that A’s view is identical to its view in the real attack. The setup is 
as in the real attack. Since a and b are random in Zp

* so is the challenge, as the challenged 

ciphertext C =  <U,V> where U = P and V { }n1,0∈ . U = P imply U = a-1aP i.e. adversary 
B chooses r  = a-1 *

pZ∈ , and his choice is justified as B  sets the game in such a way that 

any response of A enables him to output the right solution of the problem given to him.        
Since, P is a random in G1 and therefore the resulting encryption message, which is 
exclusive-or of two random strings in {0,1}n, is also random plaintext.  
Thus,      
                                 

[ ] ε≥−==
2
1'Pr)( bbkAdv A

 

It still remains to calculate the probability that algorithm B outputs the correct result. 
The adversary A gains no advantage in distinguishing M0, M1 if it has not asked for 
( ) baPPe

1
,

− ,which is equal to D, to H2. Let H denote the event that at the end of the 
simulation D appears in a pair on H2-lists. Using the technique of  claim 1 in [2], we can 
show that Pr[H] in the simulation above is equal to Pr[H] in the real attack. If D does not 
appear in H2-lists i.e. If A never issues a query for H2(D), then the decryption of C is 
independent of A’s view, since H2(D) is a random string in {0,1}n independent of A’s 
view. Thus, [ ]

2
1'Pr =¬= Hbb  

Then,  
 

]'Pr[ bb = ]Pr[]'Pr[]Pr[]'Pr[ HHbbHHbb ¬⋅¬=+⋅==  

                                  ]Pr[]'Pr[]Pr[ HHbbH ¬⋅¬=+≤   

 
                  ].Pr[

2
1

2
1])Pr[1(

2
1]Pr[]Pr[

2
1]Pr[ HHHHH +=−+=¬+=  

Also,  

].Pr[
2
1

2
1]Pr[].'Pr[]'Pr[ HHHbbbb −=¬¬===  

 
].Pr[

2
1

2
1]'Pr[ Hbb ≤−=≤∴ ε

 

 
ε2]Pr[ ≥∴ H  

Also, since we pick a random element from H2-list, the probability that algorithm B 
produces the right answer is at least      
                                                [ ]

2

2Pr
Hq

H ε
≥  .                                                    

Note that, if algorithm A answers correctly, then V ⊕  M’= H2(D). So algorithm B could 
scan through the H2-list, and pick a random pair <Xj, Hj> such that Hj = H2(D), and 
output Xj instead of picking a random pair from the entire H2-list.                                    ♣  
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In order to come up with the total concrete security, we assume that qE = qD (since 
extraction and decryption operations have almost same computational complexity). We 
also bound all hash queries qi with qH. 
 
In Theorem 2 of [11], Zhang, Safavi-Naini and Susilo have shown that BDHP, BIDHP 
and BSDHP are all  polynomial time equivalent.  Using this result we infer, that       
fullM-IBE is secure so long  as  the BDHP  is difficult. Therefore, from Lemma1, 
Lemma2 and Lemma3, we get:  
If there exists an  IND-ID-CCA  adversary against  algorithm A that has advantage ε  
against full M-IBE, then there is an algorithm B  that can solve BDHP with advantage at 
least  

2
Hq
ε .                                                                                                                                                            

 
We now prove a theorem which improves the tightness in the above theorem. 

Here we rely on a stronger assumption, namely, the BIDDHP. To prove the theorem we 
work on the line of [6]. 
 
 
Theorem2: Let A be a t time IND-CPA adversary against BasicPub-Wang with 
advantage atmost  ε  making atmost 

2Hq   hash queries. Then there is an algorithm B that 
can solve BIDDHP with advantage ε  and running time t' ≈ t.  
 
Proof: Algorithm B is given an input the BIDDH parameters <G1, G2, e > produced by 
IG and a random instance <P, aP, bP, cP, T> of the BIDDH problem for these parameters 
i.e.,     P R∈ G1

* where a, b, c R∈ Zp
*.  |G1| = p = |G2|. Algorithm B  uses algorithm A to 

solve the BIDDHP as follows: 
  
   Setup: Algorithm B creates the BasicPub public key KPub = < G1, G2, e, n, P, PPub, QID, 

H2> by setting PPub = aP, QID= bP.  
               Observe that, the private key associated to KPub is dID = a-1 QID = a-1bP.  
                

      H2-queries: At any time algorithm A may issue queries to H2. To respond to these 
queries algorithm B maintains a list of pairs called the H2-list. Each entry in the 
list is a pair of the form < Xj, Hj >. Initially the list is empty. 

                  
                     To respond to query Xj algorithm B does the following: 

 
1. If the query Xj already appears on the H2-list, then he responds    

            with H2(Xj) = Hj .  
       
      2.  Otherwise, algorithm B just picks a random string Hj∈{0, 1}n and    

                adds the tuple <Xj, Hj> to the list. It responds to algorithm A with          
           H2(Xj) = Hj. 
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   Challenge: A outputs two equal length plaintext M0, M1 in which it wishes to be 
challenged. Algorithm B returns as the challenge ciphertext                              
C = <cP, Mb ⊕H2(T)>, where b R∈  {0,1}. 

      
                  Note that, the decryption of C is V⊕  H2(e (U, dID)) = V⊕H2(e (cP, a-1bP))  = 

V⊕H2( ( ) bcaPPe
1

,
−

) 
     

      Guess: Algorithm A outputs its guess b’ for b. Algorithm B returns 1 if b = b’ and 0 
otherwise. 

   
Note that, we say an algorithm D(t,ε )  breaks BIDDHP on (G1, G2) if it runs in time at      
most t and  

| Pr[D(P, aP, bP, cP, ( ) bcaPPe
1

,
−

) = 1] – Pr[D(P, aP, bP, cP, T) = 1] | ε≥ . 
 

where the probability is computed over the random choices of the parameters, and the 
random bits of D. The distribution on the left side is called BIDH distribution and is 
denoted by PBIDH, while the distribution on the right is called random BIDH distribution 
and is denoted by RBIDH.  
 
In the above game, algorithm B is simulating a real attack environment for A. If the 
random instance is from RBIDH, then Pr[b’ = b] = ½, since in this case the distribution of 
the ciphertext C is independent of the bit b. Otherwise, the instance comes from PBIDH, 
and C is valid encryption of Mb. Therefore Pr[b’ = b] = ½ +ε   by definition of A.  
Therefore, |Pr [B (PBIDH)=1 – Pr [B(RBIDH)=1] | = [1/2 + ε -1/2] = ε .                            ♣                               
 
 
 
With this second tightness improvement, we obtain that fullM-IBE scheme is  
(t,qH, qD,ε ) IND-ID-CCA secure if the BIDDHP problem on (G1, G2) is 
 

                             ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++

H
HHDG q

qqOqqqct ε,loglog2 3
1

secure. 

 
Here, we got rid of a qH factor in the security reduction at the cost of relying on a stronger 
assumption. 
 
 
Conclusion: In this paper we present another proof that the IBE scheme fullM-IBE of 
Wang and Cao [9] is secure against chosen ciphertext attack. We remove an anomaly in 
the security proof  by Wang and Cao which is based on mBDHP. We base our proof on 
the hardness of BDHP which is stronger than mBDHP. We also obtain a better tightness 
improvement using BIDDHP, which is a stronger assumption. 
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